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Abstract
We consider a macroscopic quantum system with unitarily evolving pure state ψt ∈ H
and take it for granted that different macro states correspond to mutually orthogonal, high-
dimensional subspacesHν (macro spaces) ofH. Let Pν denote the projection toHν .We prove
two facts about the evolution of the superposition weights ‖Pνψt‖2: First, given any T > 0,
for most initial states ψ0 from any particular macro space Hμ (possibly far from thermal
equilibrium), the curve t �→ ‖Pνψt‖2 is approximately the same (i.e., nearly independent
of ψ0) on the time interval [0, T ]. And second, for most ψ0 from Hμ and most t ∈ [0,∞),
‖Pνψt‖2 is close to a value Mμν that is independent of both t and ψ0. The first is an instance
of the phenomenon of dynamical typicality observed by Bartsch, Gemmer, and Reimann,
and the second modifies, extends, and in a way simplifies the concept, introduced by von
Neumann, now known as normal typicality.

Keywords Von Neumann’s quantum ergodic theorem · Eigenstate thermalization
hypothesis · Macroscopic quantum system · Dynamical typicality · Long-time behavior

1 Introduction

The approach of studying thermalization through the analysis of closed quantum systems
with huge numbers of degrees of freedom has led, among other things, to the eigenstate
thermalization hypothesis (ETH) [4, 6, 27], to the discovery of canonical typicality [5, 12,
18], and more recently to the discovery of dynamical typicality [1, 2, 16, 21–23], which
is the fact that most pure states ψ with a given quantum expectation value 〈ψ |A|ψ〉 of a
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macroscopic observable A also have nearly the same 〈ψ |B|ψ〉 for any other observable B
(and likewise also nearly the same 〈ψt |B|ψt 〉). Here, we provide a very simple proof of an
important special case of this statement, namely for A a projection and 〈ψ |A|ψ〉 = 1. Put
differently, we show that most ψ from a macroscopically large subspace of Hilbert space
have almost the same expectation values of bounded observables.

Our second result concerns the long-time behavior of 〈ψt |B|ψt 〉 under the unitary evo-
lution ψt = exp(−i Ht)ψ0 (taking � = 1) and extends previous results of Reimann and
Gemmer [23] as well as von Neumann’s [17] result now known as normal typicality [10, 13].
In particular, our result avoids certain unrealistic assumptions of von Neumann’s.

As usual for the description of macroscopic closed quantum systems, we restrict our con-
sideration to a micro-canonical energy interval [E − �E, E] that is small in macroscopic
units but large enough to contain very many eigenvalues of the Hamiltonian H ; for a sys-
tem of N particles, relevant intervals contain of order exp(N ) eigenvalues. Let H be the
corresponding spectral subspace, i.e., the range of 1[E−�E,E](H), or energy shell, and let
S(H) = {ψ ∈ H : ‖ψ‖ = 1} denote the unit sphere and D := dimH < ∞. Following von
Neumann [17], we assume that different macro states ν of the system correspond to mutually
orthogonal subspaces Hν (macro spaces) of H such that

H =
⊕

ν

Hν . (1)

Different vectors in the same Hν are regarded as “looking macroscopically equal”. For
example, the “macroscopic look” could be defined in terms of mutually commuting self-
adjoint operators M1, . . . , MK regarded as the “macroscopic observables” [17]; then Hν

are the joint eigenspaces and ν = (m1, . . . ,mK ) is the corresponding list of eigenvalues.
Let Pν denote the projection onto Hν . Although some macro spaces will have much larger
dimensions dν := dimHν than others, all dν will be very large, roughly comparable to
exp(N ).

In this setting, it is natural to consider initial states ψ0 from a certain macro space and ask
about the time evolution of themacroscopic superposition weights ‖Pνψt‖2. We present two
general, theoretical findings about theseweights thatmainly arise just from the hugeness of the
dν’s. The first finding (dynamical typicality) is that the curve given by ‖Pνψt‖2 as a function
of t is nearlyψ0-independent once we fix themacro state ofψ0. In other words, ifψ0 is purely
random in Hμ, then the superposition weights are nearly deterministic. The second finding
(generalized normal typicality) is that in the long run, as t → ∞, ‖Pνψt‖2 is nearly constant,
meaning it is close formost t ∈ [0,∞) to a t-independent andψ0-independent value, oncewe
fix the macro state ofψ0. This does not mean that ‖Pνψt‖2 converges as t → ∞ (it does not),
but that the time periods in which ‖Pνψt‖2 is far from that value tend to be short compared to
the time intervals separating these periods. One can say that the ‖Pνψt‖2 equilibrate in the
long run; however, this equilibration does not correspond to thermal equilibrium in the sense
of thermodynamics; rather, thermal equilibrium at time t would correspond to ‖Pνψt‖2 ≈ 1
for one particular ν (themacro state of thermal equilibrium,Hν = Heq) and ‖Pνψt‖2 ≈ 0 for
all other ν’s. We therefore speak of normal equilibriumwhen ‖Pνψt‖2 assumes its long-term
value for all ν.

Our results are typicality statements, i.e., they concern the way most ψ0 behave, notwith-
standing the existence of few exceptional ψ0 that behave differently. However, a statement
about most ψ0 in S(H) would be of limited interest because it could be violated by every
system outside of thermal equilibrium, as usually mostψ0 in S(H) are in thermal equilibrium
(meaning they are close toHeq) [11]. Instead, wemakemore specific statements: we allow an
arbitrary initial macro spaceHμ, possibly far from thermal equilibrium, andmake statements
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about most ψ0 in S(Hμ). Such statements are also naturally of interest when we ask about
the increase of the quantum Boltzmann entropy observable [14]

Ŝ =
∑

ν

S(ν)Pν , (2)

where

S(ν) = kB log dν (3)

is the quantum Boltzmann entropy of the macro state ν, and kB is the Boltzmann constant.
Note that a quantum system can be in a superposition of different macro states and thus also
in a superposition of different entropy values.

In Sect. 2, we formulate our theorem about dynamical typicality and compare it to related
results in the literature. In Sect. 3, the same for generalized normal typicality. In Sect. 4,
we prove our result on dynamical typicality. In Sect. 5, we formulate further variants of our
results. In Sect. 6, conclusions for realistic sizes of dν are discussed. In Sect. 7, we outline
the proof of generalized normal typicality. In Sect. 8, we collect the remaining proofs. In
Sect. 9, we conclude.

2 Dynamical Typicality

2.1 Mathematical Description

For formulating theorems, we introduce the following terminology. Suppose that for each
ψ ∈ S(Hμ), the statement s(ψ) is either true or false, and let ε > 0. We say that s(ψ) is true
for (1 − ε)-most ψ ∈ S(Hμ) if and only if

uμ

({
ψ ∈ S(Hμ) : s(ψ)

}) ≥ 1 − ε , (4)

where uμ is the normalized uniform measure over S(Hμ). Similarly, given T > 0 and δ > 0,
we say that a statement s(t) is true for (1 − δ)-most t ∈ [0, T ] if and only if

1
T

∣∣{t ∈ [0, T ] : s(t)}∣∣ ≥ 1 − δ , (5)

where |S| means the length of the set S ⊂ R; and that s(t) is true for (1− δ)-most t ∈ [0,∞)

if and only if the lim inf of the left-hand side of (5) as T → ∞ is ≥ 1 − δ.
The first finding we mentioned can be expressed as follows.

Theorem 1 (Dynamical typicality) Let μ, ν be arbitrary macro states. There is a function
wμν : R → [0, 1] such that for every t ∈ R and every ε > 0, for (1− ε)-most ψ0 ∈ S(Hμ),

∣∣∣‖Pνψt‖2 − wμν(t)
∣∣∣ ≤ 1√

εdμ

. (6)

Moreover, for every μ, ν, every T > 0, and (1 − ε)-most ψ0 ∈ S(Hμ),

1

T

∫ T

0

∣∣‖Pνψt‖2 − wμν(t)
∣∣2dt ≤ 1

εdμ

. (7)

That is, if dμ  1/ε, then for any t and purely random ψ0 from Hμ, the random value
‖Pνψt‖2 is very probably close to the non-random value wμν(t). The latter can in fact be
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taken to be the average of ‖Pνψt‖2 over ψ0 ∈ S(Hμ), which is

wμν(t) := 1

dμ

tr
[
Pμ exp(i Ht)Pν exp(−i Ht)

]
. (8)

Likewise, the whole curve of ‖Pνψt‖2 as a function of t ∈ [0, T ] is very probably close, in
the L2 norm, to wμν(t) as a function of t . (Smallness of the L2 norm implies further that∣∣‖Pνψt‖2−wμν(t)

∣∣ is small for most t ; however, this statement, which is equivalent to saying
that the expression is small for most pairs (t, ψ0) ∈ [0, T ] × S(Hμ), follows already from
(6); note that the quantifiers “most t” and “most ψ0” commute. Moreover, it also follows
from (7) by letting T → ∞ that the long-time average of

∣∣‖Pνψt‖2 − wμν(t)
∣∣2 is small,

but this statement is actually weaker than for finite T , and it will be superseded below by a
more specific statement in our second result, generalized normal typicality.) A more general
statement for arbitrary operators B instead of Pν and a tighter error bound is formulated in
Sect. 5.

As a further remark, we observe that another quantity is also deterministic for purely
random ψ0 from S(Hμ): not only is the probability ‖Pνψt‖2 associated with Hν at time t
nearly deterministic, but also the probability current between Hν and Hν′ ,

Jνν′ := −i (〈ψt |PνHPν′ |ψt 〉 − 〈ψt |Pν′ HPν |ψt 〉) = 2 Im 〈ψt |PνHPν′ |ψt 〉. (9)

This quantity expresses the amount of probability passing, per unit time, from ν′ to ν minus
that from ν to ν′; it satisfies a discrete version of the continuity equation, viz.,

∂t‖Pνψt‖2 =
∑

ν′
Jνν′ . (10)

In Sect. 8.2 we will show that the probability current between two macro spaces is determin-
istic.

2.2 Previous Results About Dynamical Typicality

Bartsch andGemmer [2] introduced the name “dynamical typicality” for the following closely
related phenomenon: Given an observable A and a ∈ R, there is a function a(t) such that
for every t ∈ R and most ψ0 ∈ S(H) with 〈ψ0|A|ψ0〉 ≈ a, 〈ψt |A|ψt 〉 ≈ a(t). Müller,
Gross, and Eisert [16] proved a rigorous version of this fact that also implies that for every
operator B whose operator norm (largest absolute eigenvalue or singular value) is not too
large, there is a value b such that for most ψ0 ∈ S(H) with 〈ψ0|A|ψ0〉 ≈ a, 〈ψ0|B|ψ0〉 ≈ b.
As Reimann [22] pointed out, this also implies that for every t ∈ R and most ψ0 ∈ S(H)

with 〈ψ0|A|ψ0〉 ≈ a, 〈ψt |B|ψt 〉 ≈ b(t) for suitable b(t). Setting A = Pμ, a = 1, and
B = Pν , this yields that for every t ∈ R and most ψ0 ∈ S(Hμ), 〈ψt |Pν |ψt 〉 = ‖Pνψt‖2
is nearly deterministic. For technical reasons, the proofs of Müller, Gross, and Eisert [16]
and Reimann [22] do not actually cover the case that A is a projection and a = 1. As was
pointed out to us by one of the referees of our paper, Balz et al. [1] provide a general result
that covers Theorem 1 as a special case. Although our proof strategy is similar to the one in
[1], we decided to present our proof in this paper, because it is very simple and transparent
and could help to make the at first sight striking phenomenon of dynamical typicality a text
book result. Theorem 1 can also be obtained through a proof strategy used by Reimann and
Gemmer [23].

A further related result is given by Strasberg et al. [28], who consider repeated measure-
ments at 0 < t1 < t2 < · · · < tr < T of all Pν’s and argue that the probability distribution of
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the outcomes is essentially indistinguishable from the joint distribution of Xt1 , . . . , Xtr for
a suitable Markov process Xt on the set of ν’s. This includes the claim that omitting one of
the measurements does not significantly alter the distribution of the other outcomes, so the
distribution of Xt should agree with ‖Pνψt‖2, which is in line with our result.

3 Generalized Normal Typicality

3.1 Motivation

It is well known that for most φ ∈ S(H),

‖Pνφ‖2 ≈ dν

D
, (11)

provided that dν and D := dimH are large [10]. Under the additional condition that rel-
ative to a fixed decomposition (1) into macro spaces the eigenbasis of H is chosen purely
randomly among all orthonormal bases (and some further technical conditions that are not
very restrictive) (11), holds also for the eigenstates of H , and it can be shown that every
ψ0 ∈ S(H) evolves so that for most times t ,

‖Pνψt‖2 ≈ dν

D
. (12)

This fact is known as normal typicality [10, 13, 17, 20].
The assumption of a purely random eigenbasis can be regarded as expressing that the

energy eigenbasis is unrelated to the orthogonal decomposition (1). In most realistic systems,
however, the energy eigenbasis and the macro decomposition (1) are not unrelated. If they
were unrelated, then the system would very rapidly go from any macro spaceHν directly to
the thermal equilibrium macro spaceHeq (a macro space containing most dimensions ofH,
deq/D ≈ 1) [7–9]. But that does not happen in most systems because thermal equilibrium
requires that energy (and other quantities) is rather evenly distributed over all degrees of
freedom, and for getting evenly distributed, it needs to get transported through space, which
usually requires time and passage through other macro states, cf. Fig. 1.

That is why we are interested in generalizations of normal typicality that apply also to
Hamiltonians whose eigenbasis is not unrelated to Hν . For such H , eigenvectors φ must be
expected to have superposition weights ‖Pνφ‖2 not always near dν/D. Our result actually
applies to all Hamiltonians, at the expense that it does not apply to all initial quantum states
ψ0. As noted already, a statement aboutmost ψ0 ∈ S(H)would be limited to systems starting
out in thermal equilibrium. Our result states that for any macro state μ, most ψ0 ∈ S(Hμ)

evolve so that for most times t

‖Pνψt‖2 ≈ Mμν , (13)

provided that dμ is large. See Theorem 2 for the precise quantitative statement and the
definition ofMμν . The proof (seeSect. 8) builds particularly on techniques developedbyShort
and Farrelly [24, 25], but is also related to a series of works on quantum equilibration (e.g.,
[15, 19]) in which the long-time behavior of 〈ψt |B|ψt 〉 is studied under various assumptions
on B and ψ0.

The Mμν are actually the averages of ‖Pνψt‖2 over t ∈ [0,∞) and over ψ0 ∈ S(Hμ).
Thus, they depend only on H and the decomposition (1), but not on t or ψ0.
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Fig. 1 Example of time evolution of superposition weights ‖Pνψt‖2, here in a Hilbert space of dimension
D = 2222 decomposed into 4 macro spaces of dimensions d1 = 2 (green curve), d2 = 20 (red curve),
d3 = 200 (blue curve), and d4 = 2000 (purple curve). The four curves add up to 1 at each t . At large t ,
the equilibrium subspaceH4 has the biggest contribution. ψ0 was chosen purely randomly from S(H2) (i.e.,
μ = 2, so the red curve starts at 1, all others at 0). The Hamiltonian is a random band matrix (i.e., only entries
sufficiently close to the main diagonal are significantly nonzero) in a basis aligned with the macro spaces, but
with a wide enough bandwidth to still ensure delocalized eigenfunctions. Thus, parts of ψt reach H4 only
after passing throughH3, as mirrored in the fact that the blue curve increases first before it decreases in favor
of the purple curve. Along with each of the four curves, also its deterministic approximation w2ν(t) (in black)
is drawn; dynamical typicality asserts that it is a good approximation (Color figure online)

In this setting, thermalization means that Mμ eq ≈ 1 for every μ, i.e., that for all macro
states μ the overwhelming majority of micro states eventually reach thermal equilibrium in
the sense that ψt lies almost completely in Heq and spends most of the time in the long run
there. The time scale on which thermalization happens can be read off from the function
wμ eq(t), while the other wμν(t) provide information about the detailed path to thermal
equilibrium passing through intermediate macro states.

3.2 Statement of Result

In the following we consider Hamiltonians with spectral decomposition

H =
∑

e∈E
e	e, (14)

123



Time Evolution of Typical Pure States … Page 7 of 24 69

Fig. 2 The same simulation as in Fig. 1, only for longer times. The horizontal black lines indicate the values
of the weights M2ν . The inset shows a part of the figure in magnification. Theorem 2 states that the displayed
behavior is typical of initial states in H2: up to fluctuations that are either small or rare, ‖Pνψt‖2 is close to
M2ν

where E is the set of distinct eigenvalues of H and 	e the projection onto the eigenspace
of H with eigenvalue e. The quantitative bounds in our theorem depend on the Hamiltonian
only through the following characteristics of the distribution of its eigenvalues: the maximum
degeneracy DE := maxe∈E tr(	e) of an eigenvalue and the maximal gap degeneracy

DG := max
E∈R #

{
(e, e′) ∈ E × E : e �= e′ and e − e′ = E

}
. (15)

Theorem 2 (Generalized normal typicality) Let μ, ν be any macro states and define

Mμν := 1

dμ

∑

e∈E
tr
(
Pμ	e Pν	e

)
. (16)

Then for any ε, δ > 0, (1 − ε)-most ψ0 ∈ S(Hμ) are such that for (1 − δ)-most t ∈ [0,∞)

∣∣∣∣‖Pνψt‖2 − Mμν

∣∣∣∣ ≤ 4

√
DEDG

δεdμ

min

{
1,

dν

dμ

}
. (17)

Thus, as soon as dμ  DE DG , i.e., as soon as the dimension of Hμ is huge and no
eigenvalue and no gap of H is macroscopically degenerate, formost initial statesψ0 ∈ S(Hμ)

the superposition weight ‖Pνψt‖2 will be close to the fixed value Mμν for most times t .
For comparison, Reimann and Gemmer [23] also concluded that 〈ψt |A|ψt 〉 is nearly

constant, but for a different ensemble based on the condition 〈ψ0|A|ψ0〉 ≈ a.We also provide
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a statement analogous to Theorem 2 for 〈ψt |B|ψt 〉 with arbitrary observable B instead of Pν

in Theorem 4 below.

3.3 Example

We illustrate Theorem 2 within a simple random matrix model. We partition the D-
dimensional Hilbert spaceH := C

D = C
d1 ⊕C

d2 ⊕C
d3 ⊕C

d4 =:⊕4
ν=1 Hν into four macro

spacesHν of dimension dν , i.e.,H1 is spanned by the first d1 canonical basis vectors,H2 by
the next d2 canonical basis vectors and so on. The Hamiltonian H is a random D×D-matrix
H that has a band structure (i.e., mainly near-diagonal entries) and thus couples neighboring
macro spaces more strongly than distant ones. More precisely, we choose H = (hi j )i j to be a
self-adjoint randommatrix such that hii ∼ N (0, σ 2

i i ) and hi j ∼ N (0, σ 2
i j/2)+ iN (0, σ 2

i j/2)
for i �= j , where

σ 2
i j := exp(−s|i − j |) (18)

with some s > 0 that controls the bandwidth. That is, the variances decrease exponentially
in the distance from the diagonal.

In Figs. 1 and 2 the weights ‖Pνψt‖2 are plotted for the values s = 0.02, dν = 2×10ν−1,
and a random initial vector ψ0 ∈ H2. In Fig. 1 the plot shows the initial phase where the
system first passes through the 3rd macro state before settling mostly in the “equilibrium
space” H4. Note that the bandwidth is roughly 2s−1 = 400 ≈ D0.77  D0.5 and we thus
expect to be in the regime of delocalized eigenfunctions, which is also confirmed by the
numerical results.

Theorem 2 states that the long term behaviour depicted in Fig. 2 is typical of initial states
ψ0 ∈ H2: after some time the system equilibrates, the superposition weights ‖Pνψ2,t‖2
approach values M2ν independent of the initial state, and stay close to them after the initial
phase of equilibration. We also see that these values differ from the ones one would expect
if normal typicality would hold: for example while in our simulation d4/D ≈ 0.90 one finds
that M24 ≈ 0.82.

The average entropy as a function of time is plotted in Fig. 3. As expected, it increases up
to small fluctuations.

4 Proof of Theorem 1

The proof is very simple, based on an application of Chebyshev’s, respectively Markov’s,
inequality to the following formulas for Hilbert space averages and Hilbert space variances
[5, App. C]: For any Hilbert space H of dimension d , uniformly distributed ψ ∈ S(H), and
any operator B on H,

E
[〈ψ |B|ψ〉] = 1

d
tr B (19)

Var
[〈ψ |B|ψ〉] = 1

d(d + 1)

(
tr(B†B) − | tr B|2

d

)
. (20)

(As usual, the variance of a complex random variable Z is defined as Var Z := E
[|Z −

E(Z)|2] = E
[|Z |2]− |E(Z)|2.) Dropping the last term and replacing d + 1 by d , we obtain
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Fig. 3 The average entropy 〈ψt |Ŝ|ψt 〉 = ∑
ν ‖Pνψt‖2S(ν) as a function of time t for kB = 1 and the same

simulation as in Figs. 1 and 2. The tendency to increase can be regarded as a reflection of the second law of
thermodynamics

the trivial upper bound

Var
[〈ψ |B|ψ〉] ≤ tr(B†B)

d2
. (21)

Now we insert Hμ for H and B = Pμ exp(i Ht)Pν exp(−i Ht)Pμ; we write Eμ and Varμ
for expectation and variance over uniformly distributed ψ0 ∈ S(Hμ). We observe first that

Eμ

[‖Pνψt‖2
] = 1

dμ

tr
[
Pμ exp(i Ht)Pν exp(−i Ht)

] = wμν(t). (22)

For the variance, since | tr(CD)| ≤ ‖C‖ tr(|D|) for any operatorsC, D and ‖C‖ the operator
norm of C [26, Thm. 3.7.6], we have that

tr(B†B) = tr
(
Pμ exp(−i Ht)Pν exp(i Ht)Pμ exp(i Ht)Pν exp(−i Ht)Pμ

)
(23)

≤ ‖Pμ‖ ‖ exp(−i Ht)‖ ‖Pν‖ ‖ exp(i Ht)‖ · · · ‖ exp(−i Ht)‖ tr Pμ (24)

= dμ. (25)

We thus obtain that

Varμ
[‖Pνψt‖2

] ≤ 1

dμ

. (26)

The Chebyshev inequality then yields the first claim, (6).
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For the second claim, Fubini’s theorem allows us to interchange expectation and integral.
Thus,

Eμ

[∫ T

0

∣∣‖Pνψt‖2 − wμν(t)
∣∣2 dt

]
=
∫ T

0
Eμ

[∣∣‖Pνψt‖2 − wμν(t)
∣∣2
]
dt (27)

=
∫ T

0
Varμ

[‖Pνψt‖2
]
dt (28)

≤ T

dμ

(29)

by (26). Markov’s inequality then yields the second claim, (7). �
As a side remark, the arguments of the proof also yield the following upper bound on the

Hilbert space variance over subspaces of dimension dμ for arbitrary B:

Varμ
[〈ψ |B|ψ〉] ≤ tr(PμB†PμBPμ)

d2μ
≤ ‖B‖ tr(|B|)

d2μ
. (30)

5 More General Results

5.1 Dynamical Typicality

Here is a variant of Theorem 1 that allows for an arbitrary operator B instead of Pν and
provides a tighter error bound:

Theorem 3 Let μ, ν be arbitrary macro states and let B be any operator on H. There is a
function wμB : R → [0, 1] such that for every t ∈ R and every ε > 0, for (1 − ε)-most
ψ0 ∈ S(Hμ),

∣∣∣〈ψt |B|ψt 〉 − wμB(t)
∣∣∣ ≤ min

{ ‖B‖√
εdμ

,

√
‖B‖ tr(|B|)

εd2μ
,

√
18π3 log(4/ε)

dμ

‖B‖
}
. (31)

Moreover, for every μ and B, every T > 0, and (1 − ε)-most ψ0 ∈ S(Hμ),

1

T

∫ T

0

∣∣〈ψt |B|ψt 〉 − wμB(t)
∣∣2dt ≤ ‖B‖2

εdμ

. (32)

In fact, the function wμB(t) is the average of 〈ψt |B|ψt 〉 over ψ0 ∈ S(Hμ), which is

wμB(t) := 1

dμ

tr
[
Pμ exp(i Ht)B exp(−i Ht)

]
. (33)

The proof of Theorem 3 (see Sect. 8.1) is largely analogous to that of Theorem 1. The bound
involving

√
log(1/ε) instead of 1/

√
ε can be obtained by using Lévy’s lemma instead of

the Chebyshev inequality. However, it turns out that for all other results in this paper, the
bounds provided by Markov’s and Chebyshev’s inequality are better than those provided by
Lévy’s lemma. That is because in many cases, Lévy’s lemma yields a bound that is better in
ε but worse in dμ, which in our situation is worse because dμ is usually way larger than any
relevant 1/ε; see Sect. 8.1 for more detail.
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5.2 Generalized Normal Typicality

The next result, Theorem 4, provides a somewhat more general version of Theorem 2 that
concerns arbitrary operators B instead of Pν , as well as finite time intervals instead of [0,∞).
To formulate it, we define the number dE := #E of distinct eigenvalues and the maximal
number of gaps in an energy interval of length κ > 0,

G(κ) := max
E∈R #

{
(e, e′) ∈ E × E : e �= e′ and e − e′ ∈ [E, E + κ)

}
. (34)

It follows that DG = limκ→0+ G(κ).

Theorem 4 Let B be an operator on H, let ε, δ, κ, T > 0, let μ be any macro state, and
define

MμB := 1

dμ

∑

e∈E
tr
(
Pμ	e B	e

)
. (35)

Then (1 − ε)-most ψ0 ∈ S(Hμ) are such that for (1 − δ)-most t ∈ [0, T ]
∣∣∣∣〈ψt |B|ψt 〉 − MμB

∣∣∣∣ (36)

≤ 4

√
DE G(κ)‖B‖

δεdμ

(
1 + 8 log2 dE

κT

)
min

{
‖B‖, tr(|B|)

dμ

}
.

Thus, as soon as dμ  DEG(κ)‖B‖2 and T is large enough, the right-hand side of (36) is
small and the expectation 〈ψt |B|ψt 〉 is close to a fixed value MμB for most times t ∈ [0, T ]
and most initial states ψ0 ∈ S(Hμ). However, the times T required to make the right-hand
side of (36) small are usually extremely large. For example, for a system of N particles, H
has dimension of the order exp(N ); provided that no eigenvalue is hugely degenerate, there
are of the order exp(N ) energy eigenvalues. In order to obtain a small error, we need to
keep G(κ) small. For κ ∼ exp(−N )�E , already the number of nearest-neighbor gaps with
e − e′ ∈ [0, κ) will be of order exp(N ), and will thus contribute of order exp(N ) to G(κ).
So, we need κ � exp(−N ) and therefore T  exp(N ) to obtain a small error in (36).

For the proof of Theorems 2 and 4 we need, besides Hilbert space averages and variances,
also Hilbert space covariances of two operators. The covariance of two complex random
variables X , Y is to be understood as

Cov[X , Y ] := E
[
(X − EX)∗(Y − EY )

]
(37)

= E[X∗Y ] − (EX)∗ EY . (38)

Lemma 1 (Hilbert Space Covariance) For uniformly distributed ψ ∈ S(H) with dimH = d
and any two operators B,C on H,

Cov
[
〈ψ |B|ψ〉, 〈ψ |C |ψ〉

]
= tr(B†C)

d(d + 1)
− tr(B†) tr(C)

d2(d + 1)
. (39)

Put differently,

E
[〈ψ |B|ψ〉∗〈ψ |C |ψ〉] = tr(B†) tr(C) + tr(B†C)

d(d + 1)
. (40)
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By inserting Hμ for H, it follows that for uniformly distributed ψ ∈ S(Hμ) and any two
operators B,C on H,

Eμ

[〈ψ |B†|ψ〉〈ψ |C |ψ〉]

= 1

dμ(dμ + 1)

(
tr(PμB

†) tr(PμC) + tr(PμB
†PμC)

)
. (41)

6 Realistic Dimensions and Entropy

As indicated before, for a system of N particles or more generally of N degrees of freedom
the dimension D is of order exp(N ). We actually expect D ≈ exp(seqN/kB), where seq is
the entropy per particle in the thermal equilibrium state, and accordingly for all macro spaces
Hμ,

dμ = exp(sμN/kB). (42)

The following corollary to Theorem 2 shows that in this situation and assuming that no
eigenvalues or gaps are macroscopically degenerate, fluctuations of the time-dependent
superposition weights around their expected values are exponentially small in the number of
particles with a rate controlled by the entropy per particle in the initial macro state.

Corollary 1 Assume (42). Then, for all macro states μ, ν−, ν+ with

sν− ≤ sμ ≤ sν+ (43)

it holds for (1 − ε)-most ψ0 ∈ S(Hμ) for (1 − δ)-most of the time that
∣∣∣∣‖Pν+ψt‖2 − Mμν+

∣∣∣∣ ≤
4
√
DE DG√
εδ

exp

(
− sμN

2kB

)
, (44)

∣∣∣∣‖Pν−ψt‖2 − Mμν−

∣∣∣∣ ≤
4
√
DE DG√
εδ

exp

(
− (sμ − sν−

2 )N

kB

)
. (45)

In particular, if sμ, sν± are fixed and N → ∞, the error bounds are exponentially small.
Note also that the numerical experiment in Fig. 2 is consistent with the idea that the fluc-
tuations of the superposition weights in macro spaces ν+ of larger entropy than the initial
state μ are controlled by the entropy sμ of the initial macro state, while the fluctuations of
the superposition weights in macro spaces ν− of smaller entropy than the initial state μ are
controlled by the entropy difference sμ − sν−/2 and thus even smaller. However, from the
green line in Fig. 2 (corresponding to ‖P1ψt‖2) it is also apparent that the fluctuations of
‖Pνψt‖2 might exceed the value of Mμν . Indeed, if we assume that the weights Mμν scale
like in the case of normal typicality, i.e.,

Mμν ≈ dν

D
≈ exp

(
− seq − sν

kB
N

)
, (46)

then the relative error in (44) is only small if sν+ > seq − sμ/2, and the relative error in (45)
is only small if sν− > 2(seq − sμ).

More generally, the question remains under which conditions one can prove that even for
Mμν close to 0, the relative error in (17) and thus the relative deviation of ‖Pνψt‖2 from
Mμν will be small. In a separate work [29], we study this question for specific distributions
of the random matrix H .
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7 Outline of Proof of Theorem 4

Before we provide the technical details of the proof of Theorem 4 in Sect. 8, we explain now
the main strategy and the key ideas. The first step is to control the time variance

〈∣∣〈ψt |B|ψt 〉 − Mψ0B
∣∣2
〉

T
:= 1

T

∫ T

0

∣∣〈ψt |B|ψt 〉 − Mψ0B
∣∣2 dt (47)

of the quantity 〈ψt |B|ψt 〉, where

Mψ0B = 〈ψt |B|ψt 〉 := lim
T→∞

1

T

∫ T

0
〈ψt |B|ψt 〉 dt (48)

is just the time-average of 〈ψt |B|ψt 〉. The time variance (47) was the subject of several earlier
investigations concerning thermalization in closed quantum systems. It is usually controlled
in terms of the effective dimension [19, 24, 25]

deff :=
(∑

e

〈ψ0|	e|ψ0〉2
)−1

(49)

of the initial stateψ0, ameasure for the number of distinct energies that contribute significantly
to ψ0. In Sect. 8.7 we slightly improve the bound of [25] (relevant when dν � dμ) so that
we can show that, after averaging the initial state over S(Hμ), one obtains that

Eμ

[〈∣∣〈ψt |B|ψt 〉 − Mψ0B
∣∣2
〉

T

]
(50)

≤ 2DEG(κ)

dμ + 1

(
1 + 8 log2 dE

κT

)
min

{
‖B‖2, tr(B

†B)

dμ

}
.

The second step is to show that Mψ0B is very close to MμB for most states ψ0 ∈ S(Hμ).
To this end we observe that Eμ(Mψ0B) = MμB and then bound the variance according to

Eμ

[
(Mψ0B − MμB)2

]
≤ ‖B‖

dμ + 1
min

{
‖B‖, tr(|B|)

dμ

}
. (51)

A careful application of Markov’s inequality then shows that (50) and (51) together imply
(36).

8 Remaining Proofs

8.1 Proof of Theorem 3

The phenomenon of concentration of measure, i.e., that on a sphere in high dimension, “nice”
functions are nearly constant, is often expressed by means of (e.g., [28, Sec. II.C])

Lemma 2 (Lévy’s Lemma) For any Hilbert space H with dimension d, any f : S(H) → R

with Lipschitz constant η( f ), and any ε > 0,

| f (ψ) − E f | ≤
√
9π3 log(4/ε)

2d
η( f ) (52)

for (1 − ε)-most ψ ∈ S(H).
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Alternatively, Chebyshev’s inequality yields that

| f (ψ) − E f | ≤
√
Var( f )

ε
(53)

for (1− ε)-most ψ ∈ S(H). In the important special case f ≥ 0, Markov’s inequality yields
that

f (ψ) ≤ E f

ε
(54)

for (1− ε)-most ψ ∈ S(H), while Lévy’s lemma can be used in this situation to obtain that

f (ψ) ≤ E f +
√
9π3 log(4/ε)

2d
η( f ). (55)

Which bound is best depends on η( f ), Var( f ), and E f . For quadratic functions f (ψ) =
〈ψ |B|ψ〉, η( f ) = 2‖B‖ on S(H), while expectation and variance are given by (19) and
(20); the first two bounds in (31) arise from the Chebyshev bound (53) with different ways
of bounding the variance, and the third from Lévy’s lemma (52).

As remarked already, the other results in this paper are not improved by using Lévy’s
lemma instead ofMarkov’s andChebyshev’s inequality. That is basically because the relevant
functions f ≥ 0 have means that are small like 1/dimension but Lipschitz constants of order
1, so that (55) yields errors of order 1/

√
dimension. Now it is of little interest to make ε

smaller than 10−200. (Borel once argued [3, Chap. 6] that events with a probability of 10−200

or less can be expected to never occur in the history of the universe.) On the other hand, the
dimensions are large like 10N , so the advantage of (55) over (54) in ε does not compensate
for its disadvantage in the dimension.

Proof of Theorem 3 By (19) after inserting Hμ for H and Pμ exp(i Ht)B exp(−i Ht)Pμ for
B,

Eμ〈ψt |B|ψt 〉 = 1

dμ

tr
(
Pμ exp(i Ht)B exp(−i Ht)

) = wμB(t). (56)

Lévy’s lemma with η = 2‖B‖ yields the third bound in (31).
By (21) after inserting Hμ for H and Pμ exp(i Ht)B exp(−i Ht)Pμ for B,

Varμ〈ψt |B|ψt 〉 ≤ 1

d2μ
tr
(
Pμ exp(−i Ht)B† exp(i Ht)Pμ exp(i Ht)B exp(−i Ht)Pμ

)
.

(57)

We give two upper bounds for the last expression. First, using | tr(CD)| ≤ ‖C‖ tr(|D|) and
‖B†‖ = ‖B‖,

(57) ≤ 1

d2μ
‖Pμ‖‖ exp(−i Ht)‖ · · · ‖ exp(−i Ht)‖ tr Pμ (58)

= 1

d2μ
‖B‖2dμ = ‖B‖2

dμ

. (59)

Second, by leaving B rather than Pμ inside the trace,

(57) ≤ 1

d2μ
‖B‖ tr(|B|). (60)
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From these two bounds on the variance, (53) yields the first two bounds in (31). For the
second claim, (32), of Theorem 3, the proof works as for Theorem 1 with the bound (59) for
Varμ〈ψt |B|ψt 〉. ��

8.2 Probability Current

In order to see that also the probability current Jνν′(t) as defined in (9) is determinis-
tic, we verify that 〈ψt |PνHPν′ |ψt 〉 is deterministic. This can be obtained in the same
way as for Theorem 3 by considering B = Pμ exp(i Ht)PνHPν′ exp(−i Ht)Pμ instead
of B = Pμ exp(i Ht)Pν exp(−i Ht)Pμ and noting that ‖B‖ ≤ ‖H‖ = max{|E −�E |, |E |}.
Physically, we expect E to be comparable to the particle number N and thus of order log D,
so |Jνν′(t)−EJνν′(t)| is bounded by a constant times log D/

√
εdμ (which would be small if

we imagine dμ ∼ Dα with 0 < α < 1 and fixed ε) for (1− ε)-most ψ0 ∈ S(Hμ). Likewise,
1/T times the L2 norm over [0, T ] is bounded by a constant times log2 D/εdμ (which should
be small).

8.3 Hilbert Space Covariance

For the proof of Lemma 1, we need the fourth moments of a random vector that is uniformly
distributed over the unit sphere. So consider any Hilbert space H of dimension d and a
uniformly distributedψ ∈ S(H). Let (ϕm)m be an orthonormal basis ofH and am := 〈ϕm |ψ〉.
Then [17], [5, App. A.2 and C.1]

(i) E(a∗
k ala

∗
man) = 0 if an index occurs only once, (61a)

(i i) E
(
a∗2
k a2l

) = 0 for k �= l, (61b)

(i i i) E
(|ak |4

) = 2

d(d + 1)
, (61c)

(iv) E
(|ak |2|al |2

) = 1

d(d + 1)
for k �= l. (61d)

Proof of Lemma 1 Let (ϕm)m be an orthonormal basis ofH. Then we can write ψ ∈ S(H) as

ψ =
∑

m

amϕm (62)

with coefficients am = 〈ϕm |ψ〉. By (61), we get that
E
[〈ψ |B|ψ〉∗〈ψ |C |ψ〉] =

∑

k,l,k′,l ′
〈ϕk |B†|ϕl〉〈ϕk′ |C |ϕl ′ 〉E

(
a∗
k ala

∗
k′al ′

)
(63)

= 1

d(d + 1)

∑

k,l,k′,l ′
〈ϕk |B†|ϕl〉〈ϕk′ |C |ϕl ′ 〉 (δklδk′l ′ + δkl ′δk′l) (64)

= 1

d(d + 1)

⎛

⎝
∑

k,l

〈ϕk |B†|ϕk〉〈ϕl |C |ϕl〉 + 〈ϕk |B†|ϕl〉〈ϕl |C |ϕk〉
⎞

⎠

(65)

= 1

d(d + 1)

(
tr(B†) tr(C) + tr(B†C)

)
. (66)
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Thus,

Cov
[〈ψ |B|ψ〉, 〈ψ |C |ψ〉] = E

[〈ψ |B|ψ〉∗〈ψ |C |ψ〉]− E
[〈ψ |B|ψ〉∗]E[〈ψ |C |ψ〉] (67)

= tr(B†) tr(C) + tr(B†C)

d(d + 1)
− tr(B†) tr(C)

d2
(68)

= tr(B†C)

d(d + 1)
− tr(B†) tr(C)

d2(d + 1)
. (69)

��

8.4 Computing and Estimating some Averages over S(H�)

As a preparation for the proof of Theorem 4, we derive in this section some upper bounds for
relevant time and Hilbert space variances. We first note that it is well known that the limit in

Mψ0B = 〈ψt |B|ψt 〉 := lim
T→∞

1

T

∫ T

0
〈ψt |B|ψt 〉 dt (70)

exists for all B and is given by

Mψ0B = 〈ψ0|
∑

e∈E
	e B	e|ψ0〉. (71)

From (19), applied to Hμ, we then obtain that

EμMψ0B = 1

dμ

∑

e∈E
tr(Pμ	e B	e) = MμB . (72)

Proposition 1 Let ψ0 be uniformly distributed in S(Hμ), and let B be any operator on H.
Then for every κ, T > 0,

Eμ

(〈∣∣〈ψt |B|ψt 〉 − 〈ψt |B|ψt 〉
∣∣2
〉

T

)
≤ 2DEG(κ)

dμ + 1

(
1 + 8 log2 dE

κT

)
min

{
‖B‖2, tr(B

†B)

dμ

}
,

(73)

Varμ 〈ψt |B|ψt 〉 ≤ ‖B‖
dμ + 1

min

{
‖B‖, tr(|B|)

dμ

}
. (74)

Proof We start similarly to the proof of Theorem 1 in [25] and compute

〈∣∣〈ψt |B|ψt 〉 − 〈ψt |B|ψt 〉
∣∣2
〉

T
=
〈∣∣∣∣∣∣

∑

e,e′
ei(e−e′)t 〈ψ0|	e B	e′ |ψ0〉 −

∑

e

〈ψ0|	e B	e|ψ0〉
∣∣∣∣∣∣

2〉

T

(75)

=
〈∣∣∣∣∣∣

∑

e �=e′
ei(e−e′)t 〈ψ0|	e B	e′ |ψ0〉

∣∣∣∣∣∣

2〉

T

(76)

=
∑

e �=e′
e′′ �=e′′′

〈
ei(e−e′−e′′+e′′′)t

〉

T
〈ψ0|	e B	e′ |ψ0〉〈ψ0|	e′′′ B†	e′′ |ψ0〉. (77)
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By averaging over ψ0 ∈ S(Hμ), we obtain

Eμ

(〈∣∣〈ψt |B|ψt 〉 − 〈ψt |B|ψt 〉
∣∣2
〉

T

)

=
∑

e �=e′
e′′ �=e′′′

〈
ei(e−e′−e′′+e′′′)t

〉

T
Eμ

[
〈ψ0|	e B	e′ |ψ0〉〈ψ0|	e′′′ B†	e′′ |ψ0〉

]
(78)

= 1

dμ(dμ + 1)

∑

e �=e′
e′′ �=e′′′

〈
ei(e−e′−e′′+e′′′)t

〉

T

[
tr(Pμ	e B	e′) tr(Pμ	e′′′ B†	e′′)

+ tr(Pμ	e B	e′ Pμ	e′′′ B†	e′′)
]
, (79)

where we applied Lemma 1 in the form (41) in the second equality.
Next we compute the ensemble variance of 〈ψt |B|ψt 〉: By (71) and (20) for Hμ,

Varμ 〈ψt |B|ψt 〉

= 1

dμ(dμ + 1)

∑

e,e′
tr(Pμ	e B	e Pμ	e′ B†	e′) − 1

d2μ(dμ + 1)

∣∣∣∣∣
∑

e

tr(Pμ	e B	e)

∣∣∣∣∣

2

.

(80)

In the rest of the proof we use the computed expressions to prove the upper bounds for

Eμ

(
〈∣∣〈ψt |B|ψt 〉 − Mψ0B

∣∣2〉T
)
andVarμ 〈ψt |B|ψt 〉. To this end, we define for α = (e, e′) ∈

G := {(ē, ē′) ∈ E × E, ē �= ē′} the vector vα := 〈ψ0|	e′ B†	e|ψ0〉. Moreover, we define the
Hermitian matrix

Rαβ :=
〈
ei(Gα−Gβ )t

〉

T
(81)

with Gα := e − e′ for α = (e, e′). Then we obtain with (77) that
〈∣∣〈ψt |B|ψt 〉 − 〈ψt |B|ψt 〉

∣∣2
〉

T
=
∑

α,β

v∗
αRαβvβ (82)

≤ ‖R‖
∑

α

|vα|2 (83)

= ‖R‖
∑

e �=e′

∣∣〈ψ0|	e B	e′ |ψ0〉
∣∣2 (84)

and thus

Eμ

(〈∣∣〈ψt |B|ψt 〉 − 〈ψt |B|ψt 〉
∣∣2
〉

T

)

≤ ‖R‖
∑

e,e′
Eμ

[〈ψ0|	e B	e′ |ψ0〉〈ψ0|	e′ B†	e|ψ0〉
]

(85)

= ‖R‖
dμ(dμ + 1)

∑

e,e′

[∣∣tr(Pμ	e B	e′)
∣∣2 + tr(Pμ	e B	e′ Pμ	e′ B†	e)

]
(86)

by (41). Short and Farrelly [25] showed for arbitrary κ > 0 and T > 0 that

‖R‖ ≤ G(κ)

(
1 + 8 log2 dE

κT

)
. (87)
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Moreover, we estimate
∑

e,e′
| tr(Pμ	e B	e′)|2 =

∑

e,e′
| tr(	e′ Pμ	e	e B	e′)|2 (88)

≤
∑

e,e′
tr(	e′ Pμ	e Pμ)
︸ ︷︷ ︸

≤tr(	e′ )≤DE

tr(	e′ B†	e B) (89)

≤ DE tr(B†B), (90)

whereweused theCauchy-Schwarz inequality for operators A, Bwith scalar product tr(A†B)

and that | tr(CD)| ≤ ‖C‖ tr(|D|). Similarly we find that
∑

e,e′
| tr(Pμ	e A	e′)|2 ≤

∑

e,e′
tr(	e′ Pμ	e Pμ) tr(	e′ B†	e B)︸ ︷︷ ︸

≤tr(	e′ )‖B‖2
(91)

≤ DE‖B‖2dμ. (92)

This shows that
∑

e,e′
| tr(Pμ	e B	e′)|2 ≤ DE min{‖B‖2dμ, tr(B†B)}. (93)

Next we compute

∑

e,e′
tr(Pμ	e B	e′ Pμ	e′ B†	e) =

∑

e

tr

(
	e Pμ	e B

(
∑

e′
	e′ Pμ	e′

)
B†

)
(94)

≤
∑

e

tr(	e Pμ	e)

∥∥∥∥∥B
(
∑

e′
	e′ Pμ	e′

)
B†

∥∥∥∥∥ (95)

≤ ‖B‖2
∑

e

tr(	e Pμ) (96)

= ‖B‖2dμ, (97)

where we used in the third line that ‖∑e′ 	e′ Pμ	e′ ‖ ≤ 1, which follows immediately from
∥∥∥∥∥
∑

e′
	e′ Pμ	e′ψ0

∥∥∥∥∥

2

=
∑

e′
‖	e′ Pμ	e′ψ0‖2 ≤

∑

e′
‖	e′ψ0‖2 = ‖ψ0‖2. (98)

Similarly we estimate

∑

e,e′
tr(Pμ	e B	e′ Pμ	e′ B†	e) =

∑

e′
tr

((
∑

e

	e Pμ	e

)
B	e′ Pμ	e′ B†

)
(99)

≤
∑

e′
tr(B	e′ Pμ	e′ B†) (100)

=
∑

e′
tr(	e′ B†B	e′	e′ Pμ	e′) (101)

≤
∑

e′
tr(	e′ B†B) (102)

= tr(B†B). (103)
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The previous two estimates show that
∑

e,e′
tr(Pμ	e B	e′ Pμ	e′ B†	e) ≤ min{‖B‖2dμ, tr(B†B)}. (104)

Putting everything together, we arrive at the upper bound

Eμ

(〈∣∣〈ψt |B|ψt 〉 − 〈ψt |B|ψt 〉
∣∣2
〉

T

)
≤ 2DEG(κ)

dμ + 1

(
1 + 8 log2 dE

κT

)
min

{
‖B‖2, tr(B

†B)

dμ

}
.

(105)

Finally we turn to the upper bound for Varμ 〈ψt |B|ψt 〉. To this end, we estimate

∑

e,e′
tr(Pμ	e B	e Pμ	e′ B†	e′) = tr

(
Pμ

(
∑

e

	e B	e

)
Pμ

(
∑

e′
	e′ B†	e′

))
(106)

≤ tr(Pμ)

∥∥∥∥∥

(
∑

e

	e B	e

)
Pμ

(
∑

e′
	e′ B†	e′

)∥∥∥∥∥ (107)

≤ dμ‖B‖2 (108)

and

∑

e,e′
tr(Pμ	e B	e Pμ	e′ B†	e′) = tr

(
B

(
∑

e

	e Pμ

(
∑

e′
	e′ B†	e′

)
Pμ	e

))
(109)

≤ tr(|B|)
∥∥∥∥∥
∑

e

	e Pμ

(
∑

e′
	e′ B†	e′

)
Pμ	e

∥∥∥∥∥ (110)

≤ tr(|B|)
∥∥∥∥∥Pμ

(
∑

e′
	e′ B†	e′

)
Pμ

∥∥∥∥∥ (111)

≤ tr(|B|)‖B‖. (112)

This shows that
∑

e,e′
tr(Pμ	e B	e Pμ	e′ B†	e′) ≤ ‖B‖min

{
dμ‖B‖, tr(|B|)} (113)

and thus

Varμ 〈ψt |B|ψt 〉 ≤ 1

dμ(dμ + 1)

∑

e,e′
tr(Pμ	e B	e Pμ	e′ B†	e′) (114)

≤ ‖B‖
dμ + 1

min

{
‖B‖, tr(|B|)

dμ

}
. (115)

��

8.5 Proofs of Theorems 2 and 4

Theorem 2 follows immediately from Theorem 4 by setting B = Pν , choosing κ small
enough such that G(κ) = DG , and then taking the limit T → ∞.

123



69 Page 20 of 24 S. Teufel et al.

Proof of Theorem 4 Markov’s inequality implies

Pμ

(〈∣∣〈ψt |B|ψt 〉 − Mψ0B
∣∣2
〉

T
≥ 4DEG(κ)‖B‖

εdμ

(
1 + 8 log2 dE

κT

)
min

{
‖B‖, tr(|B|)

dμ

})

≤
Eμ

(〈∣∣〈ψt |B|ψt 〉 − Mψ0B
∣∣2
〉

T

)

4DEG(κ)‖B‖
(
1 + 8 log2 dE

κT

)
min

{
‖B‖, tr(|B|)

dμ

}εdμ (116)

≤
min {‖ B‖2, tr(B†B)

dμ
}

2‖B‖min
{
‖B‖, tr(|B|)

dμ

}ε (117)

≤ ε

2
, (118)

where we used the bounds from Proposition 1 and that tr(B†B) ≤ ‖B‖ tr(|B|). This means
that for (1 − ε

2 )-most ψ0 ∈ S(Hμ),

〈∣∣〈ψt |B|ψt 〉 − Mψ0B
∣∣2
〉

T
<

4DEG(κ)‖B‖
εdμ

(
1 + 8 log2 dE

κT

)
min

{
‖B‖, tr(|B|)

dμ

}
.

(119)

Again with the help of Markov’s inequality we obtain that, with λ the Lebesgue measure
on R,

λ
{
t ∈ [0, T ] : ∣∣〈ψt |B|ψt 〉 − Mψ0B

∣∣2 ≥ 4DEG(κ)‖B‖
δεdμ

(
1 + 8 log2 dE

κT

)
min

{
‖B‖, tr(|B|)

dμ

}}

T

(120)

≤
δεdμ

〈∣∣〈ψt |B|ψt 〉 − Mψ0B
∣∣2
〉

T

4DEG(κ)‖B‖
(
1 + 8 log2 dE

κT

)
min

{
‖B‖, tr(|B|)

dμ

} (121)

≤ δ. (122)

This shows that for (1 − ε
2 )-most ψ0 ∈ S(Hμ) we have for (1 − δ)-most t ∈ [0, T ] that

∣∣〈ψt |B|ψt 〉 − Mψ0B
∣∣ ≤ 2

(
DEG(κ)‖B‖

δεdμ

(
1 + 8 log2 dE

κT

)
min

{
‖B‖, tr(|B|)

dμ

})1/2

.

(123)

Next we prove in a similar way an upper bound for |Mψ0B − MμB |, keeping in mind that
MμB = EμMψ0B . An application of Chebyshev’s inequality and Proposition 1 shows that

Pμ

⎛

⎜⎝|Mψ0B − MμB | ≥

√√√√2‖B‖min
{
‖B‖, tr(|B|)

dμ

}

dμε

⎞

⎟⎠ ≤ Varμ 〈ψt |B|ψt 〉
2‖B‖min

{
‖B‖, tr(|B|)

dμ

}dμε

(124)

≤ ε

2
. (125)
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This implies for (1 − ε
2 )-most ψ0 ∈ S(Hμ) that

|Mψ0B − MμB | ≤ √
2

(‖B‖
εdμ

min

{
‖B‖, tr(|B|)

dμ

})1/2

. (126)

With the triangle inequality we finally obtain the stated upper bound for |〈ψt |B|ψt 〉−MμB |.
��

8.6 Proof of Corollary 1

From Theorem 4 we obtain immediately that for (1− ε)-most ψ0 ∈ S(Hμ) for (1− δ)-most
of the time
∣∣∣∣‖Pν+ψt‖2 − Mμν+

∣∣∣∣ ≤ 4

√
DE DG

δε
exp

(
− sμN

2kB

)
min

{
1, exp

(
(sν+ − sμ)N

2kB

)}
(127)

= 4

√
DE DG√

εδ
exp

(
− sμN

2kB

)
. (128)

Similarly, we find for (1 − ε)-most ψ0 ∈ S(Hμ) for (1 − δ)-most of the time that
∣∣∣∣‖Pν−ψt‖2 − Mμν−

∣∣∣∣ ≤ 4

√
DE DG

εδ
exp

(
− sμN

2kB

)
min

{
1, exp

(
(sν− − sμ)N

2kB

)}
(129)

= 4

√
DE DG√

εδ
exp

(
− (sμ − sν−

2 )N

kB

)
. (130)

This finishes the proof. �

8.7 Alternative Estimate in Terms of Effective Dimension

In Proposition 1, we have provided two upper bounds (73) for

Eμ

(〈∣∣〈ψt |B|ψt 〉 − 〈ψt |B|ψt 〉
∣∣2
〉

T

)
.

There is an alternative way of obtaining one of the two bounds in (73) using a result of
Short and Farrelly [25] based on the concept of effective dimension. We briefly explain this
alternative derivation and then comment on why we also need the other bound in (73).

In [25] the authors show that

〈∣∣〈ψt |B|ψt 〉 − 〈ψt |B|ψt 〉
∣∣2
〉

T
≤ G(κ)‖B‖2

deff

(
1 + 8 log2 dE

κT

)
, (131)

where the effective dimension deff = deff(ψ0) of a state ψ0 is

deff =
(
∑

e

〈ψ0|	e|ψ0〉2
)−1

. (132)

Taking an average over ψ0 ∈ S(Hμ) yields the bound

Eμ

(〈∣∣〈ψt |B|ψt 〉 − 〈ψt |B|ψt 〉
∣∣2
〉

T

)
≤ 2DEG(κ)‖B‖2

dμ + 1

(
1 + 8 log2 dE

κT

)
. (133)
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To see this, note that the only quantity on the right-hand side of (131) that depends on ψ0 is
the effective dimension deff; therefore, it suffices to estimate Eμd

−1
eff . With the help of (41)

and the usual arguments we find

Eμd
−1
eff =

∑

e

Eμ (〈ψ0|	e|ψ0〉〈ψ0|	e|ψ0〉) (134)

= 1

dμ(dμ + 1)

(
tr(Pμ	e)

2 + tr(Pμ	e Pμ	e)
)

(135)

≤ 1

dμ(dμ + 1)

∑

e

⎛

⎜⎝tr(	e)︸ ︷︷ ︸
≤DE

tr(Pμ	e) + tr(Pμ	e Pμ)

⎞

⎟⎠ (136)

≤ 2DE

dμ(dμ + 1)

∑

e

tr(Pμ	e) (137)

= 2DE

dμ + 1
, (138)

and (133) immediately follows.
The second estimate in Proposition 1 is sharper than (133) if and only if tr(B†B)/dμ <

‖B‖2, i.e., roughly speaking, if only few (compared to dμ) eigenvalues of B†B are close
to the largest eigenvalue and most are much smaller. This becomes relevant, for example,
when estimating the transitions fromHμ into a lower entropy macro spaceHν , cf. (45). Then
B = Pν and

tr(B†B)/dμ = dν/dμ � 1 = ‖Pν‖2.

9 Conclusions

Our results concern the behavior of typical pure states ψ0 from a high-dimensional subspace
Hμ of Hilbert space under the unitary time evolution. We find that for any operator B, due
to the large dimension, the curve t �→ 〈ψt |B|ψt 〉 is nearly deterministic (a fact that can
also be obtained from [1, 23]), and that in the long run t → ∞ it is nearly constant. In von
Neumann’s framework of an orthogonal decomposition H = ⊕νHν into macro spaces, this
means that the time-dependent distribution over the macro states given by the superposition
weights ‖Pνψt‖2 is nearly deterministic and in the long run nearly constant, i.e., it reaches
normal equilibrium, a situation analogous (but not identical) to thermal equilibrium. Through
our theorems, we have provided explicit error bounds.

Von Neumann’s [17] prior result in the same direction was based on unrealistic assump-
tions, saying essentially that H is unrelated to Hν . Our result has the advantage of being
applicable regardless of relations between H andHν . The question of whether the deviation
from the mean is small compared to the mean even when the mean is small itself, will be
analyzed further elsewhere [29].
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