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Abstract
Much of the theory on chemical-reaction networks (CRNs) has been developed in the ideal-
solution limit, where interactions between the solutes are negligible. However, there is a large
variety of phenomena in biological cells and soft-matter physics which appear to deviate
from the ideal-solution behaviour. Particularly striking is the case of liquid-liquid phase
separation, which is typically caused by inter-particle interactions. Here, we revisit a number
of known results in the domain of ideal CRNs, and we generalise and adapt them to arbitrary
interactions between the solutes which stem from a given free energy. We start by reviewing
the theory of chemical reaction networks, linking it to concepts in statistical physics. Thenwe
obtain a number of new results for non-ideal complex-balanced networks, where the creation
and annihilation rates are equal for all chemical complexes which appear as reactants or
products in the CRN. Among these is the form of the steady-state probability distribution
and Lyapunov functions for such networks. Finally, this allows us to draw a phase diagram for
complex-balanced reaction-diffusion systems based on the minimisation of such Lyapunov
function, with a rationale similar to that of equilibrium thermodynamics but for systems that
may sustain non-equilibrium chemical currents at steady state. In addition, we show that for
complex-balanced networks at steady-state, there are no diffusion currents.
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1 Introduction

The cytoplasm of a cell does not behave like an ideal solution [1], since, in many cases,
interactions among the solutes cannot be neglected. Indeed, in the cytoplasm there is a
plethora of interactions among proteins, other macromolecules, and ions. Some of the most
common interactions that are relevant in the cellular cytoplasm are steric and crowding effects
[2, 3], as well as electrostatic interactions [4, 5]. Arguably, the most striking phenomenon
caused by these interactions is the emergence of phase-separated condensates, also known as
membraneless organelles in the cell-biology literature, which are now widely studied [6–8].
The composition of thesemembraneless organelles is different from the one of the cytoplasm,
because they are typically enriched in a specific type of molecules while they exclude others
[9]. Moreover, it has been hypothesised that such organelles spatially control biochemical
reactions, by modulating their rates and specificity within the condensate [10–13].

Given their important role in the internal spatial organisation of cells, the regulation of
phase-separation phenomena is crucial for many cellular functions. One of the ways in which
cells can dynamically control the onset, composition and function ofmembraneless organelles
is through chemical reactions, notably post-translational modifications like phosphorylation
[14, 15] or methylation [16]. However, the rates of these chemical reactions are also affected
by the fact that the solution is non-ideal, i.e., by the interactions between solutes, requiring a
paradigm beyond that of ideal chemical reactions networks (CRNs). Moreover, in this type
of system, diffusion plays a crucial role (since it organises the molecules in areas of high and
low concentration), suggesting that an effort should be made to understand these non-ideal
reaction-diffusion systems from the theoretical standpoint.

Most of these theoretical efforts [17–20] have been based on effective reaction-diffusion
models that can describe patterning and non-equilibrium phenomena in a simple way, but
lack thermodynamic consistency. More precisely, in these approaches the reaction dynamics
is modelled with mass-action kinetics (MAK), which implicitly assumes that the solution is
ideal (while the interaction-influenced diffusion that drives phase-separation is not), which
leads to the aforementioned lack of consistency. Early progress in reconciling the spatial
patterns predicted by these models with a thermodynamically consistent description was
limited to a linear-stability analysis of binary systems [21]. More recently, some works
aimed at establishing a deterministic theory for non-ideal CRNs [22], the relation between
phase coexistence and chemical kinetics [23], and exploring minimal examples for pattern
formation with non-ideal CRNs [24–26]. Nevertheless, the link between non-equilibrium
CRNs and phase separation has not yet been elucidated in full generality.

Here, we aim at building a thermodynamically consistent framework for interacting
reaction-diffusion systems which may exhibit phase-separation at steady state. Therefore,
in this framework, in the same way diffusion is governed by a free energy (that takes into
account the interactions), the dynamics of the chemical reactions must also reflect this free-
energetic dependency. Here, previous efforts are complemented by analysing the behaviour
of non-ideal CRNs in the stochastic limit, in an effort to build a more complete theory. This
explicit description of non-ideality in the CRN allows us to naturally adapt and generalise
the results from the well-established theory of ideal CRNs. We do so by first constructing a
framework such that, in the absence of explicit non-equilibrium driving, the system relaxes
to thermodynamical equilibrium. Unlike much of the previous literature, which deals with
particular reaction motifs (with a few exceptions, e.g. Ref. [27]), we focused on a broad
class of networks, named complex-balanced networks, for which the steady-state creation
and annihilation rate of each chemical complex are equal. For this type of non-dilute CRNs,
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we derive the steady-state probability distributions and Lyapunov functionals, which allows
us to obtain the steady-state concentration profiles.

The paper is organised as follows: The first half of the paper consists of a review of the
theory of CRNs and its connection to thermodynamical quantities. In Sect. 2 we describe the
dynamics of spatially homogeneous CRNs in the stochastic and deterministic limit, introduce
the concept of complex balance, and recall the main features of MAK. In Sect. 3, we impose
thermodynamical constraints on the reaction rates for CRNs at equilibrium, by consistently
relating these rates to the free energy, and discuss how they can bemodified in non-equilibrium
settings.

Sections 4 and 5 contain the main novel results of the paper. In Sect. 4 we generalise
to non-ideal CRNs the known result for the steady-state distribution of complex-balanced
networks. Building on this result, in Sect. 5 we propose a candidate Lyapunov function
of complex-balanced systems. In the same Section, we generalise the previous Lyapunov
function to systems with spatial inhomogeneities, and derive the resulting phase diagram for
a non-equilibrium, complex-balanced, chemically reactive mixture.

Finally, in Sect. 6 we discuss the interpretations and implications of our results.

2 Chemical-Reaction Networks

A chemical-reaction network (CRN) is composed of N chemical species and M reaction
pathways;whichwe assume reversible, for a better alignmentwith thermodynamic principles.
A reaction within the CRN, denoted by the label ρ, is specified as follows:

∑

a

rρ
a Xa �

∑

a

sρ
a Xa, (1)

where Xa , a = 1, · · · , N is one the N species in the network. In the rest of this paper, the
indexes a and b will be used for chemical species only.

The matrices rρ
a and sρ

a denote the number of particles of each species participating in
the forward and backward reaction, respectively, i.e., rρ

a specifies the number of reactants
of type a in the forward reaction ρ, and sρ

a , that of the products of type a in the backward
reaction. Note that, given that the reactions are taken to be reversible, the distinction between
reactants and products is arbitrary.

The amount of particles of species a created along the forward reaction is denoted by

vρ
a = sρ

a − rρ
a . (2)

We also introduce the vectors vρ = (v
ρ
1 , · · · , v

ρ
N ), rρ = (rρ

1 · · · rρ
N ) and sρ = (sρ

1 , · · · , sρ
N ).

, and the matrices

V =

⎛

⎜⎜⎝

...

vρ

...

⎞

⎟⎟⎠ , R =

⎛

⎜⎜⎝

...

rρ

...

⎞

⎟⎟⎠ , S =

⎛

⎜⎜⎝

...

sρ

...

⎞

⎟⎟⎠ . (3)

Finally, we define a complex z as the number and type of particles that participate in a
chemical reaction as either reactants (z = rρ) or products (z = sρ). A single complex z may
appear in more than one reaction within the network. In order to clarify the definitions above,
we illustrate them for the following network.
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2.1 Example

For the CRN

A + B � C, (4)

B � D, (5)

the vectors of reactants are

r1 = (
1, 1, 0, 0

)
, r2 = (

0, 1, 0, 0
)
, (6)

and the product vectors are

s1 = (
0, 0, 1, 0

)
, s2 = (

0, 0, 0, 1
)
, (7)

where each of the entries in the vector correspond to different species and the reactions are
labelled by the superindices. Finally, we have the vectors

v1 = (−1, −1, 1, 0
)
, v2 = (

0, −1, 0, 1
)
, (8)

that specify the net amount of particles of each species created by each of the reactions
occurring once in the forward direction.

Building on the definitions above, in what follows we introduce the stochastic and
deterministic description of a CRN, the starting point of the rest of this work.

2.2 Stochastic Description

If the chemical species in the solution diffuse fast (with respect to the typical timescale
of chemical reactions) and is stirred regularly, the system may be considered to be well
mixed and it can be described in terms of a single homogeneous concentration of each of the
species across space. Then, a state of the system—the number of particles of each type—is
determined by the vector

n = (n1, · · · , nN ). (9)

Each state n of the system has a probability measure P(n, t) at any instant of time t . The
dynamics for the probability of states of homogeneous CRNs is given by the ChemicalMaster
Equation (CME), which reads [28]:

∂P(n, t)

∂t
=

∑

ρ

f+ρ(n − vρ)P(n − vρ) +
∑

ρ

f−ρ(n + vρ)P(n + vρ)

−
∑

ρ

[ f+ρ(n) + f−ρ(n)]P(n), (10)

where the summations over ρ run over all reactions in the CRN, v is given by Eq. (2),
and the rate of the transitions in the network is given by the propensity functions f±ρ , +ρ

corresponding to the forward direction of the reaction and−ρ corresponding to the backward
direction. Eq. (10) is different to other statements of the CME because we made explicit the
fact that every reaction is reversible.

2.3 Deterministic Description

For large particle numbers, by averaging both sides of Eq. (10) and assuming vanishing cor-
relations according to the mean-field picture—assumptions that are supposed to be accurate
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Fig. 1 Graphical representation
of a chemical-reaction network
(CRN). The CRN has six
complexes, where each is
represented as a node in the
graph: A, B, C, A + D, E and
B + D. The five reactions present
in the CRN are numbered

in the large-particle number limit—one can work out a set of equations for the concentrations
ca = na/V in the macroscopic limit, where both na and V are large. In this limit, the state
of the system is specified by the concentrations c1, · · · , cN , and one obtains the following
classical set of equations for the dynamics of the concentrations in a CRN [29]:

∂ca
∂t

=
∑

ρ

vρ
a (J+ρ − J−ρ), (11)

where the currents J still need to be determined. While both the deterministic and stochastic
descriptions refer to the same system, the former one is only accurate for large particle
numbers, also known as the thermodynamic limit, where fluctuations are negligible.

2.4 Complex Balance

In a CRN, a complex is a set of chemical species and their respective particle numbers, which
take part in a reaction, as either reactants or products. Its most general expression is the vector

z = (z1, · · · , za, · · · ), (12)

where the index a runs over all chemical species and the integer za is the number ofmolecules
of the species Xa in the complex z. Any CRN can be represented as a graph whose nodes
denote the complexes that take part in the reactions, where there is an edge between two
complexes if and only if there is a reaction zm � zn in the CRN, and zm and zn are two
different complexes—see for example Fig 1.

In a deterministic CRN, whose kinetics are given by Eq. (11), the creation rate of the
complex z, J+z , is defined as

J+z =
∑

ρ|sρ=z

J+ρ +
∑

ρ|rρ=z

J−ρ (13)

where both addends in Eq. (13) are source terms for the complex z: The subscript ρ|sρ = z
indicates that the sum is taken over the reactionsρ whose product complex equals the complex
z, and, similarly, ρ|rρ = z indicates that that the sum is taken over those reactions whose
reactant complex equals z. Proceeding along the same lines, we define the rate of annihilation
of the complex z as

J−z =
∑

ρ|sρ=z

J−ρ +
∑

ρ|rρ=z

J+ρ. (14)

A deterministic network is said to have a complex-balanced steady state if its steady state
satisfies the condition that the creation rate and the annihilation rate of each complex are
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Fig. 2 Graphical depiction of the different types of steady states, taking the network of Fig. 1 as example. A)
Detailed-balanced steady state. Here, the backward and forward rates of each reaction are equal. B) Complex-
balanced steady state. There exist non-vanishing net currents (red arrows) but the steady state still satisfies the
complex-balanced requirement, Eq. (15). It only allows for cycles at steady state that can be visualised from
the network in terms of complexes (red cycle). C) General steady state. There exist non-vanishing net currents
(red arrows) and the complex-balanced requirement does not hold

equal [30]:
J+z = J−z ∀ z. (15)

While there exist some topological conditions in the CRN which ensure that the steady state
is complex balanced [31], not every CRN possesses a complex-balanced non-equilibrium
steady-state. We refer the interested reader to Refs. [32–34] for more detailed discussions on
the topological constraints that determine complex-balancing and its consequences for MAK
networks.

In general, a complex-balanced steady state is one of many steady states which a CRN
may have. We can order these types of steady states in terms of their generality as follows:
Equilibrium steady state. The most restrictive condition that we can impose to a steady state
is detailed balance:

J+ρ = J−ρ ∀ ρ. (16)

Equation (16) corresponds to a system at thermodynamic equilibrium, and implies that the
rate of the forward reaction equals the rate of the backward reaction for every reaction ρ in
the CRN (example depicted in Fig. 2A).
Complex-balanced steady state. More general than detailed-balanced steady states are
complex-balanced steady states, which satisfy

∑

ρ|sρ=z

J+ρ +
∑

ρ|rρ=z

J−ρ =
∑

ρ|sρ=z

J−ρ +
∑

ρ|rρ=z

J+ρ ∀ z. (17)

Equation (17) implies that the creation and the annihilation rate of each complex z are equal.
In the example of Fig. 1, the only way to have a complex-balanced steady state which is not
at equilibrium (i.e. is not entirely detailed-balanced) is by taking the net rate J+ρ − J−ρ in
reaction 1 equal to the net rate of those of reactions 2 and 3, and thus reactions 4 and 5 must
be detailed balanced (since the system has to be at steady state). This steady state is depicted
in Fig. 2 B.
General steady state. The most general class of steady states is defined by the vanishing time
derivatives of the dynamical equation (11). By splitting the contributions of each complex z,
this condition can be rewritten as

∑

m

zma

( ∑

ρ|sρ=zm

J+ρ +
∑

ρ|rρ=zm

J−ρ

)
=

∑

m

zma

( ∑

ρ|rρ=zm

J+ρ +
∑

ρ|sρ=zm

J−ρ

)
∀ a,

(18)
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where m is an index that labels each of the complexes in the network and the integer zma
represents its components. As a result, there are no constraints between the net rates of each
reaction other than those imposed by the stationarity condition of Eq. (11). In the example
of Fig. 1, this implies that, at steady state, there can be current cycles where, for example,
species A is created by reaction 1, but annihilated by reaction 4 through the complex A+D,
thus breaking complex balance (see Fig. 2 C).

From this hierarchical classification, it can be clearly seen that detailed balance, Eq. (16),
implies complex balance, Eq. (17), which, in turn, implies the steady-state condition, Eq. (18).
However, the converse is not true: A general steady state is not necessarily complex balanced,
and a complex-balanced steady state is not necessarily detail balanced. Therefore, complex
balance is less restrictive of a constraint than detailed balance, but it is more restrictive than
a generic steady state.

2.5 Complex Balance in Networks with Mass-Action Kinetics

As a particular instance of special importance, in what follows we will discuss complex
balance in ideal CRNs with MAK.

In short, MAK consists of the hypothesis that the rate of the chemical reaction is propor-
tional to the product of the concentrations of the reactants: As a result, in the deterministic
description, the MAK expressions for the currents read

J+ρ = k+ρ

∏

a

cr
ρ
a
a , J−ρ = k−ρ

∏

a

cs
ρ
a
a , (19)

where k±ρ are the rate constants. In what follows, we will denote by c∗
a the steady-state

concentration of species a in the deterministic description. Then, for a deterministic system
with MAK, the complex-balance condition is given by

∑

ρ|sρ=z

k+ρ

∏

a

(c∗
a)

rρ
a +

∑

ρ|rρ=z

k−ρ

∏

a

(c∗
a)

sρa

=
∑

ρ|sρ=z

k−ρ

∏

a

(c∗
a)

sρa +
∑

ρ|rρ=z

k+ρ

∏

a

(c∗
a)

rρ
a ∀ z. (20)

Conversely, in the stochastic description [with dynamics is given by Eq. (10)] the MAK
expressions for f±ρ become

f+ρ(n) =k+ρ

∏

a

na !
(na − rρ

a )! , (21)

f−ρ(n) =k−ρ

∏

a

na !
(na − sρ

a )! . (22)

Previous studies [33] have shown that the steady state of complex-balanced CRNs
with MAK is known to have a product-form expression in terms of independent Poisson
distributions, and it reads

π(n) =
M∏

a=1

(c∗
a)

na

na ! e−c∗
a , (23)
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linking the deterministic steady state (c∗
a) to the stochastic steady state π . Furthermore, in

Ref. [33] it is shown that, if the propensity functions take the more general form

f+ρ(n) =k+ρ

θ(n)

θ(n − rρ)
, (24)

f−ρ(n) =k−ρ

θ(n)

θ(n − sρ)
, (25)

then the steady-state distribution reads

π(n) = M

θ(n)

∏

a=1

(c∗
a)

na , (26)

where M is a normalisation constant and θ a function which maps the vector of integer
numbers n into a real-valued positive number.

In what follows, we will demonstrate that the result (23) can be generalised to the non-
ideal case, i.e., to a class of propensity functions f which take into account the physical
interactions between molecules.

3 Reaction Rates for Non-ideal Chemical-Reaction Networks

In the previous Section we introduced the general description of CRNs, both on a stochastic
and deterministic level: in either cases, a choice for the propensity functions, or currents,
must be made to set the network dynamics. For ideal solutions, the most common choice
is MAK, as outlined above. However, in what follows we consider solutes which mutually
interact and which are, therefore, not ideal, and specify the propensity functions.

3.1 Equilibrium Systems

Here, we consider CRNs at thermodynamic equilibrium, i.e., systems which are not subject
to external, non-equilibrium driving. Given that the system is an equilibrium one, at steady
state the principle of detailed balance must hold for every reaction ρ: The probability flux
across a reaction ρ in the forward direction must equal the one in the backward direction.
In this Section, we will impose the detailed-balance condition on the propensity functions at
thermal equilibrium and suggest a generalisation for systems out of equilibrium.

3.1.1 Stochastic Description

In the stochastic description, the detailed-balance condition at steady state reads

Peq(n) f+ρ(n) = f−ρ(n + vρ)Peq(n + vρ), (27)

where the equilibrium probability distribution Peq(n) for closed stochastic systems—total
number of particles fixed—is given by the canonical Boltzmann distribution:

Peq(n) = 1

Z
e−βF(n), (28)

with β = 1/(kBT ), kB is the Boltzmann constant, T the temperature, F(n) the Helmholtz
free energy of the system in state n, and Z a normalisation factor—the partition function
in statistical physics. For systems that exchange mass with a single particle reservoir, the
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equilibrium distribution (28) is replaced by the distribution for the grand-canonical ensemble
[35].

Combined with Eq. (28), the detailed-balance condition in Eq. (27) yields the following
constraint for the propensity functions:

f+ρ(n)

f−ρ(n + vρ)
= Peq(n + vρ)

Peq(n)

=e−β[F(n+vρ)−F(n)]. (29)

Then, we choose the following functional form for the propensity functions:

f+ρ(n) = kρe
β[F(n)−F(n−rρ)], (30)

f−ρ(n) = kρe
β[F(n)−F(n−sρ)], (31)

where kρ is the reaction constant, which needs to be equal in both the forward and the back-
ward reaction for Eq. (29) to be satisfied. Given that the free energy F may, in general, depend
on the inter-particle interactions—such as steric, electrostatic, or other interactions—Eq. (29)
implies that the chemical-reaction rates may depend on these inter-particle interactions.

The choices (30) and (31) for the propensity functions are not unique, but it is particularly
appealing because it reduces to MAK for ideal systems. In fact, consider an ideal lattice-
model solution with N particles including both solvent and solute—see Appendix A for
details. The free energy is

Fid =
∑

a

naμ
0
a + 1

β

[∑

a

log(na !) − log(N !)
]
, (32)

where N = ∑
a na (including solvent particles in the sum) and μ0

a is the standard-state
chemical potential of species a (taken with respect a given reference state noted as ‘0’),
which may depend on parameters like temperature or nature of the solvent and the solute a.
Then, the rates take the following form:

f+ρ(n) =kρe
β[F(n)−F(n−rρ)]

=kρe
β

∑
a r

ρ
a μ0

i
(N − ∑

a r
ρ
a )!

N !
∏

a

na !
(na − rρ

a )! , (33)

where (N − ∑
a r

ρ
a )!/N ! can be approximated by N−∑

a r
ρ
a . Setting

k+ρ = kρ

exp(β
∑

a r
ρ
a μ0

a)

N
∑

a r
ρ
a

, (34)

we obtain that f+ρ coincides with the MAK propensity function (21), and similarly for f−ρ

and Eq. (22).
We conclude this Section with a remark on the reaction constant, kρ : In Eqs. (30) and

(31) we have assumed that kρ is a constant of the reaction, independent on the state n of the
system. However, in general kρ may depend on n, because the system itself is part of the
environment where the chemical reactions take place. These effects can be disregarded for
most cases in ideal solutions (since they are usually dilute), but they may not be negligible in
non-ideal systems. For instance, in the case of phase separation, the multiple phases of the
system may constitute very different environments for the chemical reactions, accelerating
them or slowing them down.
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Fig. 3 Free-energy landscape for a chemical reaction. The horizontal dimension is the reaction coordinate
and the vertical one specifies the height of the reaction free energy F0—the free energy F with the entropic
term

∑
a log na ! removed [37]. The quantities F0(n) and F0(n + vρ) denote the reaction free energy of

the system before and after the reaction, subscripts I and II specify the system phase, and �F the height of
the free-energy barrier. For each phase, there are two minima in the free-energy landscape, corresponding to
whether the reaction has occurred or not, see the left- and right-hand minimum, respectively. In this example,
�F depends on the phase the reaction takes place in, and, thus, the reaction constant kρ would also depend
on the environment in which the reaction occurs

Independently of whether kρ in Eqs. (30) and (31) depends on the system state or not,
detailed balance, Eq. (29), must still hold. This means that the forward reaction constant for
a state n must be equal to the backward reaction constant for a state n + vρ . One way to
ensure this equality while keeping the state-dependency of the reaction constants, is to make
kρ a function of the state n deprived of the reactant complex, i.e., n − rρ , for the forward
case, and of n + vρ − sρ for the backward one:

f+ρ(n) =kρ(n − rρ)eβ[F(n)−F(n−rρ)], (35)

f−ρ(n + vρ) =kρ(n + vρ − sρ)eβ[F(n+vρ)−F(n+vρ−sρ)], (36)

where Eqs. (35) and (36) satisfy Eq. (29) because

n − rρ = n + vρ − sρ, (37)

see Eq. (2).
The dependency above of kρ on the system state can be pictured as follows. In analogy

with the classical transition-state theory, we can think of the microscopic mechanism of a
reaction as a random walk in a free-energy landscape [36, 37], see Fig. 3. Then, the value
of the rate constant kρ depends on the height of the free-energy barrier �F of the reaction.
The stable local minima in the reaction landscape have reaction free energies F0

I , F0
II, which

are defined as the free energy of the system once the entropic term
∑

a log(na)!, has been
removed [37]. Thus, F0

I and F0
II need not be equal since they include a contribution due to

the interactions of reactants and products with its environment, i.e., the phase they are in.
Hence, F0

I and F0
II are determined by F but the barrier height �F is not. The dependency of

the height of the barrier—and thus of kρ—on the system state is precisely the one discussed
in Eqs. (35) and (36), and it may strongly affect the CRN dynamics. In summary, we are
connecting the chemical reaction rates to the free energy of the system F , but also to �F
which sets the value of the reaction constants kρ .
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3.1.2 Deterministic Description

When the particle numbers n are large compared to the number of reactants and products, r
and s, respectively, the free-energy differences which appear in the rates (30) and (31) can
be rewritten as

F(n) − F(n − rρ) ≈F(n) −
[
F(n) −

∑

a

∂F

∂na
rρ
a

]

=
∑

a

rρ
a μa, (38)

where in the first line we expanded F to first order in r , in the second line we used the
definition of the chemical potential of species a:

μa = ∂F

∂na

= ∂f

∂ca
, (39)

and f(c) is the free energy per unit volume in the deterministic notation. The second line in Eq.
(38) is only an approximation, however, in the large particle number or deterministic limit, the
error due to retaining only the first term in the Taylor expansion becomes vanishing. In this
limit, Eq. (38) matches the affinity of the reaction, which is the driving force of the chemical
reaction, according to irreversible thermodynamics [37], see Appendix B for details.

Therefore, the currents in a deterministic, non-ideal CRN can be written as

J+ρ =kρe
β

∑
a r

ρ
a μa ,

J−ρ =kρe
β

∑
a s

ρ
a μa , (40)

which is an expression conceptually similar to that given by other approaches to construct
thermodynamically consistent dynamics for deterministic CRNs [22, 24]. Once again, the
currents (40) match their ideal MAK counterpart (19) if the chemical potentials used in
the rates are those of an ideal solution, i.e., μa = 1/β log ca + μ0

a . Here and in the rest
of the text, dimensional arguments of the logarithms remain due to the fact that we are
absorbing the effect of the total concentration in μ0, i.e., the original chemical potential was
μa = 1/β log(ca/ctot) + μ0

a , where ctot = ∑
a ca (the sum includes the solvent), but since

variations in ctot can be neglected − log(ctot) is just a constant and is absorbed into μ0
a (and,

thus, into kρ).
As in the previous section, if we assume the rate constant is state-dependent then the

currents are given by

J+ρ(c) = k̃ρgρ(c)eβ
∑

a r
ρ
a μa ,

J−ρ(c) = k̃ρgρ(c)eβ
∑

a s
ρ
a μa , (41)

where k̃ρ is still a constant and any dependency of the rate constant on the state is given by
the function gρ(c).
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3.2 Non-equilibrium Systems

So far we considered the propensity functions of equilibrium CRNs. Given the large number
of physically interesting systems which are out of equilibrium, such as living beings, in what
follows we will generalise the analysis of Sect. 3.1 to a specific type of non-equilibrium
systems: those in which the work is done by the chemostats they are connected to.

Let us assume that N ′ out of the N species in the system are connected to multiple particle
reservoirs—chemostats: In the stochastic and deterministic description, each chemostat keeps
constant the chemical potential of the species to which it is connected. Then, in general, the
system will not relax to equilibrium, because of the work done on it by the chemostats.
In the stochastic and deterministic description, the dimensions of the space of states or
concentrations, respectively, is reduced to N − N ′ ≤ N , since the chemostatted species are
no longer dynamical variables.

3.2.1 Stochastic Description

We assume that connecting the system to several chemostats does not alter any of the mecha-
nisms of the chemical reactions, since it only tunes the concentration of the species to which
they are connected, in order to match a given value of chemical potential. Then, reactions
that involve both chemostatted and non-chemostatted species are driven in one direction by
the work done by the chemostats inserting and removing particles from the system (in order
to keep their chemical potentials constant). Given that the mechanism of reaction remains
the same, in line with the previous section the rates of these driven chemical transitions are
taken to be [22, 23, 25, 26]

f+ρ(n) = kρe
β[F(n)−F(n−rρ)+∑

b r
ρ
b μb], (42)

f−ρ(n) = kρe
β[F(n)−F(n−sρ)+∑

b s
ρ
b μb], (43)

where now F is the free energy of the N − N ′ non-chemostatted species, n contains the
particle numbers of the non-chemostatted species only, and the summation over b runs over
the chemostatted species. For the sake of clarity, in what follows we will reserve the index b
for the chemostatted species, and the index a for the non-chemostatted ones.

The rationale behind these relations is that the chemical reaction is still driven by free
energy differences except that now the the free energy differences due to the consumption
of chemostatted species is just given by the chemical potential of the chemostats μb. The
terms

∑
b r

ρ
b μb and

∑
b s

ρ
b μb in the exponential represents the chemical work done by the

chemostats (with chemical potentials fixed at μb) when a reaction ρ occurs, which pushes
the system out of equilibrium. The effect of the non-chemostatted species is still given by
the free energy differences F(n) − F(n − rρ) and F(n) − F(n − sρ).

This implicitly assumes that the chemostatted species are abundant (so that the chemical
potential does not fluctuate) and that they are ideal (negligible interactions with the non-
chemostatted species). If the chemostatted species were not ideal, then the concentration of
species might dynamically vary to match the chemostatted chemical potential as the particle
numbers in the system change. Here, we only consider the simpler case of ideal chemostatted
species and refer the interested reader to Ref. [22], where the case of non-ideal chemostatted
species was analysed.
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As in Sect. 3.1 [see Eqs. (35) and (36)], the rate constants in Eqs. (42) and (43) may be
generalised in such a way that kρ depends on the system state:

f+ρ(n) = k̃ρgρ(n − rρ)eβ[F(n)−F(n−rρ)+∑
b r

ρ
b μb],

f−ρ(n + vρ) = k̃ρgρ(n + vρ − sρ)eβ[F(n+vρ)−F(n+vρ−sρ)+∑
b s

ρ
b μb], (44)

where k̃ρ is independent of n. Propensity functions of this form have been suggested before
in other contexts, such as in the modelling of molecular motors [38].

3.2.2 Deterministic Description

Proceeding along the lines of Sect. 3.1.2, in the deterministic limit the above propensity
functions result in the currents

J+ρ(c) = k̃ρgρ(c)eβ(
∑

a r
ρ
a μa+∑

b r
ρ
b μb),

J−ρ(c) = k̃ρgρ(c)eβ(
∑

a s
ρ
a μa+∑

b s
ρ
b μb). (45)

4 Steady-State Distribution for Complex-Balanced, Non-ideal CRNs

In what follows, we will prove one of the central results of this work, i.e., that the complex-
balance condition allows us to generalise to non-ideal CRNs the result (23) [33] for the
steady-state distribution of the network, which is generally unique (for details see Refs. [39,
40]).

Namely, we claim that CRNs for which the complex-balance condition (15) holds, the
steady state of the stochastic dynamics (10) with propensity functions (44) reads

πneq(n) = e−β[F(n)+∑
a μ̃ana ]

Z
, (46)

where the parameters μ̃a depend on the chemostats to which the system is connected and
on the reaction constants of the network, but not on F . These parameters can be obtained
from the CRN in the ideal and deterministic limit, thus significantly simplifying the task of
obtaining analytically the steady-state of the system. Note that we reserveμb for the chemical
potentials of the chemostats while μ̃a is a parameter that describes how the particle numbers
at steady state of the non-chemostatted species depend on the non-equilibrium driving of the
system. An additional necessary condition to prove this result is that the function gρ must be
the same for all reactions, i.e., gρ = g; the relaxation of this hypothesis will be discussed in
Sect. 6.

The proof follows closely that of Anderson, Craciun and Kurtz [33], and here we only
present its main steps—see Appendix C for a full proof. We will substitute the steady-
state (46) into the dynamical equations, look for solutions where the probability flux across
complexes vanishes, and obtain the complex-balance condition for a network with MAK,
Eq. (20). We can thus conclue that, if the network modelled deterministically with MAK is
complex-balanced at steady state, i.e. Eq. (20) is satisfied, then Eq. (46) is the steady-state
probability distribution of its stochastic non-ideal counterpart. Furthermore, the parameters
μ̃a in Eq. (46) can be obtained by solving Eq. (20).
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By inserting the ansatz (46) in Eq. (10) with propensity functions of the form (44) and
gρ = g for all reactions, at steady state we obtain

∑

ρ

k̃ρ

{
g(n − sρ)eβ[F(n)−F(n−sρ)+∑

a v
ρ
a μ̃a+∑

b r
ρ
b μb]

+ g(n − rρ)eβ[F(n)−F(n−rρ)−∑
a v

ρ
a μ̃a+∑

b s
ρ
b μb]

}

=
∑

ρ

k̃ρ

{
g(n − rρ)eβ[F(n)−F(n−rρ)+∑

b r
ρ
b μb]

+ g(n − sρ)eβ[F(n)−F(n−sρ)+∑
b s

ρ
b μb]

}
. (47)

The previous equation is satisfied if, for each complex z, we have
∑

ρ|sρ=z

k̃ρg(n − sρ)eβ[F(n)−F(n−sρ)+∑
a v

ρ
a μ̃a+∑

b r
ρ
b μb]

+
∑

ρ|rρ=z

k̃ρg(n − rρ)eβ[F(n)−F(n−rρ)−∑
a v

ρ
a μ̃a+∑

b s
ρ
b μb]

=
∑

ρ|rρ=z

k̃ρg(n − rρ)eβ[F(n)−F(n−rρ)+∑
b r

ρ
b μb]

+
∑

ρ|sρ=z

k̃ρg(n − sρ)eβ[F(n)−F(n−sρ)+∑
b s

ρ
b μb]. (48)

Given that in the previous equation the complex z is fixed, it can be simplified and yields
∑

ρ|sρ=z

k̃ρe
β[∑a(za−rρ

a )μ̃a+∑
b r

ρ
b μb] +

∑

ρ|rρ=z

k̃ρe
β[−∑

a(s
ρ
a −za)μ̃a+∑

b s
ρ
b μb]

=
∑

ρ|rρ=z

k̃ρe
β

∑
b r

ρ
b μb +

∑

ρ|sρ=z

k̃ρe
β

∑
b s

ρ
b μb . (49)

Setting

c∗
a = exp[−β(μ̃a + μ0

a)], (50)

k+ρ = k̃ρ exp

[
β

(∑

a

rρ
a μ0

a +
∑

b

rρ
b μb

)]
, (51)

k−ρ = k̃ρ exp

[
β

(∑

a

sρ
a μ0

a +
∑

b

sρ
b μb

)]
, (52)

Eq. (49) can be shown to be equivalent to the complex-balance condition for determin-
istic CRNs with MAK, Eq. (20), with rate constants given by Eqs. (51) and (52). These
rate constants include the contribution of the standard-state chemical potentials μ0

a and the
chemostats, as is usually the case in MAK [41] (although, without loss of generality, for
the purposes of this result, all μ0

a can taken to be 0). Hence, a CRN for which the deter-
ministic steady-state is complex balanced allows for a steady state of the form (46) for its
stochastic and non-ideal version. Solving Eq. (20) for the steady-state concentrations with
MAK and rate constants (51) and (52) yields c∗

a and, thus, the parameters μ̃a [via Eq. (50)]
which appear in the steady-state distribution (46). The exponential relationship between the
concentrations c∗

a and μ̃a reflects the logarithmic contribution of concentrations in the ideal
chemical potential of solutes: μa = μ0

a + 1/β log ca .
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Fig. 4 Graphical representation of the illustrative CRNs of Sects. 4.1 (left) and 5.1.1 (right)

Equation (46) shows that the steady-state distribution of a non-ideal complex-balanced
CRN has the form of an effective Boltzmann distribution, with the standard-state chemical
potentials μ0

a shifted by μ̃a (typically μ0
a would be included within F). From the physical

standpoint, it is interesting to note that in Eq. (46) the free-energetic contribution F and the
non-equilibrium term

∑
a μ̃ana factor out.

This result is similar to Theorem6.6 of Ref. [33]—here Eq. (26)—butwe have generalised
it slightly to include rates of the form (44), which includes the function g that could be of
interest in phase-separated systems as it modulates the rates depending on the environment.
Moreover, our approach relates both the rates (44) and the steady-state distribution (46) to
thermodynamic quantities, like free energies and chemical potentials.

In what follows, we will illustrate the result (46) with a minimal working example of a
complex-balanced CRN, and compare its predictions with numerical simulations.

4.1 Example

Let us consider the following CRN—see Fig. 4for a graphical representation:

A + D �B,

B �C,

C �A + D, (53)

with a free energy taken from a regular-solution theory (where each particle, including the
solvent, occupies a finite volume and thus total volume is linked to the total number of
particles), see Appendix A for details.

For the sake of simplicity, we assume that the solvent particle number, nsol, is conserved,
and allow the total volume to vary:

N = NABC + nD + nsol, (54)

where the total number of particles of species A, B and C,

NABC = nA + nB + nC, (55)

is kept constant in the CRN defined in (53).
Since the CRN (53) is complex balanced (which can be checked a posteriori), its steady

state in the stochastic description and with propensity functions (44) can be obtained from its
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deterministic dynamical equations (11). To achieve this, we write the stoichiometry matrices

R =
⎛

⎝
1 0 0 1
0 1 0 0
0 0 1 0

⎞

⎠ , S =
⎛

⎝
0 1 0 0
0 0 1 0
1 0 0 1

⎞

⎠ , (56)

which, together with the reaction constants given by Eqs. (51) and (52) and the free energy
(32), completely define an ideal CRN. For simplicity, we assume that the standard-state
chemical potentials μ0 take the value 0 and that k̃ρ = 1 for every reaction ρ. Finally, as an
example, we take the non-equilibrium contribution of the chemostats to be present only in the
reaction C�A+D, with

∑
b rbμb = 0 and

∑
b sbμb = log(5/2)β−1. These considerations,

together with MAK [Eq. (19)] and the dynamics (11), yield the following set of deterministic
and ideal equations for the CRN:

dnA
dt

= nB + 5

2
nC − 2 nAnD

dnB
dt

= nC + nAnD − 2 nB

dnC
dt

= nB + nAnD − 7

2
nC. (57)

Note that in the system derived from the matrices (56) dt nA = dt nD. For the sake of
concreteness, we take as initial conditions

NABC = 40 (58)

and
nA − nD = 5, (59)

the solution of the above system at steady state is n∗
A � 8.1, n∗

B � 19.1, n∗
C � 12.7 and

n∗
D � 3.1. It can be checked that this steady-state solution satisfies the complex-balance

requirement for MAK, Eq. (20). According to Eq. (50), we have the following identity:
n∗
a = e−βμ̃a , which enables us to obtain the values of μ̃a and the steady-state probability

(46).
Note that there are two conservation laws, Eqs. (58) and (59), and four chemical species:

hence, πneq(n) is a distribution with only two independent variables.
In order to evaluate Eq. (46) explicitly, let us assume that the system has the following

regular-solution free energy

F(n) = 1

β
log

(
nA! nB! nC! nD! nsol!

N !
)

+ (nAμ0
A + nCμ0

C + nDμ0
D) + χ

nAnC
N

, (60)

where the first addend is an entropic term, the second corresponds to the internal energies of
the chemical species taken with respect to that of species B, and the third to an interaction
between species A and C.

Setting χ = 10 and μ0
A = μ0

C = μ0
D = log 2, we obtain the bimodal steady-state

probability depicted in Fig. 5, which closely matches the one obtained from a simulation of
the same CRN using the Gillespie algorithm [42]. Simulations were started in parallel from
random Poissonian initial conditions satisfying the constraints above, and the samples were
obtained after the simulation relaxed to steady state. Note that, in order to arrive to the set of
Eqs. (57), we assumed all μ0

a = 0, while in the free energy we are giving them a different
value. It would have been equivalent to insert these values of μ0

a into the system (57) and
omit them in the free energy (60).
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(A) (B)

Fig. 5 Examples of marginal probabilities (A) and conditional probabilities (B) of the CRN discussed in
Sect. 4.1.Blue triangles are the probabilities obtained from theGillespie simulation, and the red lines theoretical
predictions from our analytical result (46)

5 Lyapunov Function for Complex-Balanced Steady States

A Lyapunov function is a function that is minimised by the dynamics of the system and takes
the value 0 at steady state. Under fairly general conditions, the logarithm of the steady-state
probability distribution in the stochastic CRN is a Lyapunov function of the deterministic
one [43, 44].

While the exact form of the Lyapunov function has been obtained for ideal and complex-
balanced CRNs [30, 45], here we demonstrate that for non-ideal, complex-balanced CRNs
the following function decreases with the dynamics

L(c) = − lim
V→∞

1

V
log[πneq(n)]

= β

[
f(c) +

∑

a

μ̃aca

]
+ log Z

V
, (61)

where the factor 1/V has been inserted to maintain the magnitude intensive while V →
∞. Our approach generalises the results of Anderson and Nguyen [46] for product-form
stationary states of CRNs.We will call the function (61) a Lyapunov function: This is a slight
abuse of terminology, because we will only prove that L decreases with the dynamics, not
that its value is zero at steady state.

The function L equals zero only if

log Z

V
= −β

[
f(c∗) +

∑

a

μ̃ac
∗
a

]
, (62)

where the asterisk denotes values at steady state. Given that Z is a normalisation factor for
the stochastic complex-balanced CRN at steady state, see Eq. (46), it reads

Z =
∑

n

e−β[F(n)+∑
a μ̃ana ], (63)

which, for a deterministic CRN involving a large number of particles, can be evaluated using
the saddle-point approximation, where the sum is evaluated at the minimum value of the
argument of the exponential. If the deterministic system is monostable, then the argument of
the exponential has a single local minimum. Therefore, for monostable CRNs, this approxi-
mation will yield the correct value and the Lyapunov function Eq. (61) will take the value 0
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at steady state. However, care must be taken when handling multistable CRNs in this way,
which is why, in order to avoid this complexities, we will not prove that Eq. (61) takes the
value 0 at steady state in general. Nevertheless, the fact that this function decreases with the
dynamics is sufficient for our purposes.

In what follows we sketch the proof that, for complex-balanced non-ideal CRNs, the
Lyapunov function (61) is a decreasing function of time—for a full step-by-step proof, see
Appendix D.

Given that the normalisation factor Z does not depend on time but only on the non-
equilibrium steady state, the time derivative of L is

dL
dt

=
∑

k

∂L
∂ck

∂ck
∂t

= β
∑

k

(μk + μ̃k)

{
∑

ρ

v
ρ
k kρg(c)

[
eβ(

∑
a r

ρ
a μa+∑

b r
ρ
b μb) − eβ(

∑
a s

ρ
a μa+∑

b s
ρ
b μb)

]}
,

(64)

where in the second line we used Eqs. (11) and (45), together with the assumption gρ = g.
After adding and subtracting terms of the form

∑
a r

ρ
a μ̃a in the exponentials (of the form∑

a s
ρ
a μ̃a for the second exponential), we repeatedly apply the inequality ex (y−x) ≤ ey−ex

to the sums of chemical potentials, and obtain

dL
dt

≤
∑

ρ

kρg(c)eβ(
∑

b r
ρ
b μb−∑

a r
ρ
a μ̃a)

[
eβ

∑
a(μa+μ̃a)s

ρ
a − eβ

∑
a r

ρ
a (μa+μ̃a)

]

+
∑

ρ

kρg(c)eβ(
∑

b s
ρ
b μb−∑

a s
ρ
a μ̃a)

[
eβ

∑
a(μa+μ̃a)r

ρ
a − eβ

∑
a s

ρ
a (μa+μ̃a)

]
. (65)

The expression in the right-hand side (RHS) above can be split in terms of the different
complexes in the system:

dL
dt

≤
∑

z

g(c)
{ ∑

ρ|sρ=z

kρe
β[∑b r

ρ
b μb−∑

a r
ρ
a μ̃a+∑

a(μa+μ̃a)s
ρ
a ]

−
∑

ρ|rρ=z

kρe
β[∑b r

ρ
b μb−∑

a r
ρ
a μ̃a+∑

a r
ρ
a (μa+μ̃a)]

+
∑

ρ|rρ=z

kρe
β[∑b s

ρ
b μb−∑

a s
ρ
a μ̃a+∑

a(μa+μ̃a)r
ρ
a ]

−
∑

ρ|sρ=z

kρe
β[∑b s

ρ
b μb−∑

a s
ρ
a μ̃a+∑

a s
ρ
a (μa+μ̃a)]

}
. (66)

For a complex-balanced system, it can be shown that the expression in curly brackets in Eq.
(66) vanishes for each complex z independently, as a consequence of the complex-balance
condition for MAK systems, Eq. (20). Then

dL
dt

≤ 0, (67)

and L decreases, or remains unchanged, along a trajectory.
We conclude that, unlike in classical equilibrium systems, here it is not the F that is

minimised by the dynamics, but a free energy (61) where the standard chemical potentials
μ0
a are shifted by μ̃a . This shift, which is entirely due to the non-equilibrium contribution
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of the chemostats, enables the system to present non-vanishing chemical-reaction net flows
between species at steady-state, which, in the following, we will call chemical currents.

5.1 Spatially Heterogeneous Systems

In order to describe phase-separating systems, in what follows we will incorporate in our
framework spatial inhomogeneities. In the deterministic description, concentrations are now
a function of space, ca(x) within a volume 	, and the free energy is a functional of these
concentrations, F[c].

The time derivative of the concentrations is given by the following reaction-diffusion (RD)
equation

∂ca(x)

∂t
= −∇ · Ja +

∑

ρ

vρ
a [J+ρ(x) − J−ρ(x)], (68)

where the time dependence of c is omitted, the first term in the RHS of the equation rep-
resents diffusion, and the second one the chemical reactions. As in the linear irreversible
thermodynamics framework [47], the driving force of the diffusion current Ja is the gradient
of chemical potentials, ∇μa : the diffusive currents then read

Ja = −
∑

k

Mak∇μk, (69)

where Mak is the mobility matrix. We assume no-flux boundary conditions

Ja |x∈∂	 = 0 (70)

for the non-chemostatted species, where ∂	 denotes the boundaries of the volume 	.

We now consider a generalisation of the Lyapunov function (61) to inhomogeneous sys-
tems. In the following, we will show that the dynamics (68) for complex-balanced networks
minimise the Lyapunov functional

L = β

∫

	

dxL(c(x)) = βF[c] + β

∫

	

dx
∑

a

μ̃aca(x) (71)

where F[c] is the free energy of the system, which depends on the concentration profile
through

F[c] =
∫

	

dx f(c). (72)

The time derivative of the Lyapunov functional (71) yields

dL

dt
=

∫

	

∂L
∂t

dx

=
∑

a

∫

	

dx
∂L

∂ca(x)

∂ca(x)

∂t

=
∑

a

∫

	

dx β[μa(x) + μ̃a]
[
∇ · Ja +

∑

ρ

vρ
a (J+ρ − J−ρ)

]
, (73)

where μa(x) = δF[c(x)]/δca(x) is the local chemical potential.
By applying the results of Sect. 5, Eq. (67), at every spatial point x, we obtain that the

second term in the square brackets of the RHS of Eq. (73) is negative or zero. Therefore, to
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prove that dL/dt ≤ 0 it is sufficient to show that the first term in the square brackets of the
RHS is also negative or zero. In this regard, we note that

∑

a

∫

	

dx [μa(x) + μ̃a]∇ · Ja

=
∑

a

∫

	

dx{∇ · [(μa(x) + μ̃a)Ja] − [∇(μa(x) + μ̃a)] · Ja}. (74)

The first term in the RHS of the last equality vanishes due to the divergence theorem and
Neumann boundary conditions (70). By observing that μ̃ does not depend on space, the
addend containing μ̃ in the second termvanishes (∇μ̃a = 0). Finally, if theOnsager reciprocal
relations for the mobility matrix Mak hold [48], then the addend containing μa(x) in the
second term is necessarily positive, because it represents the entropy production of a diffusion
process [37, 47]. TheOnsager reciprocity relations ensure that a system relaxes to equilibrium
in the absence of external work. Thus, the condition that the Onsager relations hold is not a
limitation of the result but a consequence of thermodynamical consistency.

Combining the results above, we obtain that

dL

dt
≤ 0. (75)

It follows that, for a non-ideal, complex-balanced system, L decreases, which we can now
use to obtain useful information about the steady state, along the lines of the free energy
minimisation for systems at thermodynamic equilibrium.

Therefore, for a complex-balanced system, we can minimise L (subject to constraints in
particle numbers) in order to obtain the concentration profile at steady state. Thisminimisation
results in constraints for the steady-state profile of the form

δL

δca(x)
= β(μa(x) + μ̃a) − λ = 0, (76)

where λ is a Lagrange multiplier that enforces the particle-conservation constraint—for
further details see Sect. 5.2. Equation (76) implies that in a complex-balaced solution at
steady state there cannot be any diffusive currents, since the chemical potential is constant
throughout space and the force driving diffusion currents is ∇μa(x). Nevertheless, chemical
currents can exist at steady state, as noted in the previous section, and the concentration
profile may not be homogeneous. This is a major consequence of the present work and it
stems directly from the form of the chemical reaction rates and the fact that the network is
complex-balanced.

5.1.1 Example

Let us consider the following CRN (see Fig. 4 for a graphical representation):

A � B

B � C,

C � A, (77)

with a free energy taken from a regular solution theory, as before. We will first assume that
the system is homogeneous and later we will analyse the full reaction-diffusion system.
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For simplicity, we assume that the system is driven out of equilibrium solely by imposing a
non-equilibriumchemical potential difference in the transition fromC � A,with

∑
b sbμb =

−�β−1 and
∑

b rbμb = 0.
We take all the reaction constants k equal to each other, and note that the network is

necessarily complex-balanced, as all chemical reactions are unimolecular (in unimolecular
networks each of the species is a complex, hence the steady-state condition is equivalent to
the complex-balance condition, if gρ = g for every reaction ρ).

Proceeding along the lines of Sect. 4.1, in the stochastic description the steady-state of
the CRN (77) with propensity functions (44) can be obtained from the following ideal and
deterministic rate equations:

dnA
dt

= nB + e−�nC − 2nA

dnB
dt

= nC + nA − 2nB

dnC
dt

= nB + nA − (1 + e−�)nC.

The solution of the above system at steady-state is

nA = 2nC
3

(
1

2
+ e−�

)
,

nB = nC

[(
1

2
+ e−�

)
1

3
+ 1

2

]
.

We obtain the values of μ̃a by identifying na with e−βμ̃a [as in Eq. (50)]. Noting that we can
express such potentials with respect to that of species C, we obtain the Lyapunov function of
the system

L(c) = βf(c) − cA log
1 + 2e−�

3
− cB log

(
1

2
+

1
2 + e−�

3

)
− log Z

V
, (78)

where a detailed expression of the normalisation constant Z is not essential here, because Z
is constant along the dynamics, and it does not alter the location of the minima of L in the
space of concentrations c.

Unlike above, we will now describe the amount of species with reference to the fraction
of volume they occupy at each point of space φ(x). Then,

∑

a

φa(x) + φsolv(x) = 1, (79)

where φsolv(x) is the volume fraction of the solvent and the sum runs over solutes only. Equa-
tion (79) states that the solution is incompressible and, thus, φsolv(x) = 1 − ∑

a φa(x). The
reason for using volume fractions instead of concentrations is threefold: It is the convention
normally used in phase separation studies and regular solution models, it enforces incom-
pressibility (which is the case in most liquids) and is dimensionless. For simplicity we will
assume that the molecular volumes of every species is the same, so that φa(x) is proportional
to ca(x).

Hence, the following regular solution free-energy density can describe spatial inhomo-
geneities in an incompressible solution:

βf(c) =
∑

a

φa logφa +
(
1 −

∑

a

φa

)
log

(
1 −

∑

a

φa

)
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+ χAAφ2
A + χABφAφB +

∑

a,k

κak(∇φa) · ∇φk, (80)

where the first two terms in the RHS are entropic terms and the following two represent the
interactions between the solutes. The last addend represents the free-energetic cost of spatial
inhomogeneities in the concentration profiles, and is known as Cahn-Hilliard term [49].

Assuming the system is one-dimensional, the resulting Lyapunov functional for the RD
system is

L = β

∫
dx

[
f(φ) +

∑

a

μ̃aφa(x)

]
, (81)

where μ̃a are the ones obtained for the homogeneous system and do not depend on the
coordinate x .

We set χAA = −2, χAB = −7, � = −2, κAA = κBB = 5, κAB = 1 and any other
Cahn-Hilliard coefficient equal to 0. With this parameter set, the reaction-diffusion system
exhibits phase separation at steady state (see Fig. 6). By entering this free energy in the RD
equations (68) and assuming no state dependency of the reaction constants kρ , we obtain a set
of equations which describes the dynamics of the system. Figure 6 shows that the Lyapunov
functional (81) is minimised by the dynamics, and that the non-equilibrium steady state is
characterised by phase coexistence.

Finally, in Fig 6 C, the net reaction flux J+ρ − J−ρ at steady state as a function of the
spatial coordinate is depicted. This net reaction flux is constant in space and, given the
topology of the CRN (77), is equal for all reactions ρ. The fact that the net reaction flux is
independent of the spatial coordinate despite the varying concentrations (see Fig. 6 B) is a
result of chemical reaction fluxes being driven by the chemical potential, which, as argued
above, is constant—see Eq. (76). Note that this is also a consequence of having dropped the
dependency of the reaction constants on the environment via a function g(c). If all reaction
constants were subject to this modulation (which has to be the same for every reaction for
our results to hold), then the reaction rates at steady state could be space-dependent but the
chemical potential would still be constant.

5.2 Phase Diagram of a Chemically Reactive Mixture

Since the Lyapunov functional for complex-balanced systems discussed in Sect. 5.1 is
minimised by the dynamics, it carries plenty of information on the steady state.

Along the lines of phase separation for equilibrium systems, the steady state can be
obtained by minimising L[c] with respect to c, subject to certain constraints, e.g., particle
conservation. The concentration profiles which realise the absolute minimum of L[c] may
be either spatially uniform, or depend on space, according to the system parameters. On a
qualitative level, the phenomenology of a complex-balanced system does not change much
with respect to that of a non-ideal solution at equilibrium, but the non-equilibrium terms may
alter the phase diagram, thus tweaking the onset of phase separation.

To illustrate this point, in this Section we consider a non-ideal solution with the CRN (77)
in the deterministic description, and obtain its phase diagram. Therefore, we minimise the
Lyapunov functional (81) of Sect. 5.1.1, with the particle-conservation constraint

φN = 1

|	|
∫

	

dx[φA(x) + φB(x) + φC(x)], (82)
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(A)

(B)

(C)

Fig. 6 Numerical results for the CRN (77) obtained by perturbing a homogeneous solution and integrating
forward in time the reaction-diffusion equations (68) until a steady state is reached. The system is considered
one-dimensional, and its normalised spatial coordinate x lies between zero and one. A) Evolution of the
Lyapunov functional as a function of time in logarithmic scale. Here, the Lyapunov functional does not include
the constant term log Z in Eq. (61). B) Steady-state profile of the system, displaying phase coexistence. The
volume fractions φ of species A, B and C are plotted as functions of x . C) Net reaction flux J+ρ − J−ρ (black
line, arbitrary units) at steady state, as a function of x

where φa(x) is the volume fraction of species a, and the constant φN fixes the total volume
fraction of the solutes. Then, the function that needs to be minimised is the Lagrangian

� =
∫

	

dx L(φ) − λ

{
|	| φN −

∫

	

dx [φA(x) + φB(x) + φC(x)]
}

, (83)

where λ is the Lagrange multiplier associated with the conservation of solutes, and |	| the
volume of 	.
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(A) (B)

Fig. 7 Top: Steady-state concentration profiles of the example discussed in Sect. 5.2, obtained by numerical
integration of the RD equations [Eq. (68)]. The concentrations of each species are plotted as functions of
the one-dimensional space coordinate x , from x = 0 to x = 1. Each panel has a number (roman numerals)
associated and corresponds to a different parameter configuration,which is specified by the exact position of the
roman numerals in the phase diagrambelow.The leftmost and rightmost panel correspond to a spatially uniform
steady state, while in the two middle panels phase separation occurs. Bottom: Phase diagrams as functions
of the total solute fraction φN and interaction parameter χ (A) or non-equilibrium driving � (B), obtained
by minimising the Lagrangian �, see Appendix E. The numerical minimisation requires higher precision as
the parameters near criticality, which is why the density of data around the critical point decreases. The color
code represents the amount of A particles along the phase-coexistence lines. While in the top panels the width
of the inter-phase interface is finite to ease numerical integration, in the lower panels such width has been
assumed to vanish

For the sake of simplicity, we take the typical lengthscale of 	 to be large with respect
to inter-species interfaces: as a result, the volume fractions φ(x) can be approximated by
piecewise constant functions. If the system phase separates, we assume that only two homo-
geneous, distinct phases, whichwe denote by ‘1’ and ‘2’, will appear.Within this assumption,
the Lagrangian (83) reads

� = |	1|L(φ1)+|	2|L(φ2)−λ[|	|φN −|	1|(φ1
A+φ1

B+φ1
C)−|	2|(φ2

A+φ2
B+φ2

C)], (84)

where	1 and	2 stand for the volumes phases 1 and 2, respectively, with |	1|+|	2| = |	|,
and we consider the following free-energy density

βf(φ) =
∑

a

φa logφa +
(
1 −

∑

a

φa

)
log

(
1 −

∑

a

φa

)
− χφ2

A, (85)

where all species except A are considered non-interacting and A interacts with itself (χ > 0
implies an effective attraction between A particles).

Theminimisation of� yields the phase diagram in Fig. 7, seeAppendixE for details. Phase
separation occurs in regions II and III of the phase diagram, as shown in the concentration
profiles displayed in the insets.

From the form of the free energy (85), we can see that is the species A that drives phase
separation, since for χ > 0 the free energy will favour segregating A from the rest of the
solution. Thus, whether the steady-state displays one phase or a coexistence of phases also
depends on the value of the non-equilibrium chemical potential difference�, which can alter
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the concentration of A at steady state and, hence, modulate phase separation, as can be seen
in Fig 7 B.

6 Discussion

In this work, we have shown that for a chemically reactive non-ideal solution we can obtain
results for complex-balanced networks analogous to those for ideal solutions, provided that
the system is modelled in a thermodynamically consistent way. This implies that the rates
of the chemical reactions incorporate the interactions between the species in the system and,
therefore, mass-action kinetics (MAK) no longer holds. By generalising MAK to a non-
ideal solution, we obtained the steady-state probability distribution for a stochastic complex-
balanced CRN and the Lyapunov function of its deterministic counterpart. Furthermore, after
including diffusion in the description of the system we were also able to find a Lyapunov
functional for the reaction-diffusion system, functional that determines the phase diagram of
the system when minimised.

Our results are of particular importance for non-equilibrium phase-separating systems. By
combining previous results from the mathematical theory of CRNs [33, 46] and concepts of
non-equilibrium thermodynamics [37, 48], we found that the resulting complex-balanced RD
system cannot sustain diffusion currents at steady state, see Eq. (76). Since, in many cases,
diffusion currents are required for pattern formation in reaction-diffusion systems, breaking
complex balance is a necessary condition to obtain such patterned steady states, at least when
interactions are modelled in a thermodynamically consistent way unlike, e.g., those in Refs.
[19, 20]. In this regard, complex balance can be broken in two ways: First, by choosing a
suitable network topology that allows for a steady state which is not complex-balanced, as in
Ref. [21]. Second, in a system where different phases coexist, by allowing the reaction rates
to depend differently on local environment: For example, in Ref. [25] a patterned steady-
state is produced by allowing one (and only one) of the reaction constants to depend on
the concentration of an enzyme which localises in one of the phases. Mathematically, this
violates one of the necessary conditions for our results to hold, namely gρ = g (see Sect. 4),
thus allowing for more general steady states.

In biological cells, phase separation has been hypothesised to perform many functions,
such as, acceleratingbiochemical reactionswithin the condensate irrespective of the rate of the
reaction in the dilute phase [50, 51]. The presentwork implies that, in order to control chemical
reactions in each of the phases independently (at steady state) breaking complex balance is
necessary, by virtue of Eq. (76). Indeed, in a complex-balanced system, the chemical potential
of every species is constant throughout space. Then, given that the force driving the chemical
reactions are the chemical potentials, the reaction rates in both phases are related, making it
impossible to regulate the rates of chemical reactions in each phase in a fully independent
way, and suggesting that breaking complex balance in one of the two ways outlined above is
crucial for such control.

Clearly, the largest limitation of our study is the fact that we are restricted to complex-
balanced networks, which, as shown above, constrains its phenomenology. However, these
networks still have a broad applicability and interest in cell biology, examples of which are
the E. coli chemotaxis system [52], kinetic proofreading [53, 54] or histone post-translational
modifications [55] (the latter being particularly interesting since the model includes chemical
reaction rates that are not MAK, which makes our theory particularly relevant to this case).
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Overall, complex balance is known to be a key feature of CRNs which determines not
only their behavior [32, 33] but also their thermodynamic properties [34]. In this analysis, we
further stress the connection between the characteristics of the reaction network and the ther-
modynamically consistent structure of the physical system, in an effort to generalise results
from ideal CRNs, and explore non-equilibrium dynamics of complex-balanced networks.
However, little is known about non-complex balanced systems and, given our results, further
research regarding the behaviour of this type of networks out of thermodynamic equilibrium
would be of the utmost importance, both from the physical [56] and biological [51] point of
view.
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Appendix A: Form of the Propensity Functions for a Regular-Solution
Theory

We now consider a model of a solution based on a lattice where each chemical species
(including the solvent) occupies one lattice site, thus neglecting differences in molecular
volumes.

In a lattice with N sites (note that the number of sites is proportional to the volume)
occupied by N different species, with

∑N
a=1 na = N , the configurational entropy is given

by

S = kB log
N !∏
a na !

, (A1)

where the argument of the logarithm is the number of microstates. The internal free energy
of each species a is given by the standard-state chemical potential μ0

a .

123

http://creativecommons.org/licenses/by/4.0/


On Non-ideal Chemical-Reaction Networks and Phase Separation Page 27 of 34 23

We incorporate in this regular-solution model interactions among neighbouring sites,
whose energy (in the mean-field approximation) reads

∑

a,k

χak

2N
[
nank(1 − δa,k) + na(na − 1)δa,k

] =
∑

a,k

χak

2N
(
nank − naδa,k

)
, (A2)

where χak represents the interaction energy between species a and k, and it can also be
interpreted as the matrix of virial coefficients.

Taken into account the previous considerations, the free energy for a homogeneousmixture
of chemical species in the regular-solution model reads

F = U − T S

= kBT

[
∑

a

log(na !) − log(N !)
]

+
∑

a

μ0
ana +

∑

a,k

χak

2N
(
nank − naδa,k

)
, (A3)

where the first two terms in the last line represent the ideal free energy (see Eq. (32) in the
main text), while the last term is exclusively due to interactions between solutes.

With this expression of the free energy we can now derive an expression for the propensity
functions (31) and (31). The forward (or backward) rates are a function of the free energy
difference of the complex:

F(n) − F(n − rρ) = �Fid +
∑

a

rρ
a

∑

k

χak

N nk −
∑

a,k

χak

2N rρ
k r

ρ
a +

∑

a

χaa

2N rρ
a (A4)

where �Fid is the ideal part of the free energy difference of the complex, given by Eq. (33)
in the main text. In the RHS of Eq. (A4), only the first two terms are non-vanishing as we
approach the thermodynamic limit (N → ∞, while keeping na/N fixed): hence, for large
systems, the rest of the interacting terms are negligible. However, for a unimolecular reaction,
since the free energy difference takes a particularly simple form, we have that

f+ρ(n) =kρe
β[F(n)−F(n−rρ)]

=kρ

na
N eβ

(
μ0
a+

∑
k

χa k
N nk

)
, (A5)

where a is the reactant of the reaction +ρ.
In the thermodynamic limit, Eqs. (A4), (30) and (31) imply that the deterministic rates

can be written as

J+ρ = k+ρ

∏

a

cr
ρ
a
a exp

⎛

⎝
∑

a,k

rρ
a χakck

⎞

⎠ , (A6)

where the particle numbers have been replacedwith concentrations (an additional logarithmic
factor has been absorbed into the rate constant k+ρ , as explained in the main text, Sect. 3.1.2)
and the part of the chemical potential representing the internal energy has also been absorbed
in the rate constant k+ρ . Setting

μa = log ca + μ0
a +

∑

k

χakck, (A7)

the rates (A6) match the general expression given in the main text, Eq. (40).
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Appendix B: Chemical Affinity in the Deterministic Limit

In the deterministic limit, we describe the system in terms of intensive variables, namely, the
concentration, c, and the free energy density, f. Then, the left-hand side Eq. (38) becomes

F(n) − F(n − rρ) = V

[
f(c) − f

(
c − rρ

V

)]
. (B8)

If f is differentiable, then the derivative satisfies [57]

lim
V→∞

1

‖ rρ

V ‖

[
f(c) − f

(
c − rρ

V

)
+

∑

a

μa
rρ
a

V

]
= 0, (B9)

since μa has been defined as the partial derivative of f with respect to ca , see Eq. (39) and
‖ · ‖ is the norm of the vector. Thus,

lim
V→∞ V

[
f(c) − f

(
c − rρ

V

)]
=

∑

a

μar
ρ
a , (B10)

implying that the bottom line of Eq. (38) is not an approximation but is actually exact in the
limit V → ∞ (while keeping the concentrations constant).

Appendix C: Proof of the Complex-Balanced Distribution

In this Section we present the full proof of the result (46).
At steady state, the CMEwith rates of the form (44) and gρ = g for all reactions ρ, reads

∑

ρ

k̃ρg(n − sρ)eβ[F(n−vρ)−F(n−sρ)+∑
b r

ρ
b μb]P(n − vρ)

+
∑

ρ

k̃ρg(n − rρ)eβ[F(n+vρ)−F(n−rρ)+∑
b s

ρ
b μb]P(n + vρ)

=
∑

ρ

{
k̃ρg(n − rρ)eβ[F(n)−F(n−rρ)+∑

b r
ρ
b μb]

+k̃ρg(n − sρ)eβ[F(n)−F(n−sρ)+∑
b s

ρ
b μb]

}
P(n). (C11)

By dividing the previous expression by P(n) and substituting the ansatz (46) into it, we
obtain

∑

ρ

k̃ρ

{
g(n − sρ)eβ[F(n)−F(n−sρ)+∑

a v
ρ
a μ̃a+∑

b r
ρ
b μb]

+ g(n − rρ)eβ[F(n)−F(n−rρ)−∑
a v

ρ
a μ̃a+∑

b s
ρ
b μb]

}

=
∑

ρ

k̃ρ

{
g(n − rρ)eβ[F(n)−F(n−rρ)+∑

b r
ρ
b μb]

+ g(n − sρ)eβ[F(n)−F(n−sρ)+∑
b s

ρ
b μb]

}
. (C12)
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We now rewrite the relation above in terms of a summation over each of the complexes
z ∈ C separately

∑

z

{ ∑

ρ|sρ=z

k̃ρg(n − sρ)eβ[F(n)−F(n−sρ)+∑
a v

ρ
a μ̃a+∑

b r
ρ
b μb]

+
∑

ρ|rρ=z

k̃ρg(n − rρ)eβ[F(n)−F(n−rρ)−∑
a v

ρ
a μ̃a+∑

b s
ρ
b μb]

}

=
∑

z

{ ∑

ρ|rρ=z

k̃ρg(n − rρ)eβ[F(n)−F(n−rρ)+∑
b r

ρ
b μb]

+
∑

ρ|sρ=z

k̃ρg(n − sρ)eβ[F(n)−F(n−sρ)+∑
b s

ρ
b μb]

}
, (C13)

where the subscript ‘ρ|sρ = z’ denotes that the sum runs only over reactions ρ whose product
complex sρ is equal to z. This previous equation will be satisfied if

∑

ρ|sρ=z

k̃ρg(n − sρ)eβ[F(n)−F(n−sρ)+∑
a v

ρ
a μ̃a+∑

b r
ρ
b μb]

+
∑

ρ|rρ=z

k̃ρg(n − rρ)eβ[F(n)−F(n−rρ)−∑
a v

ρ
a μ̃a+∑

b s
ρ
b μb]

=
∑

ρ|rρ=z

k̃ρg(n − rρ)eβ[F(n)−F(n−rρ)+∑
b r

ρ
b μb]

+
∑

ρ|sρ=z

k̃ρg(n − sρ)eβ[F(n)−F(n−sρ)+∑
b s

ρ
b μb], (C14)

for every complex z. For any given complex z, Eq. (C14) can be rewritten in the following
form:

g(n − z)eβ[F(n)−F(n−z)]
{ ∑

ρ|sρ=z

k̃ρe
β[∑a v

ρ
a μ̃a+∑

b r
ρ
b μb]

+
∑

ρ|rρ=z

k̃ρe
β[−∑

a v
ρ
a μ̃a+∑

b s
ρ
b μb]

}

= g(n − z)eβ[F(n)−F(n−z)]
{ ∑

ρ|rρ=z

k̃ρe
β

∑
b r

ρ
b μb +

∑

ρ|sρ=z

k̃ρe
β

∑
b s

ρ
b μb

}
. (C15)

We now divide both sides by g(n − z) exp{β[F(n) − F(n − z)]}, and obtain

∑

ρ|sρ=z

k̃ρe
β[∑a(za−rρ

a )μ̃a+∑
b r

ρ
b μb] +

∑

ρ|rρ=z

k̃ρe
β[−∑

a(s
ρ
a −za)μ̃a+∑

b s
ρ
b μb]

=
∑

ρ|rρ=z

k̃ρe
β

∑
b r

ρ
b μb +

∑

ρ|sρ=z

k̃ρe
β

∑
b s

ρ
b μb , (C16)

where we have substituted vρ = sρ − rρ and, depending on the reactions over which the
sum runs, one of this terms can be replaced by the complex z.
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Finally, given that in Eq. (C16) z is fixed, we can divide both sides by exp(β
∑

a zaμ̃a),
yielding

∑

ρ|sρ=z

k̃ρe
β[−∑

a r
ρ
a μ̃a+∑

b r
ρ
b μb] +

∑

ρ|rρ=z

k̃ρe
β[−∑

a s
ρ
a μ̃a+∑

b s
ρ
b μb]

=
∑

ρ|rρ=z

k̃ρe
β[∑b r

ρ
b μb−∑

a z
ρ
a μ̃a ] +

∑

ρ|sρ=z

k̃ρe
β[∑b s

ρ
b μb−∑

a z
ρ
a μ̃a ]. (C17)

By inserting Eqs. (50) to (52) in Eq. (C17), we recover the complex-balance condition
(20) for an ideal and deterministic network.

Appendix D: Proof of theMinimisation of the Lyapunov Function

In this Section we provide the full proof of Eq. (67).
Since Z does not depend on time, the time derivative of the Lyapunov function can be

written as

dL
dt

=
∑

k

∂L
∂ck

∂ck
∂t

= β
∑

k

(μk + μ̃k)
{∑

ρ

v
ρ
k kρg(c)

[
eβ[∑a r

ρ
a μa+∑

b r
ρ
b μb] − eβ[∑a s

ρ
a μa+∑

b s
ρ
b μb]

]}
,

(D18)

where in the third line we have used Eq. (11) with currents given by Eq. (45). By adding and
subtracting terms of the form

∑
a r

ρ
a μ̃a in the exponentials (of the form

∑
a s

ρ
a μ̃a for the

second exponential), we rewrite the previous equality as

dL
dt

=
∑

ρ

∑

k

kρg(c)(μk + μ̃k)(s
ρ
k − rρ

k )eβ[∑a r
ρ
a (μa+μ̃a)−∑

a r
ρ
a μ̃a+∑

b r
ρ
b μb]

+
∑

ρ

∑

k

kρg(c)(μk + μ̃k)(r
ρ
k − sρ

k )eβ[∑a s
ρ
a (μa+μ̃a)−∑

a s
ρ
a μ̃a+∑

b r
ρ
b μb]. (D19)

We now consider the inequality es(t−s) ≤ et−es—which results from 1+x ≤ ex , ∀ x ∈
R with x = t − s—and apply it to the sums of chemical potentials. In the first term in the
RHS of Eq. (D19), we set s = ∑

a(μa + μ̃a)r
ρ
a and t = ∑

a(μa + μ̃a)s
ρ
a , and conversely in

the second term. We then obtain

dL
dt

≤
∑

ρ

kρg(c)eβ(
∑

b r
ρ
b μb−∑

a r
ρ
a μ̃a)

[
eβ

∑
a(μa+μ̃a)s

ρ
a − eβ

∑
a r

ρ
a (μa+μ̃a)

]

+
∑

ρ

kρg(c)eβ(
∑

b s
ρ
b μb−∑

a s
ρ
a μ̃a)

[
eβ

∑
a(μa+μ̃a)r

ρ
a − eβ

∑
a s

ρ
a (μa+μ̃a)

]
. (D20)

This expression can now be separated in terms of the different complexes in the system:

dL
dt

≤
∑

z∈C
g(c)

{ ∑

ρ|sρ=z

kρe
β[∑b r

ρ
b μb−∑

a r
ρ
a μ̃a+∑

a(μa+μ̃a)s
ρ
a ]

−
∑

ρ|rρ=z

kρe
β[∑b r

ρ
b μb−∑

a r
ρ
a μ̃a+β

∑
a r

ρ
a (μa+μ̃a)]
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+
∑

ρ|rρ=z

kρe
β[∑b s

ρ
b μb−∑

a s
ρ
a μ̃a+∑

a(μa+μ̃a)r
ρ
a ]

−
∑

ρ|sρ=z

kρe
β[∑b s

ρ
b μb−∑

a s
ρ
a μ̃a+∑

a s
ρ
a (μa+μ̃a)]

}
. (D21)

Now, for a complex-balance system with MAK, we know that
∑

ρ|sρ=z

kρe
β(

∑
b r

ρ
b μb−∑

a r
ρ
a μ̃a) −

∑

ρ|rρ=z

kρe
β(

∑
b r

ρ
b μb−∑

a r
ρ
a μ̃a)

+
∑

ρ|rρ=z

kρe
β(

∑
b s

ρ
b μb−∑

a s
ρ
a μ̃a) −

∑

ρ|sρ=z

kρe
β(

∑
b s

ρ
b μb−∑

a s
ρ
a μ̃a) = 0, (D22)

for all complex z, see Eq. (C17). Multiplying Eq. (D22) by exp[β ∑
a za(μa + μ̃a)] (since

the complex z is fixed), we obtain an equality for each complex z:
∑

ρ|sρ=z

kρe
β[∑b r

ρ
b μb−∑

a r
ρ
a μ̃a+∑

a(μa+μ̃a)s
ρ
a ]

−
∑

ρ|rρ=z

kρe
β[∑b r

ρ
b μb−∑

a r
ρ
a μ̃a+β

∑
a r

ρ
a (μa+μ̃a)]

+
∑

ρ|rρ=z

kρe
β[∑b s

ρ
b μb−∑

a s
ρ
a μ̃a+∑

a(μa+μ̃a)r
ρ
a ]

−
∑

ρ|sρ=z

kρe
β[∑b s

ρ
b μb−∑

a s
ρ
a μ̃a+∑

a s
ρ
a (μa+μ̃a)] = 0, (D23)

which is precisely the term in brackets in Eq. (D21). Summing over all complexes yields the
inequality (67).

Appendix E: Minimisation of the Lagrangian to Obtain the Phase
Diagram

In order to find the steady state of the system, we need to minimise the Lyapunov functional
or, in the presence of particle-conservation constraints, the Lagrangian, (83). A substantial
simplification can be made by neglecting the contribution of the interfaces, i.e., considering
the system as composed of two homogeneous phases. In this approximation, the function
which needs to be minimised is the Lagrangian (84), which depends on eight independent
variables: φ p

a for a = A, B,C , p = 1, 2, λ and |	1|.
First, we reduce the dimensionality of the problem by equating the derivatives of the

Lagrangian with respect to the concentrations of the species:

∂�

∂φ
p
a

= ∂�

∂φ
p
k

, (E24)

where a and k denote two chemical species, and p = 1, 2 refers to the phases. Equation (E24)
for a system at equilibrium yields the equality of chemical potentials (with their appropriate
stoichiometry). Here, however, Equation (E24) includes the shifted chemical potential term
μ̃ due to the out-of-equilibrium complex-balancing. For a simple free energy like Eq. (85),
Eq. (E24) implies

φ
p
B =φ

p
Ae

2χφ
p
A+μ̃A−μ̃B , (E25)
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φ
p
C =φ

p
Ae

2χφ
p
A+μ̃A−μ̃C , (E26)

which reduces the problem to just four variables: φ1
A, φ2

A, λ and |	1|.
Finally, given that we are interested in the phase diagram of the mixture and not in the

actual steady state of the solution (i.e., we do not need to know how much volume each of
the phases occupies), we can avoid solving for |	1|. This can be achieved by enforcing the
stationarity condition of the Lagrangian with respect to the volume:

∂�

∂|	1| = 0, (E27)

which, together with

∂�

∂φ1
A

= 0, (E28)

∂�

∂φ2
A

= 0, (E29)

yields a fully determined system for the unknowns φ1
A, φ2

A and λ (the dependency on |	1|
drops out). The resulting equations for such unknowns are transcendental equations which, in
general, have no explicit analytical solution. Therefore, they need to be solved numerically.
Even the numerical solution is involved as the parameters near criticality, which is why in
Fig. 7 the density of data around the critical point decreases.
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