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Abstract
We study the problem of Brownian motion in a multiscale potential. The potential is assumed
to have N + 1 scales (i.e. N small scales and one macroscale) and to depend periodically
on all the small scales. We show that for nonseparable potentials, i.e. potentials in which
the microscales and the macroscale are fully coupled, the homogenized equation is an over-
damped Langevin equation with multiplicative noise driven by the free energy, for which the
detailed balance condition still holds. This means, in particular, that homogenized dynam-
ics is reversible and that the coarse-grained Fokker–Planck equation is still a Wasserstein
gradient flow with respect to the coarse-grained free energy. The calculation of the effective
diffusion tensor requires the solution of a system of N coupled Poisson equations.

Keywords Brownian dynamics · Multiscale analysis · Reiterated homogenization ·
Reversible diffusions · Free energy

Mathematics Subject Classification 35B27 · 35Q82 · 60H30

1 Introduction

The evolution of complex systems arising in chemistry and biology often involve dynamic
phenomena occurring at a wide range of time and length scales. Many such systems are
characterised by the presence of a hierarchy of barriers in the underlying energy landscape,
giving rise to a complex network of metastable regions in configuration space. Such energy
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landscapes occur naturally in macromolecular models of solvated systems, in particular
protein dynamics. In such cases the rugged energy landscape is due to the many competing
interactions in the energy function [11], giving rise to frustration, in a manner analogous to
spin glass models [10, 40]. Although the large scale structure will determine the minimum
energy configurations of the system, the small scale fluctuations of the energy landscape will
still have a significant influence on the dynamics of the protein, in particular the behaviour at
equilibrium, the most likely pathways for binding and folding, as well as the stability of the
conformational states. Rugged energy landscapes arise in various other contexts, for example
nucleation at a phase transition and solid transport in condensed matter.

To study the influence of small scale potential energy fluctuations on the system dynamics,
a number of simple mathematical models have been proposed which capture the essential
features of such systems. In one such model, originally proposed by Zwanzig [56], the
dynamics are modelled as an overdamped Langevin diffusion in a rugged two-scale potential
V ε ,

dX ε
t = −∇V ε(Xt ) dt + √

2σ dWt , σ = β−1 = kBT , (1)

where T is the temperature and kB is Boltzmann’s constant. The function V ε(x) = V (x, x/ε)
is a smooth potential which has been perturbed by a rapidly fluctuating function with wave
number controlled by the small scale parameter ε > 0. SeeFig. 1 for an illustration. Zwanzig’s
analysis was based on an effective medium approximation of the mean first passage time,
from which the standard Lifson–Jackson formula [33] for the effective diffusion coefficient
was recovered. In the context of protein dynamics, phenomenological models based on (1)
are widespread in the literature, including but not limited to [3, 28, 37, 53]. Theoretical
aspects of such models have also been previously studied. In [13] the authors study diffusion
in a strongly correlated quenched random potential constructed from a periodically-extended
path of a fractional Brownianmotion. Numerical study of the effective diffusivity of diffusion
in a potential obtained from a realisation of a stationary isotropic Gaussian random field is
performed in [6]. More recent works include [22, 23] where the authors study systems of
weakly interacting diffusions moving in a multiwell potential energy landscape, coupled via
a Curie–Weiss type (quadratic) interaction potential and [34] in which the authors consider
enhanced diffusion for Brownian motion in a tilted periodic potential expressing the effective
diffusion in terms of the eigenvalue band structure. It is also worth mentioning a series of
works [4, 19, 48, 54] studyingmultiscale behaviour of diffusion processes with multiple-well
potentials in which the limiting process is a chemical reactions instead of a diffusion.We also
mention [14], where the combinedmean field/homogenization limit for diffusions interacting
via a periodic potential is considered. The main result of this paper is that, in the presence of
phase transitions, the mean field and homogenization limits do not commute.

For the case where (1) possesses one characteristic lengthscale controlled by ε > 0, the
convergence of X ε

t to a coarse-grained process X0
t in the limit ε → 0 over a finite time

interval is well-known. When the rapid oscillations are periodic, under a diffusive rescaling
this problem can be recast as a periodic homogenization problem, for which it can be shown
that the process X ε

t converges weakly to a Brownian motion with constant effective diffusion
tensor D (covariance matrix) which can be calculated by solving an appropriate Poisson
equation posed on the unit torus, see for example [8, 46]. The analogous case where the
rapid fluctuations arise from a stationary ergodic random field has been studied in [31, Chap.
9]. The case where the potential V ε possesses periodic fluctuations with two or three well-
separated characteristic timescales, i.e. V ε(x) = V (x, x/ε, x/ε2) follow from the results in
[8, Chap. 3.7], in which case the dynamics of the coarse-grained model in the ε → 0 limit
are characterised by an Itô SDE whose coefficients can be calculated in terms of the solution
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Fig. 1 Example of a multiscale potential. The left panel shows the isolines of the Mueller potential [39, 49].
The right panel shows the corresponding rugged energy landscape where the Mueller potential is perturbed
by high frequency periodic fluctuations

of an associated Poisson equation. A generalization of these results to diffusion processes
having N -well separated scales was explored in Sect. 3.11.3 of the same text, but no proof of
convergence is offered in this case. Similar diffusion approximations for systems with one
fast scale and one slow scale, where the fast dynamics is not periodic have been studied in
[43].

Amodel for Brownian dynamics in a potential V possessing infinitely many characteristic
lengthscales was studied in [7]. In particular, the authors studied the large-scale diffusive
behaviour of the overdamped Langevin dynamics in potentials of the form

V n(x) =
n∑

k=0

Uk

(
x

Rk

)
, (2)

obtained as a superposition of Hölder continuous periodic functions with period 1. It was
shown in [7] that the effective diffusion coefficient decays exponentially fast with the number
of scales, provided that the scale ratios Rk+1/Rk are bounded from above and below, which
includes cases where there is no scale separation. From this the authors were able to show that
the effective dynamics exhibits subdiffusive behaviour, in the limit of infinitely many scales.
See also the analytical calculation presented in [15] for a piecewise linear periodic potential; in
the limit of infinitely many scales, the homogenized diffusion coefficient converges to zero,
signaling that, in this limit, the coarse-grained dynamics is characterized by subdiffusive
behaviour.
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In this paper we study the dynamics of diffusion in a rugged potential possessing N well-
separated lengthscales. More specifically, we study the dynamics of (1) where the multiscale
potential is chosen to have the form

V ε(x) = V

(
x, x/ε, x/ε2, . . . , x/εN

)
, (3)

where V is a smooth function, which is periodic with period 1 in all but the first argument.
Clearly, V can always be written in the form

V (x0, x1, . . . , xN ) = V0(x0) + V1(x0, x1, . . . , xN ), (4)

where (x0, x1, . . . , xN ) ∈ R
d × (Td

)N
. We will assume that the large scale component of

the potential V0 is smooth and confining in R
d , and that the perturbation V1 is a smooth

bounded function which is periodic in all but the first variable. Unlike [7], we work under the
assumption of explicit scale separation, however we also permit more general potentials than
those of the form (2), allowing possibly nonlinear interactions between the different scales,
and even full coupling between scales.1 To emphasize the fact that the potential (4) leads to
a fully coupled system across scales, we introduce the auxiliary processes X ( j)

t = Xt/ε
j ,

j = 0, . . . , N . The SDE (1) can then be written as a fully coupled system of SDEs driven by
the same Brownian motion Wt ,

dX (0)
t = −

N∑

i=0

ε−i∇xi V
(
X (0)
t , X (1)

t , . . . , X (N )
t

)
dt + √

2σ dWt , (5a)

dX (1)
t = −

N∑

i=0

ε−(i+1)∇xi V
(
X (0)
t , X (1)

t , . . . , X (N )
t

)
dt +

√
2σ

ε2
dWt , (5b)

...

dX (N )
t = −

N∑

i=0

ε−(i+N )∇xi V
(
X (0)
t , X (1)

t , . . . , X (N )
t

)
dt +

√
2σ

ε2N
dWt , (5c)

in which case X (0)
t is considered to be a “slow” variable, while X (1)

t , . . . X (N )
t are “fast”

variables. In this paper, we first provide an explicit proof of the convergence of the solution
of (1), X ε

t to a coarse-grained (homogenized) diffusion process X0
t given by the unique

solution of the following Itô SDE:

dX0
t = −M(X0

t )∇�(X0
t ) dt + σ∇ · M(X0

t ) dt +
√
2σM(X0

t ) dWt , (6)

where

�(x) = −σ log Z(x),

denotes the free energy, for

Z(x) =
∫

Td
· · ·
∫

Td
e−V1(x,y1,...,yN )/σ dy1 . . . dyN ,

and where M(x) is a symmetric uniformly positive definite tensor which is independent of
ε. The formula of the effective diffusion tensor is given in Sect. 2.

1 We will refer to potentials of the form V ε(x) = V0(x) + V1
(
x/ε, . . . , x/εN

)
where V1 is periodic in all

variables as separable.
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Our assumptions on the potential V ε in (4) guarantee that the full dynamics (1) is reversible
with respect to the Gibbs measure με by construction. It is important to note that the coarse-
grained dynamics (6) is also reversible with respect to the equilibrium Gibbs measure

μ0(x) = Z(x)/Z .

Indeed, the natural interpretation of �(x) = −σ log Z(x) is as the free energy corre-
sponding to the coarse-grained variable X0

t . The weak convergence of X ε
t to X0

t implies in
particular that the distribution of X ε

t will converge weakly to that of X
0
t , uniformly over finite

time intervals [0, T ], which does not say anything about the convergence of the respective
stationary distributionsμε toμ0. In Sect. 4 we study the equilibrium behaviour of X ε

t and X0
t

and show that the long-time limit t → ∞ and the coarse-graining limit ε → 0 commute, and
in particular that the equilibrium measure με of X ε

t converges in the weak sense to μ0. We
also study the rate of convergence to equilibrium for both processes, and we obtain bounds
relating the two rates. This question is naturally related to the study of the Poincaré constants
for the full and coarse-grained potentials [24, 41].

We can summarize the above discussion as follows: the (Wasserstein) gradient structure,
reversibility and detailed balance property of the dynamics (the three properties are equiv-
alent) are preserved under the homogenization/coarse-graining process: the reversibility of
X ε
t with respect to με is preserved under the homogenization procedure. Indeed, any general

diffusion process that is reversible with respect to μ0(x) will have the form (18), see [45,
Sect. 4.7]. It is not necessarily always the case that the gradient structure is preserved under
coarse-graining, as has been shown recently [47]. The creation of non-gradient/nonreversible
effects due to the multiscale structure of the dynamics is a very interesting problem that we
will return to in future work.

We also remark that the homogenized SDE corresponds to the kinetic/Klimontovich inter-
pretation of the stochastic integral [27], i.e. it can be written in the form

dX0
t = −M(X0

t )∇�(X0
t ) dt +

√
2σM(X0

t ) ◦Klim dWt , (7)

where we use the notation ◦Klim to denote the Klimontovich stochastic differential/integral.
The Klimontovich interpretation of the stochastic integral leads to a thermodynamically
consistent Langevin dynamics, in the sense that it is reversible with respect to the coarse-
grained Gibbs measure.

The multiplicative noise is due to the full coupling between the macroscopic and the
N microscopic scales.2 For one-dimensional potentials, we are able to obtain an explicit
expression for M(x), regardless of the number of scales involved. In higher dimensions,
M(x) will be expressed in terms of the solution of a recursive family of Poisson equations
which can be solved only numerically. We also obtain a variational characterization of the
effective diffusion tensor, analogous to the standard variational characterisations for the
effective conductivity tensor for multiscale conductivity problems, see for example [29].
Using this variational characterisation, we are able to derive tight bounds on the effective
diffusion tensor, and in particular, show that as N → ∞, the eigenvalues of the effective
diffusion tensor will converge to zero, suggesting that diffusion in potentials with infinitely
many scales will exhibit anomalous diffusion. The focus of this paper is the rigorous analysis
of the homogenization problem for (1) with V ε given by (4).More precisely, we are interested
in establishing the convergence of both the dynamics (over finite time domain) and of the
equilibrium measure of (1) as ε tends to zero.

2 For additive potentials of the form (2), i.e. when there is no interaction between the macroscale and the
microscales, the noise in the homogenized equation is additive.
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Our proof of the homogenization theorem, Theorem 1 is based on the well known martin-
gale approach to proving limit theorems [8, 42, 43]. The main technical difficulty in applying
such well known techniques is the construction of the corrector field/compensator and the
analysis of the obtained Poisson equations. This turns out to be a challenging task, since we
consider the case where all scales, the macroscale and the N -microscales, are fully coupled.
For recent applications of the techniques, we refer the reader to [32, 50] where the authors
study metastable behaviour of multiscale diffusion processes.

The rest of the paper is organized as follows. In Sect. 2 we state the assumptions on the
structure of the multiscale potential and state the main results of this paper. In Sect. 3 we
study properties of the effective dynamics, providing expressions for the diffusion tensor in
terms of a variational formula, and derive various bounds. In Sect. 4 we study properties of
the effective potential, and prove convergence of the equilibrium distribution of X ε

t to the
coarse-grained equilibrium distribution μ0. The proof of the main theorem, Theorem 1, is
presented in Sect. 5. Finally, in Sect. 6 we provide further discussion and outlook.

2 Setup and Statement of Main Results

In this section we provide conditions on the multiscale potential which are required to obtain
a well-defined homogenization limit. In particular, we shall highlight assumptions necessary
for the ergodicity of the full model as well as the coarse-grained dynamics.

We will consider the overdamped Langevin dynamics

dX ε
t = −∇V ε(X ε

t ) dt + √
2σ dWt , (8)

where V ε(x) is of the form (3). The multiscale potentials we consider in this paper can be
viewed as a smooth confining potential perturbed by smooth, bounded fluctuations which
become increasingly rapid as ε → 0, see Fig. 1 for an illustration. More specifically, we will
assume that the multiscale potential V satisfies the following assumptions.3

Assumption 1 The potential V is given by

V (x0, x1, . . . , xN ) = V0(x0) + V1(x0, x1, . . . , xN ), (9)

where (x0, x1, . . . , xN ) ∈ R
d × (Td

)N
, and

1. V0 is a smooth confining potential, i.e. e−V0(x) ∈ L1(Rd) and V0(x) → ∞ as |x | → ∞.
2. The perturbation V1(x0, x1, . . . , xN ) is smooth and bounded uniformly in x0.
3. There exists C > 0 such that

∥∥∇2V0
∥∥
L∞(Rd )

≤ C .

Remark 1 We note that Assumption 1 is quite stringent, since it implies that V0 is quadratic
to leading order. This assumption is also made in [43]. In cases where the process X ε

0 ∼ με ,
i.e. the process is stationary, this condition can be relaxed considerably.

The infinitesimal generator Lε of X ε
t is the selfadjoint extension of

Lε f (x) = −∇V ε(x) · ∇ f (x) + σ� f (x), f ∈ C∞
c (Rd). (10)

It follows from the assumption on V0 that the corresponding overdamped Langevin equa-
tion

dYt = −∇V0(Yt ) dt + √
2σdWt , (11)

3 We remark that we can always write (4) in the form (9) where V0(x) =∫
Td · · · ∫

Td V (x, x1, . . . , xN ) dx1 . . . dxN .
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is ergodic with the unique stationary distribution

μre f (x) = 1

Zre f
exp(−V0(x)/σ ), Zre f =

∫

Rd
e−V0(x)/σ dx .

Since V1 is bounded uniformly, by Assumption 1, it follows that the potential V ε is also
confining, and therefore X ε

t is ergodic, possessing a unique invariant distribution given by

με(x) = e−V ε (x)/σ

Z ε , where Z ε = ∫
Rd e−V ε (x)/σ . Moreover, noting that the generator Lε of

X ε
t can be written as

Lε f (x) = σ eV
ε (x)/σ ∇ ·

(
e−V ε (x)/σ ∇ f (x)

)
, f ∈ C2

c (R
d).

It follows that με is reversible with respect to the dynamics X ε
t , c.f. [20, 45].

Our main objective in this paper is to study the dynamics (8) in the limit of infinite scale
separation ε → 0. Having introduced the model and the assumptions we can now present
the main result of the paper.

Theorem 1 (Weak convergence of X ε
t to X

0
t ) Suppose that Assumption 1 holds and let T > 0,

and the initial condition X0 is distributed according to some probability distribution ν onRd .
Then as ε → 0, the process X ε

t converges weakly in (C[0, T ];Rd) to the diffusion process
X0
t with generator defined by

L0 f (x) = σ

Z(x)
∇x · (Z(x)M(x)∇x f (x)) , f ∈ C2

c (R
d), (12)

and where

Z(x) =
∫

Td
· · ·
∫

Td
e−V1(x,x1,...,xN )/σ dxN . . . dx1, (13)

and

M(x) = 1

Z(x)

∫

Td
· · ·
∫

Td
(1 + ∇xN θN ) · · · (1 + ∇x1θ1)e

−V1(x,x1,...,xN )/σ dxN · · · dx1.
(14)

The correctors are defined recursively as follows: define θN−k =
(

θ1N−k, . . . , θ
d
N−k

)
to

be the weak vector-valued solution of the PDE

∇xN−k · (KN−k(x0, . . . , xN−k)(∇xN−k θN−k(x0, . . . , xN−k) + I )) = 0, (15)

where θN−k(x0, . . . , xN−k−1, ·) ∈ H1(Td ;Rd), with the notation
[∇xn θn

]
·, j = ∇xnθ

j
n , for

j = 1, . . . , d and n = 1, . . . , N and where

KN−k(x0, . . . , xN−k)

=
∫

Td
· · ·
∫

Td
(I + ∇xN θN ) · · · (I + ∇xN−k+1θN−k+1)e

−V1/σ dxN . . . dxN−k+1,
(16)

for k = 1, . . . , N − 1, and

KN (x, x1, . . . , xN ) = e−V1(x,x1,...,xN )/σ I , (17)

where I denotes the identity matrix inRd×d . Provided that Assumption 1 hold, Proposition 5
guarantees the existence and uniqueness (up to a constant) of solutions to the coupled Poisson
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equations (15). Furthermore, the solutions will depend smoothly on the slow variable x0 as
well as the fast variables x1, . . . , xN . The process X0

t is the unique solution to the Itô SDE

dX0
t = −M(X0

t )∇�(X0
t ) dt + σ∇ · M(X0

t ) dt +
√
2σM(X0

t ) dWt , (18)

where

�(x) = −σ log Z(x) = −σ log

(∫

Td
· · ·
∫

Td
e−V1(x,y1,...,yN )/σ dy1 . . . dyN

)
.

The proof, which closely follows that of [43] is postponed to Sect. 5. Theorem 1 confirms
the intuition that the coarse-grained dynamics is driven by the coarse-grained free energy. On
the other hand, the corresponding SDE has multiplicative noise given by a space dependent
diffusion tensor M(x). We can show that the homogenized process (18) is ergodic with
unique invariant distribution

μ0(x) = Z(x)

Z
= 1

Z
e−�(x)/σ , where Z =

∫

Rd
Z(x) dx .

Other qualitative properties of the solution to the homogenized equation (6), including
noise-induced transitions and noise-induced hysteresis behaviour has been studied in [15].
It is also important to note that the reversibility of X ε

t with respect to με is preserved under
the homogenization procedure. Indeed, any general diffusion process that is reversible with
respect toμ0(x)will have the form (18), see [45, Sect. 4.7]. See Sect. 6 for further discussion
on this point.

As is characteristic with homogenization problems, when d = 1 we can obtain, up to
quadratures, an explicit expression for the homogenized SDE. In this case, we obtain explicit
expressions for the correctors θ1, . . . , θN , so that the intermediary coefficients K1, . . . ,KN

can be expressed as (see also [15])

Ki (x0, x1, . . . , xi ) =
(∫

eV1(x0,x1,...,xi ,xi+1,...,xN )/σ dxi+1 . . . dxN

)−1

, i = 1, . . . , N .

Thus we obtain the following result.

Proposition 1 (Effective Dynamics in one dimension) When d = 1, the effective diffusion
coefficient M(x) in (18) is given by

M(x) = 1

Z1(x)Ẑ1(x)
, (19)

where

Z1(x) =
∫

· · ·
∫

e−V1(x,x1,...,xN )/σ dx1 . . . dxN ,

and

Ẑ1(x) =
∫

· · ·
∫

eV1(x,x1,...,xN )/σ dx1 . . . dxN .

Equation (19) generalises the expression for the effective diffusion coefficient for a two-
scale potential that was derived in [56] without any appeal to homogenization theory. In
higher dimensions we will not be able to obtain an explicit expression for M(x), however
we are able to obtain bounds on the eigenvalues ofM(x). In particular, we are able to show
that (19) acts as a lower bound for the eigenvalues of M(x).
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Proposition 2 The effective diffusion tensor M is uniformly positive definite over R
d . In

particular,

0 < e−osc(V1)/σ ≤ 1

Z1(x)Ẑ1(x)
≤ e · M(x)e ≤ 1, x ∈ R

d , (20)

for all e ∈ R
d such that |e| = 1, where

osc(V1) = sup
x∈Rd ,

y1,...,yN∈Td

V1(x, y1, . . . , yN ) − inf
x∈Rd ,

y1,...,yN∈Td

V1(x, y1, . . . , yN ).

This result follows immediately from Lemmas 1 and 2 which are proved in Sect. 3.

Remark 2 The bounds in (20) highlight the two extreme possibilities for fluctuations occur-
ring in the potential V ε . The equality 1

Z1(x)Ẑ1(x)
= e ·M(x)e is attained when the multiscale

fluctuations V1(x0, . . . , xN ) are constant in all but one dimension (e.g. the analogue of a
layered composite material, [12, Sect. 5.4], [46, Sect. 12.6.2]). In the other extreme, the
inequality e · M(x)e = 1 is attained in the absence of fluctuations, i.e. when V1 = 0.

Remark 3 Clearly, the lower bound in (20) becomes exponentially small in the limit asσ → 0.

While Theorem 1 guarantees weak convergence of X ε
t to X0

t in C([0, T ];Rd) for fixed
T , it makes no claims regarding the convergence at infinity, i.e. of με to μ0. However, under
the conditions of Assumption 1 we can show that με converges weakly to μ0, so that the
T → ∞ and ε → 0 limits commute, in the sense that:

lim
ε→0

lim
T→∞E[ f (X ε

T )] = lim
T→∞ lim

ε→0
E[ f (X ε

T )],

for all f ∈ L2(μre f ).

Proposition 3 (Weak convergence of με to μ0) Suppose that Assumption 1 holds. Then for
all f ∈ L2(μre f ),

∫

Rd
f (x) με(dx) →

∫

Rd
f (x)μ0(dx), (21)

as ε → 0.

If Assumption 1 holds, then for every ε > 0, the potential V ε is confining, so that the
process X ε

t is ergodic. If the “unperturbed” process defined by (11) converges to equilibrium
exponentially fast in L2(μre f ), then so will X ε

t and X0
t . Moreover, we can relate the rates of

convergence of the three processes. We will use the notation Varμ( f ) = Eμ( f − Eμ f )2 to
denote the variance with respect to a measure μ.

Proposition 4 Suppose that Assumption 1 holds and let Pt be the semigroup associated with
the dynamics (11) and suppose that μre f (x) = 1

Z0
e−V0(x)/σ satisfies Poincaré’s inequality

with constant ρ/σ , i.e.

Varμre f ( f ) ≤ σ

ρ

∫
|∇ f (x)|2 μre f (dx), f ∈ H1(μre f ), (22)

or equivalently4

Varμre f (Pt f ) ≤ e−2ρt/σVarμre f ( f ), f ∈ L2(μre f ), (23)

4 The equivalence between (22) and (23) follows since Pt is a reversible Markov semigroup with respect to
the measure μre f . See [5].
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for all t ≥ 0. Let Pε
t and P0

t denote the semigroups associated with the full dynamics (8)
and homogenized dynamics (18), respectively. Then for all f ∈ L2(μre f ),

Varμε (Pε
t f ) ≤ e−2γ t/σVarμε ( f ), (24)

and

Varμ0(P0
t f ) ≤ e−2γ̃ t/σVarμ0( f ). (25)

for γ = ρ e−osc(V1)/σ and γ̃ = ρe−2osc(V1)/σ .

The proof of Propositions 3 and 4 can be found in Sect. 4.

3 Properties of the Coarse-Grained Process

In this section we study the properties of the coefficients of the homogenized SDE (18) and
its dynamics.

3.1 Separable Potentials

Consider the special case where the potential V ε is separable, in the sense that the fast scale
fluctuations do not depend on the slow scale variable, i.e.

V (x0, x1, . . . , xN ) = V0(x0) + V1(x1, x2, . . . , xN ).

Then, it is clear from the construction of the effective diffusion tensor (14) thatM(x)will
not depend on x ∈ R

d . Moreover, since

Z(x) =
∫

Td
· · ·
∫

Td
e− V0(x)+V1(y1,...,yN )

σ dy1 . . . dyN = 1

K
e−V0(x)/σ ,

where K = ∫
Td · · · ∫

Td exp(−V1(y1, . . . , yN )/σ ) dy1 . . . dyN , then it follows that the
coarse-grained stationary distribution μ0 equals the stationary distribution μre f ∝
exp(−V0(x)/σ ) of the process (11). For general multiscale potentials however, μ0 will be
different from μre f . Indeed, introducing multiscale fluctuations can dramatically alter the
qualitative equilibrium behaviour of the process, including noise-inductioned transitions and
noise induced hysteresis, as has been studied for various examples in [15].

3.2 Variational Bounds onM(x)

A first essential property is that the constructed matrices KN , . . . ,K1 are positive definite
over all parameters. For convenience, we shall introduce the following notation

Xk = R
d × �

k
i=1 T

d , (26)

for k = 1, . . . , N , and set X0 = R
d for consistency. First we require the following existence

and regularity result for a uniformly elliptic Poisson equation on T
d .

Lemma 1 For k = 1, . . . , N, for x0, . . . , xk−1 fixed, the tensor Kk(x0, . . . , xk−1, ·) is uni-
formly positive definite and in particular satisfies, for all unit vectors e ∈ R

d ,

1

Ẑk(x0, x1, . . . , xk−1)
≤ e · Kk(x0, x1, . . . , xk−1, xk) e, xk ∈ T

d , (27)
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where

Ẑk(x0, x1, . . . , xk−1) =
∫

. . .

∫
eV (x0,x1,...,xk−1,xk ,...,xN )/σ dxNdxN−1 . . . dxk,

which is independent of xk .

Proof We prove the result by induction on k starting from k = N . For k = N the tensor KN

is clearly uniformly positive definite for fixed x0, . . . , xN−1 ∈ XN−1. By [8, Thms III.3.2,
III.3.3] there exists a unique (up to a constant) solution such that θN (x, x1, · · · , xN−1, ·) ∈
H2(Td ;Rd) of (15). In particular,

∫

Td
|∇xN θN (x0, x1, . . . , xN−1, xN )|2F dxN < ∞,

where | · |F denotes the Frobenius norm, so thatKN−1 is well defined. Fix (x0, . . . , xN−2) ∈
XN−2. To show thatKN−1(x0, . . . , xN−2, ·) is uniformly positive definite onTd we first note
that

∫

Td
(I + ∇xN θN )�(I + ∇xN θN )e−V /σ dxN

=
∫

Td

(
I + ∇xN θN + ∇xN θ�

N + ∇xN θ�
N ∇xN θN

)
e−V /σ dxN ,

(28)

where V = V (x0, x1, . . . , xN ) and � denotes the transpose. From the Poisson equation for
θN we have

∫
θN ⊗ ∇�

xN (e−V /σ (∇xN θN + I )) dxN = 0,

from which we obtain, after integrating by parts:
∫

Td
∇xN θ�

N

(
∇xN θN + I

)
e−V /σ dxN = 0. (29)

From (28) and (29) we deduce that

KN−1 =
∫

Td

(
I + ∇xN θN

)
e−V /σ dxN

=
∫

Td

[
I + ∇xN θN + ∇xN θ�

N (∇xN θN + I )
]
e−V /σ dxN

=
∫

Td
(I + ∇xN θN )�(I + ∇xN θN )e−V /σ dxN .

Thus KN−1 is well-defined and symmetric. We note that
∫

Td
(I + ∇xN θN ) dxN = I ,

therefore, it follows by Hölder’s inequality that

|v|2 =
∣∣∣∣v

�
∫

Td
(I + ∇N θN ) dxN

∣∣∣∣
2

≤ v� (KN−1) v

(∫

Td
eV /σ dxN

)
,

so that

|v|2
ẐN (x0, . . . , xN−1)

≤ v�KN−1(x0, . . . , xN−1)v, ∀(x0, x1, . . . , xN−1).
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Since ẐN is uniformly bounded for (x0, . . . , xN−1) it follows KN−1(x0, . . . , xN−2, ·) is
uniformly positive definite, and arguing as above we establish existence of a unique θN−1,
up to a constant, solving (15) for k = 2.

Now, assume that the corrector θN−k+1 has been constructed, and so KN−k+1 is well
defined. By multiplying the cell equation for θN−k+1

∇xN−k+1 ·
[
KN−k+1(∇xN−k+1θN−k+1 + I )

]
= 0,

by θN−k+1 then integrating with respect to xN−k+1 and using integration by parts as well as
the symmetry of KN−k+1 from the inductive hypothesis we obtain

∫
∇xN−k+1θ

�
N−k+1KN−k+1

(
I + ∇xN−k+1θN−k+1

)
dxN−k+1 = 0.

Therefore, we have

KN−k =
∫

Td
KN−k+1(I + ∇N−k+1θN−k+1) dxN−k+1

=
∫

Td

[
KN−k+1(I + ∇N−k+1θN−k+1) + ∇xN−k+1θ

�
N−k+1KN−k+1

× (I + ∇xN−k+1θN−k+1)
]
dxN−k+1

=
∫

Td
(I + ∇xN−k+1θN−k+1)

�KN−k+1(I + ∇xN−k+1θxN−k+1) dxN−k+1.

Thus KN−k is also well-defined and symmetric. To show (27) we note that

∫
· · ·
∫

(I + ∇xN θN ) · · · (I + ∇xN−k θN−k)dxN . . . dxN−k = I .

Therefore, for any vector v ∈ R
d :

|v|2 =
∣∣∣∣v

�
(∫

· · ·
∫

(I + ∇xN θN ) · · · (I + ∇xN−k θxN−k )dxN . . . dxN−k

)∣∣∣∣
2

≤ v�
(∫

· · ·
∫

(I + ∇xN−k θN−k)
� · · · (I + ∇xN−k θxN−k )e

−V /σ dxN . . . dxN−k

)

× v

∫
eV /σ dxN . . . dxN−k

=
(
v�KN−k(x1, . . . , xN−k)v

)
Ẑ(x1, . . . , xN−k).

The fact that we have strict positivity then follows immediately. ��

To obtain upper bounds for the effective diffusion coefficient, we will express the inter-
mediary diffusion tensorsKi as solutions of a quadratic variational problem. This variational
formulation of the diffusion tensors can be considered as a generalisation of the analogous
representation for the effective conductivity coefficient of a two-scale composite material,
see for example [8, 29, 36].
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Lemma 2 For i = 1, . . . , N, the tensor Ki satisfies

e · Ki (x0, . . . , xi )e = inf
vi+1∈C(Xi ;H1(Td ))

.

.

.
vN∈C(XN−1;H1(Td ))

∫

(Td )N
|e + ∇vi+1(x0, . . . , xi+1) + . . . + ∇vN (x0, . . . , xN )|2

× e−V (x0,...,xN )/σ dxN . . . , dxi+1,

(30)

for all e ∈ R
d .

Proof For i = 1, . . . , N , from the proof of Lemma 1 we can express the intermediary
diffusion tensor Ki in the following recursive manner,

Ki (x0, . . . , xi ) =
∫

Td
(I + ∇xi+1θi+1(x0, . . . , xi , xi+1))

�

× Ki+1(x0, . . . , xi+1)(I + ∇xi+1θi+1(x0, . . . , xi+1)) dxi+1.

Consider the tensor K̃i defined by the following symmetric minimization problem

e · K̃i (x0, . . . , xi )e = inf
v∈C(Xi ;H1(Td ))

∫

Td
(e + ∇v(x0, . . . , xi+1)) · Ki+1(x0, . . . , xi+1)

× (e + ∇v(x0, . . . , xi+1)) dxi+1.

(31)

Since Ki+1 is a symmetric tensor, the corresponding Euler–Lagrange equation for the
minimiser is given by

∇xi+1 · (Ki+1(x0, . . . , xi+1)(∇xi+1χ(x0, . . . , xi+1) + e)
) = 0, xi+1 ∈ T

d ,

with periodic boundary conditions. This equation has a unique mean zero solution given by
χ(x0, . . . , xi+1) = θi (x0, . . . , xi+1)

�e, where θi is the unique mean-zero solution of (15). It
thus follows that e�Ki e = e�K̃i e, where K̃i is given by (31). Consider now theminimisation
problem

inf
v2∈C(Xi ;H1(Td ))

v1∈C(Xi+1;H1(Td ))

∫

Td

∫

Td
(e + ∇xi+2v1(x0, . . . , xi+2) + ∇xi+1v2(x0, . . . , xi+1))

�

× Ki+2(x0, . . . , xi+2)(e + ∇xi+2v1(x0, . . . , xi+2) + ∇xi+1v2(x0, . . . , xi+1))

× dxi+2dxi+1.

Optimising over v1 for v2 fixed it follows that v1 = (e + ∇xi+1v2)
�θi+2, where θi+2 is

the unique mean-zero solution of (15). Thus, the above minimisation can be written as

inf
v2∈C(Xi ;H1(Td ))

∫

Td

∫

Td
(e + ∇xi+1v2(x0, . . . , xi+1))

�(I + ∇xi+2θi+2)
�

× Ki+2(x0, . . . , xi+2)(I + ∇xi+2θi+2)

× (e + ∇xi+1v2(x0, . . . , xi+1)) dxi+2dxi+1

= inf
v2∈C(Xi−1;H1(Td ))

∫

Td
(e + ∇xi+1v2(x0, . . . , xi+1))

�Ki+1(x0, . . . , xi+1)

× (e + ∇xi+1v2(x0, . . . , xi+1)) dxi+2dxi+1

= e�Ki e.

Proceeding recursively, we arrive at the advertised result (30). ��
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4 Properties of the EquilibriumDistributions

In this section we study in more detail the properties of the equilibrium distributions με and
μ0 of the full (8) and homogenized dynamics (18), respectively. We first provide a proof
of Proposition 3. The approach we follow in this proof is based on properties of periodic
functions, in a manner similar to [12, Chap. 2].

Proof of Proposition 3 Let f ∈ L2(μre f ) and δ > 0. Clearly C∞
c (Rd) is dense in L2(μre f )

and so, by Assumptions 1 there exists fδ ∈ C∞
c (Rd) such that

∣∣∣∣
∫

Rd
f (x)e−V ε (x)/σ dx −

∫

Rd
fδ(x)e

−V ε (x)/σ dx

∣∣∣∣ ≤
δ

3
, (32)

and
∣∣∣∣
∫

Rd

∫

Td
· · ·
∫

Td
( fδ(x) − f (x))e−V (x,y1,...,yN )/σ dyN . . . dy1 dx

∣∣∣∣ ≤
δ

3
, (33)

uniformly with respect to ε. Now, we partitionRd into pairwise disjoint translations of [0, 1]d
as Rd = ∪k∈NYk , where

Yk = εN xk + εN [0, 1]d ,
for {xk}k≥0 = Z

d . With this decomposition we obtain
∫

Rd
fδ(x)e

−V ε (x)/σ dx =
∑

k∈N

∫

Yk
fδ(x)e

−V ε (x)/σ dx

= εNd
∑

k∈N

∫

[0,1]d
fδ(ε

N (xk + y))e−V (εN (xk+y),...,ε(xk+y),y)/σ dy,

where in the last equality we use the periodicity of V with respect to the last variable. Since
the integrand is smooth with compact support, we can Taylor expand around εN xk to obtain

∫

Rd
fδ(x)e

−V ε (x)/σ dx = εNd
∑

k∈N

∫

[0,1]d
fδ(ε

N xk)e
−V (εN xk ,...,εxk ,y)/σ dy + Cε,

where C is a constant depending on the derivatives of V with respect to the first N variables,
and the volume of the support of fδ .

Noting that the above sum is a Riemann sum approximation, we can write

εNd
∑

k∈N

∫

[0,1]d
fδ(ε

N xk)e
−V (εN xk ,...,εxk ,y)/σ dy

= εNd
∑

k∈N

∫

[0,1]d

∫

[0,1]d
fδ(ε

N (xk + y′))e−V (εN (xk+y′),...,ε(xk+y′),y)/σ dy dy′ + C1ε

=
∫

Rd

∫

[0,1]d
fδ(x)e

−V (x,...,x/εN−1,y)/σ dy dx + C1ε,

where C1 is a constant. Repeating the above process N − 1 times, we obtain that
∫

Rd
fδ(x)e

−V ε (x)/σ dx =
∫

Rd

∫

Td
· · ·
∫

Td
fδ(x)e

−V (x,y1,...,yN )/σ dyN . . . dy1 dx + CN ε,

(34)
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where CN > 0 is a constant depending on the support of fδ and derivatives of V with respect
to the first N variable. Thus, choosing ε < δ/(3CN ) and combining (32), (33) and (34) we
obtain
∣∣∣∣
∫

Rd
f (x)e−V ε (x)/σ dx −

∫

Rd

∫

Td
· · ·
∫

Td
f (x)e−V (x,y1,...,yN )/σ dyN . . . dy1 dx

∣∣∣∣ ≤ δ,

(35)

Choosing f ≡ 1 we obtain immediately that

Z ε =
∫

Rd
e−V ε (x)/σ dx → Z0 =

∫

Rd

∫

Td
· · ·
∫

Td
e−V (x,y1,...,yN ) dyN . . . dy1 dx,

and so for f ∈ L2(μre f ) we obtain
∫

f (x)με(x) dx →
∫

f (x)μ0(x) dx,

as ε → 0, as required. ��
Proof of Proposition 4 Since V1 is bounded uniformly by Assumption 1, it is straightforward
to check that

μre f (x)e
−osc(V1)/σ ≤ με(x) ≤ μre f (x)e

osc(V1)/σ . (36)

It follows from the discussion following [5, Prop 4.2.7], that με satisfies Poincaré’s
inequality with constant

γ = ρ

σ
e−osc(V1)/σ ,

which implies (24). An identical argument follows for the coarse-grained density μ0(x).
Finally, by (20) of Proposition 2 we have |v|2e−osc(V1)/σ ≤ v · M(x)v, for all v ∈ R

d , and
so

Varμ0( f ) ≤ σ

ρ
eosc(V1)/σ

∫

Rd
|∇ f (x)|2 μ0(x) dx

≤ σ

ρ
e2osc(V1)/σ

∫
∇ f (x) · M(x)∇ f (x) μ0(x) dx,

from which (25) follows. ��
Remark 4 Note that one can similarly relate the constants in the logarithmic Sobolev inequal-
ities for the measures μre f , με and μ0 in an almost identical manner, based on the
Holley-Stroock criterion [26].

Remark 5 Proposition 4 requires the assumption that the multiscale perturbation V1 is
bounded uniformly. If this is relaxed, then it is no longer guaranteed that με will satisfy
a Poincaré inequality, even though μre f does. Consider, for example, the following one
dimensional potential

V ε(x) = x2(1 + α cos(x/ε)),

then the corresponding Gibbs distribution με(x) will not satisfy Poincaré’s inequality for
any ε > 0. Following [25, Appendix A] we demonstrate this by checking that this choice of
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με does not satisfy the Muckenhoupt criterion [2, 38] which is necessary and sufficient for
the Poincaré inequality to hold, namely that supr∈R B±(r) < ∞, where

B±(r) =
(∫ ±∞

r
με(x) dx

) 1
2
(∫

[0,±r ]
1

με(x)
dx

) 1
2

.

Given n ∈ N, we set r/ε = 2πn + π/2. Then we have that

B+(r) ≥
(∫ ε(2πn+4π/3)

ε(2πn+2π/3)
e−|x |2(1−α/2)/σ dx

)1/2 (∫ ε(2πn+π/3)

ε(2πn−π/3)
e|x |2(1+α/2)/σ dx

)1/2

≥
(
2πε

3

)
exp

(
−|πε(2n + 4/3)|2

2σ

(
1 − α

2

)
+ |πε(2n − 1/3)|2

2σ

(
1 + α

2

))

=
(
2πε

3

)
exp

(
−|2πεn|2 (1 + 2

3n

)2

2σ

(
1 − α

2

)
+ |2πεn|2 (1 − 1

6n

)2

2σ

(
1 + α

2

))

≈
(
2πε

3

)
exp

( |2πεn|2
2σ

(
α + o(n−1)

))→ ∞, as n → ∞,

so that Poincaré’s inequality does not hold for με .

A natural question to ask is whether the weak convergence of με to μ0 holds true in a
stronger notion of distance such as total variation. The following simple one-dimensional
example demonstrates that the convergence cannot be strengthened to total variation.

Example 1 Consider the one dimensional Gibbs distribution

με(x) = 1

Z ε
e−V ε (x)/σ ,

where

V ε(x) = x2

2
+ α cos

( x
ε

)
,

and where Z ε is the normalization constant and α �= 0. Then the measure με converges
weakly to μ0 given by

μ0(x) = 1√
2πσ

e−x2/2σ .

From the plots of the stationary distributions in Fig. 2a it becomes clear that the density
of με exhibits rapid fluctuations which do not appear in μ0, thus we do not expect to be able
to obtain convergence in a stronger metric. First we consider the distance between με and
μ0 in total variation5

‖με − μ0‖T V =
∫

R

|με(x) − μ0(x)| dx =
∫

R

e−x2/2σ

√
2σ

∣∣∣∣∣1 − e− α
σ
cos(2πx/ε)

K ε

∣∣∣∣∣ dx,

where K ε = Z ε/
√
2πσ . It follows that

‖με − μ0‖T V ≥
∑

n≥0

∫ ε(2πn+π/3)

ε(2πn−π/3)

e−x2/2σ

√
2πσ

dx

∣∣∣∣∣1 − e− α
2σ

K ε

∣∣∣∣∣

5 We are using the same notation for the measure and for its density with respect to the Lebesgue measure on
R.
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≥
∑

n≥0

2επ

3

e−ε2(2nπ+π/3)2/2σ

√
2πσ

∣∣∣∣∣1 − e− α
2σ

K ε

∣∣∣∣∣

≥
∫ ∞

0

2π

3

e−2π2(x+ε/6)2/σ

√
2πσ

∣∣∣∣∣1 − e− α
2σ

K ε

∣∣∣∣∣ ,

where we use the fact that e−α/2σ /K ε ≤ 1 for ε sufficiently small. In the limit ε → 0, we
have K ε → I0(α/σ), where In(·) is the modified Bessel function of the first kind of order
n. Therefore, as ε → 0,

‖με − μ0‖T V ≥
∫ ∞

0

2π

3

e−2π2(x+ε/6)2/σ

√
2πσ

∣∣∣∣∣1 − e− α
2σ

K ε

∣∣∣∣∣ =
1

6

∣∣∣∣∣1 − e− α
2σ

I0(α/σ)

∣∣∣∣∣ , (37)

which converges to 1
6 as α

σ
→ ∞. Since relative entropy controls total variation distance

by Pinsker’s theorem, it follows that με does not converge to μ0 in relative entropy, either.
Nonetheless, we shall compute the distance in relative entropy between με and μ0 to under-
stand the influence of the parameters σ and α. Since both μ0 and με have strictly positive
densities with respect to the Lebesgue measure on R, we have that

dμε

dμ0 (x) =
√
2πσ

Z ε
e− V ε (x)

σ
+ x2

2σ .

Then, for Z0 = √
2πσ I0(1/σ),

H
(
με | μ0) = 1

Z ε

∫ (
1

2
log(2πσ) − log Z ε

)
e−V ε (x)/σ dx

+ 1

Z ε

∫ (−V ε(x)/σ + x2/2σ
)
e−V ε (x)/σ dx

ε→0−−→ − log I0(α/σ) − α

σ Z0 lim
ε→0

∫
cos(2πx/ε)e−x2/2σ−α cos(2πx/ε)/σ dx

= − log I0(α/σ) − α

σ

I1(α/σ)

I0(α/σ)
=: K (α/σ),

and it is straightforward to check that K (s) > 0, and moreover

K (s) →
{
0 as s → 0

+∞ as s → ∞ .

In Fig. 2b we plot the value of K (s) as a function of s. From this result, we see that for
fixed α > 0, the measure με will converge in relative entropy only in the limit as σ → ∞,
while the measures will become increasingly mutually singular as σ → 0.

5 Proof of Weak Convergence

In this section we show that over finite time intervals [0, T ], the process X ε
t converges weakly

to a process X0
t which is uniquely identified as the weak solution of a coarse-grained SDE.

The approach we adopt is based on the classical martingale methodology of [8, Sect. 3]. The
proof of the homogenization result is split into three steps.
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Fig. 2 Error between με(x) ∝ exp(−V ε(x)/σ ) and effective distribution μ0

1. We construct an appropriate test function which is used to decompose the fluctuations of
the process X ε

t into a martingale part and a term which goes to zero as ε → 0.
2. Using this test function, we demonstrate that the path measure Pε corresponding to the

family
{(

X ε
t

)
t∈[0,T ]

}

0<ε≤1
is tight on C([0, T ];Rd).

3. Finally, we show that any limit point of the family of measures must solve a well-posed
martingale problem, and is thus unique.

The test functionswill be constructed by solving a recursively defined sequence of Poisson
equations on Rd . We first provide a general well-posedness result for this class of equations.

Proposition 5 Let Xk, k = 0, 1, . . . , N be the space defined in Sect.3.2. For fixed
(x0, . . . , xk−1) ∈ Xk−1, let Sk be the operator given by

Sku = 1

ρ(x0, . . . , xk)
∇xk · (ρ(x0, . . . , xk)D(x0, . . . , xk)∇xk u(x0, . . . , xk)

)
, (38)

for u ∈ C2(Td), where ρ is a smooth and uniformly positive and bounded function, and D
is a smooth and uniformly positive definite tensor on Xk . Let h be a smooth function with
bounded derivatives, such that for each (x0, . . . , xk−1) ∈ Xk−1:

∫

Td
h(x0, . . . , xk)ρ(x0, . . . , xk) dxk = 0. (39)

Then there exists a unique solution u ∈ C(Xk−1; H1(Td)) to the Poisson equation on Td

given by

Sku(x0, . . . , xk) = h(x0, . . . , xk),
∫

Td
u(x0, . . . , xk)ρ(x0, . . . , xk) dxk = 0. (40)

Moreover u is smooth and bounded with respect to the variable xk ∈ T
d as well as the

parameters x0, . . . , xk−1 ∈ Xk−1.

Proof Since ρ and D are strictly positive, for fixed values of x0, . . . , xk−1, the operator Sk
is uniformly elliptic, and since Td is compact, Sk has compact resolvent in L2(Td), see [18,
Chap. 6] and [46, Chap. 7]. The nullspace of the adjoint S∗ is spanned by a single function
ρ(x0, . . . , xk−1, ·). By the Fredholm alternative, a necessary and sufficient condition for
the existence of u is (39) which is assumed to hold. Thus, there exists a unique solution
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u(x0, . . . , xk−1, ·) ∈ H1(Td) having mean zero with respect to ρ(x0, . . . , xk). By elliptic
estimates and Poincaré’s inequality, it follows that there exists C > 0 satisfying

‖u(x0, . . . , xk−1, ·)‖H1(Td ) ≤ C‖h(x0, . . . , xk−1, ·)‖L2(Td ),

for all (x0, . . . , xk−1) ∈ Xk−1. Since the components of D and ρ are smooth with respect
to xk , standard interior regularity results [21] ensure that, for fixed x0, . . . , xk−1 ∈ Xk−1,
the function u(x0, . . . , xk−1, ·) is smooth. To prove the smoothness and boundedness with
respect to the other parameters x0, . . . , xk−1, we can apply an approach either similar to [8],
by showing that the finite differences approximation of the derivatives of u with respect to
the parameters has a limit, or otherwise, by directly differentiating the transition density of
the semigroup associated with the generator Sk , see for example [43, 44, 55] as well as [21,
Sec 8.4]. ��
Remark 6 Suppose that the function h in Proposition 5 can be expressed as

h(x0, . . . , xk) = a(x0, x1, . . . , xk) · ∇φ0(x0)

where a is smooth with all derivatives bounded. Then the mean-zero solution of (40) can be
written as

u(x0, x1, . . . , xk) = χ(x0, x1, . . . , xk) · ∇φ0(xi ), (41)

where χ is the classical mean-zero solution to the following Poisson equation

Skχ(x0, . . . , xk) = a(x0, . . . , xk), (x0, . . . , xk) ∈ Xk . (42)

This can be seen by checking directly that u given in (41)withχ satisfying (42) solves (40),
which implies it is the unique solution of (40) due to the uniqueness of a solution. In particular,
χ is smooth and bounded over x0, . . . , xk , so that given a multi-index α = (α0, . . . , αk) on
the indices (0, . . . , k), there exists Cα > 0 such that

|∇αu(x0, . . . , xk)|F ≤ Cα

α0∑

k=0

|∇k+1φ0(x0)|F , ∀x0, x1, . . . , xk,

where |·|F denotes the Frobenius norm. A similar decomposition is possible for

g(x0, . . . , xk) = A(x0, x1, . . . , xk) : ∇2φ0(x0),

where ∇2 denotes the Hessian.

5.1 Constructing the Test Functions

It is clear that we can rewrite (8) as

dX ε
t = −

N∑

i=0

ε−i∇xi V (x, x/ε, . . . , x/εN ) dt + √
2σ dWt . (43)

The generator of X ε
t denoted by Lε can be decomposed into powers of ε as follows

(Lε f )(x) = −
N∑

i=0

ε−i∇xi V (x, x/ε, . . . , x/εN ) · ∇ f (x) + σ� f (x).
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For functions of the form f ε(x) = f (x, x/ε, . . . , x/εN ), we have

(Lε f ε)(x) =
N∑

i=0

ε−i∇xi V
(
x, x/ε, . . . , x/εN

) ·
( N∑

j=0

ε− j∇x j f (x, x/ε, . . . , x/ε
N )

)

+ σ

k∑

i, j=0

ε−(i+ j)∇2
xi x j f

(
x, x/ε, . . . , x/εN

)

=
N∑

i, j=0

ε−(i+ j)
[
eV /σ ∇xi ·

(
σe−V /σ ∇x j f

)](
x, x/ε, . . . , x/εN

)

=
2N∑

n=0

ε−n(Ln f )
(
x, x/ε . . . , x/εN

)
, (44)

where for n = 0, . . . , 2N

(Ln f )
(
x, x/ε, . . . , x/εN

) =
[
eV /σ

∑

i, j∈{0,...N }
i+ j=n

∇xi ·
(
σe−V /σ ∇x j f

) ](
x, x/ε, . . . , x/εN

)
.

Given a function φ0, which will be specified later, our objective is to construct a test
function φε of the form

φε(x) = φ0(x) + εφ1(x, x/ε) + . . . + εNφN
(
x, x/ε, . . . , x/εN

)

+ εN+1φN+1
(
x, x/ε, . . . , x/εN

)+ . . . + ε2Nφ2N
(
x, x/ε, . . . , x/εN

)
,

such that

(Lεφε)(x) = F(x) + O(ε), (45)

for some function F which is independent of ε. The above form for the test function is
suggested by the calculation (44). Using (44) we compute

(Lεφε
)
(x) =

2N∑

k=0

εk(Lφk)
(
x, x/ε, . . . , x/εN

)

=
2N∑

k=0

εk
( 2N∑

n=0

ε−n(Lnφk)
(
x, x/ε . . . , x/εN

))

=
2N∑

k,n=0

εk−n(Lnφk
)(
x, x/ε . . . , x/εN

)
,

where

(Lnφk)(x, x/ε . . . , x/εN ) =
[
eV /σ

∑

i, j∈{0,...N }
i+ j=n

∇xi ·
(
σe−V /σ ∇x j φk

) ]
(x, x/ε, . . . , x/εN ).

Note that ∇x j φk = 0 for j > k. By equating powers of ε, from O(ε−N ) to O(1) respec-
tively, in both sides of (45), we obtain the following sequence of N + 1 equations
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L2NφN + L2N−1φN−1 + . . . + LNφ0 = 0, (46a)

L2NφN+1 + L2N−1φN + . . . + LN−1φ0 = 0, (46b)

...

L2Nφ2N−1 + . . . + L1φ0 = 0, (46c)

L2Nφ2N + . . . + L0φ0 = F . (46d)

This system generalizes the system written for three scales in [8, III−11.3]. We note that
each nonzero term in (46a), (46b) to (46c) has the form

σeV (x0,...,xN )/σ ∇xi ·
(
e−V (x0,...,xN )/σ ∇x j φk

)
,

where 1 ≤ i + j − k ≤ N . Furthermore, all the terms appearing in (46a), (46b) to (46c) must
satisfy i > 0. Indeed i = 0 would imply j ≥ k + 1 > k and so ∇x j φk = 0 by construction
of the test function. Since

V (x0, . . . , xN ) = V0(x0) + V1(x0, . . . , xN ),

all the terms Lnφk appearing (46a), (46b) to (46c) can be simplified as

Lnφk = e(V0+V1)/σ
∑

i∈{1,...N }
j∈{0,...N }
i+ j=n

∇xi ·
(
σe−(V0+V1)/σ ∇x j φk

)

= eV1/σ
∑

i∈{1,...N }
j∈{0,...N }
i+ j=n

∇xi ·
(
σe−V1/σ ∇x j φk

)
,

where we have used the fact that V0 is independent of xi for i ∈ {1, . . . N } to pull the term
eV0 out from the divergence operator. Thus, we can rewrite the first N equations as

A2NφN + A2N−1φN−1 + . . .ANφ0 = 0, (47a)

A2NφN+1 + A2N−1φN + . . .AN−1φ0 = 0, (47b)

...

A2Nφ2N−1 + . . . + A1φ0 = 0, (47c)

where

An f = σeV1(x0,...,xN )/σ
∑

i∈{1,...,N }
j∈{0,...,N }
i+ j=n

∇xi ·
(
e−V1(x0,...,xN )/σ ∇x j f

)
.

Before constructing the test functions, we first introduce the sequence of spaces on which
the sequence of correctors will be constructed. Define H to be the space of functions on
the extended state space, i.e. H = L2(XN ), where XN is defined by (26). We construct the
following sequence of subspaces of H. Let

HN =
{
f ∈ H :

∫
f (x0, . . . , xN )e−V1/σ dxN = 0

}
,
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Then clearly H = HN ⊕ H⊥
N . Suppose we have defined HN−k+1 then we can define

HN−k inductively by

HN−k =
{
f ∈ HN−k+1 :

∫
f (x0, . . . , xN−k)ZN−k(x0, . . . , xN−k) dxN−k = 0

}
,

where Zi (x0, . . . , xi ) = ∫ . . .
∫
e−V1(x0,...,xN )/σ dxi+1 dxi+2 . . . dxN . Clearly, we have that

H1 ⊕ H⊥
1 ⊕ . . . ⊕ H⊥

N = H.
Applying Proposition 5 we can now construct the series of test functions φ1, . . . , φ2N that

solve (47).

Proposition 6 Given φ0 ∈ C∞(Rd), there exist smooth functions φi for i = 1, . . . , 2N −
1 such that Eqs (47a)–(47c) are satisfied, and moreover we have the following pointwise
estimates, which hold uniformly on x0, . . . , xk ∈ Xk:

‖∇αφi (x0, . . . , xk)‖F ≤ C
α0+2∑

l=1

‖∇l
x0φ0(x0)‖F , (48)

for some constant C > 0, and all multiindices α on (0, . . . , k), and all 0 ≤ k ≤ i ≤ 2N − 1.
Finally, Eq. (46d) is satisfied with

F(x) = 1

Z(x)
∇x0 · (K1(x)∇x0φ0(x)

)
. (49)

Proof Guideline of the proof. Given φ0 as in the hypothesis of the proposition, we will find
the test functions φi , i = 1, . . . , 2N from the system (47). This system consists of N equa-
tions. The other N equations come from solvability (compatibility) conditions, which are
applications of the Fredholm alternative [46, Theorem 7.9]. More specially, the solvability
condition for the O(ε−(N−k))-equation in (47), viewing as an equation for φN+k in terms
of φ0, . . . , φN+k−1, will give rise to an equation for φN−k in term of φ0, . . . , φN−k−1, for
k = 1, . . . , N . The latter is an elliptic equation of the form (38) with ρ = 1 and D = KN−k .
According to Lemma 1, KN−k is uniformly positive definite. Hence, the existence of φN−k

follows from Proposition 5. Therefore, the solvability condition for φN+k is fulfilled guaran-
teeing the existence of φN+k . By inductively repeating this process for all k = 1, . . . , N , we
can construct the test functions φ1, . . . , φ2N satisfying the system (47). Finally, the function
F is then determined from (46d).

Now we implement this strategy in details. We start from Equation (47a), which can be
viewed as an equation for φN in term of φ0, . . . , φN−1

A2NφN = −(A2N−1φN−1 + . . . + A0φ0), A2N f = σeV1/σ ∇xN ·
(
e−V1/σ ∇xN f

)
.

(50)

Since the operator A2N has a compact resolvent in L2(Td), by the Fredholm alterna-
tive a necessary and sufficient condition for (47a) to have a solution is that the following
compatibility condition holds

∫
(A2N−1φN−1 + A2N−2φN−2 + . . . + ANφ0) e

−V1/σ dxN = 0. (51)

Note that every term in this summation is of the form

A2N−kφN−k = σ
∑

0≤i, j≤N
i+ j=2N−k

eV1/σ ∇x j ·
(
e−V1/σ (x)∇xi φN−k

)
. (52)
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For ∇xi φN−k to be non-zero it is necessary that i ≤ N − k. To enforce the condition
i + j = 2N − k it must be that i = N − k and j = N , and thus the only non-zero terms in
the above summation are:

A2N−kφN−k = σeV1/σ ∇xN ·
(
e−V1/σ ∇xN−kφN−k

)
, (53)

for k = 1, . . . , N . It follows that the compatibility condition (51) holds, by the periodicity
of the domain. Therefore (47a) has a solution. In addition, it can be written as

A2NφN = −
N∑

k=1

A2N−kφN−k

= −
N∑

k=1

σeV1/σ ∇xN ·
(
e−V1/σ ∇xN−kφN−k

)

= (σeV1/σ ∇xN · (e−V1/σ I )
)

·
( N∑

k=1

∇xN−kφN−k

)
.

Note that for k = 0, the Poisson equation (15) can be expressed as

A2N θN = σeV1/σ ∇xN · (e−V1/σ I ),

which has unique mean–zero solution θN . According to Remark 6, the test function φN can
be written as

φN = θN · (∇xN−1φN−1 + . . . + ∇x0φ0
)+ r (1)

N (x0, . . . , xN−1), (54)

where

θN · (∇xN−1φN−1 + . . . + ∇x0φ0) ∈ HN ,

and for some r (1)
N ∈ H⊥

N , which will be specified later. Next we consider the O(ε−(N−1)) -
equation, that is (47b) viewing as an equation for φN+1 in terms of φN , . . . , φ0:

A2NφN+1 = −(A2N−1φN + . . . + AN−1φ0), (55)

whereA2N is given in (50). According to the Fredholm alternative, a necessary and sufficient
condition for the above equation to have a solution is

∫
(A2N−1φN + . . . + AN−2φ1 + AN−1φ0) e

−V1/σ dxN = 0. (56)

Similarly as in (53), for k = 1, . . . , N + 1, we have

A2N−kφN−k+1 = σeV1/σ
[
∇xN−1 ·

(
e−V1/σ ∇xN−k+1φN−k+1

)

+ ∇xN · (e−V1/σ ∇xN−kφN−k+1)
]
.

Substituting this into (55) we obtain

0 =
∫

∇xN−1 ·
[
e−V1/σ (∇xN φN + ∇xN−1φN−1 + . . . + ∇x0φ0)

]
dxN

= ∇xN−1 ·
(∫

e−V1/σ ∇xN θN
(∇xN−1φN−1 . . . + ∇x0φ0

)
dxN

)
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+ ∇xN−1 ·
(∫

e−V1/σ
(∇xN−1φN−1 + . . . + ∇x0φ0

))
dxN ,

where in the last equality we use the fact that r (1)
N is independent of xN . Thus we obtain the

following equation for φN−1:

∇xN−1 · (KN−1∇xN−1φN−1
) = −∇xN−1 ·

(
KN−1

(∇xN−2φN−2 + . . . + ∇x0φ0
) )

, (57)

where

KN−1(x0, x1, . . . , xN−1) =
∫ (

I + ∇xN θN
)
e−V1/σ dxN .

By Lemma 1, for fixed x0, x1, . . . , xN−1 the tensor KN−1 is uniformly positive definite
over xN−1 ∈ T

d . As a consequence, the operator defined in (57) is uniformly elliptic, with
adjoint nullspace spanned by ZN (x0, x1, . . . , xN−1). Since the right hand side hasmean zero,
this implies that a solution φN−1 exists. We recall that the corrector θN−1 satisfies equation
(15) with k = 1, that is

∇xN−1 ·
[
KN−1

(
∇xN−1θN−1 + I

)]
= 0.

According to Remark 6, we can write φN−1 as

φN−1 = θN−1 · (∇xN−2φN−2 + . . . + ∇x0φ0
)+ r (1)

N−1(x0, . . . , xN−2),

for some r (1)
N−1 ∈ H⊥

N−1. Since (56) has been satisfied, it follows from Proposition 5 that
there exists a unique decomposition of φN+1 into

φN+1(x0, x1, . . . , xN ) = φ̃N+1(x0, x1, . . . , xN ) + r (1)
N+1(x0, x1, . . . , xN−1),

where φ̃N+1 ∈ HN and for some r (1)
N+1 ∈ H⊥

N . For the sake of illustration we now consider
the O(ε−(N−2)) equation in (47)

A2NφN+2 = −
N+1∑

k=0

AN+k−2φk,

which, again by the Fredholm alternative, has a solution if and only if
∫

(A2N−1φN+1 + A2N−2φN + . . . + AN−2φ0) e
−V /σ dxN = 0. (58)

For k = 1, . . . , N + 2, we have

A2N−kφN−k+2 = σeV1/σ
[
∇xN−2 ·

(
e−V1/σ ∇xN−k+2φN−k+2

)
+ ∇xN−1 ·

(
e−V1/σ ∇xN−k+1φN−k+2

)

+ ∇xN · (e−V1/σ ∇xN−kφN−k+2)
]
.

Fixing the variables x0, . . . , xN−2, we can rewrite (58) as an equation for r (1)
N =

r (1)
N (x0, . . . , xN−1)

Ã2N−2r
(1)
N := ∇xN−1 ·

(
ZN−1∇xN−1r

(1)
N

)
= −RHS, (59)

where

ZN−1 =
∫

e−V1(x)/σ dxN ,
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and the RHS contains all the remaining terms. We note that all the functions of xN−1 in the
RHS are known, so that all the remaining undetermined terms can be viewed as constants
for fixed x0, . . . , xN−2 ∈ XN−2. By the Fredholm alternative, a necessary and sufficient
condition for a unique mean zero solution to exist to (59) is that the RHS has integral zero
with respect to xN−1, which is equivalent to:

∇N−2 ·
(∫ ∫ (∇xN φN + ∇xN−1φxN−1 + . . . + ∇x0φ0

)
e−V /σ dxNdxN−1

)
= 0,

or equivalently:

∇xN−2 · (KN−2∇xN−2φN−2
) = −∇xN−2 · (KN−2

(∇xN−3φN−3 + . . . + ∇x0φ0
))

.

Once again, this implies that

φN−2 = θN−2 · (∇xN−3φN−3 + . . . + ∇x0φ0
)+ r (1)

N−2(x0, . . . , xN−3),

where r (1)
N−2 ∈ H⊥

N−2 is unspecified. Since the compatibility condition holds, by Proposition
5, Eq. (59) has a solution, so that we can write

r (1)
N (x0, . . . , xN−1) = r̃ (1)

N (x0, . . . , xN−1) + r (2)
N (x0, . . . , xN−2),

where r̃ (1)
N ∈ HN−1 is the unique smooth solution of (59) and for some r (2)

N ∈ H⊥
N−1.

We continue the proof by induction. Suppose that for some k < N , the functions
φN , . . . φN±(k−1) have all been determined. We shall consider the case when k is even,
noting that the k odd case follows mutatis mutandis.

From the previous steps, each term in

φN+k−2, φN+k−4, . . . , φN−k−2,

admits a decomposition such that in each case we can write:

φN+k−2i = φ̃N+k−2i + r (k/2−i)
N+k−2i ,

where

φ̃N+k−2i ∈ Hk/2−i ,

has been uniquely specified, and the remainder term

r (k/2−i)
N+k−2i ∈ H⊥

k/2−i ,

remains to be determined. The O(εN−k) equation is given by

A2NφN+k + A2N−1φN+k−1 + . . . + AN−kφ0 = 0. (60)

Following the example of the O(εN−2) step, in descending order we successively
apply the compatibility conditions which must be satisfied for the equations involving
r (1)
N+k, . . . , r

(k−1)
N−k−2 of the form

Ã2N−2k−2i r
(k/2−i)
N+k−2i = RHS, (61)

where in (61), all terms dependent on the variable xk/2−i have been specified uniquely and
where

Ã2N−2k−2i u = ∇xN−k−i · (ZN−k−i∇xN−k−i u
)
.
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This results in (60) being integrated with respect to the variables N , . . . , N − k + 1. In
particular, all terms A2N− jφN+k− j for j = 0, . . . , k − 1 will have integral zero, and thus
vanish. The resulting equation is then

∫
. . .

∫
(A2N−kφN + . . . + AN−kφ0) e

−V1/σ dxN . . . dxN−k+1 = 0. (62)

Moreover, since the function φN−i depends only on the variables x0, . . . , xN−i , then (62)
must be of the form

∇xN−k ·
(∫

. . .

∫ (∇xN φN + . . . ∇xN−1φN−1 + . . . ∇x0φ0
)
e−V /σ dxN . . . dxN−k+1

)
= 0.

We now apply the inductive hypothesis to see that (to shorten the notations, we denote
dxN ,...,N−k+1 := dxN · · · dxN−k+1 etc)

∫ (∇xN φN + . . . ∇x0φ0
)
e−V1/σ dxN ,...,N−k+1

=
∫ ∫ (∇xN θN + I

)
dxN

(∇xN−1φN−1 + . . . + ∇x0φ0
)
e−V1/σ dxN−1,...,N−k+1

=
∫ ∫ ∫ (∇xN θN + I

)
dxN

(∇xN−1θN−1 + I
)
dxN−1

× (∇xN−2φN−2 + . . . + ∇x0φ0
)
e−V1/σ dxN−2,...,N−k+1

...

= KN−k+1
(∇xN−kφN−k + . . . ∇x0φ0

)
.

Thus, the compatibility condition for the O(εN−k) equation reduces to the elliptic PDE

∇xN−k · (KN−k∇xN−kφN−k
) = −∇xN−k · (KN−k

(∇xN−k−1φN−k−1 + . . . ∇x0φ0
)) = 0,

so that φN−k can be written as

φN−k = θN−k
(∇xN−k−1φN−k−1 + . . . ∇x0φ0

)+ r (1)
N−k, (63)

where r (1)
N−k is an element ofH⊥

N−k,which is yet to be determined.Moreover, each remainder

term r (k/2−i)
N+k−2i can be further decomposed as

r (k/2−i)
N+k−2i = r̃ (k/2−i)

N+k−2i + r (k/2−i+1)
N+k−2i ,

where

r̃ (k/2−i)
N+k−2i ∈ Hk/2−i+1,

is uniquely determined and

r (k/2−i+1)
N+k−2i ∈ H⊥

k/2−i+1,

is still unspecified. Continuing the above procedure inductively, starting from a smooth
function φ0 we construct a series of correctors φ1, . . . , φ2N−1.

We now consider the final Eq. (46d). Arguing as before, we note that we can rewrite (46d)
as

A2Nφ2N + · · ·AN+1φN+1 = F(x) −
N∑

i=1

Liφi . (64)
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A necessary and sufficient condition for φ2N to have a solution is that
∫

Td
(A2N−1φ2N−1 + . . . + AN+1φN+1) e

−V1/σ dxN

=
∫

Td

(
F(x) −

N∑

i=1

Liφi

)
e−V1/σ dxN .

(65)

At this point, the remainder terms will be of the form

r (1)
2N−2, r

(2)
2N−4, . . . r

(k)
2N−2k, . . . , r

(1)
2 ,

such that r (i)
2N−2i ∈ H⊥

i , is unspecified. Starting from r (1)
2N−2 a necessary and sufficient

condition for the remainder r (i)
2N−2i to exist is that the integral of the equation with respect to

dxN−i vanishes, i.e.

F(x)Z(x) =
∫

(Td )N
(A2N−1φ2N−1 + . . .AN+1φN+1) e

−V1/σ dxNdxN−1 . . . dx1

+
∫

(Td )N
(LNφN + . . .L1φ1) e

−V1/σ dxNdxN−1 . . . dx1,
(66)

where

Z(x) =
∫

Td
. . .

∫

Td
e−V1/σ dxN . . . dx1.

As above, after simplification, (66) becomes

∇x0 · (∇xN φN + . . . + ∇x0φ0
) = Z(x)F(x),

which can be written as

σ

Z(x)
∇x0 ·

(∫

(Td )N

(
I + ∇xN θN

) · · · · · (I + ∇x1θ1
)
e−V /σ dxN · · · dx1∇x0φ0

)
= F(x),

or more compactly

F(x) = σ

Z(x)
∇x0 · (K1(x)∇x0φ0(x)

)
,

where the terms in the right hand side have been specified and are unique. Thus, the O(1)
equation (66) provides a unique expression for F(x). Moreover, for each i = 1, . . . , N − 1,
there exists a smooth unique solution r (i)

2N−2i ∈ Hi−1 and φ2N ∈ HN by Proposition 5.
Note that we have not uniquely identified the functions φ1, . . . , φ2N , since after the above

N steps there will be remainder terms which are still unspecified. However, conditions (47a)–
(47c) will hold for any choice of remainder terms which are still unspecified. In particular, we
can set all the remaining unspecified remainder terms to 0. Moreover, every Poisson equation
we have solved in the above steps has been of the form:

Sku(x0, . . . , xk) = a(x0, . . . , xk) · ∇x0φ0(x0) + A(x0, . . . , xk) : ∇2
x0φ0(x0),

where Sk is of the form (38), and a and A are uniformly bounded with bounded derivatives.
In particular, from the remark following Proposition 5 the pointwise estimates (48) hold. ��
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Remark 7 Note thatwedonot have an explicit formula for the test functions, for i = 1, . . . , N .
However, by applying (63) recursively one can obtain an explicit expression for the gradient
of φi in terms of the correctors θi :

∇xi φi = ∇xi θi (I + ∇xi−1θi−1) · · · · · (I + ∇x1θ1)∇x0φ0.

Since these are the only terms required for the calculation of the homogenized diffusion
tensor we thus obtain an explicit characterisation of the effective coefficients.

5.2 Tightness of Measures

In this section we establish the weak compactness of the family of measures corresponding
to {X ε

t : 0 ≤ t ≤ T }0<ε≤1} in C([0, T ];Rd) by establishing tightness. Following [43], we
verify the following two conditionswhich are a slightmodification of the sufficient conditions
stated in [9, Theorem 8.3].

Lemma 3 The collection {X ε
t : 0 ≤ t ≤ T }{0<ε≤1} is relatively compact in C([0, T ];Rd) if

it satisfies:

1. For all δ > 0, there exists M > 0 such that

P

(
sup

0≤t≤T
|X ε

t | > M

)
≤ δ, 0 < ε ≤ 1.

2. For any δ > 0, M > 0, there exists ε0 and γ such that

γ −1 sup
0<ε<ε0

sup
0≤t0≤T

P

(
sup

t∈[t0,t0+γ ]
∣∣X ε

t − X ε
t0

∣∣ ≥ δ; sup
0≤s≤T

|X ε
s | ≤ M

)
≤ δ.

To verify condition 3 we follow the approach of [43] and consider a test function of the
form φ0(x) = log(1+ |x |2). The motivation for this choice is that while φ0(x) is increasing,
we have that

3∑

l=1

(1 + |x |)l |∇l
xφ0(x)|F ≤ C, (67)

where |·|F denotes the Frobenius norm. Let φ1, . . . , φ2N−1 be the first 2N − 1 test functions
constructed in Proposition 6. Consider the test function

φε(x) = φ0(x) + εφ1(x, x/ε) + . . . + εNφN
(
x, x/ε, . . . , x/εN

)

+ εN+1φN+1
(
x, x/ε, . . . , x/εN

)+ . . . + ε2N−1φ2N−1
(
x, x/ε, . . . , x/εN

)
.

(68)

Applying Itô’s formula, we have that

φε(X ε
t ) = φε(x) +

∫ t

0
G(X ε

s ) ds + √
2σ

N∑

i=0

2N−1∑

j=0

ε j−i
∫ t

0
∇xi φ j dWs,

where G(x) is a smooth function consisting of terms of the form:

εk−(i+ j)eV /σ ∇xi ·
(
e−V /σ σ∇x j φk

)
(x, x/ε, . . . , x/εN ), (69)
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where k ≥ i + j , by construction of the test functions. Moreover, ∇xi φ j = 0 for j < i .
To obtain relative compactness we need to individually control the terms arising in the drift.
More specifically, we must show that the terms

E sup0≤t≤T

∫ t
0

∣∣eV /σ ∇xi · (e−V /σ σ∇x j φk
)
(X ε

s , X
ε
s /ε, . . . , X

ε
s /ε

N ) ds
∣∣ , (70)

E

∣∣∣sup0≤t≤T

∫ t
0 ∇x j φk(X ε

s , X
ε
s /ε, . . . , X

ε
s /ε

N ) dWs

∣∣∣
2
, (71)

and

sup
0≤t≤T

|φ j (X
ε
t )|. (72)

are bounded uniformly with respect to ε ∈ (0, 1]. Terms of the type (70) can be bounded
above by:

E sup
0≤t≤T

∫ t

0

∣∣∣
(∇xi V · ∇x j φk

)
(X ε

s , . . . , X
ε
s /ε

N )

∣∣∣+
∣∣∣σ∇xi · ∇x j φk(X

ε
s , . . . , X

ε
s /ε

N )

∣∣∣ ds.

If i > 0, then ∇xi V is uniformly bounded, and so the above expectation is bounded above
by

C E

∫ T

0
|∇x j φk(X

ε
s , . . . , X

ε
s /ε

N )| +
∣∣∣∣∇xi · ∇x j φk(X

ε
s , . . . , X

ε
s /ε

N )

∣∣∣∣ ds

≤ CE

∫ T

0

3∑

m=1

∣∣∇m
x0φ0(X

ε
s )
∣∣
F
ds ≤ KT ,

using (67), for some constant K > 0 independent of ε. For the case when i = 0, an additional
term arises from the derivative ∇x0V0 and we obtain an upper bound of the form

E

∫ T

0

3∑

m=1

∣∣∇m
x0φ0(X

ε
t )
∣∣
F

(1 + ∣∣∇x0V0(X
ε
t )
∣∣) dt

≤ E

∫ T

0

3∑

m=1

∣∣∇m
x0φ0(X

ε
t )
∣∣
F

(1 + ‖∇∇V0‖L∞|X ε
t |) dt,

(73)

and which is bounded by Assumption 1 and (67). For (71), we have

E

∣∣∣∣∣ sup0≤t≤T

∫ t

0
∇x j φk(X

ε
s , X

ε
s /ε, . . . , X

ε
s /ε

N ) dWs

∣∣∣∣∣

2

≤ 4E
∫ T

0
|∇x j φk(X

ε
s , X

ε
s /ε, . . . , X

ε
s /ε

N )|2 ds

≤ C E

∫ T

0

3∑

m=1

∣∣∇m
x0φ0(X

ε
s )
∣∣
F
ds,

which is again bounded. Terms of the type (72) follow in a similar manner. Condition 3 then
follows by an application of Markov’s inequality.

To prove Condition 3, we set φ0(x) = x and let φ1, . . . , φ2N−1 be the test functions which
exist by Proposition 6. Applying Itô’s formula to the corresponding multiscale test function
(68), so that for t0 ∈ [0, T ] fixed,

X ε
t − X ε

t0 =
∫ t

t0
G ds + √

2σ
N∑

i=0

2N−1∑

j=0

ε j−i
∫ t

t0
∇xi φ j dWs, (74)

123



82 Page 30 of 34 A. B. Duncan et al.

where G is of the form given in (69). Let M > 0, and let

τ ε
M = inf{t ≥ 0; |X ε

t | > M}. (75)

Following [43], it is sufficient to show that

E

[
sup

t0≤t≤T

∫ t∧τ ε
M

t0∧τ ε
M

∣∣∣eV /σ ∇xi ·
(
e−V /σ ∇ jφk

)
(X ε

s , X
ε
s /ε, . . . , X

ε
s /ε

N ) ds
∣∣∣
1+ν
]

< ∞,(76)

and

E

⎛

⎝ sup
t0≤t≤t0+γ

∣∣∣∣∣

∫ t∧τ ε
M

t0∧τ ε
M

∇xi φ j (X
ε
s , X

ε
s /ε, . . . , X

ε
s /ε

N ) dWs

∣∣∣∣∣

2+2ν
⎞

⎠ < ∞, (77)

for some fixed ν > 0. For (76), when i > 0, the term ∇xi V is uniformly bounded. More-
over, since ∇φ0 is bounded, so are the test functions φ1, . . . , φ2N+1. Therefore, by Jensen’s
inequality one obtains a bound of the form

Cγ ν
E

∫ t0+γ

t0

∣∣∣eV /σ ∇xi ·
(
e−V /σ ∇ jφk

)
(X ε

s , X
ε
s /ε, . . . , X

ε
s /ε

N )

∣∣∣
1+ν

ds

≤ Cγ ν

∫ t0+γ

t0
|K |1+ν ds ≤ K ′γ 1+ν .

When i = 0, we must control terms involving ∇x0V0 of the form,

E

[
sup

t0≤t≤t0+γ

∫ t∧τ ε
M

t0∧τ ε
M

∣∣∇V0 · ∇x j φk
∣∣1+ν

ds

]
,

where τ ε
M is given by (75). However, applying Jensen’s inequality,

E

[
sup

t0≤t≤t0+γ

∫ t∧τ ε
M

t0∧τ ε
M

∣∣∇V0 · ∇x j φk
∣∣1+ν

ds

]
≤ Cγ ν

∫ (t0+γ )∧τ ε
M

t0∧τ ε
M

E
∣∣∇V0 · ∇x j φk

∣∣1+ν
ds

≤ Cγ ν

∫ (t0+γ )∧τ ε
M

t0∧τ ε
M

E
∣∣∇V0(X

ε
s )
∣∣1+ν

ds

≤ Cγ ν
∥∥∇2V0

∥∥1+ν

∞
∫ (t0+γ )∧τ ε

M

t0∧τ ε
M

E|X ε
s |1+ν ds

≤ CMγ 1+ν
∥∥∇2V0

∥∥1+ν

L∞ , (78)

as required. Similarly, to establish (77) we follow a similar argument, first using the
Burkholder–Gundy–Davis inequality to obtain:

E

(
sup

t0≤t≤t0+γ

∫ t

t0
|∇xi φ j dWs |2+2ν

)
≤ E

(∫ t0+γ

t0

∣∣∇xi φ j
∣∣2 ds

)1+ν

≤ γ ν

∫ t0+γ

t0
E
∣∣∇xi φ j

∣∣2+2γ
ds

≤ Cγ 1+ν .

We note that Assumption 1 (3) is only used to obtain the bounds (73) and (78). A
straightforward application of Markov’s inequality then completes the proof of condition
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3. It follows from Prokhorov’s theorem that the family {X ε
t ; t ∈ [0, T ]}0<ε≤1 is rela-

tively compact in the topology of weak convergence of stochastic processes taking paths
in C([0, T ];Rd). In particular, there exists a process X0 whose paths lie in C([0, T ];Rd)

such that {X εn ; t ∈ [0, T ]} ⇒ {X0; t ∈ [0, T ]} along a subsequence εn .

5.3 Identifying theWeak Limit

In this section we uniquely identify any limit point of the set {X ε
t ; t ∈ [0, T ]}0<ε≤1. Given

φ0 ∈ C∞
c (Rd) define φε to be

φε(x) = φ0(x) + εφ1(x/ε) + . . . εNφN
(
x, x/ε, . . . , x/εN

)

+ . . . + ε2Nφ2N
(
x, x/ε, . . . , x/εN

)
,

where φ1, . . . , φN are the test functions obtained from Proposition 6. Since each test function
is smooth, we can apply Itô’s formula to φε(X ε

t ) to obtain

E

[
φε(X ε

t ) −
∫ t

s
Lεφε(Xu) du

∣∣∣Fs

]
= φε(X ε

s ). (79)

We can now use (45) to decompose Lφε into an O(1) term and remainder terms which
vanish as ε → 0. Collecting together O(ε) terms we obtain

E

[
φ0(X

ε
t ) −

∫ t

s

σ

Z(X ε
u)

∇x0 · (Z(X ε
u)M(X ε

u)∇φ0(X
ε
u)
)
du + εRε

∣∣∣Fs

]
= φ0(X

ε
s ),

where Rε is a remainder term which is bounded in L2(με) uniformly with respect to ε, and
where the homogenized diffusion tensor M(x) is defined in Theorem 1. Taking ε → 0 we
see that any limit point is a solution of the martingale problem

E

[
φ0(X

0
t ) −

∫ t

s

σ

Z(X0
u)

∇x0 · (Z(X0
u)M(X0

u)∇φ0(X
0
u)
)
du
∣∣∣Fs

]
= φ0(X

0
s ).

This implies that X0 is a solution to the martingale problem for L0 given by

L0 f (x) = σ

Z(x)
∇ · (Z(x)M(x)∇ f (x)).

From Lemma 1, the matrix M(x) is smooth, strictly positive definite and has bounded
derivatives. Moreover,

Z(x) =
∫

Td
· · ·
∫

Td
e−V (x,x1,...,xN )/σ dx1 . . . dxN

= e−V0(x)/σ
∫

Td
· · ·
∫

Td
e−V1(x,x1,...,xN )/σ dx1 . . . dxN ,

where the term in the integral is uniformly bounded. It follows from Assumption 1, that for
some C > 0,

|M(x)∇�(x)| ≤ C(1 + |x |), ∀x ∈ R
d ,

where � = − log Z . Therefore, the conditions of the Stroock-Varadhan theorem [51, The-
orem 24.1] holds, and therefore the martingale problem for L0 possesses a unique solution.
Thus X0 is the unique (in the weak sense) limit point of the family {X ε}0<ε≤1. Moreover,
by [51, Theorem 20.1], the process {X0

t ; t ∈ [0, T ]} will be the unique solution of the SDE
(18), completing the proof.
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6 Further Discussion and Outlook

In this paper, we have shown the convergence of the multi-scale diffusion process (8) to
the homogenized (effective) diffusion process (18), as well as the convergence of the corre-
sponding equilibrium measures. We have employed the classical martingale approach based
on a suitable construction of test functions and analysis of the related Poisson equations. A
notable feature is that the effective (macroscopic) process is amultiplicative diffusion process
where the diffusion tensor depends on the macroscopic variable, whereas the noise in the
microscopic dynamics is additive. This is due to the full coupling between the macroscopic
and the microscopic scales. As discussed in the introduction, both processes are reversible
diffusion processes satisfying the detailed balance condition. Therefore, according to [1],
the corresponding Fokker Planck equations at all scales are Wasserstein gradient flows for
the corresponding free energy functionals [30]. Thus, the rigorous analysis presented in
this work leads to the conclusion that the Wasserstein gradient flow structure is preserved
under coarse-graining. This raises the interesting question whether coarse-graining and, in
particular, homogenization can be studied within the framework of evolutionary Gamma
convergence [4, 16, 35, 52]. Another interesting question is obtaining quantitative rates of
convergence [17] and also understanding the effect of coarse-graining on the Poincaré and
logarithmic Sobolev inequality constants, using the methodology of two-scale convergence
[24, 41]. We will return to these questions in future work.
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