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Abstract
We consider a specific random graph which serves as a disordered medium for a particle
performingbiased randomwalk. Take a two-sided infinite horizontal ladder andpick a random
spanning treewith a certain edgeweight c for the (vertical) rungs. Now take a randomwalk on
that spanning treewith a biasβ > 1 to the right. In contrast to other randomgraphs considered
in the literature (random percolation clusters, Galton–Watson trees) this one allows for an
explicit analysis based on a decomposition of the graph into independent pieces. We give an
explicit formula for the speed of the biased random walk as a function of both the bias β

and the edge weight c. We conclude that the speed is a continuous, unimodal function of β

that is positive if and only if β < β
(1)
c for an explicit critical value β

(1)
c depending on c. In

particular, the phase transition at β(1)
c is of second order. We show that another second order

phase transition takes place at another critical value β
(2)
c < β

(1)
c that is also explicitly known:

For β < β
(2)
c the times the walker spends in traps have secondmoments and (after subtracting

the linear speed) the position fulfills a central limit theorem. We see that β(2)
c is smaller than

the value of β which achieves the maximal value of the speed. Finally, concerning linear
response, we confirm the Einstein relation for the unbiased model (β = 1) by proving a
central limit theorem and computing the variance.
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1 Introduction andMain Results

1.1 Introduction

This paper studies a very specificmodel for transport in a disorderedmedium. Biased random
walks in random environments and on random graphs have been investigated intensively
over the last years. The most prominent examples are biased random walk on supercritical
percolation clusters, introduced in [3] and biased random walk on supercritical Galton–
Watson tree, introduced in [23]. We refer to [5] for a survey. Another specific model which
has found a lot of recent interest in the physics literature is the random comb graph, see [2,
13, 21, 26]. In the presence of traps in the medium, there are often three regimes of transport,
see for instance [21] and the references therein.

1. The Normal Transport regime for small values of the bias: the walk has a positive linear
speed and, when subtracting the linear speed, it is diffusive.

2. The Anomalous Fluctuation regime for intermediate values of the bias: the walk still has
a positive linear speed but the diffusivity is lost.

3. The Vanishing Velocity regime (aka subballistic regime): the speed of the random walk
is zero if the bias is larger than some critical value, due to the time the random walk
spends in traps.

The Normal Transport regime together with the Anomalous Fluctuation regime are also
known as the ballistic regime. For biased randomwalk on supercritical Galton–Watson trees,
these statements have been proved in [23]. For biased random walks on supercritical per-
colation clusters, the existence of the critical value separating the ballistic regime from the
Vanishing Velocity regime was shown in [14], whereas the earlier works [25] and [9] gave
the existence of a zero speed and a positive speed regime. In the ballistic regime, one may
ask about the behaviour of the linear speed as a function of the bias. Is the speed increasing
as a function of the bias? This question is also interesting in disordered media without “hard
traps”, for instance Galton–Watson trees without leaves or the random conductance model
(with conductances that are bounded above and bounded away from 0). In that case, there
is no Vanishing Velocity regime. Monotonicity of the speed for biased random walks on
supercritical Galton–Watson trees without leaves is a famous open question, see [24]. We
refer to [1] and [7] for recent results on Galton–Watson trees and [8] for a counterexample
to monotonicity in the random conductance model. The Normal Transport regime for biased
random walks on supercritical percolation clusters has been established in [9, 14, 25]. Limit
laws for the position of the walker have been investigated both in the Anomalous Fluctuation
regime and in the Vanishing Velocity regime in several examples, see [6, 12, 16, 18, 22]. For
biased randomwalk on a supercritical percolation cluster, the conjectured picture of the speed
as a function of the bias is as in Fig. 3. However, there is no rigorous proof that the speed
is a unimodal function of the bias. Here, we consider a random graph given as a (uniformly
chosen) spanning tree of the ladder graph, parametrized by the density of vertical edges. In
this case, we can give an explicit formula for the speed of the biased randomwalk, see (1.12).
In particular, we have an explicit critical value β

(1)
c for the bias such that the speed is positive

for β ∈ (
1, β(1)

c
)
and is zero for β ≥ β

(1)
c . From this formula, we see that the speed is a

unimodal function of the bias, see Fig. 3. The formula also allows to study the dependence
of the speed on the density of vertical edges. We show that for an explicit value β

(2)
c < β

(1)
c ,

a central limit theorem holds for β < β
(2)
c . This establishes the Normal Transport regime

for our model and is not surprising as the same statement is true for other biased walks on
random graphs, see [9, 14, 16, 25]. In contrast to these examples, the critical value β

(2)
c is
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Fig. 1 A finite section of the simple ladder graph

explicit in our case. For the unbiased case, we even have a quenched invariance principle. By
computing the variance, we confirm the Einstein relation for our model. It has been said (but
we do not have a written reference for this conjecture) in the general setup that the critical
β

(2)
c for the existence of second moments and for the validity of a central limit theorem is the

value of β where the speed is maximal. However, this is not true in our example. We show
that β(2)

c is strictly smaller than the value where the speed is maximized.
Our proofs rely on a decomposition of the uniform spanning tree due to [19], on explicit
calculations for hitting times using conductances, on regeneration times and some ergodic
theory arguments. The decomposition of the spanning tree allows for an interpretation as a
trapping model in the spirit of [5, 10, 11].

1.2 Definition of the Model

To define our model of biased random walk on a random spanning tree, we need to introduce
two things: (1) the random spanning tree and (2) the random walk on it. We begin with the
random spanning tree.
Random spanning tree
Consider the two-sided infinite ladder graph L = (

V L , EL
)
with vertex set V L = {0, 1}×Z

and edge set

EL = {
zm, h0,m, h1,m : m ∈ Z

}
.

Here the

hi,k = {(i, k), (i, k + 1)}, i ∈ {0, 1}, k ∈ Z,

are the horizontal edges and the

zk := {(0, k), (1, k)}, k ∈ Z,

are the vertical edges. See Fig. 1.
For n ∈ N, let

V L
n := {0, 1} × {−n, . . . , n} ⊂ V L

and let EL
n denote the induced set of edges. Finally, let Ln := (V L

n , EL
n ) denote the induced

finite subgraph of L .
Let ST(L) denote the set of all spanning trees of L . That is, each t ∈ ST(L) is a subset of EL

such that the graph (V L , t) is connected but has no cycles. Analogously, define ST(Ln).
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Fig. 2 Construction of the random spanning tree T . Illustration of A3,2,−1,1 (explained later)

Let c > 0 be a parameter of the model. We attach a weight weight(zm) = c to each vertical
edge zm and weight(hi,m) = 1 to each horizontal edge hi,m .
Denote by Pc

n the weighted spanning tree distribution on ST
(
Ln

)
, that is

P
c
n[{t}] = weight(t)

weight
(
ST
(
Ln

)) for t ∈ ST
(
Ln

)
. (1.1)

By taking the limit n → ∞, we get (in the sense of convergence of finite dimensional
distributions)

P := P
c := lim

n→∞P
c
n .

By a standard recurrence argument, P is concentrated on connected graphs. That is,
P[ST(L)] = 1.
Let E denote the expectation with respect to P and let T be the generic random spanning tree
with distribution P.
Although this is a rigorous and precise description of the model, it is not very helpful when it
comes to explicit computations. In fact, for this purpose, it is more convenient to describe the
random spanning tree in terms of the positions of its vertical edges (rungs) and its missing
horizontal edges. Before we introduce the somewhat technical notation, let us explain the
concept.

The tree is completely specified if we know the positions of the missing horizontal edges
and the positions of the vertical edges (rungs) in the tree.

• Let (Hn)n∈Z denote the horizontal positions of the right vertices of the missing rungs.
Assume that the numeration is chosen such that

. . . H−2 < H−1 < H0 ≤ 0 < H1 < H2 < . . .

• Denote by (Wn) the corresponding vertical positions of the missing edges.
• Between any two horizontal positions Hn and Hn+1−1 there is exactly one vertical edge

in the tree. Denote the horizontal position of this edge by Vn . That is, Hn ≤ Vn < Hn+1.
Note that V−1 < 0 and V1 > 0 but V0 could have either sign or equal 0.

Roughly speaking, if we start from a rung at position Vn there are a random number Fn of
positions to the right with both horizontal edges before the next horizontal edge is missing.
That is, Vn+Fn+1 = Hn+1. Going right from Hn there are a random number F ′

n of positions
before the next rung at Vn . That is Hn + F ′

n = Vn . Note that

Hn+1 − Hn = Fn + F ′
n + 1.

Following the work of Häggström [17] for the case c = 1 and [19] for general c > 0, the
(Fn) and (F ′

n) and (Wn) are independent random variables and

• Wn takes the values 0 and 1 each with probability 1/2
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• Fn and F ′
n , n 	= 0, are geometrically distributed γ1−α with parameter 1−α with α defined

in (1.2).

Here
α := c + 1 −

√
c2 + 2c ∈ (0, 1), (1.2)

and the geometric distribution with parameter a ∈ (0, 1] is defined by
γa(k) = a · (1 − a)k, k = 0, 1, 2, . . . (1.3)

Note that α is a monotone decreasing function of c and α → 0 as c → ∞ (and hence the Fn
and F ′

n tend to 0) and α → 1 as c → 0.
Clearly, (Hn)n∈Z is a stationary renewal process and the renewal times Gn := Hn+1 − Hn =
Fn + F ′

n + 1 have distribution γ1−α ∗ γ1−α ∗ δ1 for n 	= 0. For n = 0, however, the gap G0

is a size-biased pick of this distribution (waiting time paradox). That is,

P[G0 = k] = k P[G1 = k]
E[G1]

= 1 − α

1 + α
(1 − α)2 αk−1 k2, k = 1, 2, 3, . . . .

(1.4)

Roughly speaking, by symmetry, given G0, both the position of the origin and the position
of the rung at V0 are uniformly distributed among the possible values {H0, . . . , H1 − 1} and
are independent. In other words, given G0, the random variables H0 and F ′

0 are independent
and

P[−H0 = j |G0 = k] = P[F ′
0 = j |G0 = k] = 1

k
for all j = 0, . . . , k − 1.

Note that

V0 = H0 + F ′
0

is the difference of two independent and uniformly distributed random variables F ′
0 and−H0

(given G0).
Summing up, the random spanning tree T can be described in terms of the independent ran-
dom variables (Fn), (F ′

n), (Wn) and by H0. The Fn and F ′
n , n 	= 0, are γ1−α distributed while

for F0 and F ′
0 a somewhat different distribution needs to be chosen. (Since we are interested

in asymptotic properties only, we would not even need to know the precise distributions of
F0 and F ′

0.) Given these random variables, the positions of the rungs and the missing edges
in T are given by:

Hn = H0 +
n−1∑

k=0

(Fk + F ′
k + 1) if n ≥ 1, (1.5)

Hn = H0 −
−1∑

k=n

(Fk + F ′
k + 1) if n ≤ −1, (1.6)

and
Vn = Hn + F ′

n, n ∈ Z. (1.7)
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Random walk on the spanning tree
We now define random walk on T in the spirit of the random conductance model. Denote by
PT the probabilities for a fixed spanning tree T . Furthermore, we let

P =
∫

PT
P[dT ] (1.8)

denote the annealed distribution and E its expectation.
Fix a parameter β ≥ 1 and attach to each edge in T a weight (conductance)

C(zn) = C(hi,n) = βn, n ∈ Z, i = 0, 1. (1.9)

For v ∈ T , we write the sum of the conductances of adjacent edges by

C(v) :=
∑

e: v∈e
C(e).

Note that C(v) depends on T but this dependence is suppressed in the notation.
The random walk X = (X (1), X (2)) on T chooses among its neighboring edges with a
probability proportional to the edge weight. That is,

PT [Xn+1 = w |Xn = v] = C({v,w})
C(v)

for {v,w} ∈ T .

Note that X (1) ∈ {0, 1} is the vertical position and X (2) ∈ Z is the horizontal position of X .

1.3 Main Results

For β > 1, this random walk has a bias to the right and we will see that it is in fact transient
to the right and that the asymptotic speed

v := lim
n→∞

X (2)
n

n

exists. Since T is ergodic, the value of v does not depend on T and is a deterministic function
of α and β. In this paper, we give an explicit formula for v and we discuss how v depends
on β and on α. In particular, we see that v is strictly positive if and only if β < β

(1)
c := 1/α,

and that v is a unimodal function of β. For random walk on the full ladder graph, the speed
is a monotone function of β. However, in the spanning tree, right of the vertical edges there
are dead ends of varying sizes where the random walk can spend large amounts of time if β

is large. Hence it can be expected that there exists a critical value β
(1)
c = β

(1)
c (α) such that

v > 0 for β ∈ (
1, β(1)

c
)
and v = 0 for β ≥ β

(1)
c . For β < 1/α, let

s+ := 1 − α

1 − αβ

s− := 1 − α

1 − α/β

(1.10)

and

C = 2β

β − 1
− 1 − s−/β

1 − s2−/β
= 2β

β − 1
− β − α

β − α2 . (1.11)

(For a more intuitive description of these quantities, see (2.7), (2.8) and (2.9) in the proof).
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Fig. 3 A sketch of β �→ v(β) for
α = 2 − √

3 = 0.2679 . . .

(c = 1)

Theorem 1.1 (Asymptotic Speed) Let β
(1)
c := 1/α. For β ≥ β

(1)
c , we have v = v(β) = 0.

For β ∈ (
1, β(1)

c
)
, we have v(β) > 0 and the value of v is given by

1

v(β)
= β + 1

β − 1
+ 1 − α

1 + α

(
β + 3

2(β − 1)
+ β(β + 1)

(β − 1)2
(s+ − s−) + C s−

)
. (1.12)

Note that β−1
β+1 is the asymptotic speed of random walk on Z with a bias β to the right.

The remaining terms on the r.h.s. of (1.12) describe the slowdown due to (1) traps and (2)
the lengthening of the path due to the need to pass vertical edges. Note that C > 0 and
(s+ − s−) > 0.
Clearly, v(β) = 0 for β ∈ {1, 1/α}. To see that for each value of α ∈ (0, 1), β �→ v(β)

is a unimodal function, it suffices to show that β �→ 1/v(β) is convex on (1, 1/α), and the
readers can convince themselves from (1.12) that this is the case since β �→ 1/v(β) is a sum
of convex functions.

The explicit formula for the speed allows to investigate the dependence on the parameters
β and α. Taking the limit of v as α → 0 (which amounts to c → ∞) in (1.12), we get

lim
α↓0 v = 2(β − 1)

5β + 7
. (1.13)

Note that this corresponds to the speed of a biased RW on a uniform spanning tree with
all vertical edges. The uniform spanning tree can be chosen as follows: for each pair of
horizontal edges h0,k , h1,k , a fair coin flip decides which one is retained. For this case, the
formula (1.13) could be derived directly by a straightforward (but not short) Markov chain
argument.

Does the speed increase as α increases, since there are less vertical edges to slow down the
random walk? Or does increasing α mean that the traps get larger and the speed decreases?
The latter effect should be stronger for large β and in fact we have

lim
α↓0

∂v

∂α
= 4(β − 1)(β + 1)(3 − β)

(5β + 7)2
(1.14)

which is positive if β < 3 and negative if β > 3. Hence, for fixed β, the value of the speed
can either increase or decrease in the neighborhood of α = 0 (Figs. 4, 5).

The next goal is to establish a central limit theorem in the ballistic regime, that is, in the
regime where v(β) > 0. As we will need second moments, we have to restrict the range of
β further. Assume that β ∈ (

1, 1/
√

α
)
. Note that v(β) > 0 and that

� := − log(α)

log(β)
> 2.
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Fig. 4 A sketch of v(1.25) (left) and v(4) (right) as a function of α

By Theorem 1.1 of [15], the time the randomwalk spends in a trap has tails with moments
of all orders smaller than � but no moments larger than or equal to �. Hence, the critical
value β

(2)
c for the existence of second moments is

β(2)
c := 1√

α
. (1.15)

For β ∈ (
1, β(2)

c
)
, secondmoments exist and this indicates that a central limit theorem should

hold in this regime. Denote by N0,1 the standard normal distribution.

Theorem 1.2 Assume that β ∈ (
1, β(2)

c
)
. Then there exists a ς2 ∈ (0,∞) such that the

annealed laws converge to a standard normal distribution, i.e.

LP

[
X (2)
n − v(β)n
√

ς2n

]
n→∞−→ N0,1. (1.16)

Note that
β(2)
c < βmax (1.17)

where βmax is the value β for which v(β) is maximal. In fact, an explicit calculation gives

∂v

∂β

∣∣∣
β=β

(2)
c

= p(β)

q(β)

with

p(β) = 4
(
5β14 + 20 β13 + 51β12 + 94β11 + 141β10 + 180 β9 + 203β8 + 196β7

+ 164β6 + 118β5 + 72 β4 + 34β3 + 14β2 + 6β + 2
) (

β2 + 1
)

q(β) =
(
5β9 + 19β8 + 36β7 + 51β6 + 57β5 + 47β4 + 33β3 + 22 β2 + 9β + 1

)2
.

As all coefficients are positive, we have

∂v

∂β

∣∣∣
β=β

(2)
c

> 0.

In the case β ∈ (
β

(2)
c , β

(1)
c
)
, we are still in the ballistic regime but second moments of the

time spent in traps fail to exist. In fact, the pth moment exists if and only if p < �. See [15].
Hence we might ask if a proper rescaling yields convergence to a stable law. This, however,
cannot be expected to hold since the time that the random walk spends in a random trap does
not have regularly varying tails. See [15] for a detailed discussion.
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Compare the situation to the random comb model (with exponential tails) (see [21, Figs.
3, 9b]): There are two critical values g1 > g2 > 0 for the drift g such that the following
happens.

• For small drift 0 < g < g2, the random comb is in the Normal Transport regime (NT).
That is, the speed is positive and the second moments are finite. The phase transition
at g2 is of second order, that is, the second moments diverge. Also for our model, the
second moments of the time spent in traps diverges as β ↑ β

(2)
c as can be read off from

the explicit formula of the tails given in [15].
• For g2 < g < g1, the random comb is in the Anomalous Fluctuation regime (AF). The

speed is positive but the second moments are infinite. The phase transition at g1 is of
second order, that is, the speed converges to 0 as g → g1. Also for our random walk on
the random spanning tree, the speed decreases to 0 as β ↑ β

(1)
c .

• For g1 < g, the random comb is in the Vanishing Velocity regime (VV) where the speed
is zero.

Also in the random comb model, the speed is an increasing function of the drift g in the NT
regime (for exponential tails), as can be seen in [21, Fig. 9b], and the speed is maximal at
some gmax > g2 just as we have shown for our model in (1.17).
We come to the final goal of this paper. In the unbiased case β = 1, all moments of the time
spent in traps exist and a central limit theorem should hold. Moreover, the variance σ 2 should
be given by the Einstein relation

σ 2 = 2
∂v

∂β

∣∣∣
β=1

= 1 + α

3 + α
(1.18)

where the second equality can easily checked by an explicit computation. We show that this
is indeed true and that a quenched invariance principle holds true with this value of σ 2.

Theorem 1.3 (Quenched Functional Central Limit Theorem) Let β = 1 and let σ 2 be given
by (1.18). The process

(
1√
σ 2 n

X (2)
�tn�

)

t≥0

converges in PT -distribution in the Skorohod space D[0,∞) to a standard Brownian motion
for P[dT ] almost all spanning trees T .

1.4 Organization of the Paper

The rest of the paper is organized as follows. In Sect. 2, we study the random conductances
in some more detail. We also decompose the spanning tree into building blocks and compute
the expected times the random walks spends in these blocks. We put things together to get
the explicit formula for the speed and prove Theorem 1.1.
In Sect. 3, we use a regeneration time argument to infer the central limit theorem in the
ballistic regime.
In Sect. 4, we prove the Einstein relation (Theorem 1.3) by computing second moments.
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Fig. 5 Uniform spanning tree
(c = 1, α = 2 − √

3). No drift:
β = 1. The histogram shows the
endpoints as a result of 100,000
simulations of 1,000,000 steps of
RWRE. The curve shows the
(scaled) density of the normal
distribution with variance
10, 000 × 1+α

3+α
as suggested by

the CLT

−2000 −1000 0 1000 2000

2 Conductances Model and Proof of Theorem 1.1

2.1 SomeMore Considerations on the Spanning Tree

In the spanning tree T , there is a unique ray (self avoiding path) from the left to the right. We
denote the ray by Ray. We can enumerate the ray by the positive integers following it from
(0, 0) [or (1,0) if (0,0) is not in the ray] to the right and by the negative integers going to the
left. Let φ(i) = (φ(1)(i), φ(2)(i)), i ∈ Z, be this enumeration.
The basic idea is to decompose the random walk X into a random walk Y that makes steps
only on Raywith edge weights given by (1.9). That is, if Yn is in the ray and also the position
one step to the right, that is φ(φ−1(Yn) + 1) = Yn + (0, 1), is in the ray, then PT [Yn+1 =
φ(φ−1(Yn) + 1)

∣∣Yn] = β/(1 + β) and PT [Yn+1 = φ(φ−1(Yn) − 1)
∣∣Yn] = 1/(1 + β).

Otherwise these probabilities are both 1/2. Now assume that we attach random holding
times to Y that model the times that X spends in the traps splitting from the ray. In most
cases, of course, these holding times are simply 1 since there are no traps. There are three
kinds of traps:

(a) A horizontal edge splits to the right of the ray: The ray makes a step down (or up) and
the trap consists of a number, say k, of horizontal edges to the right of the turning point.
See Fig. 6.

(b) A horizontal edge splits to the left of the ray: The ray has just made a step down (or up)
and now turns to the right again. The trap consists of a number, say l, of horizontal edges
to the left of the turning point. See Fig. 7.

(c) A vertical edge splits from the ray. The ray has just made a step to the right and will
make another step to the right. A vertical edge either splits to the top or the bottom of the
ray. At the other end of this vertical edge, there are k horizontal edges to the right and l
horizontal edges to the left. See Fig. 8.

It is tempting to follow a simple (but wrong) argument to compute the asymptotic speed
of X : For a given point on the ray, compute the probability p that a trap starts at this point
and compute the average time E[T ], the walk spends in a trap. Then take the speed vY of the
random walk Y on the ray and divide it by 1 + pE[T ]. What is wrong with the argument is
that the expected numbers of visits to a given point on the ray vary in a subtle way depending
on the ray. Hence, we will have to argue more carefully to prove Theorem 1.1. However,

123



Biased Random Walk... Page 11 of 25 83
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Fig. 6 Trap (a) (in red) with k = 3. Initial point in green, ray in blue (Color figure online)
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Fig. 7 Trap (b) (in red) with l = 2. Initial point in green, ray in blue (Color figure online)
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Fig. 8 Trap (c) with k = 3 and l = 2. Initial point in green, ray in blue (Color figure online)

there is a nice simplification of our model where this approach works and as a warm-up we
present this here.
Consider the spanning tree T u that is defined just as T but the ray is {1}×Z. In other words,
we would have Wn = 0 for all n. In this case, there are only traps of type (c). Also, the
random walk Yu on the ray is simply a random walk on Z with a drift β−1

β+1 . Since the gaps

between vertical edges have distribution γ1−α ∗γ1−α ∗ δ1 they have expectation 1+α
1−α

. Hence,
the probability for a given vertical edge to be in T u is

p = 1 − α

1 + α
. (2.1)

Assume that the trap starts one step below (or above in the general case T ) the initial point
of the random walk and then splits into l edges to the left and k edges to the right. Let Tk,l
be the time, the random walk on T u spends in the trap before it makes the first step on the
ray. By Lemma 2.3 below, we have

ET u [Tk,l ] = 2

1 + β

(
1 + β

β − 1

(
βk − β−l)

)
.

We still have to average over k and l to get, for β < 1/α,

E[T ] =
∞∑

k,l=0

(1 − α)2 αk+l ET [Tk,l ] = 2

β + 1

(
1 + β

β − 1
(s+ − s−)

)
(2.2)
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with s+ and s− from (1.10). Summing up, we get that the biased random walk on T u has,
for β < 1/α, asymptotic speed

vu := β − 1

β + 1

1

1 + pE[T ] = β − 1

β + 1

(
1 + 1 − α

1 + α

2

β + 1

(
1 + β

β − 1
(s+ − s−)

))−1

.

(2.3)
As indicated above, the computation of the speed v of random walk on T requires more care.
We prepare for this in the next section by considering hitting times in the random conductance
model.

2.2 Conductance Method and Times in Traps

If the random walker on the random spanning tree enters a dead end of the tree (a trap) it
takes a random amount of time to get back to the ray of the tree. The average amount of time
spent in a trap is the key quantity for computing the ballistic speed of the random walk. In
this section, we first present the (well-known) formula that computes the average time to exit
the trap in terms of the sum of edge weights (2.4). Then we apply this formula to the three
prototypes of traps: (a) a dead end to the right, (b) a dead end to the left and (c) a rung with
dead ends to both sides.
Let G = (V , E) be a connected graph and assume that we are given edge weights C(x, y) =
C(y, x) > 0 for all {x, y} ∈ E and C(x, y) = 0 otherwise. Let C(x) = ∑

y C(x, y) and let

p(x, y) = C(x, y)

C(x)
, x, y ∈ V

be the transition probabilities of a reversible Markov chain X on V . Assume that

C(V ) :=
∑

y∈V
C(y) < ∞.

It is well known that the unique invariant distribution of this Markov chain is given by
π(x) = C(x)/C(V ) for all x ∈ V . Let

τx := inf{n ≥ 1 : Xn = x}.
It is well known (see, e.g., [20, Theorem 17.52]) that

Ex [τx ] = 1

π(x)
= C(V )

C(x)
. (2.4)

Now we assume that there is a point x ∈ V with only one neighboring point y. Then

Ey[τx ] = Ex [τx ] − 1 = C(V )

C(x, y)
− 1 = 2

∑
e∈E C(e)

C(x, y)
− 1. (2.5)

Quite similarly, assume that there are two points x1, x2 ∈ V each of which has only y as a
neighbor. Let τ{x1,x2} be the first hitting time of {x1, x2}. By identifying the two points and
giving the edge to y the weight C(x1, y) + C(x2, y), we get from (2.5)

Ey[τ{x1,x2}] = 2

∑
e∈E C(e)

C(x1, y) + C(x2, y)
− 1. (2.6)

We will need (2.6) when we compute the expected time that the random walk X on T spends
in a trap before it makes one step on the ray from y to the left (say x1) or the right (say x2).
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Lemma 2.1 (Trap of type (a)) Assume that for a given tree T , the trap starts one step right
of the initial point of the random walk and that the trap has k ∈ N edges. Let Tk be the time
the random walk spends in the trap before it makes the first step on the ray (not counting this
first step on the ray). Then

ET [Tk] =
{

β
βk−1
β−1 , if β 	= 1,

k, if β = 1.

Proof We apply (2.6) with y the point on the ray where the trap splits off, x1 and x2 the two
neighbouring points of y on the ray. The graph V consists of the points in the trap, y, x1 and
x2. The sum of edge weights is

∑

e∈E
C(e) = 2 + β + . . . + βk .

Hence

ET [Tk] = 2
2 + β + . . . + βk

2
− 2 = β + . . . + βk .

This, however, is the assertion. ��

Lemma 2.2 (Trap of type (b)) Assume that for a given T , the trap starts one step left of the
initial point of the random walk and that the trap has l ∈ N edges. Let Tl be the time the
random walk spends in the trap before it makes the first step on the ray (not counting this
first step on the ray). Then

ET [Tl ] =
{

2β
β+1

1−β−l

β−1 , if β 	= 1,
l, if β = 1.

Proof We argue as in the proof of Lemma 2.1. Note that here the two edges on the ray have
weights 1 and β, respectively. Hence

ET [Tl ] = 2
1 + β + β0 + β−1 + . . . + β1−l

β + 1
− 2 = 2

1 + . . . + β1−l

β + 1
.

��

Lemma 2.3 (Trap of type (c)) Assume that for a given T , the trap starts one step above (or
below) the initial point of the random walk and then splits into l edges to the left and k edges
to the right. Let Tk,l be the time the random walk spends in the trap before it makes the first
step on the ray (not counting this first step on the ray). Then

ET [Tk,l ] =
{

2
1+β

(
1 + β

β−1

(
βk − β−l

))
, if β 	= 1,

k + l + 1, if β = 1.

Proof We argue as in the proof of Lemma 2.2 to get

ET [Tk,l ] = 2
1 + β + 1 + β1−l + . . . + βk

β + 1
− 2 = 2

1 + β1−l + . . . + βk

β + 1
.

��
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2.3 Proof of Theorem 1.1

This conductance approach is perfectly suited to study random walk on spanning trees. In
fact, the speed of random walk on the random spanning tree can be derived from the average
time it takes to make a step to the right on the infinite ray. From the considerations of the
previous section it is clear that we need to compute the sum of the edge weights of all edges
in T that are left to walker (i. e., edges that can be reached without making a step to the right
on the ray). The random spanning tree is made of i.i.d. building blocks that consist of the
subgraphs between two missing horizontal edges. So we need the average weights of i.i.d.
building blocks plus the edge weights in the block the walker is currently in. For this block,
we need the exact shape of the block and the exact position of the walker before we take
averages.
Recall that T is the random spanning tree with enumeration φ(n), n ∈ Z of its ray. Assume
that we are given conductances C(hi,k) = C(zk) = βk for all hi,k, zk ∈ T . Let X be the
random walk on T with these conductances. Let τ0 = 0 and for k ∈ N, let

τk := inf
{
n ≥ 0 : φ(2)(Yn) = k

}
.

Denote by ET
0 the quenched expectation for the random walk X started at φ(0). Since T is

stationary and ergodic, φ(2)(X) has a deterministic asymptotic speed v = v(β) given by

v = 1

EET
0 [τ1]

.

We will later condition on the position of the first horizontal edge missing to the left, count
the edge weights between it and the origin by hand and average over the edge weights to the
left of it. By translation invariance, it is enough to condition on

B := {H0 = 0} =
{
#(T ∩ {h0,0, h1,0}) = 1

}
.

Denote by T − ⊂ T the set of edges in T with at least one endpoint strictly to the left of 0:

T − = T ∩
{
hi,k, zk−1 : i = 0, 1, k ≤ 0

}
.

We now compute

C : = E

⎡

⎣
∑

e∈T −
C(e)

∣∣∣ B

⎤

⎦

=
1∑

i=0

0∑

k=−∞
P
[
hi,k ∈ T

∣∣B
]
βk +

−1∑

k=−∞
P
[
zk ∈ T

∣∣B
]
βk

= 2
∞∑

k=0

β−k −
∞∑

n=1

E

[
β−(F−1+F ′−1+1)+...+(F−n+F ′−n+1)

]
− 1

+ E

[
β−(F ′−1+1) + β−(F ′−1+F−1+F ′−2+2) + . . .

]

= 2β

β − 1
−

∞∑

n=0

(s2−/β)n + s−
β

∞∑

n=0

(s2−/β)n

= 2β

β − 1
− 1 − s−/β

1 − s2−/β
.

(2.7)
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Recall that

s− = E
[
β−F1

] =
∞∑

k=0

(1 − α)αkβ−k = (1 − α)β

β − α
(2.8)

and

s+ = E
[
β+F1

] =
∞∑

k=0

(1 − α)αkβk =
⎧
⎨

⎩

1 − α

1 − αβ
, if β < 1

α
,

∞, else.
(2.9)

Summing up, we have

C = 2β

β − 1
− 1 − s−/β

1 − s2−/β
= 2β

β − 1
− β − α

β − α2 . (2.10)

Let us now consider the details of the spanning around the position of the walker. That is, we
consider the part of T between two missing horizontal edges in which the walker is. Since
we defined the position of the walker to be 0, this is the part of T between H0 and H1 (see
Fig. 2). Recall that F ′

0 is the distance of the rung to H0 and F0 is the distance of the rung
to H1. Furthermore, V0 is the position of the rung. Note that |W1 − W0| = 1 if the missing
horizontal edges are in alternating vertical positions and W1 − W0 = 0 otherwise. We first
condition on these random variables and compute the edge weights. Later we average over
F ′
0, F0 and |W1 − W0|.

Define the events

Aa,b,k,σ : = {
F ′
0 = a, F0 = b, V0 = −k, |W1 − W0| = σ

}
(2.11)

for a, b ∈ N0, k = −a, . . . , b, σ = 0, 1. For each of these events, we compute the condi-
tional expectation E0[τ1 | Aa,b,k,σ ] and then sum over all possibilities.
Recall that φ(0) = (φ(1)(0), φ(2)(0)) ∈ Ray ∩ {(1, 0), (0, 0)} is the position of the walker
at time 0. Note that given Aa,b,k,σ , we have φ(1) = (φ(1)(0), 1)) if k 	= 0 or σ = 0 and
φ(1) = (1 − φ(1)(0), 0) if k = 0 and σ = 1. In the latter case, the walker has to pass z0
before it makes a jump to the right and accomplishes τ1. In order to compute the expected
waiting time before the walker makes a step on the ray, we use (2.6) and compute the edge
weightsCT ,− “to the left” of the walker. More precisely, letCT ,− denote the sum of the edge
weights of all edges that can be connected to φ(0) without touching φ(1) (the next position
right on the ray). In the case k = 0, this includes the edges in the trap starting at φ(0).

Case 1 k < 0. Here we compute

E
[
Cτ,− | Aa,b,k,σ

] = Cβ−a−k + 1 + β−1 + . . . + β1−a−k

=
(
C − β

β − 1

)
β−a−k + β

β − 1
.

(2.12)

Denote by E0 the annealed expectation for the random walk started in φ(0). Since
C(hi,1) = β, i = 1, 2, we conclude due to (2.6)

E0
[
τ1
∣∣ Aa,b,k,σ

] = β−1 2E[Cτ,− | Aa,b,k,σ ] + 1

= β + 1

β − 1
+ 2

(
C

β
− 1

β − 1

)
β−a−k

=: β + 1

β − 1
+ f1(a, k).

(2.13)

123



83 Page 16 of 25 N. Gantert, A. Klenke

Case 2 k > 0 or k = 0 and σ = 0.
This is quite similar to Case 1, but since z−k ∈ T , we also have the additional edge
weights

β−k(1 + β−a + β−a+1 + . . . + βb).

Hence

E0
[
τ1
∣
∣ Aa,b,k,σ

] = β + 1

β − 1
+ f1(a, k) + 2β−k

(
1

β
+ 1

β − 1

(
βb − β−a)

)

=: β + 1

β − 1
+ f1(a, k) + f2(a, b, k).

(2.14)

Case 3 k = 0 and σ = 1. This works as in Case 2, but in addition, the walker has to pass
the edge z0. Here we only compute the additional time that it takes for passing this
edge. Since the edge weights

β + . . . + βb = β
βb − 1

β − 1

contribute to CT ,−, and since C(z0) = 1, we get

E0
[
τ1 | Aa,b,k,σ

] = β + 1

β − 1
+ f1(a, b) + f2(a, b) + f3(a, b) (2.15)

with

f3(a, b) = 2

(
C − β

β − 1

)
β−a + 2

β

β − 1
+ 1 + 2β

βb − 1

β − 1

= 1 + 2

(
C − β

β − 1

)
β−a + 2β

β − 1
βb.

(2.16)

Now we sum up over the events Aa,b,k,σ . Recall the distribution of G0 = F0 + F ′
0 + 1 from

(1.2) and recall that−H0 and F ′
0 are independent and uniformly distributed on {0, . . . ,G0−1}

given G0. Hence

P
[
Aa,b,k,σ

] = 1

2
P
[
F ′
0 = a, F0 = b, −H0 = k + a

]

= 1

2

P[G0 = a + b + 1]
(a + b + 1)2

= 1

2

1 − α

1 + α
(1 − α)2αa+b.

(2.17)
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Hence, we get

∞∑

a,b=0

b∑

k=−a

1∑

σ=0

P
[
Aa,b,k,σ

]
f1(a, k)

= 1 − α

1 + α

∞∑

a,b=0

(
C

β
− 1

β − 1

)
(1 − α)2 αa+b

b∑

k=−a

β−a−k

= 1 − α

1 + α

(
C

β
− 1

β − 1

) ∞∑

a,b=0

(1 − α)2αa+b β − β−a−b

β − 1

= 1 − α

1 + α
2

(
C − β

β − 1

)
1 − s2−/β

β − 1
.

(2.18)

Furthermore,

∞∑

a,b=0

b∑

k=0

1∑

σ=0

P[Aa,b,k,σ ] f2(a, k)

= 1 − α

1 + α

∞∑

a,b=0

(1 − α)2 αa+b · 2 ·
(
1

β
+ 1

β − 1

(
βb − β−a)

) b∑

k=0

β−k

= 1 − α

1 + α

∞∑

a,b=0

(1 − α)2 αa+b · 2 ·
(
1

β
+ 1

β − 1

(
βb − β−a)

)
β − β−b

β − 1

= 1 − α

1 + α

2

(β − 1)2

[
βs+ + (β−1 − β − 1)s− + s2− + β − 2

]
.

(2.19)

Summing the terms for f1 and f2, we get the expected value for τ1 for the case where the
ray stays either up all time or down all time. That is, by an explicit computation, we get

E0[τ1
∣∣Wn = 1 for all n ∈ Z]

= β + 1

β − 1
+

∑

a,b,k,σ

P[Aa,b,k,σ ] ( f1(a, k) + f2(a, b, k)
)

= β + 1

β − 1
+ 1 − α

1 + α
2

(
C − β

β − 1

)
1 − s2−/β

β − 1

+ 1 − α

1 + α

2

(β − 1)2

[
βs+ + (β−1 − β − 1)s− + s2− + β − 2

]

= 1

vu

(2.20)

with vu from (2.3). The last equality is a tedious calculation that is omitted here. However,
it is clear that 1/vu must be the average holding time since the event we condition on is
{T = T u}.
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Now we come to the last term that describes the slow down of the walker due to the need to
pass through zV0 if W−1 	= W0.

∑

a,b

(
E0[τ1

∣
∣ Aa,b,0,1] − E0[τ1

∣
∣ Aa,b,0,0]

)
P[Aa,b,0,1]

= 1 − α

1 + α
· 1
2

∞∑

a,b=0

(1 − α)2αa+b f3(a, b)

= 1

2

1 − α

1 + α

[
1 + 2

(
C − β

β − 1

)
s− + 2β

β − 1
s+
]

.

(2.21)

Concluding, we get the explicit formula (recall C and s+ from (2.7), (1.11) and (1.10))

E0[τ1] = 1

vu
+ 1

2

1 − α

1 + α

[
1 + 2

(
C − β

β − 1

)
s− + 2β

β − 1
s+
]

(2.22)

and the formula for the speed

v = 1

E0[τ1] . (2.23)

Plugging in the expressions for E0[τ1] and vu we get (1.12) and the proof of Theorem 1.1 is
complete. ��

3 Ballistic Central Limit Theorem, Proof of Theorem 1.2

We follow the strategy of proof of Theorem 2 in [11] by introducing regeneration times
(σ X

n )n∈N (in (3.9) below) and showing that σ X
2 − σ X

1 has a second moment.
Recall the definition of the random variables Hn , n ∈ Z, from Sect. 1.2. Loosely speaking, Hn

is the right vertex of the nth horizontal bond right of the origin that has nomatching horizontal
bond. That is, either {(0, Hn−1), (0, Hn)} is in the tree but {(1, Hn−1), (1, Hn)} is not or vice
versa. Let in ∈ {0, 1} be such that en := {(in, Hn −1), (in, Hn)} ∈ T . Denote by Tn the set of
edges in T between Hn and Hn+1 shifted by Hn and complemented by the information if the
unique vertical edge between Hn−1 and Hn is in this set is in the ray or not. More formally,
for an edge e = {( j1, h1), ( j2, h2)}, we define e+ (0, k) = {( j1, h1+k), ( j2, h2+k)}. Then

Tn :=
({

e : e ⊂ {0, 1} × {0, Hn+1 − Hn − 1} : e + (0, Hn) ∈ T
}
, 1{in 	=in+1}

)
.

Note that (Tn)n=1,2,... is i.i.d.
Let n1 < n2 < . . . be the times where X is on the ray:

{n1, n2, . . .} = {n : Xn ∈ Ray}.

Let Yk = Xnk , k ∈ N. Then Y is a random walk on the infinite ray of T .
Assume that Y is started at φ(0). Since Y is transient to the right, every point φ(n), n > 0,
is visited at least once. Recall that C(φ(n), φ(n + 1)) is the conductance between φ(n) and
φ(n + 1). We write

RT
eff (n ↔ ∞) =

∞∑

m=n

1

C(φ(m), φ(m + 1))
(3.1)
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for the effective resistance between φ(n) and +∞. By [20, Theorem 19.25], the probability
that Y never returns to φ(n) is

pT (φ(n)) =
[(
C
(
φ(n − 1), φ(n)

) + C
(
φ(n), φ(n + 1)

))
RT

eff (n ↔ ∞)
]−1

. (3.2)

Denote by 
Y (φ(n)) = ∑∞
k=0 1{φ(n)}(Yk) the local time of Y at φ(n). The above considera-

tions show that

Lemma 3.1 The local time 
Y (φ(n)) of Y at φ(n), n > 0, has distribution (given T )

δ1 ∗ γpT (φ(n)) (3.3)

with pT (φ(n)) given by (3.2). For pT (φ(n)) we have the bounds

1

2

β − 1

β + 1
≤ pT (φ(n)) ≤ β − 1

β + 1
. (3.4)

Proof We only have to show (3.4). Note that the effective resistance to ∞ is minimal if the
ray is straight right of φ(n), that is, φ(n + k) = φ(n) + (0, k) for k = 0, 1, 2, . . .. In this
case, C

(
φ(n + k), φ(n + k + 1)

) = βkC
(
φ(n), φ(n + 1)

)
and hence

RT
eff

(
φ(n) ↔ ∞) = β

β − 1

1

C
(
φ(n), φ(n + 1)

) .

Since C
(
φ(n − 1), φ(n)

) ≥ C
(
φ(n), φ(n + 1)

)
/β, we get the upper bound in (3.4), i.e.

pT (φ(n)) ≤ β − 1

β + 1
.

The effective resistance is maximal if all the vertical edges are in the ray (to the right of φ(n),
at least). Since each vertical edge has the same conductance as its preceding horizontal edge,
the effective resistance essentially doubles. We distinguish the cases

(i) where φ(n − 1) and φ(n) are connected by a vertical edge and
(ii) where they are connected by a horizontal edge.

In case (i), the edge between φ(n) and φ(n + 1) is horizontal, the edge between φ(n + 1)
and φ(n + 2) is vertical and so on. Summing up, we get

RT
eff

(
φ(n) ↔ ∞) = 2β

β − 1

1

C
(
φ(n), φ(n + 1)

)

and C
(
φ(n − 1), φ(n)

) = C
(
φ(n), φ(n + 1)

)
/β. That is

pT (φ(n)) = 1

2

β − 1

β + 1
.

In case (ii), we have

RT
eff

(
φ(n) ↔ ∞) = 1

C
(
φ(n), φ(n + 1)

) + 2

β

β

β − 1

1

C(n)
= β + 1

β − 1

1

C(φ(n), φ(n + 1))

and C
(
φ(n − 1), φ(n)

) = C
(
φ(n), φ(n + 1)

)
. That is, we get again

pT (φ(n)) = 1

2C(n, n + 1)RT
eff

(
φ(n) ↔ ∞) = 1

2

β − 1

β + 1
.

Summarizing, this gives the lower bound in (3.4). ��
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As Y has positive speed to the right, it passes each en , n ∈ N at least once. We say that n is a
regeneration point if Y passes en exactly once. Note that for given T and n, the probability
that n is regeneration point is

PT
(in ,Hn)

[
Yk 	= (in, Hn − 1) for all k ≥ 1

] = RT
eff

(
(in, Hn − 1) ↔ (in, Hn)

)

RT
eff

(
(in, Hn − 1) ↔ ∞)

= β−Hn

RT
eff

(
(in, Hn − 1) ↔ ∞)

≥
(

2
∞∑

k=0

β−k

)−1

= β − 1

2β
.

(3.5)

Let

σ Y
n := inf{k : Yk = (in, Hn)}.

For m > n, let

An := {
n is a regeneration point

}

=
{
Yk /∈ {0, 1} × {Hn − 1, Hn − 2, . . .} for all k ≥ σ Y

n

} (3.6)

and

An,m :=
{
Yk /∈ {0, 1} × {Hn − 1, Hn − 2, . . .} for all k ∈ {σ Y

n , . . . , σ Y
m }
}
. (3.7)

Clearly, we have An ⊂ An,m for all m > n. Now let n1, . . . , nk ∈ N, n1 < n2 < . . . < nk .
Note that Anl ,nl+1 , l = 1, . . . , k − 1, and Ank are independent events under P

T
0 . Hence

PT
0

[
nl is a regeneration point for all l = 1, . . . , k

]

= PT
0

[
k⋂

l=1

Anl

]

= PT
0

[(
k−1⋂

l=1

Anl ,nl+1

)

∩ Ank

]

=
(
k−1∏

l=1

PT
0

[
Anl ,nl+1

]
)

· PT
0 [Ank ]

≥
k∏

l=1

PT
0

[
Anl

]

≥
(

β − 1

2β

)k

.

(3.8)

Summing up, the set of regeneration points is minorized by a Bernoulli point process with
success probability (β − 1)/2β that is independent of T . More explicitly, there exist i.i.d.
Bernoulli random variables Z1, Z2, . . . independent of T such that P[Z1 = 1] = (β −1)/2β
and such that Zn = 1 implies that n is a regeneration point (but not vice versa).
Now let τ1 < τ2 < . . . denote the sequence of n’s such that Zn = 1. Note that (τk+1−τk)k∈N
are i.i.d. geometric random variables. Let

σ X
n := inf

{
k : Xk = (iτn , Hτn )

}
. (3.9)
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and
Lk := #

{
m ∈ N0 : Xm ∈ {0, 1} × {Hk, . . . , Hk+1 − 1}}. (3.10)

Note that for n ∈ N,

σ X
n+1 − σ X

n =
τn+1−1∑

k=τn

Lk (3.11)

Then (σ X
k+1 − σ X

k )k∈N are i.i.d. random variables (under the annealed probability measure).
Along each elementary block Tn the ray passes (#Tn(1) + 1)/2 = Hn+1 − Hn horizontal
edges and Tn(2) vertical edges. Note that

P
[
#Tn(1) + 1 = 2k

] = P[Hn+1 − Hn = k]
= γ1−α ∗ γ1−α(k − 1)

= (1 − α)2 kαk .

(3.12)

For each step of Yn , the random walk Xn spends a random amount of time Tn in a trap. For
most points of the ray, this random variable is simply 1. Only at points adjacent to a vertical
edge, there can be either one or two real traps with Tn possibly larger than 1. Let

� = − log(α)

log(β)

and recall that � > 2 since 1 < β < β
(2)
c = 1/

√
α. By Theorem 1.1 of [15], there exists a

constant K such that

P[Tn > t] ≤ Kt−� for all t > 0.

Hence, for all ζ < �, we haveE[T ζ
n ] < ∞. In fact, the result of [15] gives a precise statement

for the tails of the traps of type (a) (see Fig. 6) only, but clearly, the cases (b) and (c) work
similarly.
Let


Y
(
(i,m)

) := #
{
n ∈ N0 : Yn = (i,m)

}
(3.13)

be the occupation time of Y in (i,m). Given T , for each (i,m) on the ray, 
Y
(
(i,m)

) − 1
is a geometric random variable with success probability pT

(
(i,m)

)
. Here pT

(
(i,m)

)
is the

probability that Y will go to infinity before returning to (i,m). By Lemma 3.1, this probability
is bounded below by

pT
(
(i,m)

) ≥ 1

2

β − 1

β + 1
.

Let γp(k) = p(1− p)k denote the weights of the geometric distribution on N0 with success
probability p. Hence for every ζ > 0, there is a constant Kζ < ∞ such that

ET
[(


(i,m)
)ζ ] ≤ Kζ :=

∞∑

k=1

γ(β−1)/2(β+1)(k − 1)kζ < ∞. (3.14)

Note that Hn+1 − Hn has moments of all orders, hence there exists K ′
ζ < ∞ such that (recall

Ln from (3.10))
E[Lζ

n] ≤ K ′
ζ < ∞. (3.15)
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Now fix ζ ∈ (2, �) and let η = ζ
ζ−2 . Note that 1

ζ/2 + 1
η

= 1. Recall that τn+1 − τn is
geometrically distributed. We use Hölder’s inequality to infer

E
[(

σ X
2 − σ X

2

)2] = E

⎡

⎢
⎣

⎛

⎝
τ2−1∑

k=τ1

Lk

⎞

⎠

2
⎤

⎥
⎦

=
∞∑

i=1

∞∑


=1

E

⎡

⎣
(
i+
−1∑

k=i

Lk

)2

; τ1 = i, τ2 = i + 


⎤

⎦

≤
∞∑

i=1

∞∑


=1

E

⎡

⎣

(
i+
−1∑

k=i

Lk

)ζ
⎤

⎦

2/ζ

P[τ1 = i, τ2 = i + 
]1/η

≤ max
k≥1

E
[
Lζ
k

]2/ζ ∞∑

i=1

∞∑


=1


2P[τ1 = i, τ2 = i + 
]1/η

≤ (K ′
ζ )

2/ζ
(

β − 1

2β

)2/η
( ∞∑


=1

(
β + 1

2β

)(
−1)/η


2

)( ∞∑


=1

(
β + 1

2β

)(
−1)/η
)

< ∞.

(3.16)
Having established the existence of second moments of the regeneration times, we can argue
as in the proof of Theorem 2 in [11] to conclude the proof of Theorem 1.2. ��

4 Einstein Relation: Proof of Theorem 1.3

Recall that Ray denotes the (unique) self-avoiding path on T from −∞ to ∞. We may and
will assume that X starts at a point chosen from the ray instead of (possibly) from a point
inside a trap. Since all traps are of finite size, it is enough to prove the theorem for this initial
position. For n ∈ N0, define the last time m ≤ n when Xm was on the ray by

n∗ := inf{m ≤ n : Xm ∈ Ray}
and let

X̃n := Xn∗ .

That is, X̃ waits at the entrances of the traps for X to come back to the ray. Since the depths
of the traps are independent geometric random variables, it is easy to check that

1√
n

|X (1)
n − X̃ (1)

n | n→∞−→ 0 a.s.

Hence, it is enough to show the theorem for X̃ instead of X .
Note that X̃ is symmetric simple random walk on Ray with random holding times. We now
give a different construction of such a random walk that allows explicit computations.
Recall thatφ(n) = (φ(1)(n), φ(2)(n)), n ∈ Z, is the enumeration ofRay, such thatφ(1)(0) = 0
andφ(1)(−1) = −1. Let Y be symmetric simple randomwalk onZ. Then φ(Yn) is symmetric
simple random walk on Ray. For each k ∈ Z, there may or may not be a trap starting at φ(k).
Let νk denote the (random) distribution of the time that X spends in that trap at any visit of
φ(k) before it makes a move on Ray. LetUk,i denote the time that X̃ spends at its i th visit to
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φ(k) before it makes a step on the ray. Clearly, the Uk,i are independent given (νk)k∈Z and
Uk,i has distribution νk . Now we define

Sn :=
n∑

k=0

UYk ,k

and let

Y D
n = Yk if Sk−1 < n ≤ Sk .

Then φ(Y D
n )n∈N0 and (X̃n)n∈N0 coincide in (quenched) distribution. Hence the proof of

Theorem 1.3 amounts to showing that
(

1√
σ 2 n

φ(1)(Y D
n )�tn�

)

t≥0
(4.1)

converges in PT -distribution in the Skorohod space D[0,∞) to a standard Brownian motion.
Let m := E[∑
 νk({
})
] be the mean time before Y D takes its next step. In Theorem 2.10
of [4], a functional central limit theorem for our Y D was shown for the situation where the
sequence (νn)n∈Z is i.i.d. In our situation, the (νn)n∈Z are not i.i.d. but are ergodic. In fact,
they are a strongly mixing sequence as the random spanning tree T is made of i.i.d. building
blocks. Taking a closer look at the proof of Theorem 2.10 in [4, Sect. 7.2], we notice that their
assumption of independence is too strong and that ergodicity is perfectly enough to infer the
statement of the theorem. Hence, by Theorem 2.10 of [4], we get that

(
1√
n/m

Y D�tn�
)

t≥0
(4.2)

converges in PT -distribution in the Skorohod space D[0,∞) to a standard Brownian motion.
It remains to compute m and to measure the effect of applying φ(1) to Y D .

Lemma 4.1 For almost all T , we have

lim|n|→∞
φ(1)(n)

n
= 2(1 + α)

3 + α
.

Proof Let

p := P[T � zk] = P[Vn = k for some n ∈ Z] = 1 − α

1 + α
, k ∈ Z,

be the probability that a given vertical edge zk is in the spanning tree. Recall that the fair coin
flips (Wn) determine the vertical positions of the missing edges. That is, the horizontal edge
hWn ,Hn is not in the tree T . Note that Hn ≤ Vn < Hn+1 and that the vertical edge zVn is in
the ray if and only if Wn 	= Wn+1. Hence

P[Ray � zk] =
∑

n∈Z
P[Vn = k, Wn 	= Wn+1] = 1

2

∑

n∈Z
P[Vn = k] = p

2
.

By ergodicity, we get for almost all T
1

n
#
{
k ∈ {0, . . . , n} : zk ∈ Ray

} n→∞−→ p

2

and

1

n
#
{
k ∈ {−n, . . . , 0} : zk ∈ Ray

} n→∞−→ p

2
.
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This implies

lim|n|→∞
φ(1)(n)

n
= 1

1 + p/2
= 2(1 + α)

3 + α
. �

��
Lemma 4.2 We have

m = 4(α + 1)

3 + α
.

Proof For n such that the vertex φ(n) is of degree 2 (that is, there is no trap adjacent to φ(n)),
we have νn = δ1 since Y D makes its next step immediately. For n such that φ(n) has degree
3 and there is a trap consisting of k edges starting at φ(n), by (2.5), we have that the average
holding time is

∑




νn(
)
 = k + 1.

By the ergodic theorem, we get

m = lim
n→∞

1

n

n∑

k=0

∑




νk(
)
 �

= lim
n→∞

1

n
#
{
edges of T ∩ ({0, 1} × {0, . . . , φ(1)(n)})}

= lim
n→∞

1

n
2φ(1)(n) = 4(1 + α)

3 + α
.

Together with the above discussion, these lemmas finish the proof of Theorem 1.3. ��
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