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Abstract
We calculate the susceptibility of a canonical ensemble of quantum oscillators to the singular
random metric. If the covariance of the metric is |x− x′|−4α (0 < α < 1

2 )then the expansion
of the partition function in powers of the temperature involves non-integer indices.

Keywords Random metric · Random diffusivity · Quantum oscillators

1 Introduction

It is known that the dynamics in an irregular domain can be chaotic and conversely the
chaotic motion can have a fractal attractor [1, 2]. Diffusion in fractal domains exhibits their
fractal dimension which in general is not a natural number [3–6]. Thermodynamics of a
canonical ensemble of particles in an irregular domain depends on the spectral dimension
of the domain [7]. In such a case thermodynamic properties (e.g. critical indices) may be
functions of a non-integer dimension. For some time fractal geometry has been associated
with quantum gravity [5, 8, 9].Quantum gravity can be expressed as a random geometry. It
is believed that quantum gravity leads to a fractal geometry by a “foamy” behaviour of the
metric at short distances [10]. Such irregular shapes of random figures have been at the basis
of the fractal geometry [6].It has been suggested that irregular metric at the Planck scale can
modify the short distance behaviour of quantum fields at short distances [5, 10, 11].

In this paper we study quantum oscillators in a random singularmetric (or random position
dependent mass).We define the susceptibility to the metric which has an expansion in powers
of the inverse temperature β if themetric is a regular randomfield.We show that if the random
metric is singular then the susceptibility has an expansion in non-integer powers of β. It is
known that an ensemble of oscillators can serve as an approximation to field theory. The
quantum statistical mechanics of oscillators will resemble the quantum field theory at finite
temperature.
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We consider a Hamiltonian Hγ perturbed around the free theory(harmonic oscillators)

Hγ = H + γ H1. (1)

The statistical expectation value of an observable A at the temperature β−1 = kBT (where
kB is the Boltzman constant) is defined by

< A >β= Z−1
γ Tr

(
exp(−βHγ )A

)
, (2)

where the partition function

Zγ = Tr
(
exp(−βHγ )

)
. (3)

For a small γ we have the expansion (till the first order in γ )

Zγ = Z0 − γ

∫ β

0
dsTr

(
exp(−βH) exp(sH)H1 exp(−sH)

)
.

In terms of the partition function we can define other thermodynamic functions as ,e.g.,the
internal energy U

Uγ = −∂β ln Zγ . (4)

The susceptibility to H1 can be defined as

χβ = ∂γ (Zγ )|γ=0. (5)

We can use the expansion

exp(sH)H1 exp(−sH) = H1 + s[H , H1] + ....

in Eq. (5) to see that for a small β

χβ = ∂γ (Zγ )|γ=0 = −βTr
(
exp(−βH)H1

)
. (6)

For H0 of the harmonic oscillatorwith the frequencyω (the ground state energy subtracted)
we have

ln Z0 = − ln(1 − exp(−βω)) (7)

and

U = −∂β ln Z0 = ω(exp(βω) − 1)−1 � β−1 (8)

for a small β (high temperature).
If the oscillators are the modes of the electromagnetic field in a cavity then ω = |k|c

where c is the velocity of light and k is the wave vector in the cavity. In such a case in
eqs.(7)–(8) we have a sum over modes. The modified thermodynamics [7] comes from the
modified distribution of modes in cavities with fractal geometry.

We consider Hamiltonians H such that its similarity transformation

Ĥ = �−1H� (9)

gives a generator of a diffusion process (exp(−β Ĥ) is a Markov semigroup).
According to our assumption

(exp(−β Ĥ)ψ)(ξ) = E[ψ(ξβ(ξ))], (10)
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where ξ are the coordinates of the oscillators, ξβ(ξ) is a Markov process starting from ξ

and the expectation value E[...] is over the paths of the process. In our models we consider
ξ = (x, X) ∈ Rn+d and assume that H1 = V (P) (a function ofmomentum). Then, according
to Eq. (6)

Tr
(
exp(−β Ĥ)V (P)

)

= (2π)−d E
[
δ(xβ(x) − x) exp(i P(Xβ − Y )) < Y |V (P)|X >

]
dxdXdYdP, (11)

where

< Y |V (P)|X >= (2π)−d
∫

dK exp(i K (Y − X))V (K ). (12)

So that

Tr(exp(−β Ĥ)V (P)) = (2π)−d
∫

E[δ(xβ(x) − x) exp(i P(Xβ − X))]V (P)dxdXdP.

(13)

2 Statistical Mechanics of Oscillators

Let us consider in Rn+d the coordinates ξ A and a diffusion operator of the form (sum over
repeated indices)

Ĥ = − σ 2

2 gAB∂A∂B + ωAξ A∂A + ωD
2 gCD∂CgABξ Aξ B∂D . (14)

By means of

� = exp
(

− ωA

2σ
gABξ Aξ B

)

we obtain the Hamiltonian H of Eq. (9)

H = −σ 2

2
gAB∂A∂B + ω2

A

2
gABξ Aξ B

+σ
ωC

8
gCD∂CgRMξMξ R∂DgABξ Aξ B − 1

2

∑
A

ωA. (15)

We divide the coordinates ξ = (x, X) into two classes x and X where x ∈ Rn and X ∈ Rd .
In order to simplify the model we assume that only the X coordinates are coupled to the
random metric (or a random mass). So, (gAB) = (1, gμν) and in gμν(x) the dependence on
X is negligible (the coordinates x j of x have Latin indices j = 1, ..., n and the coordinates
of X the Greek indices μ = n + 1, .., n + d). We can imagine a random mass distribution
(producing the metric) which depends only on some coordinates. To make the model simple
we assume ω j = ν and ωμ = ω. If ωA are the modes of a massless field in a cavity which is
a rectangular box of sides L A then ωA = c 2πnA

L A
where nA are integers. We could arrange the

model so that ω j are small and the non-linear terms in Eq. (14) with ω j = ν are negligible.
Then, Ĥ is of the form

Ĥ = −σ 2

2
∇2
x + νx∇x + ω

2
∇xgμνX

μXν∇x − σ 2

2
gμν(x)∂μ∂ν + ωXμ∂μ, (16)
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where

∂μ = ∂

∂Xμ
.

With

� = exp
(

− 1

2
νσ−1x2 − 1

2
ωσ−1gμνX

μXν
)

(17)

the similarity transformation (9) gives

H = −σ 2

2
∇2
x + 1

2
ν2x2 + σ

ω

8
∇xgμνX

μXν∇xgσρX
σ Xρ

−σ 2

2
gμν(x)∂μ∂ν + 1

2
ω2gμνX

μXν − d

2
ω − n

2
ν. (18)

exp(−t Ĥ) can be expressed (according to Eq. (10)) by the solution of the stochastic equations
[12]

dxt = −νxt dt − ω

2
∇xgμνX

μXν + σdbt , (19)

dXμ
t = −ωXμ

t dt + σeμ
a (xt )dBa

t , (20)

where we expressed the metric g by vierbeins (tetrads) e

gμν = eμ
a e

ν
a . (21)

(bt , Bt ) is the Brownian motion on Rn+d ,i.e., the Gaussian process with mean zero and the
covariance

E[b j
t b

l
s] = min(t, s)δ jl

(and similarly for Bt ). In order to take the expectation value over the metric we need an
explicit solution of Eq. (20). For xt we require only some estimates on the behaviour in t .
However, for a simplicity of the arguments we neglect the non-linear term in Eq. (19) (we
assume that eμ

a = δ
μ
a + κε

μ
a , where κ is a small parameter, then ∇g � κ). After a negligence

of the non-linear term the solution of Eq. (19) with the initial condition x is

xt = exp(−νt)x + σ

∫ t

0
exp(−ν(t − s))dbs . (22)

The solution of Eq. (20) reads

Xμ
t = exp(−ωt)Xμ + σ

∫ t

0
exp(−ω(t − s))eμ

a (xs)dBa
s . (23)

The kernel K of exp(−β Ĥ) can be expressed by means of the Fourier transform

Kβ(x, X; y, Y ) = (2π)−d
∫

dPE
[
δ(xβ(x) − y) exp

(
i P(exp(−βω)X

+σ

∫ β

0
exp(−ω(β − s))ea(xs)dBa − Y )

)]
. (24)
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3 RandomMetric

We assume that eμ
a are Gaussian variables with the mean δ

μ
a

eμ
a = δμ

a + κεμ
a (25)

where

< εμ
a (x)εν

c (x′) >= δμν
ac G(x − x′). (26)

We calculate the Gaussian integral in Eqs. (13) and (24) (with δ
μν
ac = δμνδac chosen for

simplicity)

< exp(i P(exp(−ωβ)X + σ

∫ β

0
exp(−ω(β − s))ea(xs)dBa)) >

= exp
(
i P exp(−ωβ)X − 1

2
< (PQβ)2 > +iσ Pμ

∫ β

0
exp(−ω(β − s))dBμ

s

)
)

= exp
(

− 1

2
κ2PμPν

∫ β

0

∫ β

0
exp(−ω(β − s)) exp(−ω(β − s′))G(xs − xs′)dB

μ
s d B

ν
s′

+i P exp(−ωβ)X + iσ Pμ

∫ β

0
exp(−ω(β − s))dBμ

s

)
. (27)

In Eq. (27) we used the formula for Gaussian expectation value of ε

< exp(i PμQ
μ
β ) >= exp

(
− 1

2
< (PμQ

μ
β )2 >

)
(28)

with

PμQ
μ
t = Pμσ

∫ t

0
exp(−ω(t − s))εμ

a (xs)dBa
s ≡ Ft . (29)

This expression can be written in a different way using the Ito calculus [12, 14]
∫

dF2
t = 2

∫
FtdFt +

∫
dFtdFt , (30)

where we have (here P2 = PμPμ)

dFtdFt = dκ2G(0)P2dt . (31)

Next, we consider a singular covariance G. For this purpose at the beginning we treat ε
μ
a

as a regularized random field. Then, we remove the regularization. In order to make Hψ a
well-defined random field we need the normal ordering of H with

: gμν :=: eμ
a (x)eν

a(x) := eμ
a (x)eν

a(x) − κ2 < εμ
a (x)εν

a (x) > .

The normal ordering in the exponential of Eq. (27) removes the second term dκ2G(0)P2t
on the rhs of Eq. (30) whereas the first term there (i.e.,

∫ β

0 FsdFs) becomes a time-ordered
integral (renormalization of such expressions appear also in QED [15, 16]). Owing to the
normal ordering in Eq. (27)

< (PQt )
2 >→< (PQt )

2 > −t P2κG(0)d (32)

and because of the subtraction (32) we can define the action of exp(−t H) upon a test function
ψ (decaying fast in the momentum space) so that exp(−Ht)ψ is a well-defined random field.
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After the averaging over the translation invariant random field eμ
a (x) and the renormalization

(32) we can write < exp(−β : H :)ψ > in terms of Fourier transforms as

(< exp(−β : H :) > ψ)(x, X)

= E
[
δ(xβ − y) exp

(
− κ2PμPν

∫ β

0
exp(−ω(β − s))dBμ

s

×
∫ s

0
dBν

s′ exp(−ω(β − s′))G(xs − xs′)

+iσ Pμ

∫ β

0
exp(−ω(β − s))dBμ

s + i P exp(−ωβ)X)
)]

ψ(y, P)dPdy. (33)

At κ = 0 we have

Z0 = Tr(exp(−βH0)) =
∫

dxdX < exp(−βH0) > (x, X; x, X)

= (2π)−d
∫

dPdxdXE
[
δ(xβ − x) exp(i P((exp(−ωβ) − 1)X

+ iσ P
∫ β

0
exp(−ω(β − s))dBs))

]

=
∫

K (0)
β (x, X; x, X)dxdX , (34)

where H (0) is the Hamiltonian of uncoupled harmonic oscillators and K (0) is the well-known
Mehler kernel of the harmonic oscillator. So, at κ = 0 we obtain the formula (7). We are
interested in the κ-term as a perturbation resulting from an interaction with a random metric.
In Eq. (33) we apply the identity for Bs and bs (in the sense that both sides have the same
probability law)

Bs = √
λB s

λ
. (35)

After rescaling

xs′ = exp(−νs′)x + √
λ

∫ s′
λ

0
exp

(
− λν(

s′

λ
− τ)

)
dbτ . (36)

It is easy to see that for a small t in Eq. (22) (set λ = s′ in Eq. (36))

xt = x + √
tqt , (37)

where qt � a + c
√
t + ... with |a| > 0 for a small t . This scaling behaviour is all what we

need to assume about solutions of Eq. (19) with a random metric g of Eq. (26). In Eq. (33)
we rescale the Brownian motion Bs′ and xs′ as in (36) (with λ = s) and subsequently Bs and
xs with λ = β. After such a change of variables the integral of the κ-dependent part in the
formula (33) reads

exp
(

− 1
2κ2βPμPν

∫ 1
0 exp(−βω(1 − s))dBμ

s
∫ s
0 exp(−βω(1 − s′))G(xs − xs′ )dBν

s′
)
, (38)

where 0 ≤ s′ ≤ s ≤ 1, xs = x + √
βqs and xs′ = x + √

βq̃s′ where qs 
= 0 and q̃s 
= 0 at
β = 0. We consider the covariance (the upper bound on α > 0 will be discussed at the end
of this section)

G(x − x′) = |x − x′|−2α. (39)
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Then, from Eq. (38) for a small β

G(xs − xs′) = β−αg(β, s, s′), (40)

where s′ ≤ s ∈ [0, 1] and g � A+Cβ (with A > 0) for a small β. Hence, Eq. (33) is of the
form

E
[
exp

(
i P((exp(−ωβ) − 1)X −

∫ β

0
exp(−ω(β − s))dB)

)

× exp
(

− κ2β1−αPμPν f
μν(β)

)]
, (41)

where | f μν(β)PμPν | is bounded from below by a constant.
We can now estimate the behaviour of the partition function in the metric field (26) (note

that : gμν : − <: gμν :> has the covariance |x − x′|−4α if ε
μ
a has the covariance (39)). We

have

gμν = δμν + 2κεμ
ν + κ2εμ

a εν
a . (42)

The Hamiltonian (16) is of the form H = H0 + κH1 + κ2H2.From Eq. (27) we can see that
the contribution to the partition function Z is of order κ2. We consider Hγ = H + γ V (P)

then in the approximation (6)

∂γ Zγ = Tr(exp(−βH)V (P)). (43)

The anomalous (fractional) dependence β1−α in Eq. (41) of the partition function is a char-
acteristic of the coupling to a singular metric field. We can calculate the κ2-derivative of the
susceptibility (6) to the metric for small β (high temperature)

∂κ2∂γ Z|κ=γ=0 = β1−αE
[
PμPν f μν(β)δ(xβ − x)

exp(i P(exp(−ωβ) − 1)X + iσ P
∫ β

0 exp(−ω(β − s))dBs))
]
βV (P)dxdXdP

(44)

and

∂2
κ2

∂γ Z|κ=γ=0 = β2−2αE
[(

PμPν f μν(β)
)2

δ(xβ − x)

exp(i P(exp(−ωβ) − 1)X + iσ P
∫ β

0 exp(−ω(β − s))dBs))
]
βV (P)dxdXdP.

(45)

For a small κ and small β the partition function has the expansion in non-integer powers of
β

∂γ Zκ2 = ∂γ Z0 + κ2χ1ββ1−α + κ4χ2ββ2−2α + .... (46)

with certain constants χ1 and χ2.
We still have to estimate the integrals in Eqs. (43)–(46). The integral (43) is expressed by

kernels in Eq. (13). The expectation value in Eq. (13) after the renormalization (32) involves
the time-ordered stochastic integral in Eq. (33) which fails to be positive definite. Hence, if
the expectation value in Eq. (43) is to be finite V (P) must decrease faster than exp(−RP2)

for any R (the derivatives in Eqs. (44)–(46) impose milder requirements on the decay of
V (P) for a large P). There is still the problem of the convergence of the stochastic integrals
in the definition of fμν PμPν . This stochastic integral is of the form

PμPν

∫ β

0
dBμ

s

∫ s

0
dBν

s′G(xs − xs′). (47)
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The stochastic integrals in eq. (47) can be estimated by ordinary integrals using the formula
[13](better estimates on the multiple stochastic integrals (33) and (47) can be obtained using
the results of ref.[17])

E
[( ∫

FdBs

)2k] ≤ Ck E
[ ∫

F2kds
]

(48)

with certain constants Ck . The rhs of Eq. (48) involves the Ornstein-Uhlenbeck process (22)
[18] whose transition function is expressed by the Mehler formula. In calculations in Eq.
(48) for small β we can approximate the Ornstein-Uhlenbeck process xs by the Brownian

motion with the transition function p(s, x) = (2πs)− n
2 exp(−|x|2

2s ). Then, the integral in Eq.
(47) can be estimated by (use Eq. (48) twice with k = 1 )

∫
dsds′

∫
dxp(s − s′, x)|x|−4α < ∞ (49)

if 2α < 1. The expansion (46) must be terminated at the kth order if 2kα > 1 because the
rhs of the estimate (48) is infinite.

4 The Outlook

Some approximate calculations [8, 9, 11] indicate that the singularity of the quantum gravita-
tional field at small distances can be different than the canonical one which in n dimensions is
of the form |x−x′|−n+2 (where n = 4 corresponds to α = 1

2 in Eq. (39)). The fractal dimen-
sionality of the physical space-time has been discussed in [19, 20] on the basis of the Cosmic
Microwave Background measurements. Some limits on the deviation of the observational
space-time dimension from the physical four dimensions have been obtained. The effect of
quantum gravity could be observed either at small distances or at high energies (which in
cosmology are connected with high temperatures). The non-integer indices in the expansion
of the partition function in Eqs. (44)–(46) could indicate the relevance of quantum gravity
for some extremal processes in astrophysics (which possibly could be tested on the quantum
level in gravitational wave interferometers [21]). The model of a random mass distribution
which according to Eqs. (14) and (23) is equivalent to a random diffusivity is of interest in
condensed matter physics [22, 23]. An anomalous behaviour of the partition function (46) or
other thermodynamic functions of complex systems (e.g. molecules or crystals) could be an
indication of the random mass or random metric present in these systems.
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regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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