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Abstract
This work analyses the formation of the Knudsen layer in micro/nanoscale flows by linking
a rough wall collision model to a continuum flow model via asymptotic matching. Expres-
sions for the accommodation coefficients in terms of the surface characteristics are derived,
allowing for boundary layer analysis of rarefied flows without the use of prior determined
accommodation coefficients. This derived model, through use of the Lennard–Jones parame-
ters for a nanoscale system, allows for a prediction of the the effective Tangential Momentum
Accommodation Coefficient (TMAC) in flows against ordered nanoscale surfaces.

Keywords Rough wall modelling · Surface modelling · Asymptotic analysis · Tangential
momentum accommodation coefficient · Local specular reflection model

1 Introduction

In micro/nanoscale flows, physical characteristic length scales, L , become comparable to, or
smaller than, the molecular mean free path (MFP), λ. In such cases the Knudsen number,
Kn = λ/L , may no longer be smaller than order unity, indicating that rarefaction effects
may be present. In such flows the physical behaviour of the fluid deviates from the continuum
case and boundary effects become more pronounced [1]. A notable change in the boundary
behaviour in micro/nanoscale flows is the increased effect of the Knudsen layer (KL), a
region of thermodynamic non-equilibrium near a solid boundary with width of order λ. In
the regime of approximately 0.01 < Kn < 0.1 these boundary effects become significant,
and the no-slip condition used throughout most continuum fluid mechanics breaks down
and instead a slip condition must be used [1]. This regime is known as the slip regime. The
surface effects in the slip regime are generally characterised by set of parameters called the
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accommodation coefficients, which model the transfer of some property from the fluid to the
wall [2]. In general an accommodation coefficient of some property, q , may be represented
as

αq = 〈qi 〉 − 〈qr 〉
〈qi 〉 − 〈qw〉 (1)

where the subscripts i and r represent the value of the property evaluated for incident and
reflected particles, w represents the value at the wall and the angled brackets are the ensem-
ble average of the property. Generally one or two accommodation coefficients are used to
model the boundary behaviour, with the Tangential Momentum Accommodation Coefficient
(TMAC) and the Energy Accommodation Coefficient (EAC) being commonly used [2, 3].
The TMAC is generally found to be approximately unity for surfaces with microscale rough-
ness [4] and as such, most analyses have investigated the case of α ∼ 1. Despite this, it is
notable that atomically smooth surfaces, such as nanotubes or graphene, exhibit very low
accommodation values. Predictions of this value have been calculated via simulation to be of
the order 0.001 for light gases such as hydrogen and methane [5]. It is important to note that
few methods of predicting the TMAC for ordered nanoscale systems currently exist, with
most values being generated via molecular dynamics simulations [5, 6].

In opposition to foundational works such as by Maxwell [7] and Welander [8], where a
strained continuummodel with given accommodation coefficients is considered, more recent
works have considered the loss of momentum near a boundary by the interaction of rarefied
particles with a wall with some geometric roughness. Works by Nicholson and Bhatia [9,
10] have investigated the collisional behaviour of hard sphere molecules interacting with
a hard wall, modelling a defect-free atomic surface such as graphene or a metallic lattice.
These works investigated the boundary in a deterministic sense, where the wall shape is
determined prior to analysis, and rebounds can be investigated geometrically. An opposing
approach is the stochastic methodology, initially presented by Tsuji et al. [11], as the ’virtual
wall model’, where an incident molecule is reflected by a virtual wall angle governed by
a probability density function (PDF). This work was later extended by Sommerfeld and
Huber [12], introducing the shadow effect model (SEM), which was developed to model the
accessibility of angled surfaces for a given incident angle of the fluid molecule. The effective
wall PDF in this model is written as

PSH (θ, γ ) = sin(γ + θ)

sin γ
Pwall(θ)H(θ, γ ) (2)

where Pwall is the non-adjusted wall angle PDF, determined experimentally and H is a nor-
malisation function for a given wall roughness and incident particle angle. In this work, H ,
takes into account the ’shadow effect’ in which low-angled incident particles cannot reach
certain wall angles, and is modelled as a Heaviside step function. An experimental compo-
nent of this work measured the surface roughness of some common engineering materials.
It was found that the non-adjusted PDF for these surfaces could be modelled well by nor-
mal distribution. Extensions to this model was continued in several works [13–15] which
extend this model by considering the effect of multiple collisions and more accurate shadow-
ing/screening functions. These models progressively become more complex and admit less
analytic information. These past models have concerned the application to particle-laden
multiphase flow, where the colliding particles are of the microscale but do not consider the
particle-particle interactions which are expected at the outer limit of the boundary layer.

As technology has progressed and nanoscale engineering has become a more mature
field, works aimed at modelling of fluid mechanical systems of the nanoscale have been
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performed. A series of models aimed at modelling the additional effects in nanoscale gas-
surface interactions have emerged, such as the hard-cube [16] and soft-cube [17] models
and their extensions as the washboard model by Tully [18]. These models all account for
the atomic motions of both the fluid molecules and wall atoms, while including the effect of
long-range potential forces, adsorption and heat transfer to varying degrees. Theseworks have
often investigated the common test ofmolecular beam scattering of (generally non-adsorbing)
rarefied gases from either a Pt(100) or Pt(111) surface, with the Ar-Pt system being common
[6]. It is noteworthy that few theoretical models for the prediction of the TMAC of these
nanoscale systems have been developed. To the authors’ knowledge, no simple expression
estimating this parameter for arbitrary systems currently exist in the literature.

With this motivation, this work aims to connect the outer continuum flow and the
free-molecular gas-surface model via boundary layer matching, connecting the rough-wall
statistical methods as in previous works [11, 12, 19] with a formal statistical mechanics treat-
ment in the outer layer as akin to that of Coron [20] and later Aoki et al. [21]. The paper is
organised as follows. Section 2 outlines some mathematical preliminaries and introduces the
governing equations and expressions of the boundary operators. In Sect. 3 the equations in the
outer layer are derived. In Sect. 4 the Knudsen layer expansion is performed using both the
Maxwell and Cerciginani-Lampis boundary models and the matching procedure to the outer
layer is shown. In Sect. 5, the roughness sub-layer is introduced and the corrected Knudsen
layer equation is derived. In Sect. 6, numerical analysis is performed on the equations and
approximate relations are presented. Finally, in Sect. 7, this analysis is applied to an example
boundary as in the works of Nicholson and Bhatia [9, 10] to model nanoscale wall collisions,
presenting general expressions for the prediction of the TMAC in these systems.

2 Preliminaries

Early work on slip boundary models was pioneered by Maxwell [7], who connected kinetic
and continuum theory by deriving an expression for the shear stress at the wall, τw , which
may be expressed as

τw = μw

∂u

∂z

∣
∣
∣
∣
w

(3)

where μw represents the ’effective’ viscosity at the wall, which Maxwell considered to be
equal to that of the bulk flow. Maxwell considered that the wall brought some fraction, α,
of fluid particles are brought into equilibrium with the wall per collision. In this model this
fraction is directly equivalent to the TMAC. The accommodated particles are reflected from
thewall with aGaussian profile definedwith thewall temperature, with the remaining fraction
being perfectly reflectedwith nomomentum or energy exchange. By equating themomentum
flux and shear stress at the wall, Maxwell determined an expression for the velocity slip at
the wall as

uslip = 2 − α

α
λ

∂u

∂z

∣
∣
∣
∣
w

(4)

whereuslip represents the non-zero tangential velocity value at thewall and the derivative term
corresponds to the velocity gradient as shown in Fig. 1. Maxwell’s solution to this problem
leads to a linear profile near thewall, which does not account for the non-equilibriumKnudsen
layer present near the wall. To account for this non-equilibrium region, the first order slip

123



63 Page 4 of 25 M. M. Kratzer et al.
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Fig. 1 Flow profile in the Knudsen layer against wall normal distance with the corresponding projected outer
solution showing the slip velocity

boundary condition is determined by the projected solution of the Knudsen layer velocity
profile, shown in Fig. 1. The first-order slip relation is generally represented in dimensionless
form as

Uslip = C(α)Kn
∂U

∂Z

∣
∣
∣
∣
w

(5)

whereU and Z are non-dimensional forms of the tangential velocity andwall normal distance
respectively and C(α) is some function of the TMAC and is referred to as the first-order (or
Maxwell) slip coefficient. Many theoretical and numerical analyses have been undertaken to
determine the form of C over the last few decades. For a detailed comparison of forms of
this function the reader is directed to the review paper by Zhang et al. [22].

Generalisedmodels of boundary reflection in rarefiedflowsmaybe expressed as an integral
transform of the particle distribution, f , with some reflection kernel, R, as in [2]

w f (xwall , u) =
∫

w′<0
|w′|R(u′ → u) f (xwall , u′)du′ (6)

where the particle distribution function, f , is defined over the domain of spatial and velocity
coordinates x = (x, y, z) and u = (u, v, w) steady system in 3 physical dimensions. This
integral is to be understood as the integral over all incident particle velocities at the boundary
defined at x = xwall . The presence of the normal velocity w and w′ ensures zero mass
flux through the wall. As outlined in [2] this kernel must obey the following conditions of:
non-negativity for all u and u′,

R(u′ → u) ≥ 0 (7)

normalisation,
∫

w′<0
R(u′ → u)du′ = 1 (8)

and the law of detailed balance

|w′|g∗(u′)R(u′ → u) = wg∗(u)R(−u → −u′) (9)
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where g∗ has been introduced as the Gaussian distribution as

g∗(u) = 1

2πv2T
exp

[

− u2

2v2T

]

(10)

where the thermal velocity of the particles is denoted as vT = √
kBT /m, with kB as Boltz-

mann’s constant, T as the thermodynamic temperature, and m as the mass of each identical
fluid particle. This final condition on the kernel enforces that the equilibrium distribution is
the Gaussian profile. The Maxwell kernel may be expressed as

RM (u′ → u) = (1 − α)δ(u − Cwu′) + α
|w|
vw

g∗(u) (11)

where vw = √
kBTw/m, Tw is the temperature of the wall and Cw is a linear operator which

reverses the normal component of the velocity as (u, v, w) → (u, v,−w). The Maxwell
model is commonly used due to its simplicity, with only one accommodation coefficient
required to define the whole kernel. Alongside the Maxwell kernel, the other most common
forms of reflection kernel used are the Cercignani-Lampis (CL) model [23] and its deriva-
tives. The CL kernel can be expressed as two independent kernels acting on the normal and
tangential velocities separately, as functions on the normalised velocities these kernels read

RCL(u′ → u) = 1
√

2παtv2w

exp

[

− (u − √
1 − αt u′)2

2αtv2w

]

(12a)

RCL(w′ → w) = 1

αn

w

v2w
exp

[

− (w2 + (1 − αn)w
′2)

2αnv2w

]

I0

(√
1 − αnww′

αnv2w

)

(12b)

where αn and αt represent the normal and tangential energy accommodation coefficients
(NEAC,TEAC) and I0 is the modified Bessel function of the first kind of order zero. This
boundary can model specular reflection for αt = αn = 0 and fully diffuse reflection for
αt = αn = 1.

2.1 Governing Equations and Non-dimensionalization

The problem investigated is steady-state flow over a flat plate with small surface roughness,
often referred to in the literature as Kramer’s problem. The 2D plane is located at z = 0,
and extends infinitely along the x-axis. The particles are defined in a 6D coordinate space of
x∗
3 = (x∗, y∗, z∗) and u∗

3 = (u∗, v∗, w∗). For this work, the x-direction is to be defined as
aligned to the bulk velocity, and as such the y∗ and v∗ are to be neglected, reducing the system
to a quasi-2D geometry. The fluid particles may be defined by a probability distribution, f ∗,
over the two vector coordinates x∗ = (x∗, z∗) and u∗ = (u∗, w∗). Here the fluid will be
considered to be incompressible, and will be normalised such that its density is equal to 1,
allowing for the definition of the bulk quantities

1 =
∫

f (x∗, u∗)du∗ q(x∗) =
∫

q(x∗, u∗) f (x∗, u∗)du∗ (13)

where q is somemicroscopic property defined over the same spatial and velocity components
as f ∗, and q is themean continuumproperty defined only over the physical space. Conditional
quantities in terms of the normal velocity w are defined as

f ∗
w(x∗, w) =

∫

f (x∗, u∗)du∗ (14)
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f ∗
w(x∗, w)qw(x∗, w) =

∫

q(x∗, u∗) f (x∗, u∗)du∗ (15)

where f ∗
w and qw(x∗, w) represent the distribution function and mean of q conditioned on

w respectively. The macroscopic fluid velocity is defined by the moment

u∗(x∗) =
∫

u∗ f ∗(x∗, u∗)du∗ (16)

where u∗ = (u∗, w∗). The evolution of this system is governed by the steady-state Boltzmann
equation

u∗ · ∇∗ f ∗ = J ∗( f ∗, f ∗) (17)

where J ∗ represents the collision operator. This operator, in general, has a very compli-
cated integral form, so without an approximate form analytical modelling generally becomes
intractable [2]. Several collision models exist, with the most popular being the Bhatnagar-
Gross-Krook (BGK)model [24]whichwas also presented independently about the same time
by Welander [8]. Other models of this operator have been developed, such as the S-model
[25] and the ellipsoidal-statistical [26] operators, which can account for systems with vary-
ing Prandtl number. Since this work investigates an isothermal system, the BGK relaxation
operator can be used without concern of the non-physical Prandtl number. The BGK operator
is written in dimensional form as

J ∗( f ∗, f ∗) = f ∗
eq − f ∗

τ
(18)

where τ is the mean relaxation time and f ∗
eq represents the equilibrium distribution, which

for Maxwell particles in a 2D system is given by the Gaussian distribution f ∗
eq(x

∗, u∗) =
g∗(u∗(x∗) − u∗). The relaxation time, τ , which is treated as independent of u∗ in the BGK
model [27], represents the characteristic time over which inter-particle collisions cause the
system to develop towards equilibrium. For ideal gases, this parameter can be shown to be
proportional to the ratio of the mean free path and the thermal velocity, τ ∝ λ/vT , where
the proportionality constant is dependent on the model used for the fluid-fluid interactions
[28]. Here the exact constant is not of great importance and it suffices that it is of order
unity and remains constant over the domain. Since this relaxation time only depends on
thermodynamic properties, a constant value for τ is a valid assumption for incompressible,
isothermal flow. ForMaxwell molecules theMFPmay be expressed in terms of the Chapman-
Enskog viscosity, μ, as λ = π0.52−0.5μρ−1v−1

T [3]. To transform the governing equations
into non-dimensional form, the following variables are introduced

x = x∗

λ
u = u∗

uslip
ε = τuslip

λ
(19)

where ε acts as the scale variable for the following analysis. By considering the introduced
variables, Eq. (17) becomes

u · ∇ f = feq − f

ε
(20)

where f is the particle distribution in terms of the dimensionless variables. The dimensionless
equilibrium distribution may be written in separable form in terms of two Gaussian distribu-
tions with unity variance, as feq(x, u) = g(u(x) − u)g(w). In this non-dimensionalization
process, a parameter, ε, has been introduced, this parameter characterises the relative rarefac-
tion of a fluid flow (as such, it can be seen to be proportional to the Knudsen number). This
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will be the base equation for the analysis, which will performed by a series of asymptotic
expansions. Asymptotic matching of the linearized Boltzmann equation in Couette flow has
been performed before with standard textbooks on Boltzmann’s equation (for an example,
see [2]) outlining the general method. Despite this Aoki et al. [21] note that rigorous deriva-
tions of this behaviour are rare in peer-reviewed journals, with the exception being the work
of Coron [20]. These two works focus on the deviation of the slip conditions from these
equations for use with the Navier-Stokes equation. Here we are mainly interested in the form
of the distribution for use as boundary conditions in a free-molecular roughness layer. Due
to this, the full matching procedure will be outlined here.

3 Outer Expansion

The outer distribution, as in the far-field solution away from the wall, may be approximated
by a Chapman-Enskog expansion, as the power series f = f 0 + ε f 1 + · · · . Introducing
this expansion into Eq. (20) and collecting the zeroth and first-order ε terms leads to the
distributions

f 0(x, u) = feq(x, u) f 1(x, u) = −u · ∇ f 0(x, u) = −u · ∇ feq(x, u) (21)

To the first order the moments of this distribution behaves as the Navier-Stokes equations [2].
The zeroth-order distribution is equivalent to the given equilibrium distribution. The outer
distribution to the first-order may be written

f (x, u) = feq(x, u) [1 + εu · (∇ ⊗ u)(u − u)] (22)

To determine the limiting behaviour of this distribution, a boundary layer expansion in the
wall normal direction is performed. We consider the coordinate transform, Z = z/ε, and
expand this function in terms of ε. Taking the limit as ε → 0 determines the inner limit of
the outer expansion as

flim(Z , u) = feq(Z , u)

[

1 + w (u − u) · ∂u
∂Z

]

(23)

where-on the coordinate x will be absent from notation, as it does not play a role in this
limit. In this layer, the fluid velocity is governed by the incompressible NS equations. Con-
sidering no external body forces and steady flow, the continuity and momentum equation in
a dimensionless form reduce to

∇u = 0 (u · ∇)u = −∇P + ε∇2u (24)

where P = P∗/(ρv2T ) is the dimensionless pressure, where it can be shown that that the
dimensionless kinematic viscosity is proportional to ε [28]. Collecting the ε0 terms in the
momentum equation and enforcing zero mass flux through the solid boundary at w = 0 at
Z = 0, the equations reduce as

∂2u

∂Z2 = 0
∂P

∂Z
= 0 (25)

The tangential flow profile is linear in this limit, and there is zero normal pressure gradient
as expected. The limiting velocity profile and distribution become

u(Z) = u0 + Z
du0
dZ

flim(Z , u) = feq(Z , u)

[

1 + w (u − u)
du0
dZ

]

(26)
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where u0 and
du0
dZ are constant values corresponding to the effective slip value and gradient,

these values are determined through the matching procedure.

4 Knudsen Layer Expansion

Consider now the Knudsen layer, a fluid boundary layer with thickness of the order of the
collision length. In this layer the fluid behaviour is equally affected by the inter-particle
collisions and the particle-wall collisions. This layer is defined by introducing the strained
wall distance, z = εZ , as in the previous section. Substituting this strained coordinate into
Eq. (20) leads to the expression

u
∂ fK L

∂x
+ w

ε

∂ fK L

∂Z
= feq − fK L

ε
(27)

Expanding the Knudsen layer distribution as a polynomial in ε, with fK L = f 0K L + ε f 1K L +
. . . , the defining ODE for the leading-order distribution is found as

w
∂ f 0K L

∂Z
+ f 0K L = feq (28)

where-on the superscript 0 will be dropped, as only the leading order expression will be
investigated. This PDE is linear, so integrating factors may be used to find a solution of form

fK L(Z , u) =
∫ Z

Z1

feq(Z
′, u)

1

w
exp

[
Z ′ − Z

w

]

dZ ′ + f (Z1, u) exp

[
Z − Z1

w

]

(29)

where Z1 acts as a reference point from which the path of integration is defined. There are
two cases to consider to track a single particles path:

1. Incoming particles, with w < 0 and contour of integration from Z1 = ∞ to Z
2. Reflected particles, with w > 0 and contour of integration from Z1 = 0 to Z

This leads to a distribution with the following general form

fK L(Z , u) =
⎧

⎨

⎩

∫ ∞
Z feq(Z ′, u)−1

w
exp

[
Z ′−Z

w

]

dZ ′ w < 0
∫ Z
0 feq(Z ′, u) 1

w
exp

[
Z ′−Z

w

]

dZ ′ + f (0, u) exp
[−Z

w

]

w > 0
(30)

Using the Maxwell model at the boundary leads to a reflected distribution of the form

fM (0, u) = (1 − α)g(w)

∫ ∞

0
g(uK L(Z ′) − u)

1

w
exp

[

− Z ′ + Z

w

]

dZ ′

+ αg(u) exp

[−Z

w

]

(31)

for w > 0. Using this expression in Eq. (30) a full closed form solution for the distribution
in the boundary layer may be found. A similar closed form solution may be found for the CL
kernel in the case of perfect normal reflection, αn = 0. In this case the reflected distribution
reads

fCL(0, u) = g(w)

∫ ∞

0
g
(

(1 − αt )uK L(Z ′) − u
) 1

w
exp

[

− Z ′ + Z

w

]

dZ ′ (32)

for w > 0. As before, this expression may be introduced to Eq. (30) to fully define the
distribution in theKnudsen layer. This expression for the distribution differs from theMaxwell
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case, and alters the argument of the bulk velocity instead of taking a convex sum of the
incoming distribution and the wall thermal distribution.

4.1 Tangential Velocity Profile

Considering the full distribution with reflected behaviour governed by either Eqs. (31) or
(32), taking the conditional moment of u leads to

uK L,w(Z , w) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∫ ∞
Z uK L(Z ′)−1

w
exp

[
Z ′−Z

w

]

dZ ′ w < 0
∫ Z
0 uK L(Z ′) 1

w
exp

[
Z ′−Z

w

]

dZ ′

+ (1 − α)
∫ ∞
0 uK L(Z ′) 1

w
exp

[

− Z ′+Z
w

]

dZ ′ w > 0

(33)

Taking the remaining conditionalmoment of the abovewith g(w) leads to a Fredholm integral
equation of the second kind governing the tangential bulk velocity as

uK L(Z) =
∫ ∞

0
uK L(Z ′)�

(|Z − Z ′|) dZ ′

+ (1 − α)

∫ ∞

0
uK L(Z ′)�

(

Z + Z ′) dZ ′ (34)

where the integral kernel has been defined as

�(Z) =
∫ ∞

0

g(w)

w
exp

[−Z

w

]

dw (35)

Welander [8] first derived a similar expression for considering a purely diffusive boundary,
such that α = 1. This integral equation can be solved numerically to find equivalent con-
tinuum slip conditions from a boundary layer expansion. Despite the difference between the
two kernels, if only the tangential component of the CL kernel is considered, the expressions
for the conditional and bulk tangential velocities Eqs. (33) and (34) are identical for both the
CL and Maxwell models. The difficulty of using arbitrary reflection kernels is in large part
due to the flux conservation term, |w′|/w, present in Eq. (6). If perfect reflection, αn = 0,
can be safely assumed for the normal velocity, the analysis can still be performed simply as
shown above. It is well known [2, 8] that the limiting asymptotic behaviour of Eq. (34) is a
linear profile, which will be denoted here as

uK L,lim(Z) = uslip + BZ (36)

for some constant term B. Introducing the above into Eq. (33) leads to the asymptotic form
for the conditional velocity which is linear in both Z and w as

uK L,w,lim(Z) = uK L,lim(Z) − Bw (37)

4.2 Asymptotic Matching

Matching of the bulk velocity from the Knudsen layer to the free-stream solution is rather
trivial. For boundary layer matching, the required equality is

lim
Z→∞ uK L (Z) = lim

Z→0
uouter (Z) (38)
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x

z

λr
Knudsen Layer
Roughness Layer

Fig. 2 Incident particle travelling from the collisional Knudsen layer into the collisionless roughness layer
where it is reflected from the rough wall

Fig. 3 Paths of incident particles
within roughness layer with given
incident angle γ , showing the
adjusted measure of x

γ

dx0

dxγ

The outer velocity was shown to be linear in Eq. (25), so the required equalities are u0 = uslip
and du0/dZ = B. The distribution may be matched from the Knudsen layer to the outer
layer by investigating the limiting behaviour of Eq. (30)

fK L,lim(Z , u) = −g(w)

w
lim
Z→∞

∫ ∞

Z
g(uK L(Z) − u) exp

[
Z − Z ′

w

]

dZ ′ (39)

As Z → ∞, the velocity term in the Gaussian distribution becomes linear. This leads to the
analytic solution of

fK L,lim(Z , u) = −g(w)

2wB
exp

[

− (uK L (Z) − u)

wB
+ 1

2w2B2

]

erfc

[
wB(uK L (Z) − u) − 1√

2wB

]

(40)
where erfc is the complementary error function. In the limit of Z → ∞ an asymptotic
expression for erfc is used [29], leading to the limiting form as

fK L,lim(Z , u) = feq(Z , u)

[

1 + w(uK L(Z) − u)
du0
dZ

]

(41)

which can be seen to match asymptotically to Eq. (26) exactly.

5 Roughness Layer Model

In the following section, a model of surface roughness is developed such that the use of
phenomenological accommodation coefficients may be avoided. This model assumes the
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solid boundary to be defined by some function of x . The deviation of this wall from the
x-axis is to be of the order of the wall roughness, which has a roughness height of order
λr � λ. To determine the form of the reflected distribution, a sub-layer within the Knudsen
layer is developed, as shown in Fig. 2 . This boundary layer is of the order of the characteristic
roughness and as such is referred to as the ’roughness layer’. This boundary layer is governed
by the roughness parameter of εr = λr/L � ε. To derive the governing transport equation,
the wall normal distance is further strained, by introducing the strained variable Z = z/εr .
Introducing this variable into Eq. (20), and collecting the leading order εr terms leads to the
equation

∂ fRL
∂Z = 0 (42)

In this layer, this distribution is independent of all spatial coordinates at the leading order. This
independence is due to the physical scale length now being of lower order than the MFP, thus
introducing a small region of free-molecular flow. Considering the free-molecular dynamics
of particles in this layer, a reflection kernel for use as the boundary condition in the Knudsen
layer may be derived. The function defining the wall height is considered to be Lipschitz
continuous with respect to x . This requires the existence of a value M > 0 such that, for
any x1, x2, the wall height, z, must satisfy the restriction |z(x1) − z(x2)| ≤ M |x1 − x2|. To
investigate the behaviour in this layer the following polar coordinates are introduced

u = V cos γ w = V sin γ (43)

where V is the velocity magnitude and γ is the incident angle, orientated to have positive
angle as shown in Fig. 3. Two subspaces are now defined, with incident particles having angle
in the space 
i = (−π, 0) and the reflected particles having angle in the space 
r = (0, π).

5.1 Wall Angle PDF

Consider awall with angle defined probabilistically, such that for a uniformly selected sample
along x , the angle may be defined by a PDF, P�(θ). For an incident particle with angle γ

with respect to the wall, such that γ < θlim , the likelihood of this particle striking a given
’effective’ wall angle is dependent on the value of γ , and as such, the effective angle will be
defined by a PDF denoted P(θ, γ ). The effective wall angle models the total change in angle
of a particle due to further effects, such as multiple collisions, shadowing and screening,
such as in [13]. For a section of wall x ∈ [a, b] it is assumed that the incident particles are
uniformly distributed over x at some height y = H . As shown in Fig. 3, a small section of
wall angled at θ , over a length dx0, experiences a flux of particles over a projected length,
dxγ , as

dxγ

dx0
= sin γ

sin(γ − θ)
(44)

Neglecting the effects of screening and multiple collisions, this allows for the effective PDF
to be approximated as

P(θ, γ ) = sin(γ − θ)

sin γ
P�(θ) (45)

which under the chosen coordinates is equivalent to the shadow effect model derived by
Sommerfeld and Huber [12] if P� is chosen to be normally distributed. A pivotal part of
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the following argument is the assumption that the limiting angle θlim is small, thus reducing
the effect of multiple collisions and screening. In the limit of θlim → 0, it is clear that the
distribution of the effective angle distribution approaches that of the physical angle.

5.2 PDF ofWall Angle for GivenWall Geometry

Now consider a physical wall defined by its height as a function, z(x). From this function, a
PDF governing the corresponding wall angle may be determined. Consider a section of this
wall over x ∈ [a, b]. If a point along x is chosen with some distribution, then the distribution
of the wall height measured against x may be determined as PZ (z)|dz| = PX (x)|dx |. It is
more convenient to use the PDF in terms of the local wall angle. This angle is defined as
tan θ = dZ/dx with the limits due to the Lipschitz continuity as θlim = arctan(M). The
PDF of the physical wall angle may be found as

P�(θ) = PX (x)

cos2 θ

∣
∣
∣
∣

d2z

dx2

∣
∣
∣
∣

−1

(46)

A distinction is immediately made between the distribution defining the physical wall, which
is independent of the incident molecules and the effective probability of the wall, which takes
into account the incoming distribution. As before, the effective distribution is determined as

P(θ, γ ) = PX (x)
sin(θ − γ )

sin γ cos2 θ

∣
∣
∣
∣

d2z

dx2

∣
∣
∣
∣

−1

(47)

While using a given PDF to define a wall clearly does not admit a unique solution, given a
wall defined over some x , a unique PDF may be generated. If two walls can be generated by
the same PDF, they are referred to as statistically similar.

5.3 Reflection Kernel

In this layer, all particles move along straight trajectories towards and away from the wall.
The reflection of a given particle from the wall is given by the reflection from some ’effective
angle’ θ . In this work a Local Specular Reflection (LSR) model will be considered as in
the works of Nicholson and Bhatia [9, 10]. In this model the reflection of a particle in the
local frame of the wall is perfectly specular, enforcing that no kinetic energy loss occurs per
collision, with the Maxwell surface accommodation coefficient emerging as the net result
when considering all incident angles and collisions over the surface. The local specular
reflection model (LSR) is grounded on the fact that in a hard sphere system the interaction
force between an incident atom and the solid surface atom with which it collides is directed
along the line joining their centres and therefore has no tangential component. Consequently
the LSR model is reasonable. Here we note that models considering energy transfer to the
wall could be considered, but for this initial work, the LSR will be investigated to allow
for simple expressions to be derived. In the local frame of a section of wall at angle, θ , the
collision of a single particle is given by the operator

C∗(θ) =
[

cos 2θ sin 2θ
sin 2θ − cos 2θ

]

(48)

where the above is the operator acting on a single incident particle with velocity vector (u, w)

as it collides with the wall. In the introduced polar coordinates the collision operator for a
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θ x

z

γi

γr

Fig. 4 Incident particle with angle γ ∈ 
i being processed by a virtual wall with effective wall angle θ to
attain a reflected angle of γ ∈ 
r

single particle acts as the mapping (V , γ ) → (V , 2θ − γ ). For collision against a wall with
given angle, θ , the reflection kernel may be expressed

R(V ′ → V ; θ) = δ(V ′ − V )δ(γ ′ − (2θ − γ )) (49)

where V = (V , γ ). An example collision is shown in Fig. 4. This operator only accounts for a
distribution reflecting against a wall with a set angle θ . To model the effect of collisions of all
possible wall angles, the weighted convex sum of the single-angle kernels can be introduced
as

R(V ′ → V ) =
∫

P(θ, γ ′)R(V ′ → V ; θ)dθ (50)

where integration against θ will be taken over the domain θ ∈ [−θlim, θlim] throughout
this work. This expression cannot be simplified without first some discussion of the form of
P(θ, γ ).

This distribution must obey the constraints of non-negativity and normalisation. If the
rough wall is statistically isotropic then a symmetry condition on γ and θ may be imposed.
These constraints are written

P(θ, γ ) ≥ 0
∫

P(θ, γ )dθ = 1 P(θ, γ ) = P(−θ,−γ ) (51)

Some generic comments can be made of this, so far, mostly undetermined wall angle PDF.
The dependence of this function on γ is to model shadowing effects as in the works by [12]
and [13]. Thus, for small permissible effective wall angles, and for small incident angles,
this dependence would be expected to vanish, as near-normally aligned particles reflecting
from a smooth wall would not experience any of these prior effects. Neglecting higher order
screening effects the reflection kernel may be expressed

|w′|
w

R(u′ → u) = |V ′ sin γ ′|
V sin γ

R(V ′ → V )

= δ(V ′ − V )

sin γ ′ sin

(
γ ′ − γ

2

)

P�

(
γ ′ + γ

2

)

(52)
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Using the restrictions enforced on P from Eq. (51), it can be shown that this kernel satisfies
the restrictions outlined in Eqs. (6)–(9). The normal flux conservation term seen in Eq. (6)
is a local effect, and since there is no total kinetic energy loss in an individual collision, this
term vanishes, leaving the reflection kernel expressed as an integral over the wall angle for
γ ∈ 
r

V fRL(V , γ ) =
∫

V
sin(γ − θ)

sin γ
P� (θ) fRL(V , 2θ − γ )dθ (53)

where the V term arises due to the change of basis. In the case where the limiting wall angle
is small, the shadowing term can be neglected with small error. Using a norm with respect
to P� as

〈h(θ)〉 =
∫

P�(θ)h(θ)dθ (54)

where the reflected distribution is approximated by the mapping

fRL(V , γ ) = 〈 fRL(V , 2θ − γ ) sin(γ − θ)〉
sin γ

= 〈 fRL(V , 2θ − γ ) sin θ〉cos γ

sin γ
− 〈 fRL(V , 2θ − γ ) cos θ〉 (55)

An important property of this introduced norm relies on the assumption of the symmetry of
P�. With this property, this norm maps all odd functions in θ to zero.

5.4 Molecular Beam Reflection

A motivating example for this analysis is the reflection of a molecular beam from a surface
with some roughness. This is one of the primary methods of experiment that may be under-
taken to determine the effective accommodation coefficients of a material with roughness
at the micro/nanoscale [30, 31]. Experimental data of molecular beam scattering reveals
lobular patterns which the Maxwell kernel cannot model, with this concern leading to the
development of the CL kernel [23]. For a molecular beam, the incoming distribution may be
modelled as a delta function. Consider a stream of particles to be defined with incident veloc-
ity magnitude and angle (V0, γ0), and by the distribution fRL(V , γ ) = δ(V − V0)δ(γ − γ0)

with γ ∈ 
i . If the incident angle, γ0, is large enough such that shadowing effects are not
present, then the effective wall PDF reduces to the leading order approximation. Thus, the
reflected distribution becomes

fRL(V , γ ) = 1

sin γ0
sin

(
γ0 − γ

2

)

P�

(
γ0 + γ

2

)

δ(V − V0) (56)

for γ ∈ 
r . This represents a ’smearing’ of the reflected distribution around the specular
case, and of course can be seen to reduce to the specular case when P� is defined as a delta
function. This is similar in form to the expression given in [12], which is shown in Eq. (2),
but with the generalisation that the PDF term need not necessarily assumed to be normally
distributed. This generalisation allows for walls with different statistics to be analysed, which
will be explored in later sections.
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5.5 Kramer’s Problem

As the roughness layer is a sub-layer to the Knudsen layer, the incoming distribution towards
the wall is determined by the asymptotic behaviour of the incoming particles in the Knudsen
layer. If the bulk fluid velocity is much lower than the thermal velocity, implying a lowMach
number, then the equilibrium distribution may be approximated with a small perturbation
around a Gaussian profile with zero mean value as

fRL(u, w) = g(u, w) (1 + uuw(w)) (57)

for w < 0. This may be expressed in polar coordinates as

fRL(V , γ ) = √
2πVg(V )(1 + V cos(γ )uw(V sin γ )) (58)

for γ ∈ 
i . It is clear from Eq. (33) that uw does not have a simple closed form. To keep the
analysis tractable, the asymptotic form from Eq. (37) will be used, writing uw(w) = Aw+ B
for some constants A and B such that

fRL(V , γ ) = √
2πVg(V )(1 + AV 2 cos γ sin γ + BV cos γ ) (59)

We use the relation sin(2γ ) = 2 sin γ cos γ and take the reflected distribution by introducing
the above into Eq. (55). Expanding the brackets leads to the expression

fRL(V , γ ) = √
2πVg(V )

[

1 + AV 2

2

〈sin(γ − θ) sin(4θ − 2γ )〉
sin γ

+ BV
〈cos(2θ − γ ) sin(γ − θ)〉

sin γ

]

(60)

for γ ∈ 
r . Using simple trigonometric relations, the terms within the normmay be reduced,
noting that the introduced norm maps any odd function of θ to zero

〈cos(2θ − γ ) sin(γ − θ)〉
sin γ

= 〈cos 3θ〉 cos γ = (1 − α) cos γ (61)

〈sin(4θ − 2γ ) sin(γ − θ)〉
sin γ

= −〈cos 4θ cos θ〉 sin 2γ − 〈sin 4θ sin θ〉cos γ cos 2γ

sin γ

= −
(

〈cos 4θ cos θ〉 − 1

2
〈sin 4θ sin θ〉

)

sin 2γ

= −(1 − β)(1 − α) sin 2γ (62)

where the second step in Eq. (62) can be made when particles with angles nearly parallel to
the wall are neglected. Introducing the above back into Eq. (60) and rearranging leads to the
expression

fRL(V , γ ) = √
2πVg(V )

[

1 + (1 − α)V cos γ (−(1 − β)AV sin γ + B)
]

(63)

Regrouping the A and B terms back into the linearized approximation and returning to
Cartesian coordinates leads to the final expression

fRL(u, w) = g(u, w) (1 + (1 − α)uuw (−(1 − β)w)) (64)

where the parameters α and β have been introduced above and read in full as

α = 1 − 〈cos 3θ〉 β = 1 − 〈cos 4θ cos θ〉 − 1
2 〈sin 4θ sin θ〉

〈cos 3θ〉 (65)
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where α approximates the TMAC and β represents a new scattering coefficient, these terms
model effective linear momentum loss due to fluid particle decorrelation caused by scattering
from the rough wall collisions. At the leading order, the reflected distribution, as shown in
Eq. (64), has a simple form in terms of the incident particle distribution. This allows for a
closed form expression for the reflection kernel to be developed as

R(u′ → u) = (1 − α)
g(w)

g((1 − β)w)
δ(u′ − u)δ(w′ + (1 − β)w) + α

|w|
2π

g(u) (66)

This boundary condition is similar to the Maxwell kernel, but includes a straining coordinate
β, where in the case of β = 0, the Maxwell kernel is recovered. Note, if the incoming
distribution is Gaussian in w this simply reduces to the Maxwell kernel, which would be
equivalent to matching the roughness sub-layer directly to the continuum layer. Such an
approximation would enforce A = 0 which is increasingly accurate as the effect of the
Knudsen layer diminishes, which occurs as α, Kn → 0.

5.6 Knudsen Layer Profile with RoughWall Boundary Condition

Consider the governing distribution equation as in the Knudsen layer and apply the derived
boundary condition. After re-arranging, the reflected distribution may be written

fRL(0, u) = (1 − α)g(w)

∫ ∞

0
feq,u((1 − β)Z ′, u)

1

w
exp

[−Z ′

w

]

dZ ′ + αg(u) (67)

forw > 0.Where the equilibriumdistribution has beenwritten as feq (u) = feq,u(Z , u)g(w).
This expression may be introduced into Eq. (30) to determine the total distribution for the
new boundary condition. Taking the first conditional moment of the distribution with respect
to u leads to the conditional velocity as

uK L,w(Z , w) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∫ ∞
Z uK L(Z ′)−1

w
exp

[
Z ′−Z

w

]

dZ ′ w < 0
∫ Z
0 uK L (Z ′) 1

w
exp

[
Z ′−Z

w

]

dZ ′

+(1 − α)
∫ ∞
0 uK L((1 − β)Z ′) 1

w
exp

[

− Z ′+Z
w

]

dZ ′ w > 0

(68)

Integrating this conditional velocity expression with respect to w leads again to a Fredholm
integral equation of second kind, similar to Eq. (34) but now with the introduced straining
parameter, β, present in the second integral as

uK L(Z) =
∫ ∞

0
uK L(Z ′)�

(|Z − Z ′|) dZ ′

+ (1 − α)

∫ ∞

0
uK L ((1 − β)Z ′)�

(

Z + Z ′) dZ ′ (69)

where the integral kernel has been defined as in Eq. (35). This leads to an equation to solve
for the tangential velocity profile in the Knudsen layer only using coefficients defined from
the physical statistics of the wall.

6 Numerical Results and Comparisons

To compare the derived model to the commonly used boundary conditions, numerical solu-
tions are obtained. First the molecular beam case is considered and compared to the most
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common molecular beam scattering model, being the CL model. As mentioned throughout
this report, the assumption that the wall roughness angle is defined by a Gaussian profile
is quite common, especially when considering surfaces with microscale roughness [12, 13].
Here we consider a wall PDF with a normal profile defined with some small roughness angle
variance, 〈θ2〉. Approximating the case as by Sommerfeld andHuber [12], then limiting angle
is treated as θlim = ∞. Under this approximation α and β have analytic solutions [29]

α = 1 − exp

[

−9

2
〈θ2〉

]

β = 3

4
− 3

4
exp

[−8〈θ2〉] (70)

Equating these expressions leads to the relation

β = 3

4
− 3

4
(1 − α)

16
9 (71)

Considering the physical wall angle to be defined by a normal distribution, the reflected
distribution as in Eq. (56) becomes

fRL(V , γ ) =
sin

(
γ−γ0
2

)

sin γ0

1
√

8π〈θ2〉 exp
[

− (γ + γ0)
2

8〈θ2〉
]

δ(V − V0) (72)

which is equivalent to the case in [12] without shadowing under a different coordinate sys-
tem. It is important to note that, for the case of large 〈θ2〉, a truncated and normalised normal
distributionmust be used to satisfy the restrictions outlined in Eq. (51). These derived accom-
modation coefficients parameters may be related when the limiting θ values are small, in this
case the integrands may be expanded as a Taylor series in θ , leading to the approximate
leading order expressions

α ≈ 9

2
〈θ2〉 β ≈ 6〈θ2〉 = 4

3
α (73)

This implies for a boundary with small permissible maximum collision angles, hence a very
smooth boundary with low TMAC, that the value for β approaches 4/3 of the α value.

6.1 Effective Maxwell Model

Now attention is directed to the numerical solutions of the first-order slip coefficient. For the
traditional Maxwell boundary problem, Eq. (34) may be solved numerically to determine the
flow profile in the Knudsen layer for a given wall. There are numerous methods to perform
this integration, but two will be considered here. First is the method of Neumann iteration,
which may be performed since the integral kernel is L2 integrable [32]. This method involves
numerical iteration from an initial approximate, linear solution. This iteration method may
be expressed as

U (i+1) = (M+ + (1 − α)M−)U (i) (74)

whereU (i) represents the numerical form of the bulk velocity u after i iterations andM+ and
M− are (2N + 1) × (2N + 1) matrices corresponding to the integral operators introduced in
Eq. (34). The introduced matrices approximate the continuous linear operators truncated to
some wall distance Z = 2Zmax . Since the values of M− corresponding to large values of Z
approach zero, this matrix can approximate the integral form if Zmax is large without further
adjustment. The elements of this matrix are

M−
i, j = �∗(Zi + Z j ; ZN ) + M−,sing

i, j (75)
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where �∗(Zi ; Zk) is introduced as the kernel operator truncated to Z = Zk and normalised
such that �∗(Zi ; Zk) = 0 when i ≥ k and the singularity at zero is treated by truncating
the kernel near Z = as �∗(0) = �∗(�Z) for grid spacing �Z . To account for the trun-
cated singularity analytic integration to determine the elements in the matrix M−,sing . This
integration is performed using the asymptotic form of the singularity around Z = 0 as

�(Z) = −1√
2π

(
3γe − 2

2
+ ln

[
Z√
2

])

(76)

where γe is the Euler–Mascheroni constant. Considering the solution to be piecewise linear,
analytic integration over the weakly singular point at Z = 0 can be performed, leading to
the definition of the functions

J1 = 1 − ln
[

�Z
2

]

√
2π

J2 = 1 − ln [�Z ]√
2π

J3 = 3 − ln [�Z ]√
2π

(77)

leading to elements ofM−,sing as

M−,sing
i, j =

⎧

⎪⎨

⎪⎩

�Z
(

J1 − J2 − 1
2�

∗(�Z)
)

for (i, j) = (0, 0)

�Z
(

J2 − 1
2�

∗(�Z)
)

for (i, j) = (0, 0)

0 otherwise

(78)

Since theM+ values do not approach zero as Z becomes large, the operator must be adjusted
accordingly. It is simple to see that as Z → ∞ the solution u(Z) becomes linear, so this
operator is modified such that it conserves linear behaviour for large Z . The elements of this
matrix are

M+
i, j =

{

�∗(|Zi − Z j |; ZN ) + M+,sing
i, j for j < N

�∗(|Zi − Z j |; ZN−( j−N )) + M+,sing
i, j for j ≥ N

(79)

where using the derived functions from before it is found that

M+,sing
i, j =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�Z
(

J1 − J2 − 1
2�

∗(�Z)
)

for (i, j) = (0, 0)

�Z
(

J2 − 1
2�

∗(�Z)
)

for (i, j) = (0, 0)

�Z
(

J1 − J2 − 1
2�

∗(�Z)
)

for i = j − 1

�Z (J1 − J2 + J3 − �∗(�Z)) for i = j

�Z
(

J1 − 1
2�

∗(�Z)
)

for i = j + 1

(80)

Alternatively this problem may be treated as an eigenvalue problem to find the eigenvector
of the operator M+ + (1 − α)M− with an eigenvalue of 1. Both methods were considered
for the Maxwell and simplified CL case, but emphasis is placed on the iterative method, as in
the next section it will be shown that the eigenvalue method is more difficult to apply to the
derived model. Solving the numerical problem for a selection of α values and them finding
the projected linear solution, as shown in Fig. 5, the form of C(α) may be obtained. Solving
the iterative method from an approximate linear solution for the parameters Zmax = 40 and
�Z = 0.01 with 1000 iterations leads to the values in Table 1. To ensure the validity of
this method of solution, the calculated values are compared to the values found by Loyalka
[33], which have been used frequently as a traditional benchmark in this field. As the errors
between these calculations are within 0.3%, the method is considered valid, with the same
fit as found in [33] of the form

C(α) = 2 − α

α

√
π

2
(1 + 0.162α) (81)
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Fig. 5 Left: Example numerical profiles for α = 0.5 comparing the full numerical solution and corresponding
projected solution. Right: Profile of the first-order slip coefficient C(α): solution from this work compared to
data in [33]

Table 1 Comparison of the
derived slip coefficient with the
values in [33]

α C(α) C(α)1 α C(α) C(α)1

0.1 17.10553 17.10313 0.6 2.25829 2.25540

0.2 8.22749 8.22490 0.7 1.82160 1.81866

0.3 5.25780 5.25511 0.8 1.49064 1.48765

0.4 3.76538 3.76261 0.9 1.23024 1.22720

0.5 2.86401 2.86119 1.0 1.01928 1.01619

1 Value determined in [33]

This form will be used in this report. These numerics are used only to compare to the later
developed roughness boundary model, so this error is considered to be acceptable.

6.2 Numerical Knudsen Layer Profiles with RoughWall Boundary

As in the previous section, Eq. (69) can be solved numerically via iteration to determine the
flow profile in theKnudsen layer against wall with some roughness. The iteration is expressed
here in a similar form to Eq. (74) as

U (i+1) = M+U (i) + (1 − α)M−U (i)
1−β (82)

where U1−β is the discretized form of u((1−β)Z). In the numerical solution U (i)
1−β is found

by interpolating U (i−1), this interpolation is reversed after multiplication by M− so it may
be added to the vector M+U (i). Some example flow profiles for varying β are shown in
Fig. 6. Solving Eq. (82) and finding the projected linear solution allows for a modified slip
coefficient, C(α, β), to be obtained. A form similar to Eq. (5) is sought of the form

uslip = C(α, β)Kn∗ ∂uslip
∂Z

(83)

Here an altered Knudsen number, Kn∗, is introduced. This term is introduced due to the
ambiguity over the scale length this Kn value should be defined. It is expected that this
ratio should be approximately unity, yet, for confined flows, where the roughness layer does
take up a non-negligible proportion of the total flow, then this value might deviate from this
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Fig. 6 Left: Example fluid profiles with α = 0.5 and varying β. Right: Normalised slip coefficients C(α,β)
C(α,0)

with linear trend lines as in Eq. (84) for varying α

Table 2 C(α, β) values for the
Knudsen Layer problem with the
new boundary condition

β α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

0.0 17.10313 8.22490 5.25511 3.76261 2.86401

0.1 16.20513 7.83299 5.03227 3.62461 2.77433

0.2 15.30885 7.43145 4.79622 3.47171 2.67164

0.3 14.41056 7.02869 4.55926 3.31812 2.56841

0.4 13.50934 6.62423 4.32109 3.16359 2.46447

0.5 12.60425 6.21755 4.08133 3.00787 2.35961

approximation. In the case where Kn∗ = Kn, then clearly C(α, 0) = C(α) as expected.
Results for α and β values in the range [0, 0.5] are shown in Table 2. Since this model is
expected to only be valid for relatively smooth surfaces the larger coefficients corresponding
to higher roughness are omitted.

A fit can be performed on the data in Table 2 to find the approximate relation

C(α, β) = C(α)

[

1 +
(

A α

2 − α
− B

)

β

]

(84)

where the values of the constants are determined numerically as A = 0.593 and B = 0.557.
It appears that β acts as a higher order effect than α. The combined effect of α and β

may be characterised by an ’effective’ TMAC denoted as α(α, β) such that we enforce
C(α)Kn∗ = C(α, β)Kn. This effective Knudsen number would lead to a tailoring for this
method, allowing for the consideration of multiple collisions. Here, unless stated we will
assume Kn∗ = Kn.

If it is assumed that C(α) follows the trend Loyalka derived, presented here in Eq. (81),
then we may rearrange this expression to find,

α(α, β) =

√
(

2√
π
C(α, β) + 0.676

)2 + 8(0.162) −
(

2√
π
C(α, β) + 0.676

)

2(0.162)
(85)

At very small α values, this simply reduces to no change, with α = α. For increasing α, the
addition of the variable β acts to increase the effective TMAC, modelling the added friction
due to the addition of particle-particle collisions in the Knudsen layer. For an example, here
we consider a surface with normally distributed roughness, which is frequently investigated
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Fig. 7 Profile of the modified first-order slip coefficient C(α, β) for the case of a normally distributed wall

angle, where β = 3
4 − 3

4 (1 − α)
16
9 . Case with with β = 0 added as reference

[12, 13, 19] to model rarefied micro-flows, finding the slip coefficient as an adjustment to
the case outlined in [33]. This profile is shown in Fig. 7.

7 Application toModel Nanoscale Wall: Close Packed Spheres

In this section, the behaviour of the derived model is investigated for use with a model
nanoscale wall. To compare to nanoscale experiments and simulations, a given wall geometry
is considered to represent a 2D analogue of an atomic lattice, such as an atomic Pt surface or a
carbon lattice such as graphene. The model considers overlapping spheres of radius, R, with
centre spacing, H , interacting with fluid particles of radius, r , as shown in Fig. 8. The centre
spacing is allowed to be less than R such that that the wall is represented by the overlapping
potential of each atom, with a cut-off radius which models the wall atoms as hard spheres.
The expression of relative wall height over one period of x ∈ [−H , H ] of this locus may be
written

z(x) =
√

(R + r)2 − x2 (86)

As in Sect. 5.2, the distribution of the physical wall angle may be expressed as

P�(θ) = R + r

2H
cos θ (87)

Here a roughness parameter is chosen as s = H/(r + R) as in the works of Nicholson and
Bhatia [9, 10]. The limiting wall angle may be expressed as θlim = arcsin(s). This expression
readily leads to analytical expressions for the leading order α and β values in terms of this
roughness parameter

α(s) = 1 − (1 − s2)
3
2 β(s) = 2s2 (88)
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2H 2H

R
R + r

r

Fig. 8 Close packed sphere wall used as nanoscale model, showing a fluid molecule interacting with an
overlapping sphere wall. The solid line is the effective boundary for the centre point of the fluid molecule

Fig. 9 Left: Comparison of effective TMAC between some nanoscale works considering only the leading-
order approximation α. The weak potential strength limit fromArya et al. [34] is shown. Right: Comparison of
this work and that of Nicholson&Bhatia (2006) for different Kn ratios, showing a good fit for Kn∗/Kn = 1.2

It is seen that β → 4/3α as s → 0 as expected. The above expressions provide, to the
authors’ knowledge, the first presentation of a simple analytic approximation of the TMAC in
nanoscale systems for arbitrary surface-gas combination. The radii used in the determination
of s may be approximated by the Lennard–Jones (LJ) diameters of each species. A common
test case for this style of surface interaction is the Ar-Pt system [6, 30].

In Fig. 9 the effective value is compared to the theoretical analysis performed by [10]
and some values extracted from molecular dynamics simulations of a Lennard-Jones system
conducted by Arya et al. [34] and Cao et al. [30]. Since both numerical works consider the
long range effects between the fluid and wall atoms, where applicable the case of low wall
potential compared to particle energy is used. In [34] this is given as ε/kbT = 0.05. This limit
is used as a comparison, as it is the closest case to the non-interacting surface investigated
here. This analysis results in comparable values of α to the work of Nicholson and Bhatia
[10] for very smooth surfaces where s < 0.5. We note that the comparisons available for
use are strictly from numerical simulations and not directly from experiment. To the authors’
knowledge, there are no appropriate experimental data available for the determination of the
TMAC from the scattering of gas flows from atomically smooth surfaces. It is noted that,
for very rough surfaces, this model and that of Nicholson and Bhatia no longer coincide.
This is due to the increased possibility of multiple collisions as s approaches unity. Even
with this note, it is seen that the differences in these models attains a maximum of the order
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of 10%, implying that multiple collisions do not contribute a large fraction of momentum
accommodation, even at rough surfaces, which agrees with observations in other rough wall
models [12, 14, 15]. Themain advantages of thismodel are that: itmay be used to approximate
the TMAC for any fluid-surface system with the only data required being the LJ parameters
which are well known and documented; that the resulting predictions have simple form, and
the lower order expression is fully analytic.

In the right plot of Fig. 9 a comparison is madewith an increasedKnudsen ratio as outlined
in Sect. 6.1. The reasoning behind this consideration is in the interest of modelling the
effect of multiple collisions. When the roughness of a surface allows for multiple collisions,
the effective mean free path is altered, changing the effective Knudsen number. No formal
analysis is conducted here, but it can be shown that considering Kn∗/Kn ≈ 1.2 leads to a
good match between this work and the calculations performed by Nicholson and Bhatia [10]
for all values of s.

Future work to extend this developed model could include: the effect of curving incident
particle paths in the roughness layer due to a long range interatomic potential, the effect of
thermal fluctuations and energy accommodation of the wall atoms and the behaviour when
extended to a full 3D analysis. Investigations into these effects are planned.

8 Conclusions

This study has investigated the connection between the structure of a surface and its effect of
the tangential momentum accommodation coefficient in rarefied flows of the nanoscale. This
work has considered the asymptotic matching between three fluid layers: a roughness layer,
the Knudsen layer and a continuum layer, effectively extending the classical works of Coron
[20] and Aoki et al. [21] to no longer require the use of any accommodation coefficients
a priori. This matching led to the derivation of a novel boundary condition and integral
equation defining the Knudsen Layer velocity profile due to disturbances from the roughness
layer. This work has provided a method for predicting the TMAC in real atomic surfaces,
generalising the ideas presented by Tsuji [11] and Sommerfeld and Huber [12], allowing for
scattering kernels to be described in scenarios where the assumption of normally distributed
surface roughness is not valid.
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