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Abstract
We consider homogeneous open quantum walks on a lattice with finite dimensional local
Hilbert space and we study in particular the position process of the quantum trajectories of
the walk. We prove that the properly rescaled position process asymptotically approaches
a mixture of Gaussian measures. We can generalize the existing central limit type results
and give more explicit expressions for the involved asymptotic quantities, dropping any
additional condition on the walk. We use deformation and spectral techniques, together with
reducibility properties of the local channel associated with the open quantum walk. Further,
we can provide a large deviation principle in the case of a fast recurrent local channel and at
least lower and upper bounds in the general case.

Keywords Central limit theorem · Homogeneous open quantum walks · Quantum
trajectories · Minimal enclosures · Quantum recurrence and transience

1 Introduction

Quantum walks are interesting mathematical objects, introduced in discrete and continuous
time, intensively studied in the last 30 years for their wide range of applications in various
fields. Detailed analysis and competent reviews of the subject can be found in [25, 28, 32,
41, 44, 46] and references therein, together with discussions about the possible realizations
and about their applications.
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These walks can be thought of as Markov processes on a lattice where the evolution of the
walker’s position depends on local degrees of freedom.Unitary evolutions are of fundamental
importance, but the need for a definition of quantum walks in an open environment naturally
arises: for instance, it has been observed that unitary quantumwalks are sometimes of difficult
physical implementation due to decoherence effects [1, 9, 29].

We study open quantum (random) walks (OQW) as introduced in [3] by Attal et al..
Following some more recent literature about the subject, we drop the adjective “random”,
but we remark that the mathematical object remains the same. Such processes are a possible
noncommutative generalization of classical Markov chains and have potential applications in
quantum computing, quantum optics, biology. For a survey illustrating the intensive research
activity around the subject, we refer to [41]; some applications can be found e.g. in [4, 34, 38]
and [6, 7, 40] show how to obtain open quantum brownianmotion as a scaling limit of OQWs.

Quantum trajectories associated with an OQW defined on a lattice V produce a classical
V -valued process which is not Markov in general. Nonetheless, some classical notions,
commonly associated to Markov chains, can be extended to this class of processes and have
been recently studied: reducibility, period, hitting probabilities, the expected number of visits,
the expected return time and various types of recurrence [5, 14, 18, 20]. Particular attention
has been concentrated from the origin on the case of homogeneous OQWs (HOQWs) on
infinite lattices. As for classical homogeneous random walks, also in this case an interesting
question is establishing the conditions for different kinds of asymptotic behaviors of the
position process, such as the lawof large numbers, central limit theorems, and large deviations
bounds [2, 15, 30, 31, 33, 37]. We aim at exploring these lines of investigation in particular.

In [2], a central limit theorem (CLT) and a law of large numbers for a special class of
HOQWs were proved by the use of Poisson equation and the CLT for martingales. At the
same time, the authors of [2] highlighted the difficulty to prove analogous results under
weaker assumptions, even if simulations clearly indicated the possibility of appearance of a
mixture of Gaussians in general [39]. In [15] a large deviation principle was also proved, and
a different approach was used to obtain the CLT, but the assumptions essentially remained
the same. Since then, various papers have been devoted to investigating these problems: see
for instance [10, 30, 31, 33, 36, 37] (see Remark 4.7 for more details).

Before proceeding, let us now introduce more precisely the mathematical definition of the
quantum walks that we treat.

• Let V ⊂ R
d denote a locally finite lattice, positively generated by a set S =

{s1, . . . , sv} �= {0}. We assume without loss of generality that 0 ∈ V . The canonical
example is V = Z

d and S = {±e1, . . . ,±ed} where (e1, . . . , ed) is the canonical basis
of Rd .

• We denote by �2(V ) the Hilbert space of square summable sequences indexed in V ,
describing the position of the particle in the quantum evolution, and we fix {|k〉}k∈V an
orthonormal basis for �2(V ).We introduce afinite-dimensionalHilbert spacehdescribing
the internal degrees of freedom of the particle.

• We consider a quantum system described by the separable complex Hilbert space H =
h ⊗ �2(V ). We denote by B(H) the von Neumann algebra of bounded linear operators
onH and by L1(H) the Banach space of trace class operators onH (similarly for B(h)

and L1(h)). Self-adjoint bounded operators correspond to physical observables, while
unit-trace positive operators are called states and represent the noncommutative analog
of probability densities.

A HOQWM is a particular quantum channel acting on L1(H) in such a way that, at each
time step, the position of the evolution can go only to nearest neighbors and also the change
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in the local state only depends on the position shift [3, 15]. More precisely, M is defined
through its Kraus form as a map acting on trace class operators onH

M : L1(H) → L1(H)

ω �→
∑

k∈V

v∑

i=1

(Li ⊗ |k + si 〉〈k|) ω (L∗
i ⊗ |k〉〈k + si |), (1.1)

where {Li }vi=1 are operators in B(h) such that
∑v

i=1 L
∗
i Li = 1h. As already underlined in the

original paper [3, Section 10], OQWs are not a generalization of unitary walks, as commonly
understood, like Hadamard walks (see e.g. [28]). Anyway we can read some similarities
between HOQWs and unitary walks: for both, the position of the particle can only jump to
nearest neighbours, but, for HOQWs, the transformation of the local state is described by
the operators Li ’s, which someway replace the role of the coin in unitary walks, allowing to
decline it differently according to the chosen shift direction. All these possible local actions
Li ’s determine the auxiliary (or local) map, which is the quantum channel L, acting on the
space L1(h) of the trace class operators on the local space h, defined by

L : L1(h) → L1(h), L(σ ) =
v∑

i=1

Liσ L∗
i .

We shall see that this auxiliary map is of primary importance in our study: it contains all
essential information and it completely characterizes most properties ofM.

M can be seen as a stochastic process since it represents the analog of the transition
operator for classical Markov processes: once the initial condition is selected, the repeated
application of the transition operator allows to determine all finite dimensional laws of the
process.

Given the open quantum walk M, we can then fix an initial state ρ (a positive unit-trace
operator in L1(H)), and, following the usual construction for quantum trajectories, we can
introduce the stochastic process (Xn, ρn)n≥0, keeping track of the position Xn , valued in
V , and of the internal state ρn of the particle (a positive unit-trace operator in L1(h)). See
Sect. 2.1 for more precise definitions.

As we already mentioned, the main topic of this paper is about a central limit type result
and bounds on the probability of large deviations for the position process (Xn)n . The existing
results were established assuming different conditions about the local map L. Even if the
terminology is not always the same, we can say that precise CLT and large deviation principle
have been proved only under the assumption that the local map has a unique invariant state
(sometimes also faithful). Some partial results were obtained under particular reducibility
conditions on L in the case it is fast recurrent (e.g. [2] and [30]). Our aim is to establish the
best results in these directions without any restriction on the local map. In order to prove our
results, wemake use of deformation techniques, spectral theory andGärtner–Ellis’ andBryc’s
theorems; they are classical tools for deriving large deviations and central limit results and
have alreadybeen employed in the studyof quantumMarkov chains [43], quantum trajectories
in continuous time [22], quantum spin chains [35] and quantum trajectories associated to
HOQWs [10, 15]. We follow the ideas and lines already used for the irreducible and fast
recurrent case in [15]. We shall tackle the difficulties due to the more general context mainly
through additional tools based on noncommutative probabilistic features of the local channel
L: the (in general non-unique) decomposition of the local space in irreducible invariant
domains (or enclosures) and the quantum absorption properties of the same domains.
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Let us briefly depict the situation for what concerns central limit type results. When L has
a unique invariant state, previous works (e.g. [2, 11, 15, 31]) show that there exists a vector
m in R

d and a non negative matrix D such that

Xn − X0 − nm√
n

−−−−→
n→+∞ N(0, D) in law

under the probability measure Pρ induced by the initial state ρ of the walk.N(0, D) denotes
the Gaussian law with 0 mean and covariance matrix D.

In case of existence of different invariant states forL, simulations clearly show the appear-
ance of different Gaussian-like distributions in the limit behavior of the position process,
except for very special cases. This means in particular that there exists in general no vector
m such that the sequence ( Xn−X0−nm√

n
)n can converge in law (not to a Gaussian, nor to any

other law). So, how can we mathematically describe this situation? Since we have no con-
vergence in law, one natural possibility is identifying a new sequence of laws (μn)n , such
that μn is a convex combination of Gaussian laws and it approximates the law of Xn−X0√

n
.

The nature and quality of this approximation procedure will be made precise later through
the use of a distance defined on the sets of probability laws on R

d . As one can imagine,
the precise description of this asymptotic behavior requires some efforts, mainly related to
technical difficulties, but also involving more complicated structures, sometimes producing
heavy notations that we were not able to avoid.

Without giving all the details, we can write the statement of the main theorem of Sect. 4,
a “generalized CLT” (see Theorem 4.4 for a more precise statement):

Theorem 1.1 For any time n ≥ 1, let Pρ,n be the law of the random variable Xn−X0√
n

under

the measure Pρ induced by the initial state ρ of the walk. Then

lim
n→+∞ dist

(
Pρ,n, μn

) = 0

where

μn =
∑

α∈A

aα(ρ)Nn,α

is a convex combination of Gaussian lawsNn,α , whose parameters depend on the time n and
on a parameter α living in the set A related to the local channel L.

All the elements appearing in the previous expression (A, aα(ρ), the parameters of the
Gaussian laws) will be explicitly determined and depend on the initial state of the walk and
on the structure of the invariant states of the local channel L.

For results on large deviations, the statement is more complicated and we directly refer the
reader to Sect. 5. Here, we can simply anticipate that we can prove a large deviation principle
in case the local channel is fast recurrent (i.e. there exists at least one faithful invariant state),
while, when there is a non trivial transient subspace, we can only find upper and lower bounds
through Gärtner–Ellis’ theorem. In both cases we can explicitly write the rate functions using
the same ingredients as above.

We are not giving other technical details here, but only a brief description of the contents
of the paper.

In Sect. 2 we shall describe the construction of quantum trajectories associated with the
HOQW and recall some basic notions about invariant domains and absorption operators
related to a quantum channel. Then, at the beginning of Sect. 4, we shall go back to these
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topics and add more details about the reducibility properties of a quantum channel and the
associated decomposition of the local space h in invariant domains.

In Sect. 3, we shall determine a family of probability measures under which the position
process verifies a central limit theorem. These probabilitymeasures are absolutely continuous
with respect to the standard measure Pρ , induced by the initial state ρ of the evolution, and
are naturally associated with the invariant domains of the local channel. The densities of
these measures and the parameters of the limit Gaussian are explicitly written in terms of the
initial state and of the particular invariant domain.

Then, in Sect. 4, we shall go to the general case using the decomposition of the space
h and deducing an expression of Pρ as a convex combination of the probability measures
described in the previous section. We shall precisely state and demonstrate the previously
mentioned main theorem (Theorem 4.4).

Finally, we discuss some examples and numerical simulations in Sect. 6.

2 Preliminaries and Context Description

Werecall here somebasic definitions, notations, and existing results. In thefirst subsection,we
introduce the precise definition of quantum trajectories and some examples, with simulations
suggesting the possible asymptotic behaviors of the position process. In the second one, we
recall some general notions about invariant domains (or enclosures) and absorption operators.

A quantum channel is for us a completely positive trace-preserving linear map acting on
trace class operators. We already introduced the quantum channelM, acting on L1(H), and
defining the HOQW, and the local channel L acting on trace class operators L1(h) on the
local Hilbert space.

Notice that the evolution of the system described by a HOQW depends only on the matrix
elements of the state which are diagonal with respect to the position observable, hence we
can assume that the initial state ρ of the system is of diagonal form

ρ =
∑

k∈V
ρ(k) ⊗ |k〉〈k| ∈ L1(H), ρ ≥ 0, Tr(ρ) = 1

or equivalently

ρ(k) ∈ L1(h), ρ(k) ≥ 0,
∑

k∈V
Tr(ρ(k)) = 1.

2.1 QuantumTrajectories

The stochastic evolution of the system will depend on the initial state ρ and we shall call Pρ

the associated probability measure. Let us first define the probability space. We denote by
J = {1, . . . , v} the set of indices for all possible shifts in S = {s1, . . . , sv} and we choose
the sample set � = V × JN. On V and J we consider the σ -algebras of the power sets, and
on � we then consider the σ -algebra F generated by cylindrical sets.

We define a family of compatible finite dimensional laws which univoquely determines
a measure Pρ on (�,F) by Kolmogorov extension theorem: for all k ∈ V , n ≥ 1, j =
( j1, . . . , jn) ∈ Jn ,

Pρ({k} × JN) = Tr(ρ(k)),

Pρ({(k, j)} × JN) = Tr(L jn · · · L j1ρ(k)L∗
j1 · · · L∗

jn ).
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The quantum trajectory is the process (Xn, ρn)n≥0 defined, for ω = (k, j1, . . . ), as

X0(ω) = k, ρ0(ω) = ρ(k)

Tr(ρ(k))
,

Xn+1(ω) = Xn(ω) + s jn+1 , ρn+1(ω) = L jn+1ρn(ω)L∗
jn+1

Tr(L jn+1ρn(ω)L∗
jn+1

)
∀n ≥ 0.

(Xn, ρn)n≥0 is a Markov process on the probability space (�,F,Pρ), with respect to the
natural filtration {Fn}n≥0, with initial law given by

Pρ

{
(X0, ρ0) =

(
k,

ρ(k)

Tr(ρ(k))

)}
= Tr(ρ(k)), k ∈ V

and transition probabilities

Pρ

(
Xn+1 = Xn + s j , ρn+1 = L jρn L∗

j

Tr(L jρn L∗
j )

∣∣∣∣Xn, ρn

)
= Tr(L jρn L

∗
j ), j ∈ J , n ≥ 1.

In order to fix some ideas about the definition of anOQWand on the behavior of the related
position process, we introduce two simple examples, both on the lattice V = Z, for which
we provide the simulated trajectories of the rescaled position process in the next figures. In
this case (V = Z), the HOQW has two possible movements at each time step, i.e. v = 2, and
the walk is completely determined once we fix the two Kraus operators L1, L2 describing
the action on the internal state when moving to the right or to the left. For convenience, we
shall call them R and L respectively.

Example 2.1 Let us consider a HOQW on V = Z with local space h = C
2 (we denote by

{e0, e1} the canonical basis) and the following local operators:

L =
⎛

⎝

√
1
2 0

−
√
2
3

√
1
3

⎞

⎠ , R =
⎛

⎝

√
1
6 0

1
3

√
2
3

⎞

⎠

corresponding to going to the left and the right respectively. In this case the local map
L(·) = L · L∗ + R · R∗ admits a unique invariant state τ0 = |e1〉〈e1|. For every initial state ρ,
simulations show that, for increasing values of n, the law of Xn−X0√

n
becomes approximately

Gaussian, with fixed variance, and mean growing as
√
n (see Figure 1).

Example 2.2 Consider now always V = Z, but local space h = C
4 and local Kraus operators

L =

⎛

⎜⎜⎜⎜⎝

1
2
√
2

0 0 0

0 1√
2

0 0

0 0 1√
2

0

−
√

1
6 0 0

√
2
3

⎞

⎟⎟⎟⎟⎠
, R =

⎛

⎜⎜⎜⎜⎝

√
3
8 0 0 0

0 1√
2

0 0

0 0 1√
2

0
1√
3

0 0 1√
3

⎞

⎟⎟⎟⎟⎠
.

The invariant states of the local map are of the following form: xσ + (1− x)|e3〉〈e3|where σ

is any state supported in span{e1, e2} and x ∈ [0, 1]. In this case simulations show that, as n
increases, the law of Xn−X0√

n
can approach either a Gaussian or the mixture of two Gaussians,

whose parameters will be easy to compute using the results of next sections (N(0, 1) and
N(−√

n/3, 8/9)). Figure 2 shows that the weights of such a mixture strongly depend on the
initial state.
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Fig. 1 Panels a, b show the apperance of the same Gaussian distribution for two different initial states in the
model introduced in Example 2.1. We used N = 5 × 104 samples of Xn√

n
for n = 50, 150, 600 in order to

draw its profile. The vertical red line corresponds to the mean value of the Gaussian

We shall recover this example in the last section, considering a slightly more general
family of Kraus operators.

2.2 Enclosures and Absorption

Let h be a finite dimensional Hilbert space and 	 be a quantum channel on L1(h), the set of
trace-class operators on h. Since the topological dual of L1(h) is isometrically isomorphic
to B(h), we can define the dual map 	∗ : B(h) → B(h) as the operator verifying
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Fig. 2 Panel a shows a mixture of two Gaussian distributions for a particular choice of the initial state, while
panel b shows a single Gaussian for another initial state for the model considered in Example 2.2. We used
N = 5 × 104 samples of Xn√

n
for n = 50, 150, 600 in order to draw their profile. The vertical red lines

correspond to the mean values of the Gaussians

Tr(ω	∗(x)) = Tr(	(ω)x) x ∈ B(h), ω ∈ L1(h).

	∗ is a completely positive unital (i.e. 	∗(1h) = 1h) bounded operator. Given any posi-
tive operator x ∈ B(h), we define its support projection as the orthogonal projection onto
supp(x) := ker(x)⊥.

123



On a Generalized Central Limit Theorem. . . Page 9 of 33     8 

Definition 2.3 1. A subspace V ⊂ h is said to be an enclosure (or invariant domain) for 	

if for every positive ω ∈ L1(h)

supp(ω) ⊂ V implies supp(	(ω)) ⊂ V.

An enclosure will be called minimal if it does not contain other non trivial enclosures.
2. A quantum channel is called irreducible if the only enclosures are the trivial ones, i.e.

{0} and h.
A finite dimensional minimal enclosure is always the support of a unique invariant state of
the channel 	, i.e. a positive trace one operator τ such that 	(τ) = τ .

Denoting by pV the orthogonal projection onto V, we have the following equivalent
characterizations of the notion of enclosure.

Proposition 2.4 (see [16] and references therein) Let 	 be a quantum channel acting on
L1(h). The following are equivalent:

1. V is an enclosure;
2. pV is a subharmonic projection, i.e. 	∗(pV) ≥ pV;
3. if 	 has a representation with Kraus operators (Vi )i∈I , i.e. 	(·) = ∑

i∈I Vi (·)V ∗
i , then

Vi pV = pVVi pV for every i ∈ I .

If we consider the restriction of the quantum channel to pVL1(h)pV � L1(V), we obtain
again a quantum channel, that we shall denote 	|V with an abuse of notation,

	|V : pVL1(h)pV → pVL1(h)pV
pVσ pV �→ pV	(pVσ pV)pV = 	(pVσ pV);

its dual map 	∗
|V acts on pVB(h)pV � B(V) and for every x ∈ B(h)

	∗
|V(pVxpV) = pV	∗(pVxpV)pV = pV	∗(x)pV.

The channel 	|V restricted to a minimal enclosure is trivially irreducible by construction.
Given an enclosure V, we can define the associated absorption operator (see [12]) as

A(V) := lim
n→+∞ 	∗n(pV). (2.2)

Absorption operators enjoy remarkable properties that we recall below.

Proposition 2.5 ( [12, Proposition 4]) The following statements hold true:

1. 0 ≤ A(V) ≤ 1h;
2. A(V) is harmonic, that is 	∗(A(V)) = A(V);
3. ker(A(V)) is an enclosure;
4. A(V) = pV + pV⊥ A(V)pV⊥ .

Some additional discussion about the general structure of enclosures for quantum channels
and possible decompositions of h in orthogonal enclosures will be developed in Sect. 4.

In the same way as for positive matrices, there exists a Perron–Frobenius theorem for
quantum channels. We denote the spectral radius of a map 	 as r(	) := sup{|λ| : λ ∈
Sp(	)}, where Sp(	) is the spectrum of 	.

Theorem 2.6 [45, Theorems 6.4 and 6.5] Let	 be a positive map acting on L1(h); then r(	)

is a eigenvalue and the corresponding eigenvector is positive. If in addition 	 is irreducible,
then r(	) is geometrically simple and the corresponding eigenvector is strictly positive.

In case 	 is a quantum channel 1 = r(	) = ‖	‖∞.
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3 Selecting a Single Gaussian

In this section, we shall concentrate on a single minimal enclosure V of the local channel
L and we shall introduce a proper associated probability measure P

′
ρ , which is absolutely

continuous with respect to Pρ , with a relative density which assigns weights according to
the absorption in V. We shall prove in Theorem 3.6 that the position process (Xn)n always
satisfies a central limit theorem under any of these measures. This will be the main result
of this section and already includes previous CLT results proved in [2] and in [15] (see
Remark 3.7 below).

According to the notations introduced in the previous section, we shall call A(V) =
limn→+∞ L∗n(pV) the absorption operator of the enclosure V for L and we shall denote by
p̃V the support projection of A(V). Due to Proposition 2.5, ker(A(V)) = supp(A(V))⊥ is an
enclosure, and by Proposition 2.4 this implies that (1h − p̃V) is a subharmonic projection
and its support is preserved by the Kraus operators Li ’s, i.e.

L∗(1h − p̃V) ≥ 1h − p̃V and Li (1h − p̃V) = (1h − p̃V)Li (1h − p̃V) for i = 1, . . . , v.

Consequently p̃V is superharmonic for L, i.e.

L∗( p̃V) ≤ p̃V and p̃VLi = p̃VLi p̃V for i = 1, . . . , v. (3.3)

We start introducing the new measure P′
ρ in the following lemma and then we shall describe

more precisely the techniques to prove the first CLT.

Lemma 3.1 Let (Yn)n≥0 be the process defined by Yn = Tr(A(V)ρn) for any n ≥ 0.

1. Then (Yn)n≥0 is a positive and bounded Pρ-martingale, converging (almost surely and
L1) to a random variable Y∞ valued in [0, 1].

2. If Eρ[Y0] = Eρ[Tr(A(V)ρ0)] > 0, we can define a new probability measure P′
ρ such that

dP′
ρ

dPρ

= Y∞
Eρ[Y0] ,

dP′
ρ

dPρ

∣∣∣∣
Fn

= Yn
Eρ[Y0] .

Moreover the density
dP′

ρ

dPρ
is valued in [0,Eρ[Y0]−1] and

{
dP′

ρ

dPρ

= 1

Eρ[Y0]

}
=
{

lim
n→+∞‖pVρn pV − ρn‖ = 0

}
,

{
dP′

ρ

dPρ

= 0

}
=
{

lim
n→+∞‖ p̃⊥

Vρn p̃
⊥
V − ρn‖ = 0

}
.

(3.4)

We remark that, for this lemma, it is not necessary forV to beminimal. The last sentence of
the statement gives a mathematical meaning to the intuition that, given any enclosure V, the
corresponding P′

ρ encodes the notion of conditioning to the “absorption in V”. Nevertheless,
Y∞ is not a Bernoulli random variable in general, hence there does not need to exist any
measurable set B ∈ F such that P′

ρ(·) = Pρ(·|B), even if it can happen in some cases (see
Example 6.2 and in particular the simulations in Figure 5).

Proof Yn is trivially positive and bounded and

Eρ[Yn+1|Fn] =
v∑

i=1

Tr(Liρn L
∗
i )
Tr(A(V)Liρn L∗

i )

Tr(Liρn L∗
i )

= Tr(L∗(A(V))ρn) = Tr(A(V)ρn) = Yn .
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Since (Yn) is a positive and bounded martingale, it converges almost surely and in L1 :=
L1(�,Pρ) to a positive random variable Y∞. WhenV and ρ are such thatEρ[Tr(A(V)ρ0)] =∑

k∈V Tr(A(V)ρ(k)) > 0, we can introduce the random variables

0 ≤ Zn := Yn
Eρ[Tr(A(V)ρ0)] ,

and the sequence (Zn) is a Pρ-martingale with expected value equal to 1 and converges
almost surely to

0 ≤ Z∞ := Y∞
Eρ[Tr(A(V)ρ0)] . (3.5)

Note that Z∞ ∈ L1. Therefore we can consider the new measure P′
ρ which has density Z∞

with respect to Pρ , so that

dP′
ρ

dPρ

= Z∞,
dP′

ρ

dPρ

∣∣∣∣
Fn

= Zn .

The range of
dP′

ρ

dPρ
trivially follows from the fact that 0 ≤ Y∞ ≤ 1. We postpone the proof of

relations (3.4) to Sect. 4, since we need some notions that we will introduce later on. ��
In order to prove the central limit theorem for the position process, we will apply Bryc’s

theorem [11, Proposition 1], that we report below for the reader’s convenience; we refer to
[23, Appendix A4] for the multivariate case.

Theorem 3.2 (Bryc)Let (Tn)n≥0 bea sequenceof randomvariables definedon the probability
spaces (�n,Bn,Pn), Tn : �n → R

d , and suppose there exists ε > 0 such that

h(u) = lim
n→+∞

1

n
log(En[eu·Tn ])

exists for every complex u with |u| < ε. Then

(Tn − En[Tn])√
n

−→N(0, D) (in law),

where N(0, D) denotes a centered Gaussian measure with covariance D = H(h)(0) ≥ 0
(H(h)(0) is the hessian of h at u = 0), and

lim
n→+∞

En[Tn]
n

= ∇h(0).

We shall apply this theorem with Tn = Xn − X0 and all probability spaces (�n,Bn,Pn)

coinciding with (�,F,P′
ρ), where � and F are the ones defined in Sect. 2.1. The procedure

requires some work in order to explicitly compute all the involved quantities. We briefly sum
up the main steps of the proof, that will involve all this section.

• First of all, we need to calculate the scaled cumulant generating functions of Xn − X0.
We shall show in Lemma 3.3 that they are related to some smooth deformations L̃u of
the local map L restricted to the support of A(V) (defined in (3.6)).

• Once we have calculated the scaled cumulant generating functions, we shall compute the
limit function h and this will be done in the proof of Theorem 3.6. It will be shown to
coincide with the logarithm of the spectral radius λu of the deformations L̃u .
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• To complete the picture given by Bryc’s Theorem, we need to consider the first and
second derivatives of h. Lemmas 3.4 and 3.5 give us the technical instruments to identify
these derivatives.

For all u ∈ R
d , let us define the following operators:

L(u)
i = e

u·si
2 Li , L̃i = p̃VLi p̃V, L̃(u)

i = e
u·si
2 L̃i , i = 1, . . . , v

(recall that p̃V is the support projection of A(V)) and we call Lu and L̃u the deformations of
L and L̃ := L̃0 respectively, defined as the completely positive operators

Lu(σ ) =
v∑

i=1

L(u)
i σ L(u)∗

i , L̃u(σ ) =
v∑

i=1

L̃(u)
i σ L̃(u)∗

i . (3.6)

Notice thatLu and L̃u can be extended for complex values of u and form two analytic families
of matrices: Lu(σ ) = ∑v

i=1 e
u·si Liσ L∗

i and L̃u(σ ) = ∑v
i=1 e

u·si L̃ iσ L̃∗
i .

Further, all previous mathematical objects depend on the enclosure V, so it would be
more precise to highlight this and denote them L̃(u,V)

i , L̃V
u , ...,P

′(V)
ρ . Since the notations are

already quite heavy, we drop the dependence on V in this section, since we shall use only
one enclosure and we shall recover it when necessary, treating the general case.

Lemma 3.3 Let us denote by E′
ρ the expected value under the measure P′

ρ . The scaled cumu-
lant generating function hn of Xn − X0 under P′

ρ can be expressed in the following form:

hn(u) := 1

n
log(E′

ρ[eu·(Xn−X0)]) = 1

n
log

⎛

⎝
∑

k∈V

Tr(A(V)L̃n
u(ρ(k)))

Eρ[Tr(A(V)ρ0)]

⎞

⎠ , u ∈ C
d . (3.7)

Proof The proof is just a direct computation. By Lemma 3.1, for u ∈ C
d

E
′
ρ [eu·(Xn−X0)] = Eρ [Tr(A(V)ρn)eu·(Xn−X0)]

Eρ [Tr(A(V)ρ0)]
= 1

Eρ [Tr(A(V)ρ0)]
∑

k∈V

∑

s j1 ,...,s jn

eu·∑n
k=1 s jk Tr(A(V)L jn · · · L j1ρ(k)L∗

j1 · · · L∗
jn )

since we can use the density of P′
ρ on the algebra Fn . Now, recalling that p̃V is the support

projection of A(V) and using relations (3.3), one has

A(V)L jn · · · L j1 = A(V) p̃VL jn p̃V · · · p̃VL j1 p̃V = A(V)L̃ jn · · · L̃ j1

and replacing in the previous expression we obtain

E
′
ρ [eu·(Xn−X0)] = 1

Eρ [Tr(A(V)ρ0)]
∑

k∈V

∑

s j1 ,...,s jn

eu·∑n
k=1 s jk Tr(A(V)L̃ jn · · · L̃ j1ρ(k)L̃∗

j1 · · · L̃∗
jn )

=
∑

k∈V

Tr(A(V)L̃n
u(ρ(k)))

Eρ [Tr(A(V)ρ0)] ,

where the last equality simply follows from the definition of the operator L̃u (3.6). ��
Equation 3.7 shows the connection between the scaled cumulant generating function of

Xn − X0 and the powers of the map L̃u , therefore, in order to derive the limit behavior of
hn(u), a natural thing to do is to study the spectral properties of L̃u . For u ∈ R

d we denote

λu = r(L̃u) the spectral radius of L̃u, (3.8)
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and Theorem 2.6 ensures that λu ∈ Sp(L̃u) with corresponding positive eigenvector τu .
Notice that λ0 = 1 and τ0 is the unique minimal invariant state supported onV. In Lemma 3.4
we shall prove that in a complex neighborhood of the origin the perturbed eigenvalue λu and
eigenvector τu are analytic and that they only depend on the restriction of L̃u (or equivalently
Lu) to the minimal enclosure V.

We will show that

h(u) = lim
n→+∞ hn(u) = log(λu)

for u in a complex neighborhood of the origin.
Lemma 3.5 will provide an explicit expression for the gradient and the hessian of the limit

function h, which identify the asymptotic behaviour of the mean values E′
ρ[Xn − X0] and

the covariance matrix of the limit Gaussian measure.

Lemma 3.4 Let V be a minimal enclosure. The operators L̃ and L̃|V = L|V have the same
peripheral eigenvalues and eigenvectors with the same multiplicities.

Moreover in a complex neighborhood of the origin the following hold true:

1. u �→ λu and u �→ τu are analytic;
2. supp(τu) ⊂ V.

Henceλu and τu coincidewith the analogous quantities for the restricted deformation L̃u|V =
Lu|V (i.e. λu = r(Lu|V), Lu|V(τu) = λuτu).

Proof Let ϑ ∈ [0, 2π) and σ ∈ L1(h) such that

L̃(σ ) = eiϑσ. (3.9)

In order to prove that the peripheral eigenvectors and eigenvalues of L̃ are the same as those
of L̃|V we need to prove that σ = pVσ pV. Let us consider the orthogonal decomposition
supp(A(V)) = V ⊕ W; by definition W = supp(A(V) − pV) and, since dim(h) < +∞,
we know that there exists a constant γ > 0 such that pW ≤ γ (A(V) − pV), hence by [12,
Theorem 14] we have that

L̃∗n(pW) = p̃VL
∗n(pW) p̃V ≤ γ p̃VL

∗n(A(V) − pV) p̃V → 0.

This implies that limn→+∞‖L̃n(σ ) − pVL̃n(σ )pV‖ = 0, which, together with Eq. 3.9,
implies that σ = pVσ pV. If we consider σ as above and ξ is such that L̃(ξ) = eiϑξ + σ ,
with the same reasoning as before we can deduce that also ξ = pVξ pV and hence the alge-
braic multiplicity of eiϑ is the same for L̃ and L̃|V.
1. By perturbation theory of linear matrices (see [26]), we only need to show that λ0 = 1 is an
algebraically simple eigenvalue of L̃, which, by virtue of what we just showed, is equivalent
to prove it for L̃|V = L|V and this follows for instance from [45, Proposition 6.2].
2. We recall that pV is subharmonic for L, hence Li pV = pVLi pV for every i = 1, . . . , v;
by the definition of L̃u , it follows that also L̃u preserves the space pVL1(h)pV and eigen-
values and eigenvectors of L̃u|V are also eigenvalues and eigenvectors of L̃u . Let λVu be the
perturbation of 1 for L̃|V; by [26, Theorem VII.1.7] and the proof of point 1. in the present
Lemma, for small values of u, λu is the unique eigenvalue of L̃u in a neighborhood of 1 and
it is algebraically simple, however λVu is another eigenvalue of L̃u and λV0 = 1 too, hence
they must coincide in a neighborhood of the origin (remember that u �→ λVu is continuous,
see [26, Theorem 5.1]). Therefore we have that supp(τu) ⊂ V. ��
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Lemma 3.5 The function h : Rd � u �→ log(λu) is infinitely differentiable in 0. For every
u ∈ R

d , we introduce the operators L′
|V,u and L′′

|V,u by

L′
|V,u,L

′′
|V,u : L1(V) −→ L1(V)

L′
|V,u(σ ) =

v∑

i=1

u · si Liσ L∗
i , L′′

|V,u(σ ) =
v∑

i=1

(u · si )2Liσ L∗
i .

Denoting λ′
u = dλtu

dt

∣∣
t=0, λ

′′
u = d2λtu

dt2

∣∣
t=0, we have

λ′
u = Tr(L′

|V,u(τ0)), λ′′
u = Tr(L′′

|V,u(τ0)) + 2Tr(L′
|V,u(ηu))

where ηu ∈ L1(V) is the unique solution with zero trace of the equation

(Id − L|V)(ηu) = L′
|V,u(τ0) − Tr(L′

|V,u(τ0))τ0.

This implies immediately that

∇h(0) · u = λ′
u, 〈u, H(h)(0)u〉 = λ′′

u − λ′
u
2
,

where H(h)(0) is the Hessian of h at 0.

Proof Notice that

L′
|V,u(σ ) =

v∑

i=1

u · si {pVLi pV}σ {pVL∗
i pV},

due to the fact that V is an enclosure (and similarly for L′′
|V,u(σ )). This fact, together with

Lemma 3.4, allows us to reduce the analysis to the irreducible channel L|V and the proof is
the same as in [15, Corollary 5.9]. ��

We are now ready to prove the main result of this section.

Theorem 3.6 Consider a minimal enclosure V, and τ0 and λu defined as in relation (3.8)
before. We introduce the vector

m =
v∑

i=1

Tr(Liτ0L
∗
i )si

and the matrix D which is the unique matrix satisfying the following formula for every
u ∈ R

d :

〈u, Du〉 = λ′′
u − λ′

u
2
.

Then, under P′
ρ ,

(Xn − X0) − nm√
n

→ N(0, D) (3.10)

where the convergence is in law. Moreover
∣∣∣∣∣
E

′
ρ[Xn − X0]

n
− m

∣∣∣∣∣ = O

(
1

n

)
.
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Remark 3.7 We point out that, when there is a unique minimal enclosure V, then A(V) = 1h,
P

′
ρ = Pρ , and Theorem 3.6 includes the CLTs for the position process proved in [2] or in

[15].

Proof In order to apply Bryc’s theorem (Theorem 3.2), we need to show the existence of

lim
n→+∞ hn(u),

where hn(u) is defined in relation (3.7), for u in a complex neighborhood of 0. Let us first
consider the case where L̃|V is aperiodic (since we mimic the proof of [15, Theorem 5.12],
we refer to [15] for more information about the notion of period for quantum channels). In
this case we have

δ = sup{|λ| : λ ∈ Sp(L̃) \ {1}} < 1

and so, considering the Jordan form of L̃, there exists ε > 0 such that δ + ε < 1 and for u
in a neighbourhood of 0, for n ∈ N we have

L̃n
u(·) = λnu(ϕu(·)τu + O((δ + ε)n))

where ϕu is a linear form on L1(h), analytic in u in the considered neighbourhood of the
origin and O is with respect to any norm (remember that in finite dimension all the operator
norms are equivalent). Therefore, using equation (3.7), we obtain

hn(u) = log(λu)

+ 1

n

⎡

⎣− log(Eρ[Tr(A(V)ρ0)]) + log

⎛

⎝
∑

k∈V
ϕu(ρ(k))Tr(A(V)τu) + O((δ + ε)n

⎞

⎠

⎤

⎦

−−−−→
n→+∞ log(λu).

From the proof of Theorem 3.2 we know that all hn are analytic in a neighborhood of the
origin. Further, these functions converge uniformly on compact sets to h and supu∈K |hn(u)−
log(λu)| = O(1/n) where K is a compact set in the considered neighborhood of the origin.
Hence, by Cauchy integral formula we can deduce, since

E
′
ρ[Xn − X0]

n
= ∇hn(0) and m = ∇h(0)

that
∣∣∣∣∣
E

′
ρ[Xn − X0]

n
− m

∣∣∣∣∣ = O

(
1

n

)

and this allows us to put nm instead of E′
ρ[Xn − X0] in Eq. (3.10).

On the other hand, if L|V has period l > 1 with cyclic resolution p0, . . . , pl−1, we can
write for n = ql + r and 0 ≤ r < l

E
′
ρ[eu·(Xn−X0)] =

l−1∑

j=0

∑

z∈V

Tr(A(p j )ρ(z))

Eρ[Tr(A(V)ρ0)]
︸ ︷︷ ︸

w j

∑

k∈V

Tr(A(p j )L̃
n
u(ρ(k)))∑

z∈V Tr(A(p j )ρ(z))
︸ ︷︷ ︸

I I

.
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We can safely define A(p j ) using L̃l , for which p0, . . . , pl−1 are minimal enclosures. Fur-
thermore we can express I I as

I I =
∑

k∈V

Tr(A(p j )L̃
lq
u (L̃r

u(ρ(k))))∑
z∈V Tr(A(p j )ρ(z))

.

The support projection of A(p j ), which we call Pj , is superharmonic for L̃l , hence, if we
consider L̃l

j,u := Pj L̃
l(Pj · Pj )Pj , we can write

Tr(A(p j )L̃
lq
u (L̃r

u(ρ(k)))) = Tr(A(p j )L̃
lq
j,u(Pj L̃

r
u(ρ(k))Pj ))

and we are back to the aperiodic case. Furthermore the perturbation of 1 for every reduction
L̃l

j,u is the same as the one of L̃l
u since Pjτu Pj is an eigenvector of L̃l

j,u for the eigenvalue

λlu :

L̃l
j,u(Pjτu Pj ) = Pj L̃

l
u(τu)Pj = λlu Pjτu Pj .

Therefore we can again prove the statement. ��

4 General Case: Mixture of Gaussians

In order to tackle the general case, we now need to consider different enclosures and to handle
the simultaneous appearance of different Gaussians. The description of the general context
requests the introduction of some additional notions in order to describe an appropriate
decomposition of the local Hilbert space h. This will induce a decomposition of the measure
Pρ in terms of measures of the form P

′
ρ as defined in Lemma 3.1.

The solution of the problem is delicate and based on recent results about quantumchannels,
but some basic ideas can be quite intuitive to grasp. When the local channel L has a unique
invariant state, the system someway locally converges to it. There is a loss of memory of the
position process: the asymptotic behavior do not depend on the initial state and in particular
the parameters of the limit Gaussian do not depend on ρ in this case. When we have more
invariant states, the system locally converges to some invariant state (in the sense of Frigerio
andVerri’s ergodic theorem for instance), but the limit invariant state is a convex combination
of extremal invariant states which depends on the initial state ρ. Informally, we can think
that the initial state assigns a quantity of mass to the minimal enclosures (i.e. the supports of
extremal invariant states), but this mass can be increased by the repeated action of L because
the minimal enclosures absorb mass from the so called transient space. Given the initial state,
through absorption operators, we can identify the final quantity of mass flowing to the single
minimal enclosures and this will identify the limit behavior.

The first part of this section will recap some definitions about transient and recurrent
spaces and about the structure of invariant states and minimal enclosures. In Lemma 4.2, we
shall see how this structure is related to the measures of the form P

′
ρ (and to the parametersm

and D appearing in the CLT). Then, in Lemma 4.3, we will use the same structure to identify
Pρ as a convex combination of measures of the form P

′
ρ obtained from different enclosures.

Finally, we shall apply these results to deal with the general central limit type asymptotic
theorem.
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Decomposition of the local Hilbert space and of the recurrent subspace.
We introduce the fast recurrent and the transient space for the local map following [8, 42];

for other notions of recurrence for OQWs we refer to [5, 18, 21] and references therein. We
denote by R the fast recurrent space for the channel L

R = sup{supp(ω) |ω is an invariant state for L}. (4.11)

R is an enclosure and, since the space h is finite dimensional, any minimal enclosure is
included in R and is the support of a unique extremal invariant state; moreover we have
trivial slow recurrent subspace, while R is always non trivial and “absorbing”. Further, the
orthogonal complement of R is the transient space, usually denoted by T and the absorption
in R is the identity operator (see [8, 15, 42])

h = R ⊕ T, A(R) = 1h − lim
n→+∞L∗n(pT) = 1h.

The structure of quantum channels induces a decomposition of the fast recurrent space,
also naturally related to the invariant states (see [8] for the finite dimensional case and [16,
24, 42] for infinite dimensional state spaces). This decomposition is the noncommutative
counterpart of the decomposition in communication classes for classical Markov chains and
plays a fundamental role in different contexts. Here we shall briefly recall the decomposition
and the main properties we need.

For a quantum channel acting on L1(h), there exists a unique decomposition of R of the
form

R = ⊕
α∈A

χα,

where (χα)α∈A is a finite set of mutually orthogonal enclosures and every χα is minimal in
the set of enclosures verifying the property:

for any minimal enclosure W either W ⊥ χα orW ⊂ χα.

Every χα either is a minimal enclosure or can be further decomposed (but not in a unique
way!) as the sum of mutually orthogonal isomorphic minimal enclosures, i.e.

χα = ⊕
β∈Iα

Vα,β, R = ⊕
α∈A

χα = ⊕
α∈A

⊕
β∈Iα

Vα,β, (4.12)

for some finite set Vα,β, β ∈ Iα of minimal enclosures and, if we fix a particular β̄ ∈ Iα ,
there exists a unitary transformation Uα such that

Uα : C|Iα | ⊗ Vα,β̄ → χα. (4.13)

Moreover one can define an irreducible quantum channel ψ on B(Vα,β̄ ) which completely
describes the restriction of the channel to χα

L∗
|R(Uα(a ⊗ b)U∗

α ) = Uα(a ⊗ ψ(b))U∗
α a ∈ B(C|Iα |), b ∈ B(Vα,β̄ ). (4.14)

Remark 4.1 χα is a minimal enclosure if and only if |Iα| = 1. Otherwise, it is not minimal
and it admits infinite possible decompositions in orthogonal minimal enclosures of the form
Uα(Cv⊗Vα,β) for v ∈ C

|Iα |. In this case, however, a rigid structure of the channel essentially
reduces the action on anyminimal enclosure insideχα to be the sameup to a unitary transform.
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Lemma 4.2 The parameters m = m(V) and D = D(V) introduced in Theorem 3.6 are
independent of the particular minimal enclosure V in χα . Then we define

mα :=
v∑

i=1

Tr(Liτ
V
0 L∗

i )si , 〈u, Dαu〉 = λ′′
u − λ′

u
2
,

where λ′
u, λ

′′
u are defined as in Lemma 3.5 for L|V.

Proof Let us consider two minimal enclosures V and W contained in a same χα . We just
have to prove that the parameters m and D are equal for the two enclosures.

Relations (4.13) and (4.14) imply that there exist two vectors v,w in C
|Iα | such that

V = Uα((Cv) ⊗ Vα,β̄ )U∗
α , W = Uα((Cw) ⊗ Vα,β̄ )U∗

α , (4.15)

and we can define a partial isometry Q = Uα((|w〉〈v|) ⊗ 1Vα,β̄
)U∗

α , from V toW, such that

Q∗Q = pV, QQ∗ = pW and L∗
|V(x) = Q∗L∗

|W(QxQ∗)Q ∀x ∈ B(V), (4.16)

where L|V and L|W are the restrictions of L to V andW respectively, following the notations
introduced before. Due to relation (4.14), Q (and Q∗) is also a fixed point for the dual channel
L∗, so that it commutes with the Kraus operators Li , L∗

i for all i (see for instance [13], in
particular Proposition 1 applied to the fast recurrent channel L restricted to χα).

Moreover, since V and W are minimal, they are the support of two invariant states, that
we can denote by τV0 and τW0 and will verify

τV0 = Q∗τW0 Q.

Then we have

Tr(Liτ
W
0 L∗

i ) = Tr(Li QτV0 Q∗L∗
i ) = Tr(QLiτ

V
0 L∗

i Q
∗) = Tr(pVLiτ

V
0 L∗

i ) = Tr(Liτ
V
0 L∗

i )

so that

m(W) =
∑

i

Tr(Liτ
W
0 L∗

i )si =
∑

i

Tr(Liτ
V
0 L∗

i )si = m(V).

Similarly we deduce, for any u ∈ R
d ,

L′
|V,u(Q

∗ · Q) = Q∗L′
|W,u(·)Q, L′′

|V,u(Q
∗ · Q) = Q∗L′′

|W,u(·)Q.

Therefore

Tr(L′
|V,u(τ

V
0 )) = Tr(L′

|W,u(τ
W
0 )) and Tr(L′′

|V,u(τ
V
0 )) = Tr(L′′

|W,u(τ
W
0 )).

By the same arguments, for all u ∈ R
d ,

ηVu = Q∗ηWu Q and Tr(L′
|V,u(η

V
u )) = Tr(L′

|W,u(η
W))

and we can conclude that D(V) = D(W). ��
Decomposition of the measure Pρ .
In Lemma 3.1, we fixed an enclosureV andwe introduced the probabilitymeasure denoted

by P′
ρ . Now we need to handle different enclosures, the ones appearing in the decomposition

of R given in relations (4.12). We need to highlight the dependence on the enclosure and we
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shall denote from now on by Pα (resp.ly Pα,β ) the measure P′
ρ obtained with V = χα (resp.ly

V = Vα,β ), i.e. with densities satisfying

dPα
ρ

dPρ

∣∣∣∣
Fn

= Tr(A(χα)ρn)

Eρ[Tr(A(χα)ρ0)] ,
dPα,β

ρ

dPρ

∣∣∣∣
Fn

= Tr(A(Vα,β)ρn)

Eρ[Tr(A(Vα,β)ρ0)] . (4.17)

We can then decompose Pρ into a mixture of Pα
ρ and Pα,β

ρ .

Lemma 4.3 For any α ∈ A, β ∈ Iα let us define

aα(ρ) := Eρ[Y α
0 ] = Eρ[Tr(A(χα)ρ0)] =

∑

k∈V
Tr(A(χα)ρ(k))

and aα,β(ρ) := Eρ[Y α,β
0 ] = Eρ[Tr(A(Vα,β)ρ0)] =

∑

k∈V
Tr(A(Vα,β)ρ(k)).

We can write Pρ as convex combination

Pρ =
∑

α∈A

aα(ρ)Pα
ρ =

∑

α∈A

∑

β∈Iα
aα,β(ρ)Pα,β

ρ . (4.18)

Proof Indeed, for every k ∈ V , n ≥ 0, j ∈ Jn

Pρ({(k, j)} × JN) = Tr(L jρ(k)L∗
j ) =

∑

α∈A

Tr(A(χα)L jρ(k)L∗
j )

=
∑

α∈A

aα(ρ) · Tr(L jρ(k)L∗
j )

1

Eρ[Tr(A(χα)ρ0)]Tr
(
A(χα)

L jρ(k)L∗
j

Tr(L jρ(k)L∗
j )

)

=
∑

α∈A

aα(ρ)Pα
ρ({(k, j)} × JN).

where the second equality follows because
∑

α∈A A(χα) = 1h. Similarly one can further

decompose the probability measure in P
α,β
ρ because for every α ∈ A,

∑
β∈Bα A(Vα,β) =

A(χα). Equation (4.18) is then true because sets of the form {(k, j)} × JN generate F. ��
Before proceeding forward, we can now complete the proof of Lemma 3.1 and deduce

relations (3.4).

Proof (of Lemma 3.1—second part).
First notice the following set equivalence:

{
dP′

ρ

dPρ

= 1

Eρ[Y0]

}
= {Y∞ = 1} ,

{
dP′

ρ

dPρ

= 0

}
= {Y∞ = 0} .

Let us denote by q the orthogonal projection onto the eigenspace corresponding to the
eigenvaule 1 of A(V); since 0 ≤ A(V) ≤ 1h, Y∞ = 0 (Y∞ = 1) if and only if
limn→+∞‖ p̃⊥

Vρn p̃⊥
V−ρn‖ = 0 (limn→+∞ qρnq−ρn‖ = 0). By [12, Theorem 14], we know

that q − pV ≤ pT , hence to conclude we only need to show that limn→+∞‖pTρn pT‖ = 0.
Since pT is superharmonic, Tn := Tr(pTρn) is a supermartingale:

Eρ[Tn+1|Fn] =
v∑

i=1

Tr(Liρn L
∗
i )
Tr(pTLiρn L∗

i )

Tr(Liρn L∗
i )

= Tr(L∗(pT)ρn) ≤ Tr(pTρn) = Tn .
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Furthermore 0 ≤ Tn ≤ 1, hence Tn converges Pρ-a.s. to a certain limit T∞. Notice that
Eρ[T∞] = limn→+∞ Eρ[Tn] = limn→+∞ L∗n(pT) = 0, hence T∞ = 0, which implies that
limn→+∞‖pTρn pT‖ = 0. ��

Generalized Central Limit Theorem
In the sequel, we aim to provide a precise description of the most general situation where

the rescaled position process (Xn −X0)/
√
n gets closer to a convex combination of Gaussian

laws. In particular, we will fruitfully use the decomposition (4.18) introduced before:

Pρ =
∑

α∈A

aα(ρ)Pα
ρ.

In the case when the above expression becomes a single probability measure Pα
ρ , Theo-

rem 3.6 together with Lemma 4.2 imply a “classical” Central Limit Theorem for the law of
(Xn − X0 −Eρ[Xn − X0])/√n. In the general case, that is, when we allow for two or more
probability measures, the situation is completely different. In general, as wementioned in the
Introduction, we cannot expect a convergence in law because there does not need to exist any
sequence of vectors mn ∈ R

d such that (Xn − X0 − mn)/
√
n)n can converge in law (not to

a Gaussian, nor to any other law). Nevertheless, we can observe that for increasing values of
n the law of (Xn − X0)/

√
n under (4.18) gets closer to a mixture of Gaussian measures with

means escaping to infinity along different directions. Roughly speaking, with the notations
of Theorem 3.6 and Lemma 4.3 before, we expect that, at each step n ∈ N,

Pρ,n ≈
∑

α∈A

aα(ρ)N(
√
nmα, Dα),

where Pρ,n denotes the law of (Xn − X0)/
√
n and N(

√
nmα, Dα) denotes the Gaussian

measure with mean
√
nmα and covariance matrix Dα , respectively. Informally, Pρ,n can be

thought of as a convex combination of Gaussian probabilities up to some error. A possible
way to formalize the nature of the above approximation procedure will be through the use of
a distance defined on the set of probability laws on Rd .

The topology of convergence in law is induced by different distances. On this subject,
we refer for instance to [19]. Among them, we choose the Fortet–Mourier metric, but the
convergence results keep holding true also with a different choice. Let us denote by BL the
set of bounded Lipschitz functions on Rd equipped with the norm

‖ f ‖BL = sup
x∈Rd

| f (x)| + sup
x �=y

| f (x) − f (y)|
|x − y| ;

we introduce the Fortet–Mourier distance between two probability laws P, Q on Rd ,

dist(P, Q) := sup

{∣∣∣
∫

Rd
f d P −

∫

Rd
f dQ

∣∣∣ : f ∈ BL, ‖ f ‖BL ≤ 1

}
.

We recall that [19, Theorem 11.3.3], for Pn , P probability measures on R
d , the following

fact holds

Pn → P in law if and only if dist(Pn, P) → 0.

We are now in a position to state the general central limit type asymptotic theorem.

Theorem 4.4 (Approximation with a mixture of Gaussians)
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Take mα and Dα as in Lemma 4.2 and let Pρ,n be the law of the random variable Xn−X0√
n

under Pρ . Then

lim
n→+∞ dist

(
Pρ,n,

∑

α∈A

aα(ρ)N(
√
nmα, Dα)

)
= 0,

where aα(ρ) = Eρ[Tr(A(χα)ρ0)] and N(
√
nmα, Dα) denotes the Gaussian measure with

mean
√
nmα and covariance matrix Dα .

Proof By Theorem 3.6, we know that the process Xn−X0−nmα√
n

converges in law to a centered

normal distribution with covariance matrix Dα under the measure Pα,β
ρ , so that we can write

lim
n→+∞ dist

(
P

α,β
ρ

(
Xn − X0 − nmα√

n

)
,N(0, Dα)

)
= 0.

By definition, the Fortet–Mourier distance is invariant with respect to translations and con-
sequently we deduce

dist

(
P

α,β
ρ

(
Xn − X0√

n

)
,N(

√
nmα, Dα)

)
−→ 0, as n → +∞.

Now, since this limit does not depend on β and, by Eq. (4.18) Pα
ρ = ∑

β∈Iα aα,β(ρ)P
α,β
ρ (we

denote by Nα the law N(
√
nmα, Dα) to shorten the expressions in this proof),

dist

(
P

α
ρ

(
Xn − X0√

n

)
,Nα

)
=

= sup

{∣∣∣
∫

Rd
f

(
Xn − X0√

n

)
dPα

ρ −
∫

Rd
f dNα

∣∣∣ : f ∈ BL, ‖ f ‖BL ≤ 1

}

≤
∑

β∈Iα
aα,β(ρ) sup

{∣∣∣
∫

Rd
f

(
Xn − X0√

n

)
dPα,β

ρ −
∫

Rd
f dNα

∣∣∣ : f ∈ BL, ‖ f ‖BL ≤ 1

}

=
∑

β∈Iα
aα,β(ρ)dist

(
P

α,β
ρ

(
Xn − X0√

n

)
,N(

√
nmα, Dα)

)
−→ 0, as n → +∞.

Similarly, always by relation (4.18), Pρ = ∑
α∈A aα(ρ)Pα

ρ and by triangular inequality for
any f in BL , we can call νn = ∑

α∈A aα(ρ)Nα and write

∣∣∣
∫

Rd
f

(
Xn − X0√

n

)
dPρ −

∫

Rd
f dνn

∣∣∣ ≤
∑

α∈A

aα(ρ)

∣∣∣
∫

Rd
f

(
Xn − X0√

n

)
dPα

ρ −
∫

Rd
f dNα

∣∣∣

and we then conclude

dist
(
Pρ,n, νn

) ≤
∑

α∈A

aα(ρ)dist
(
P

α
ρ,n,Nα

)
,

which converges to 0 as n → +∞. ��
Notice that, while the weights aα(ρ) depend on the initial state and on the transient part of L,
the parameters of the Gaussian measures only depend on the restriction to the fast recurrent
part. Theorem 4.4 has the following direct consequence on the convergence of the empirical
means.
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Corollary 4.5 Let P̂ρ,n the law of the random variable Xn−X0
n under Pρ , then

lim
n→+∞ dist

(
P̂ρ,n,

∑

α∈A

aα(ρ)δmα

)
= 0,

where aα(ρ) are defined as in previous theorem and δmα denotes the Dirac measure concen-
trated in mα .

Remark 4.6 Possible extensions. As for previous versions of Central Limit Theorems for
HOQWs, we can extend our results to more general cases.

1. There is an immediate generalization of HOQWs obtained considering a change in the
local state after a shift si given by a quantum operation L j with more than one Kraus
operator, which is the case we considered (L j (·) = L j · L∗

j ). In this case it suffices to
change the notation in the proof of Theorem 4.4 to see that it still holds true.

2. Open quantumwalks have been defined also in continuous time [36] and the central limit
theorem for the position process has already been proved in [10], under the assumption
of irreducibility of R. Theorem 4.4 can be carried with some technical adaptations to the
continuous time case.

Remark 4.7 Comparison with previous results. The first CLT for HOQWs appeared in [2]
where the authors proved it by the use of Poisson equation and martingale techniques in the
case R irreducible. Indeed, in [2, Theorem 7.3] they showed the convergence to different
Gaussian measures under proper conditional probabilities and under assumptions which can
be translated in our language to be

– T = {0},
– χα is minimal for every α ∈ A,
– mα �= mα′ if α �= α′.

These techniques revealed to be successful to treat also other walks and in particular
have recently been exploited also in [27] to obtain a CLT for the so-called lazy OQWs.
Successively, in [15], an alternative proof of the central limit theorem for an irreducible
fast recurrent local channel L could be deduced from a large deviation principle, proved
by deformation techniques. Finally the results in [30, 31, 33] (which are formulated in the
setting of homogeneous open quantum walks on crystal lattices) state a kind of convergence
to a mixture of Gaussian measures, under some conditions, always essentially implying that
the local channel is fast recurrent.

Here, with Theorem 4.4, we can find an improvement of all these previous results since
we can drop any condition about recurrence or transience or reducibility of the local channel
and we can specify the form of convergence to the mixture of Gaussians introducing a metric
on the set of probability measures. Moreover we can specify the weights of the limit mixture
in terms of the initial state and of the decomposition of the local space.

We refer the reader to [41] for other hints on the existing literature until 2019 and to [10,
36, 37] for CLT results for different families of open walks.

5 Large Deviations

When the Central Limit Theorem is approached by Bryc’s theorem, it is often treated together
with large deviations, and this was indeed the idea in [15], where the proof of the central limit

123



On a Generalized Central Limit Theorem. . . Page 23 of 33     8 

theorem in the particular case of an irreducible fast recurrent subspace was a byproduct of
the large deviation principle. Similarly, it is here natural to wonder whether a large deviation
principle can hold in general for the position process of a HOQW, always under the measure
Pρ induced by the initial state ρ. We shall prove that Gärtner–Ellis’ theorem can be applied
and thus large deviations hold when the local map is recurrent. Moreover, the rate function is
related to the spectrum of the deformed map Lu . When instead there is a non-trivial transient
subspace for the local channel L, the limit of the scaled cumulant generating functions is
not smooth in general, as [15, Example 7.3] shows, and Gärtner–Ellis’ theorem will simply
provide lower and upper bounds.

As for the results in the previous section, only theminimal enclosures in the decomposition
ofR that are “reachable” by a initial state ρ will play a role in the large deviations results. For
this reason, it is useful to remember the definition of the quantities aα(ρ), aα,β(ρ) (introduced
in Lemma 4.3), which are a kind of quantum absorption probabilities of the evolution in the
enclosures χα , or Vα,β respectively, when the initial state is ρ. Differently from the central
limit type results, here also the index β, and so the particular enclosures Vα,β selected inside
χα are important, and this is related to the fact that the evolution on the transient subspace
affects large deviations results.

Since we need to define restrictions of the channel L which take into account only proper
subspaces reachable by the local initial states ρ(k), we define the subspace

E(ρ) := span{supp(Ln(ρ(k))), k ∈ V , n ≥ 0} ⊂ h, (5.19)

which is an enclosure due to [16, Propositions 4.1 and 4.2].
We recall that by P̂ρ,n we denote the law of Xn−X0

n under Pρ and, given any enclosure V,
p̃V is the orthogonal projection onto supp(A(V)).

Theorem 5.1 Large deviation principle. Suppose that the local map L is recurrent, i.e.
R = h. Then (P̂ρ,n)n≥1 satisfies a large deviation principle with good rate function

�ρ(x) = min
α : aα(ρ)�=0

�α(x),

where �α is the Fenchel–Legendre transform of the logarithm of the spectral radius λα,u of
L|χα,u, i.e.

λα,u = r(L|χα,u), �α(x) = sup
u∈Rd

{〈u, x〉 − log(λα,u)} x ∈ R
d .

Theorem 5.2 Large deviations upper and lower bounds. For any measurable B ∈ B(Rd)

• lim supn→+∞ 1
n log(P̂ρ,n(B)) ≤ − inf x∈B minα,β : aα,β (ρ)�=0 �

ρ
α,β(x),

• lim infn→+∞ 1
n log(P̂ρ,n(B)) ≥ −minα,β : aα,β (ρ)�=0 infx∈B̊∩Sα,β

�
ρ
α,β(x)

where

• λ
ρ
α,β,u = r(L|Qρ

α,β ,u) for Q
ρ
α,β := p̃Vα,β

E(ρ),

• �
ρ
α,β(x) = supu∈Rd {〈u, x〉 − log(λρ

α,β,u)} is the Fenchel–Legendre transform of

log(λρ
α,β,u),

• Sα,β = R
d if λ

ρ
α,β,u is smooth, otherwise Sα,β is the set of exposed points of �

ρ
α,β (see

[17, Definition 2.3.3]).

Remark 5.3 We remark that, whenever aα,β(ρ) �= 0, Qρ
α,β is non trivial and

Q
ρ
α,β = Vα,β ⊕ (T ∩ Q

ρ
α,β) ⊂ supp(A(Vα,β))
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(see the first step in the proof of Theorem 5.2).

We shall prove the two theorems in inverse order. The proof will request different steps
and we shall proceed similarly as we did for the central limit theorem, first considering the
measure P′

ρ associated with the absorption in a single minimal enclosure (Lemma 3.1), and
then generalizing using the expression of Pρ as a convex combination given in Lemma 4.3.

Proof Step 1. We fix the initial state ρ and a minimal enclosure V, whose corresponding
absorption operator is denoted as usual by A(V). If Eρ[Tr(A(V)ρ0)] > 0, we introduce the
measure P′

ρ as previously in Lemma 3.1. This first step consists in proving large deviations
bounds for the position process under the measure P′

ρ .
We need to consider a restriction of the channel L which takes into account only the

subspace of suppA(V) which is someway reachable by the local initial states ρ(k). To this
aim we use the enclosure E(ρ) (see equation (5.19)) and define the subspace

Q = p̃VE(ρ).

1. Q ⊕ (E(ρ)⊥ ∩ supp(A(V))) = supp(A(V)).
Indeed, v ∈ Q⊥ ∩ supp(A(V)) if and only if

v ∈ supp(A(V)) and, ∀w ∈ E(ρ), 0 = 〈v, p̃V(w)〉 = 〈 p̃V(v), w〉 = 〈v,w〉,
i.e. v ∈ supp(A(V)) ∩ E(ρ)⊥.

2. Eρ[Tr(A(V)ρ0)] = 0 if and only if Q = {0}.
Since Tr(A(V)ρ0) is a non negative random variable, it has zero mean if and only if it is
almost surely null, that is

⇔ 0 = Tr(A(V)ρ(k)) = Tr(A(V)Ln(ρ(k))) ∀k ∈ V

(since L∗(A(V)) = A(V)) ⇔ Tr(A(V)Ln(ρ(k))) = 0 ∀k ∈ V , n ≥ 0

⇔ p̃V(supp(Ln(ρ(k))) = {0} ∀k, n
3. Otherwise Eρ[Tr(A(V)ρ0)] > 0 and V ⊂ Q.

By using the same ideas as before, if Eρ[Tr(A(V)ρ0)] > 0, Q is non trivial and there exist
some k ∈ V , n ≥ 0 such that Tr(pVLn(ρ(k))) �= 0 and this implies

{0} �= pV(E(ρ)) = pV(pR(E(ρ))) = pV(R ∩ E(ρ))

where the last equality follows from [12, Proposition 23]. So (R ∩ E(ρ)) is a non null
positive recurrent enclosure (as intersection of enclosures) and it is non orthogonal to V,
hence it contains aminimal enclosureWwhich is in the sameχα asV and is not orthogonal
to V. Then, by using the representation of V and W given by the partial isometry Uα as
in relation (4.15), we deduce that

V = pV(W) ⊂ p̃V(E(ρ)) = Q.

We call 	 the restriction of L to the subspace Q, i.e. 	(σ) := pQL(pQσ pQ)pQ, and
	u its deformation. Q and consequently 	 obviously depend on the enclosure V and on the
initial state ρ, but we do not need to highlight this in the notations.

Lemma 5.4 Suppose Eρ[Tr(A(V)ρ0)] > 0. For any measurable B ∈ B(Rd)

• lim supn→+∞ 1
n log(P̂

′
ρ,n(B)) ≤ − inf x∈B �(x);

• lim infn→+∞ 1
n log(P̂

′
ρ,n(B)) ≥ − inf x∈B̊∩S �(x)
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where

• � is the Fenchel–Legendre transform of log(λρ
u ),

• λ
ρ
u is the spectral radius of 	u ,

• S = R
d if λρ

u is smooth, otherwise it corresponds to the set of exposed points of �.

Proof In order to apply [17, Theorem 2.3.6], we need to prove that for every u ∈ R
d we

have

lim
n→+∞

1

n
log(E′

ρ[eu·(Xn−X0)]) = log(λρ
u ).

Notice that we computed the same limit in the proof of Theorem 3.6, but for u in a complex
neighborhood of the origin.

For any n ∈ N, by construction 	n
u(ρ(k)) = L̃n

u(ρ(k)) for all k and u, so we can write

Eρ[Tr(A(V)ρ0)] · E′
ρ[eu·(Xn−X0)] =

∑

k∈V
Tr(A(V)L̃n

u(ρ(k))) =
∑

k∈V
Tr(A(V)	n

u(ρ(k)))

=
∑

k∈V
Tr(ρ(k)	∗n

u (A(V)))

≤
∥∥∥∥∥∥

∑

k∈V
ρ(k)

∥∥∥∥∥∥
L1

‖	∗n
u (A(V)))‖∞ ≤ ‖	∗n

u ‖∞.

Because of Gelfand formula, we get

lim sup
n→+∞

1

n
log(E′

ρ[eu·(Xn−X0)]) ≤ log

(
lim

n→+∞‖	∗n
u ‖1/n∞

)
= log(λρ

u ).

Now consider wu ∈ B(h) the Perron–Frobenius eigenvector for	∗
u , i.e. such that 	

∗
u(wu) =

λ
ρ
uwu . wu is a non null positive operator supported in Q, so there exist N ∈ N and k̂ in V

such that Tr(L̃N (ρ(k̂))wu) �= 0. Therefore Tr(	N
u (ρ(k̂))wu) = Tr(L̃N

u (ρ(k̂))wu) �= 0.
SinceQ is finite dimensional, there exists a constantM > 0 such that pQA(V)pQ ≥ Mwu ,

hence for every n ≥ N we have

Eρ[Tr(A(V)ρ0)] · E′
ρ[eu·(Xn−X0)] =

∑

k∈V
Tr

(
A(V)L̃n

u(ρ(k))
)

≥ Tr
(
A(V)L̃n

u(ρ(k̂))
)

= Tr
(
A(V)	n

u(ρ(k̂))
)

≥ MTr
(
	N

u (ρ(k̂))	∗(n−N )
u (wu)

)

= MTr
(
	N

u (ρ(k̂))wu

)
(λρ

u )n−N .

Therefore

lim inf
n→+∞

1

n
log(E′

ρ[eu·(Xn−X0)]) ≥ log(λρ
u ).

This allows to compute the desired limit and the statement follows by direct application of
the Gärtner–Ellis’ theorem. Notice that we do not have to worry about the domain of log(λρ

u )

since it is easy to see that λρ
u is a strictly positive real number for every u ∈ R

d . ��
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Step 2.We complete the proof of the statement of the theorem by using the expression of
Pρ as convex combinations of the Pα,β

ρ deduced in relation (4.18). This implies that a similar

decomposition holds for P̂ρ,n in terms of (P̂
α,β
ρ,n)α,β , i.e.

P̂ρ,n =
∑

α∈A

∑

β∈Iα
aα,β(ρ)P̂α,β

ρ,n . =
∑

j∈Jρ

a j (ρ)P̂
j
ρ,n,

where Jρ := {
(α, β) : α ∈ A, β ∈ Iα : aα,β(ρ) > 0

}
.

Since, for any j ∈ Jρ and B ∈ B(Rd), P̂ρ,n(B) ≥ aαP̂
j
ρ,n(B), we trivially have

lim inf
n→+∞

1

n
log(P̂ρ,n(B)) ≥ max

j∈Jρ
lim inf
n→+∞

1

n
log(P̂ j

ρ,n(B)),

lim sup
n→+∞

1

n
log(P̂ρ,n(B)) ≥ max

j∈Jρ
lim sup
n→+∞

1

n
log(P̂ j

ρ,n(B)).

Then we have

lim sup
n→+∞

1

n
log(P̂ρ,n(B)) ≤ lim sup

n→+∞
1

n
log(|Jρ |)

︸ ︷︷ ︸
=0

+ lim sup
n→+∞

1

n
log

(
max
j∈Jρ

P̂
j
ρ,n(B)

)

= max
j∈Jρ

lim sup
n→+∞

1

n
log(P̂ j

ρ,n(B))

and we are done. ��
Proof of Theorem 5.1 Under the hypothesis h = R, we have that A(Vα,β) = pVα,β

, which

implies Qα,β = Vα,β and L̃α,β,u = L|Vα,β ,u .
Since L|Vα,β

is irreducible, λα,β,u is an analytic function of u ∈ R
d [15, Lemma 5.3] and

consequently Sα,β = R
d .

Moreover recall (Eq. 4.14) that L∗|χα
is unitarily equivalent to IdB(C|Iα |) ⊗ ψ where ψ is

equal to L∗
|Vα,β

, hence L|χα and L|Vα,β
have the same spectral radius.

Therefore the following equality holds:

min
(α,β)∈Jρ

�α,β = min
α:aα(ρ)�=0

�α.

Theorem 5.2 ensures that for any measurable B ∈ B(Rd)

• lim supn→+∞ 1
n log(P̂ρ,n(B)) ≤ − inf x∈B minα:aα(ρ)�=0 �α(x),

• lim infn→+∞ 1
n log(P̂ρ,n(B)) ≥ − inf x∈B̊ minα:aα(ρ)�=0 �α(x),

which is exactly the definition of large deviation principle with rate function �ρ(x) :=
minα:aα(ρ)�=0 �α(x), x ∈ R

d . Note that �ρ has compact level sets because every �α does (it
is a consequence of Gärtner–Ellis’ theorem). ��

Consider a minimal enclosure V such that Eρ[Tr(A(V)ρ0)] �= 0; taking the notations of
the first step in the proof of Theorem 5.2, the following proposition states that λ

ρ
u can be

seen as the result of two contributions: one depending on the recurrent dynamic on V and the
other one on the transient dynamic on its orthogonal complement in Q, which we denote by
W := Q ∩ T.

Proposition 5.5 Let λVu and λWu be the spectral radii of 	|V,u and 	|W,u respectively. Then
λ

ρ
u = r(L̃u) = max{λVu , λWu }.
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Proof We only need to prove that if λ
ρ
u > λVu , then λ

ρ
u = λWu . Theorem 2.6 tells us that there

exists a positive ωu ∈ L1(Q) such that 	u(ωu) = λ
ρ
uωu ; since λ

ρ
u > λVu , it must be true that

pWωu pW �= 0 and we have the following:

pW	u(pWωu pW)pW = pW	u(ωu)pW = λu pWωu pW.

The first equality follows from the fact that for any ρ ∈ L1(h)

	u(pVρ) = pQLu(pVρ pQ)pQ
(V is an enclosure)= pVLu(pVρ pQ)pQ = pV	u(pVρ)

and analogously 	u(ρ pV) = 	(ρ pV)pV.
��

6 Examples and Numerical Simulations

6.1 Commuting Normal Local Kraus Operators

As a first family of examples, we consider some HOQWs studied in [39]: take V = Z
d and

a local channel with normal commuting Kraus operators {L j }2dj=1. In this case, there exists

an orthonormal basis {ϕi }hi=1 that simultaneously diagonalizes the Kraus operators and we

can write L j = ∑h
i=1 ζi, j |ϕi 〉〈ϕi |. The normalization condition for the operators L j given

by Eq. (1.1) implies that
∑2d

j=1 |ζi, j |2 = 1 for any i = 1, . . . , h.
It is easy to verify by direct computation that, for every i = 1, . . . , h, ωi = |ϕi 〉〈ϕi | is

a minimal invariant state for L, and consequently Vi := span{ϕi } is a minimal recurrent
enclosure. Hence L is positive recurrent and h = ⊕iVi is a decomposition of the local space
h in minimal orthogonal enclosures.

However, for our study, we are interested in a decomposition of the form described in
(4.12) and in particular we should identify the enclosures χα , which will be given by the
direct sum of some of the Vi ’s; indeed, we can see that Vi and Vl are in the same χα if and
only if for every j = 1, . . . , 2d , ζi, j = ζl, j =: ζα, j . This reflects on the structure of the
Kraus operators, that will also be written as L j = ∑

α∈A ζα, j pχα , j = 1, . . . , 2d .
In this simple example, the probability law of the shift Xn − X0 is a convex combination

of |A| multinomial distributions with parameters (|ζα,1|2, . . . , |ζα,2d |2): for every n ≥ 1

Pρ(X1 − X0 = e j1 , . . . , Xn − Xn−1 = e jn ) =
|A|∑

α=1

∑

k∈Zd

Tr(pχαρ(k))

︸ ︷︷ ︸
=:aα(ρ)

n∏

k=1

|ζα, jk |2,

where e1, . . . , ed is the canonical basis of Rd and e2 j = −e j for j = 1, . . . , d . Applying
the central limit theorem for the mean of i.i.d. random variables, we see that

lim
n→+∞ dist

⎛

⎝Pρ,n,

|A|∑

α=1

aα(ρ)N
(√

nmα, Dα

)
⎞

⎠ = 0 (6.20)

where mα = ∑2d
j=1 |ζα, j |2e j and Dα = ∑d

j=1(|ζα, j |2 + |ζα,2 j |2)|e j 〉〈e j | − |mα〉〈mα|.
Similarly, if we apply Theorem4.4, we find again relation (6.20) (in this case computations

for the asymptotic means and covariance matrices are very easy).
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Also, by applying Theorem 5.1, we can state that a large deviations’ principle holds for
the process Xn−X0

n and the rate function is given by

�ρ(x) := min
α:aα(ρ)�=0

�α(x), x ∈ R
d

where �α(x) = supu∈Rd {〈u, x〉 − log(λα,u)} and λα,u = ∑2d
j=1 |ζα, j |2eu·e j .

Fig. 3 Example 6.2. Empirical and expected cumulative functions of Xn√
n
for n = 50, 150, 600. E is the

maximum difference in absolute value between the functions
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6.2 An Example with Non Trivial Transient Space

We consider a family of HOQWswith local Hilbert space h = C
4, including the walk defined

in Example 2.2. We introduce the parameters p1, p2, p3 ≥ 0 such that
∑3

i=1 pi = 1
2 and

define left and right Kraus operators

L =

⎛

⎜⎜⎜⎜⎜⎝

1
2
√
2

0 0 0√
p1
2

1√
2

0 0√
p2
2 0 1√

2
0

−
√

p3
3 0 0 2√

3

⎞

⎟⎟⎟⎟⎟⎠
, R =

⎛

⎜⎜⎜⎜⎜⎜⎝

√
3
8 0 0 0

−
√

p1
2

1√
2

0 0

−
√

p2
2 0 1√

2
0√

2p3
3 0 0 1√

3

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Notice that Example 2.2 corresponds to the case p1 = p2 = 0, p3 = 1/2.
This family of local channels revealed to be very useful since, though with a low dimen-

sional local Hilbert space, it can display already a more sophisticated structure of the
decomposition of the local space. Indeed, the transient subspace is non trivial and the recur-
rent subspace is reducible as a sum of two χα , one which is a minimal enclosure and one
which is not.

Let {ei }3i=0 be the canonical basis of h. It is immediate to see, for instance by computing
explicitly the invariant states of the corresponding local channel L, that T = span{e0},
R = span{e1, e2, e3} and the decomposition of the recurrent space is the following:

R = span{e1, e2}︸ ︷︷ ︸
χ1

⊕ span{e3}︸ ︷︷ ︸
χ2

.

With simple direct computations one can find the parameters of the limit Gaussians: for the
enclosure χ1 one has mean m1 = 0 and variance D1 = 1, while for χ2 one has parameters
m2 = − 1

3 and D2 = 8
9 .

For this walk, depending on the different choice of the initial state ρ, we can observe either
only one of the two Gaussians or various mixtures of the two Gaussians. When the ρ(k)’s

Fig. 4 ρ0 = 1
8 |e0〉〈e0| + 7

8 |e3〉〈e3| and p3 = 1
6
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are all contained in a same χα , then we shall see only the Gaussian associated with the same
χα , α = 1, 2.

In order to consider the asymptotic behavior, we need the following absorption operators:

A(χ2) = 2p3|e0〉〈e0| + |e3〉〈e3|, A(χ1) = 1h − A(χ2).

We can take for simplicity X0 = 0 and it will be particularly interesting to consider an
initial state ρ supported in the transient subspace, and so of the form ρ = ρ0 ⊗ |0〉〈0|, with
ρ0 = (ρ0(i, j))i, j=0,...3 a non negative unit-trace matrix in M4(C). Then we can explicitly
compute the weights of the Gaussian mixture appearing in the generalized CLT, which will
be given by the quantum absorption probabilities

Fig. 5 The behavior of Yn
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a1(ρ) = 2p3ρ0(0, 0) + ρ0(3, 3),

a2(ρ) = 1 − a1(ρ) = 2(p1 + p2)ρ0(0, 0) + ρ0(1, 1) + ρ0(2, 2).

We illustrate our result also by numerical simulations. We used N = 5 × 104 samples of
Xn√
n
for n = 50, 150, 600 in order to estimate their probability distribution and we compared

it with the expected convex combination of Gaussian measures. Figures 1 and 2 show the
histograms of Xn√

n
at the three different times (n = 50, 150, 600) for the choice p3 = 1

2 and for
two different choices of the local initial state ρ0. In Fig. 3 we reported the empirical and the
expected cumulative function. The same plots for the choice p3 = 1

6 are reported in Fig. 4.
Once again we remark that, tuning initial state and absorption rates the Gaussian laws in the
mixture do not change, but only their weights.

Finally, numerical simulations can also help us to have a better intuition of the behavior
of the processes (Yn)n used to introduce the laws of the family P

′
ρ (recall Lemma 3.1). For

the enclosure χ1, for instance, the corresponding process Yn = Tr(χ1ρn) should help us to
select the trajectories absorbed in some sense in χ1. In Fig. 5 we trace the trajectories of
(Yn)n along 800 steps, which show how Y∞ is a Bernoulli random variable with parameter
Eρ[Tr(A(χ1)ρ0)]; hence in this case P1

ρ(·) (defined as in relation (4.17)) is equal to Pρ(·|B)

where B = {Y∞ = 1} = {limn→+∞‖pχ1ρn pχ1 − ρn‖ = 0} and it represents the probability
obtained conditioning Pρ to the event of “being absorbed in χ1”.

Note that the frequence of trajectories such that Y800 > 0.99 is equal to 0.3388, and
the frequence of trajectories for which Y800 < 0.01 is 0.6612. This is in agreement with
a1(ρ) = Eρ[Tr(A(χ1)ρ0)] = 1

3 .
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