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Abstract
Based on the recognition of the huge change of the transport properties for diffusion particles
in non-static media, we consider a Lévy walk model subjected to an external constant force in
non-staticmedia. Since the physical and comoving coordinates of non-staticmedia are related
by scale factor, we equivalently transfer the process from physical coordinate into comoving
coordinate and derive the master equation governing the probability density function of the
position of the particles in comoving coordinate.Utilizing theHermite orthogonal polynomial
expansions, some statistical properties are obtained, including the asymptotic behaviors of
the first two moments in both coordinates and kurtosis. For some representative types of
non-static media and Lévy walks, the striking and interesting phenomena originating from
the interplay between non-static media, external force, and intrinsic stochastic motion are
observed. The stationary distribution are also analyzed for some cases through numerical
simulations.

Keywords Lévy walk · Non-static media · Constant force · Scale factor · Hermite
orthogonal polynomial

1 Introduction

The diffusion process attracts the attentions of people sinceRobert Brown, a Scottish botanist,
discovered that pollen and other tiny suspended particles constantlymove in an irregular curve
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in water in 1827 [4]. For a large group of diffusion processes, their mean square moments
(MSDs) behave as 〈x2(t)〉 ∼ tα after sufficiently long time. The diffusion process is called
normal diffusion if α = 1, otherwise it is termed as anomalous diffusion [5, 42, 57]. A well-
known example of normal diffusion is Brownian motion [48]. One of the famous example
for anomalous diffusion is Richardson’s research in 1926 [53], in fact it is ubiquitous in a
wide range of fields, such as diffusion processes in physics [49], in finance [58], in ecology
[50], as well as in biology [30]. Anomalous diffusion can be further subdivided according to
the scope of α. The further classification of anomalous diffusions leads to subdiffusion for
0 < α < 1 [32, 33, 59, 60, 64, 67, 68] and superdiffusion for α > 1 [6, 12, 54].

As for the models for diffusion processes, continuous time random walk (CTRW) is
one of the central stochastic models based on random walk theory, in which there are two
series of independent identical distribution (i.i.d.) random variables; one is waiting time τ

between any two continuous jumps following the distribution φ(τ) and another one is jump
length l satisfying the probability density function (PDF) λ(l) [43–45]. The subdiffusion or
superdiffusion process can be viewed as a scaling limit process of CTRWmodel with infinite
〈τ 〉 and finite 〈l2〉 or finite 〈τ 〉 and diverging 〈l2〉, respectively. If both 〈τ 〉 and 〈l2〉 are finite,
it is modeling normal diffusion. A renowned example of superdiffusion is Lévy flight [21,
22, 43], where the distribution of jump length satisfies λ(l) ∼ 1/|l|1+μ with 0 < μ < 2.
For Lévy flight, the transport is usually characterized by its fractional order moments 〈|x |κ 〉
because of the scale-free of jump length λ(l). Moreover, [43] shows that 〈|x |κ 〉2/κ � t2/μ.
Lévy flight is also considered to be an efficient random search model for foraging animals
[51, 65, 66] due to the fractal dimension of their trajectories. Another classical model based
on random walk theory to describe anomalous diffusion is Lévy walk. Different from CTRW
model, it is spatiotemporally coupled through finite propagation speed [7, 73]. The traditional
one is with constant speed v0 and the corresponding running time τ for each step follows
the distribution φ(τ). Lévy walk is observed in many fields, such as molecular-motor motion
[13, 61], human hunter-gatherer foraging [55], optimized robotic search [23], as well as the
propagation of COVID-19 pandemic [27].

Almost all the particles move in external potentials [28, 29]. The effects of external forces
on Brownian motion are developed by Smoluchowski after Einstein publishing his paper
on Brownian motion in 1905. The dynamics of CTRW process under the action of external
potentials are discussed in [14, 21, 22, 24, 46] and the authors [34] study Lévy flight process
moving in harmonic potential field, in which it is found that the MSD is diversing though a
stationary state can be reached. Further, Lévy flights in a harmonic potential well for both
overdamped and underdamped situations are detailedly discussed in [15]. Although the gen-
eralized Kramers–Fokker–Planck equation of Lévy walk in arbitrary external potentials is
given in [25, 26], it seems hard to uncover more concrete characters due to the spatiotem-
poral coupled property. Hermite orthogonal polynomials approximation is a complementary
method to integral transform introduced in [69] to solve the spatiotemporal coupled problem
of Lévy walk and Lévy walk process under the action of external potential is detailedly dis-
cussed in [70, 74] by this brand new method. Moreover, Langevin equations [16] provide a
feasible framework to solve the problem with external potentials.

The foundations of the above studies are based on the hypothesis that the medium is static,
which means the distance between two unmoved particles does not change with time. In fact,
almost all the diffusion processes take place in weakly/strongly non-static media, which can
be clearly observed in many fields, such as biology [8, 17, 37, 62], cosmology [1, 9, 10, 35].
Moreover, two typical types of non-staticity ofmedia are expansion and contraction.Diffusion
processes taken place in chaotic systems and fluids turn out that the dynamics of the particles
alter enormously due to the non-static medium, prompting the related researches [2, 18, 19,
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31, 38, 47, 63, 71, 72]. The corresponding Fokker–Planck equation for random motion in
non-static medium is presented in [72] on account of the generalized Chapman–Kolmogorov
equation. Besides, the dynamics of CTRW and Lévy walk model in one dimensional non-
static medium are analyzed in [38, 39, 75].

It is a widespread phenomenon that the diffusion processes are subjected to an external
potential in non-static medium. For example, the particles are usually suffered from interac-
tions in biological media [20, 30, 42] and the diffusion particles may be under a harmonic
potential in uniformly expanding medium [40]. Besides, the corresponding Fokker–Planck
equation of the CTRW particles moving under the action of an external force in one dimen-
sional uniformly expanding medium is derived in [41]. In this paper, we aim to analyze
the transport characters of Lévy walk under the action of external constant force in one
dimensional non-static medium.

This paper is organized as follows. In Sect. 2, we introduce the Lévy walk model under the
action of an external constant force in one dimensional non-static medium and build its trans-
port equation in the framework of comoving coordinate. In Sect. 3, the corresponding average
moments and MSDs in both coordinates are derived through Hermite orthogonal polynomi-
als expansions. We discuss the interplay between a constant force, non-static medium, and
the intrinsic stochastic motion in Sect. 4 by considering some representative distributions
of running time φ(τ) and scale factor d(t) and derive the kurtosis in physical coordinate
for the non-static medium with exponential contraction scale factor. Besides, the stationary
distribution are also analyzed through numerical simulations for the case of localization in
both coordinates. Finally, we conclude the paper with some discussions in Sect. 5.

2 LévyWalk Under the Action of an External Constant Force in
Non-static Media

Lévy walk particles with mass M moving in a constant force field F = Ma, where a
represents a constant acceleration, have been considered in one dimensional static medium
in [74]. The initial speed of each step is assumed to be ±v0 with equal probability for the
direction of left or right. Moreover, yt denotes the location of the particle at time t and t j
( j = 1, 2, 3, . . .) is the time when the j th renewal event was just finished. The running time
τ := t j − t j−1 between two successive renewal events obeys the PDF φ(τ). With the above
setting, the transport equation between the j th and ( j + 1)th renewal events satisfies:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2yt j+τ ′

dτ ′2 = a, for τ ′ ∈ (0, (t j+1 ∧ t) − t j ],
dyt j+τ ′

dτ ′

∣
∣
∣
∣
τ ′=0

= ±v0.

(1)

The solution of Eq. (1) satisfies yt j+τ ′ = 1
2aτ ′2 ±v0τ

′ + yt j with
1
2 probability of each them.

Comparing with the motion in static medium under the action of an external constant force,
the displacement of Lévy walk changes from ±v0τ to 1

2aτ 2 ±v0τ when the duration of each
step is τ .

In this paper, we focus on analyzing the transport dynamics of Lévy walk under a constant
external force field when the one dimensional medium is undergoing uniform expansion
or contraction. The relation between the physical coordinate (denoted as y) and comoving
coordinate (denoted as x) is

y = d(t)x (2)
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with d(t0) = 1 for the initial time t0 [38, 72]. The function d(t) is named as scale factor
from a point of cosmology [52, 56]. Furthermore, the medium is expanding if ḋ(t) > 0 and
is contracting if ḋ(t) < 0 [40]. It is worth noting that the physical and comoving coordinates
are identical at the initial time. The evolution of the physical location y comes from three
contributions, which are respectively the intrinsic motion of Lévy walk, the motion induced
by constant force, as well as the deterministic motion caused by non-static medium.

The CTRW process in non-static medium is analyzed in [38]. As shown in Fig. 1a, one
can assume that the CTRW particle arrives at yn−1 at time tn−1, then it comes to y

′
n−1 at time

tn due to the expansion of the medium and further followed by an instantaneous jump with
length Δyn relative to y

′
n−1 because of the intrinsic motion. Since the particle does not move

in the comoving coordinate x as long as the walker is in a state of rest, e.g., x+
n−1 = x−

n (‘+’

and ‘-’ respectively mean right and left limit), we have the expression of y
′
n−1 by combining

with (2),

y
′
n−1 = d(tn)

d(tn−1)
yn−1. (3)

The correlation and similarity between CTRWmodel and the traditional Lévy walk model
are stated in [11, 36]. Because of that, for Lévywalk under the action of constant force in non-
static medium, as shown in Fig. 1b, we choose ξ ∈ (tn−1, tn], the position yξ of the Lévywalk
particle at time ξ is determined by three parts; one is the deterministic motion caused by non-
static medium and the corresponding position can be expressed as y

′
ξ = d(ξ)

d(tn−1)
yn−1, and the

other two are the intrinsic stochastic movement and the motion resulted from constant force,
respectively. The displacement induced by the latter two isΔy = 1

2a(ξ−tn−1)
2±v0(ξ−tn−1)

Fig. 1 Legend descriptions of CTRW and Lévy walk under the action of constant force in expanding medium.
Here, x and y, respectively, denote the comoving and physical coordinates with the relation y = d(t)x , where

d(t) is the scale factor. Δy
′
n = y

′
n−1 − yn−1 denotes the displacement caused by expanding medium and

Δxn = xn − xn−1 is the displacement Δyn in comoving coordinate. a Represents CTRWmodel in expanding
medium andΔyn is the jump length drawn from the distribution λ(Δyn), and b is for Lévy walk process under
the action of constant force in expanding medium with Δyn = 1

2 aτ2 ± v0τ , where τ obeys the distribution
φ(τ)
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relative to y
′
ξ . Then, for the final observation time t , the position of the Lévy walk particle is

yt = d(t)

d(tn)
yn + 1

2
a(t − tn)

2 ± v0(t − tn). (4)

Obviously, we recover the results in [74] when the scale factor of the media is d(t) = 1,
which further indicates the distance between two unmoved particles does not change with
time.

As discussed above, the final position of the Lévy walk particle in each finished (or
unfinished) step in physical coordinate is related to the displacement Δy and the location
after the deterministic motion induced by non-static medium. In addition to the constant
acceleration a and velocity v0, the displacement Δy is also determined by the running time
τ drawn from φ(τ) or the survival time (still denoted as τ ), which obeys the distribution

ψ(τ) =
∫ ∞

τ

φ(τ ′)dτ ′. (5)

Therefore, the corresponding distribution of Δy with running time τ satisfies the conditional
density

λ(
y; τ) = 1

2
δ

(


y − 1

2
aτ 2 − v0τ

)

+ 1

2
δ

(


y − 1

2
aτ 2 + v0τ

)

, (6)

where δ(·) represents the Dirac δ-function.
To get the distribution of P(y, t), the PDF of the Lévy walk particle arriving at physical

coordinate y at time t , it is a good choice to turn to the help of comoving coordinate since the
distribution of the location after each deterministic motion in physical coordinate is difficult
to describe. However, the relation between the displacementΔx in comoving coordinate and
Δy in physical coordinate is clear, i.e., Δy = d(t)Δx , where t is the overall observation
time. Denote λ(
x |t; τ) as the distribution of the displacement 
x at time t in comoving
coordinate with running time τ . According to (4), we have

λ(
x |t; τ) = d(t)λ
(
d(t)
x; τ

)

= 1

2
d(t)δ

(

d(t)
x − 1

2
aτ 2 − v0τ

)

+ 1

2
d(t)δ

(

d(t)
x − 1

2
aτ 2 + v0τ

)

= 1

2
δ

(


x −
1
2aτ 2 + v0τ

d(t)

)

+ 1

2
δ

(


x −
1
2aτ 2 − v0τ

d(t)

)

.

(7)
The reason for the holding of the equalities is that the scale factor of the non-static medium
we considered here is described by the exponential function d(t) = exp(Ht) or power-law
function d(t) = ( t+t0

t0

)β , which implies d(t) > 0 at any time. On the other hand, let W (x, t)
denote the PDF that the particle moves in comoving coordinate. Then

P(y, t) = 1

d(t)
W

( y

d(t)
, t

)
(8)

on account of (2).
We are going to derive the master equation of Lévy walk particles moving under the action

of a constant force in comoving coordinate with the standard formalism for the ordinary Lévy
walk model. Introducing q(x, t) to denote the PDF that the particle just arrives at x at time t
in comoving coordinate, one yields

q(x, t) =
∫ ∞

−∞
d
x

∫ t

0
q

(
x − 
x, t − τ

)
φ(τ)λ(
x |t; τ)dτ + P0(x)δ(t). (9)
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Moving from the position x−
x at previous time t−τ to x at t implies that the particle needs
to make a displacement Δx in the running time τ . The second term on the r.h.s. represents
the initial distribution.

To calculate the PDFW (x, t) at a given point in space and time, it is necessary to connect
the flux at the renewal point to the density at the given point, i.e.,

W (x, t) =
∫ ∞

−∞
d
x

∫ t

0
q

(
x − 
x, t − τ

)
ψ(τ)λ(
x |t; τ)dτ, (10)

where the definition of ψ(τ) is given in (5). After taking Laplace transform defined as
ĝ(s) = Lt {g(t)}(s) = ∫ ∞

0 e−st g(t)dt , we get

ψ̂(s) = 1 − φ̂(s)

s
. (11)

The particle arrives at renewal point x − 
x at time t − τ , and it keeps surviving for time τ

and the corresponding displacement for the running time τ is 
x to make sure it locates at
position x at time t .

Plugging (7) into (9) and (10), we obtain

q(x, t) =1

2

∫ t

0
q

(

x −
1
2aτ 2 + v0τ

d(t)
, t − τ

)

φ(τ)dτ

+ 1

2

∫ t

0
q

(

x −
1
2aτ 2 − v0τ

d(t)
, t − τ

)

φ(τ)dτ + P0(x)δ(t)

(12)

and

W (x, t) =1

2

∫ t

0
q

(

x −
1
2aτ 2 + v0τ

d(t)
, t − τ

)

ψ(τ)dτ

+ 1

2

∫ t

0
q

(

x −
1
2aτ 2 − v0τ

d(t)
, t − τ

)

ψ(τ)dτ.

(13)

The normalization of W (x, t) can be verified by the traditional method of integral trans-

form. Since
∫ ∞
−∞ L−1

s

{
Ŵ (x, s)

}
(t)dx = L−1

s

{
̂̃W (k, s)|k=0

}
(t), we take Fourier transform

defined as f̃ (k) = Fx { f (x)}(k) = ∫ ∞
−∞ e−ikx f (x)dx on (12) and (13) and make k = 0.

Further taking Laplace transform, there exists

̂̃W (k, s)|k=0 = ̂̃q(k, s)|k=0ψ̂(s) = 1

1 − φ̂(s)

1 − φ̂(s)

s
= 1

s
,

where verifies the normalization ofW (x, t). However, this widely usedmethod does not work
well for analyzing the other statistical observables of our model because of its characteristics
of time and space coupling. In the next section we will use Hermite orthogonal polynomials
to approach the PDF in comoving coordinate.

3 Hermite Polynomials Approximation to LévyWalk in Constant Force
Field in Non-static Medium

In this section we apply Hermite polynomials to deal with the problem of spatiotemporally
coupling appeared in comoving coordinate. The Hermite polynomials form an orthogonal
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basis of the Hilbert space with the inner product 〈 f , g〉 = ∫ ∞
−∞ f (x)ḡ(x)e−x2dx [3]. We

assume that in Hilbert space q(x, t) and W (x, t) can be, respectively, expressed as

q(x, t) =
∞∑

n=0

Hn(x)Tn(t)e
−x2 , (14)

W (x, t) =
∞∑

n=0

Hn(x)Rn(t)e
−x2 , (15)

where Hn(x), n = 0, 1, . . . , represent the Hermite polynomials, and {Tn(t)} and {Rn(t)} are
a series of functions with respect to t to be determined, respectively.

The initial distribution of the particle is assumed to be a Dirac-delta function, i.e.,
P0(x) = δ(x). Inserting (14) and (15) into (12) and (13), respectively, the iteration rela-
tion between T̂m(s) and the relation between R̂m(s) and T̂m(s) can be written after taking
Laplace transform, respectively, as

√
π2mm!T̂m(s) = 1

2

m∑

k=0

2k
√

πm!
(m − k)! × Lt

{(
1

d(t)

)m−k

L−1
s

[
T̂k(s)Lτ [φ(τ)

[
(aτ 2 − 2v0τ)m−k + (aτ 2 + 2v0τ)m−k

]]
(s)

]
(t)

}
(s) + Hm(0)

(16)

and

√
π2mm!R̂m(s) = 1

2

m∑

k=0

2k
√

πm!
(m − k)! × Lt

{(
1

d(t)

)m−k

L−1
s

[
T̂k(s)Lτ

[
ψ(τ)

[
(aτ 2 − 2v0τ)m−k + (aτ 2 + 2v0τ)m−k

]]
(s)

]
(t)

}
(s).

(17)
The details of derivation are shown in Appendix B.

Some important statistics of the process are determined by a series of functions to be
determined, e.g., {Tn(t)} and {Rn(t)}. For example, in [73], the authors state that the long-
time asymptotic behaviors of the moments of the particle’s position have a close relation with
the derivative of the PDF ˜̂W (k, s) in Fourier-Laplace space, which reads

〈x̂m(s)〉 = (i)m
∂m

∂km
˜̂W (k, s)

∣
∣
∣
∣
k=0

. (18)

It is quite necessary to derive the expression of ˜̂W (k, s). Starting from (15) and (63),W (x, t)
can be written as

W (x, t) =
∞∑

n=0

(−1)n
dn

dxn
e−x2 Rn(t). (19)

Taking Fourier transform x → k and Laplace transform t → s on (19), it yields

̂̃W (k, s) =
∞∑

n=0

√
π(−ik)ne− k2

4 R̂n(s). (20)

Combining (18) with (20), we present the asymptotic expressions of the first two moments of
this process in comoving coordinate, after sufficiently long time, which, respectively, behave
as

〈x̂(s)〉 = i
∂

∂k
̂̃W (k, s)

∣
∣
∣
∣
k=0

= √
π R̂1(s) (21)

123



9 Page 8 of 29 T. Zhou et al.

and

〈x̂2(s)〉 = − ∂2

∂k2
̂̃W (k, s)|k=0 =

√
π

2
R̂0(s) + 2

√
π R̂2(s). (22)

In addition,
̂̃W (k, s)|k=0 = √

π R̂0(s). (23)

Notably, we can get the values of R̂0(s), R̂1(s), and R̂2(s) through (16) and (17). Respec-
tively taking m = 0, 1, 2 in (16) and (17) leads to

T̂0(s) = 1
√

π
(
1 − φ̂(s)

) ,

R̂0(s) = 1

s
√

π
, (24)

2T̂1(s) = Lt

{
1

d(t)
L−1
s

[
aφ̂

′′
(s)T̂0(s)

]
(t)

}

(s) + 2T̂1(s)φ̂(s), (25)

2R̂1(s) = Lt

{
1

d(t)
L−1
s

[
aψ̂

′′
(s)T̂0(s)

]
(t)

}

(s) + 2T̂1(s)ψ̂(s), (26)

and

8
√

π T̂2(s) = 4a
√

πLt

{
1

d(t)
L−1
s

[
T̂1(s)φ̂

′′
(s)

]
(t)

}

(s) + 8
√

πφ̂(s)T̂2(s) − 2

+√
πLt

{
1

d2(t)
L−1
s

[
T̂0(s)

(
a2φ̂4(s) + 4v20 φ̂

′′
(s)

)]
(t)

}

(s), (27)

8R̂2(s) = 4aLt

{
1

d(t)
L−1
s

[
T̂1(s)ψ̂

′′
(s)

]
(t)

}

(s) + 8ψ̂(s)T̂2(s)

+Lt

{
1

d2(t)
L−1
s

[
T̂0(s)

(
a2ψ̂4(s) + 4v20ψ̂

′′
(s)

)]
(t)

}

(s). (28)

We verify the normalization of W (x, t) with the help of R̂0(s) = 1
s
√

π
since

L−1
s

{∫ ∞
−∞ Ŵ (x, s)dx

}
(t) = L−1

s

{
̂̃W (k, s)|k=0

}
(t) = L−1

s

{√
π R̂0(s)

}
(t) = L−1

s
{ 1
s

}
(t) = 1. Obviously, the PDF P(y, t) in physical coordinate is also normalized. Fur-

thermore, in view of (2), the asymptotic expressions of the first two moments in physical
coordinate are

〈y(t)〉 = d(t)〈x(t)〉 (29)

and
〈y2(t)〉 = d2(t)〈x2(t)〉. (30)

In the next section, we are going to analyze the long-time asymptotic behaviours of the
first two moments in both coordinates for some specific running time PDFs φ(t) and scale
factors d(t).
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4 Dynamical Behaviours of LévyWalk Under the Action of an External
Constant Force in Non-static Medium

4.1 Exponentially Distributed Running Time

In this subsection the PDF of running time is assumed to be exponential distribution, i.e.,
φ(τ) = λe−λτ with λ > 0. As is shown in [73], the diffusion of classical Lévy walk in static
medium is normal diffusion when the running time PDF obeys exponential distribution. We
are going to explore the combined effect of constant force and non-static medium on the
dynamics of Lévy walk.

4.1.1 Exponential Scale Factor

Assume that the scale factor of the non-static medium in this part is described by the expo-
nential form,

d(t) = exp(Ht) (31)

with the “Hubble constant” H . In the context of cosmology [52, 56], this type of non-static
medium is caused by dark energy. Apparently H > 0 means an expanding medium whereas
H < 0 represents a contracting one.

Combining with (21) and (22), the first two moments in comoving coordinate are derived
by plugging the expressions of φ(τ) and d(t) into (24)-(28), which respectively read as

〈x(t)〉 ∼
{

aλ
H(H+λ)2

, if H > 0,
a(H−λ)

Hλ2
e−Ht , if H < 0,

(32)

and

〈x2(t)〉 ∼
⎧
⎨

⎩

a2λ(3H3+10H2λ+7Hλ2+λ3)+Hλ(H+λ)2(2H+λ)2v20
H2(H+λ)2(2H+λ)4

, if H > 0,

(2H−λ)
[
a2(3H3−6H2λ+3Hλ2−λ3)+H(H−λ)2λ2v20

]

H2(H−λ)2λ4
e−2Ht , if H < 0.

(33)

Correspondingly, the first two moments in physical coordinate can be straightforwardly
obtained in terms of (29) and (30) after sufficiently long time, which respectively read as

〈y(t)〉 ∼
{

aλ
H(H+λ)2

eHt , if H > 0,
a(H−λ)

Hλ2
, if H < 0,

(34)

and

〈y2(t)〉 ∼
⎧
⎨

⎩

a2λ(3H3+10H2λ+7Hλ2+λ3)+Hλ(H+λ)2(2H+λ)2v20
H2(H+λ)2(2H+λ)4

e2Ht , if H > 0,

(2H−λ)
[
a2(3H3−6H2λ+3Hλ2−λ3)+H(H−λ)2λ2v20

]

H2(H−λ)2λ4
, if H < 0.

(35)

The results of the first two moments in both coordinates are verified in Figs. 2 and 3.
For H > 0, the first two moments in comoving coordinate tend to be a constant whereas
grow exponentially without limit in physical coordinate for sufficiently long time. In contrast,
the first two moments in comoving coordinate exponentially increase with respect to time
t whereas are fixed in physical coordinate for long time limit for H < 0. In addition, the
average moments in both coordinates have no relation with v0. However, the MSDs in both
coordinates rely on the value of v0. Moreover, by taking a = 0, we recover the corresponding
results of the first two moments of pure Lévy walk in non-static medium in both coordinates
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Fig. 2 Numerical simulations of the average moments of Lévy walk under the action of constant force in
non-static medium with exponential scale factor by sampling over 104 realizations. The running time PDF of
Lévy walk behaves as exponential distribution φ(τ) = λe−λτ with λ = 1. The other parameters are v0 = 1,
a = 1, and x0 = y0 = 0. For (a) and (c), we take H = 10−3. For (b) and (d), H = −10−3

[75]. The average moments in [75] appear as 0 in both coordinates whether the medium
expands or contracts. We conclude that the presence of external force changes the symmetry
of the position distribution. Furthermore, compared with the first two moments of Lévy
walk under the action of constant force in static medium [74] which respectively appear as
〈y(t)〉 ∼ t and 〈y2(t)〉 ∼ t2, it can be seen that the deterministicmotion induced by non-static
medium dominates the overall process.

A stationary distribution can be eventually reached in comoving or physical coordinate
when the medium exponentially expands H > 0 or contracts H < 0. In the following
we analyze the stationary distribution Pst (x) or Pst (y) of Lévy walk in constant force
field in comoving or physical coordinate by numerical simulations. For Lévy walk with
φ(τ) = λe−λτ moving in constant force field and a positive H in comoving coordinate, as
shown in Fig. 4a, the phenomena of bimodal-to-unimodal crossovers can be observed by
increasing the value of λ. However, the unimodality of the stationary distribution Pst (x)
does not alter if we respectively change the value of H , v0, a. To be more specific, Fig.
4(b) indicates that changing the value of H does not mean the conversion of the stationary
distribution Pst (x) between unimodal and bimodal, and increasing H can only taper Pst (x).
Similarly, Fig. 4c states that increasing the value of v0 can only flatten Pst (x), so as a does in
Fig. 4d. Interestingly, for Lévy walk with a negative H in physical coordinate, the unimodal
property of Pst (y) can not be affected by the variation of λ, H , v0, a, respectively. Specially,
from Fig. 5a, b the stationary distribution is gradually narrowed with the increase of λ and
|H | while the stationary distribution is flattened as v0 and a increase which has been shown
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Fig. 3 Numerical simulations of MSDs of Lévy walk under the action of constant force in non-static medium
with exponential scale factor in both coordinates by sampling over 104 realizations. The other parameters are
same with the ones of Fig. 2

in Fig. 5c, d. Notably, the effect of λ turns out to be completely different in both coordinates;
the bimodal or monomodal state of stationary distribution Pst (x) depends on the value of λ

in comoving coordinate while decreasing the value of λ in physical coordinate only flattens
the stationary distribution Pst (y).

Kurtosis is another important statisticwhich describes the tails of the stationary PDF.Here,
we only consider the kurtosis of stationary distribution in physical coordinate for H < 0. It
is defined as

K =
〈[y(t) − μ]4〉

〈[y(t) − μ]2〉2 , (36)

whereμ represents the averagemoment in exponential contractionmedium, i.e.,μ = a(H−λ)

Hλ2
.

We further expand Kurtosis as

K = 〈y4(t)〉 − 4μ〈y3(t)〉 + 6μ2〈y2(t)〉 − 3μ4

(〈y2(t)〉 − μ2
)2 , (37)

which relies on the first four moments in physical coordinate. With the help of (8), we use
the moments in comoving coordinate to express the value of Kurtosis in (37). The equivalent
expression of (37) is

K = 〈x4(t)〉 − 4μx 〈x3(t)〉 + 6μ2
x 〈x2(t)〉 − 3μ4

x

(〈x2(t)〉 − μ2
x )

2 , (38)

123



9 Page 12 of 29 T. Zhou et al.

Fig. 4 Stationary PDFs of Lévy walk with φ(τ) = λe−λτ in constant force field in comoving coordinate and
exponentially expanding scale factor by sampling over 2 × 104 realizations. Here we assume x0 = 0. For
panel (a), we take H = 0.1, a = v0 = 1; for panel (b), a = v0 = λ = 1; for panel (c), a = λ = 1, H = 0.1;
for panel (d), H = 0.1, λ = v0 = 1

where the indicator x in μx means the average moment in comoving coordinate, i.e., μx =
a(H−λ)

Hλ2
e−Ht . In the following, we turn to the moments in comoving coordinate. According

to (18) and (20), the moments we cared can be represented by a series of functions R̂i (s)
after some calculations, i.e.,

〈x̂3(s)〉 = 3

2

√
π R̂1(s) + 6

√
π R̂3(s) (39)

and

〈x̂4(s)〉 = 3

4

√
π R̂0(s) + 6

√
π R̂2(s) + 24

√
π R̂4(s). (40)

In order to get the values of R̂i (s) (i = 0, 1, 2, 3, 4), besides (24)-(28), we respectively
takem = 3, 4 in (16) and (17) and derive the recurrence relation between T̂i (s) and R̂i (s) and
the iteration relation between T̂i (s) (i=0, 1, 2, 3, 4). Combining with the concrete expressions
of running time as well as scale factor, the corresponding first four moments in comov-
ing coordinates can be got. Plugging them into Eq. (38), we get the long-time asymptotic
expression of Kurtosis shown in (1) in exponential contraction medium.

The value of Kurtosis has a close relation with the inverse average of exponentially dis-
tributed running time λ, the Hubble constant H , constant acceleration a, as well as the initial
speed of each step v0, being verified in Fig. 6. At first for any fixed H , v0, a, we consider K
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Fig. 5 Stationary PDFs of Lévy walk with φ(τ) = λe−λτ in constant force field in physical coordinate and
exponentially contracting scale factor by sampling over 2 × 104 realizations. Here we assume y0 = 0. For
panel (a), we take H = −0.1, a = v0 = 1; for panel (b), a = v0 = λ = 1; for panel (c), a = λ = 1,
H = −0.1; for panel (d), H = −0.1, λ = v0 = 1

as a function of λ. For small λ, after sufficiently long time, the stationary PDF is leptokurtic
since Kλ→0 ∼ 87.72. However, for large λ, a Gaussian PDF emerges since Kλ→∞ ∼ 3. The
above results are consistent with our simulation results in Fig. 6a. Next we consider K as a
function of v0 for any fixed H , λ, a; it can be found that the limit value of Kurtosis for small
or large v0 relies on H , λ. The same conclusion holds on if we consider K as a function of a
for any fixed H , λ, v0. Surprisingly, we discover that Kv0→0 = Ka→∞ and Kv0→∞ = Ka→0

(see (75) and (76) for details). Finally, as above, we consider K as a function of H for any
fixed v0, λ, a; the PDF converges to the Gaussian value K = 3 for small |H |. Moreover, we

have the limit of K for large |H | from (1) , i.e., KH→−∞ ∼ 3(731a4+316a2λ2v20+8λ4v40 )

(5a2+2λ2v20 )
2 , which

has relevance to a, λ, v0.

4.1.2 Power-Law Scale Factor

We focus on the case that the scale factor of the non-static medium is power-law distribution

d(t) =
( t + t0

t0

)β

, (41)
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Fig. 6 Numerical simulations of kurtosis of Lévy walk under the action of constant force in non-static medium
with exponential contraction scale factor by sampling over 5 × 104 realizations. The running time PDF of
Lévy walk behaves as exponential distribution φ(τ) = λe−λτ . The initial position in physical coordinate is
y0 = 0. The figure a is for K versus λ for fixed H = −0.1, v0 = 1, a = 1; the figure b is for K versus v0 for
fixed H = −0.1, λ = a = 1; the figure c is for K versus a for fixed H = −0.1, λ = v0 = 1; the figure d is
for K versus H for fixed a = λ = v0 = 1. The solid lines are the theoretical results shown in (1)

where t means the time lapsed since the initial time t0. The value of β > 0 corresponds to
an expanding medium since ḋ(t) > 0 while the value of β < 0 corresponds to a contracting
medium.

Plugging the power-law scale factor d(t) and the exponentially distributed running time
φ(τ) into (25)-(28) and combining with (21) and (22), after sufficiently long time, one has

〈x(t)〉 ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

atβ0
λ(1−β)

t1−β, ifβ < 1,
at0

(
−1+eλt0 (λt0−1)Γ (0,λt0)+ln(t)−ln(t0)

)

λ
, ifβ = 1,

at0
(
−1+ 1

−1+β
+eλt0 (λt0−2+β)Eβ (λt0)

)

λ
, ifβ > 1,

(42)

and

〈x2(t)〉 ∼

⎧
⎪⎪⎨

⎪⎪⎩

a2t2β0
(β−1)2λ2

t2−2β, ifβ < 1,
a2t20
λ2

(γ + ln(t))2, ifβ = 1,

C0, ifβ > 1,

(43)

where En(x) is the exponential integral function defined as En(x) = ∫ ∞
1 e−xt/tndt and

Γ (a, b) is the incomplete Gamma function. In addition, γ represents eulergamma constant,
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Fig. 7 Numerical simulations of the average moments of Lévy walk under the action of constant force in
non-static medium with power-law scale factor by sampling over 104 realizations. The running time PDF of
Lévy walk behaves as exponential distribution φ(τ) = λe−λτ with λ = 1. The other parameters are v0 = 1,
x0 = y0 = 0, a = 1, as well as t0 = 1. For (a) and (d), we respectively take β = 0.5 (squares) and β = −1
(stars); for (b) and (e), β = 1; for (c) and (f), β = 2

approached by 0.577216. However, it seems not easy to get the exact vule of C0 in (43)
because of the complicated calculations and approximations. Further, we find the long-time
asymptotic behavior of the first two moments in physical coordinate, respectively reads

〈y(t)〉 ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a
λ(1−β)

t, ifβ < 1,
a
(
−1+eλt0 (λt0−1)Γ (0,λt0)+ln(t)−ln(t0)

)

λ
t, ifβ = 1,

a
(
−1+ 1

−1+β
+eλt0 (λt0−2+β)Eβ (λt0)

)

λtβ−1
0

tβ, ifβ > 1,

(44)

and

〈y2(t)〉 ∼

⎧
⎪⎨

⎪⎩

a2

λ2(1−β)2
t2, ifβ < 1,

a2

λ2
(γ + ln(t))2t2, ifβ = 1,

C0t2β, ifβ > 1.

(45)

The results for the first twomoments in both coordinates are verified in Figs. 7 and 8. Since
the diffusion in physical coordinate is superdiffusion, compared with the MSD of traditional
free Lévy walk model in static medium which behaves as 〈y2(t)〉 ∼ t , we conclude that the
combined action of non-static medium and external constant potential accelerates the motion
of particles. For β < 1, the first two moments 〈y(t)〉 and 〈y2(t)〉 in physical coordinate
grow as t and t2, respectively, which are consistent with the results of Lévy walk under the
action of external force in static medium in [74]. Therefore, the process is mainly driven by
the external constant force and the non-static medium hardly affects the diffusion process.
However, for β > 1, the MSD 〈y2(t)〉 in physical coordinate is approximate to t2β (with
logarithmic corrections in the marginal case β = 1), which appears as same as the MSD
of free Lévy walk in non-static medium [75]. Thus in this case, the spread of the walker is
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Fig. 8 Numerical simulations of MSDs of Lévy walk under the action of constant force in non-static medium
with power-law scale factor by sampling over 104 realizations. The running time PDF of Lévy walk behaves
as exponential distribution φ(τ) = λe−λτ with λ = 1. The other parameters are same with the ones in Fig. 7

mainly driven by the non-static medium. Besides, after sufficiently long time, we find the
initial velocity v0 of each step does not affect the asymptotic forms of the first two moments
in both coordinates.

4.2 Power-Law Distributed Running Time

Anomalous diffusion can be modeled by the traditional Lévy walk model in static medium
when the PDF of running time behaves as Pareto distribution,

φ(τ) = 1

τ0

α

(1 + τ/τ0)1+α
, (46)

where τ0 > 0 and α > 0. As above, in this subsection we concentrate on analyzing the
dynamical behaviors of Lévy walk under the combined action of an external force and the
non-static medium on the condition that the running time is power-law distribution.

4.2.1 Exponential Scale Factor

Inserting the exponential scale factor d(t) and power-law running time φ(τ) into (25)–(28)
and combiningwith (21) and (22), we calculate the first twomoments in comoving coordinate
for H > 0 after sufficiently long time, which respectively behave as

〈x(t)〉 ∼ aα(−1 + α + Hτ0) − aαeHτ0
(
(−1 + α)α + 2αHτ0 + H2τ 20

)
E1+α(Hτ0)

2H2
( − 1 + αeHτ0τα

0 H
αΓ (−α, Hτ0)

)

(47)
and

〈x2(t)〉 ∼ C . (48)
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Fig. 9 Numerical simulations of the average moments of Lévy walk under the action of constant force in
non-static medium with exponential scale factor by sampling over 104 realizations. The running time PDF
of Lévy walk behaves as Pareto distribution φ(τ) = 1

τ0
α

(1+τ/τ0)
1+α with τ0 = 1. For (a) and (d), we take

H=0.1, H=0.003, respectively. The values of α respectively are α = 0.5 (square) and α = 1.5 (stars). For (b)
and (e), we take H=-0.003 and α = 0.5; and for (c) and (f), we take H=-0.003 and α = 1.5

Here, we derive the concrete expression of C and detailedly present it in (77). Correspond-
ingly, the long-time asymptotic behaviour of the first two moments of Lévy walk moving
under the combined action of constant force and exponential expansion medium in physical
coordinate can be figured out, which respectively are

〈y(t)〉 ∼ aαeHt (−1 + α + Hτ0) − aαeH(t+τ0)
(
(−1 + α)α + 2αHτ0 + H2τ 20

)
E1+α(Hτ0)

2H2
( − 1 + αeHτ0τα

0 H
αΓ (−α, Hτ0)

)

(49)
and

〈y2(t)〉 ∼ Ce2Ht . (50)

However, the long-time asymptotic expressions of the first two moments in comoving
coordinate rely on the category of α for H < 0, respectively, behaving as

〈x(t)〉 ∼
{

a
4 (α − 2)(α − 1)e−Ht t2, if 0 < α < 1,
a(α−1)
2(3−α)

τα−1
0 e−Ht t3−α, if 1 < α < 2,

(51)

and

〈x2(t)〉 ∼
{

a2
96 (α − 4)(α − 3)(α − 2)(α − 1)e−2Ht t4, if 0 < α < 1,
a2(α−1)τα−1

0
4(5−α)

e−2Ht t5−α, if 1 < α < 2.
(52)

Again, we figure out the long-time asymptotic behavior of the first two moments in physical
coordinates, respectively, being

〈y(t)〉 ∼
{

a
4 (α − 2)(α − 1)t2, if 0 < α < 1,
a(α−1)
2(3−α)

τα−1
0 t3−α, if 1 < α < 2,

(53)
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Fig. 10 Numerical simulations of MSDs of Lévy walk under the action of constant force in non-static medium
with exponential scale factor by sampling over 104 realizations. The walking time PDF of Lévy walk behaves
as Pareto distribution φ(τ) = 1

τ0
α

(1+τ/τ0)
1+α with τ0 = 1. The other parameters are same with the ones in

Fig. 9

and

〈y2(t)〉 ∼
{

a2
96 (α − 4)(α − 3)(α − 2)(α − 1)t4, if 0 < α < 1,
a2(α−1)τα−1

0
4(5−α)

t5−α, if 1 < α < 2.
(54)

It should be noted that although the results in Eqs. (53) and (54) seem to be irrelevant to H ,

the exact forms do depend on H . For example, when 0 < α < 1, 〈x(t)〉 = a(1−α)e−Ht

4H2 (−2α+
2αeHt − 2αHt + 2H2t2 −αH2t2). On the basis of Eq. (29), in physical coordinate we have
〈y(t)〉 = a(1−α)

4H2 (−2α + 2αeHt − 2αHt + 2H2t2 − αH2t2).
When the non-staticmedium is described by exponential scale factor withHubble constant

H > 0, Eqs. (49) and (50) tell us that the first two moments in physical coordinate grow
unbounded for t → ∞ in the way of eHt and e2Ht for α ∈ (0, 1) ∪ (1, 2). Therefore, the
dominative term of the overall diffusion process is the motion caused by the expansion of
the medium. On the other hand, Eq. (48) shows that a stationary propagator will be involved
in comoving coordinate for sufficiently long time for α ∈ (0, 1) ∪ (1, 2) when the non-static
medium is exponential expansion H > 0. A superdiffusion can be found when the non-static
medium is exponential contraction H < 0. In this situation, the asymptotic behaviours of the
first two moments rely on the category of α. For example, the first two moments in physical
coordinate respectively behave as t2 and t4 for 0 < α < 1 and appear as t3−α and t5−α

for 1 < α < 2, which keep same with the first two moments of Lévy walk moving under
the action of constant force in static medium. We come to a conclusion that the diffusion
of the walker is mainly driven by constant external force when the medium is exponential
contraction H < 0. Furthermore, the average moments in both cases do not rely on the initial
velocity of each step v0. The above results are verified in Figs. 9 and 10.
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4.2.2 Power-Law Scale Factor

Wecalculate the long-time asymptotic behaviours of thefirst twomoments in both coordinates
when the scale factor of the non-staticmedium is power-law.As above, after some calculations
we find that the asymptotic behaviours of the first two moments rely on the categories of α.
Specially, for 0 < α < 1, the first two moments in comoving coordinates respectively read

〈x(t)〉 ∼

⎧
⎪⎪⎨

⎪⎪⎩

a(α−1)(4+(α−2)β)tβ0
4(β−2) t2−β, ifβ < 2,

at20α

2 (1 − α) (γ + ln(t)) , ifβ = 2,

C1, ifβ > 2,

(55)

and

〈x2(t)〉 ∼

⎧
⎪⎪⎨

⎪⎪⎩

a2(1−α)(8+(α−4)β)t2β0
96(β−4)(β−3)(β−2)2

t4−2β, ifβ < 2,
a2α2t40

4 (α − 1)2 (γ + ln(t))2 , ifβ = 2,

C2, ifβ > 2.

(56)

Correspondingly, the first two moments in physical coordinates satisfy

〈y(t)〉 ∼

⎧
⎪⎨

⎪⎩

a(α−1)(4+(α−2)β)
4(β−2) t2, ifβ < 2,

aα
2 (γ + ln(t)) t2, ifβ = 2,

C1tβ, ifβ > 2,

(57)

and

〈y2(t)〉 ∼

⎧
⎪⎪⎨

⎪⎪⎩

a2(1−α)(8+(α−4)β)

96(β−4)(β−3)(β−2)2
t4, ifβ < 2,

a2α2

4 (α − 1)2 (γ + ln(t))2 t4, ifβ = 2,

C2t2β, ifβ > 2.

(58)

These results are verified in Figs. 11 and 12.
On the other hand, for 1 < α < 2, the first two moments in comoving coordinates

approximate to the following expressions for long time limit,

〈x(t)〉 ∼

⎧
⎪⎨

⎪⎩

a(α−1)(6−2α−2β+αβ)
2(α−2)(α−3)(3−α−β)

tβ0 τα−1
0 t3−α−β, ifβ < 3 − α,

aα(α−1)
2(2−α)

t3−α
0 τα−1

0 (γ + ln(t)) , ifβ = 3 − α,

C3, ifβ > 3 − α,

(59)

and

〈x2(t)〉 ∼

⎧
⎪⎪⎨

⎪⎪⎩

a2(α−1)(10+α(β−2)−4β)t2β0 τα−1
0

2(α−5)(α−4)(5−α−2β)
t5−α−2β, ifβ < 5−α

2 ,

a2α(α−1)t5−α
0 τα−1

0
4(4−α)

(γ + ln(t)) , ifβ = 5−α
2 ,

C4, ifβ > 5−α
2 .

(60)

Similarly, in physical coordinate, we have

〈y(t)〉 ∼

⎧
⎪⎨

⎪⎩

a(α−1)(6−2α−2β+αβ)
2(α−2)(α−3)(3−α−β)

τα−1
0 t3−α, ifβ < 3 − α,

aα(α−1)
2(2−α)

τα−1
0 t3−α (γ + ln(t)) ifβ = 3 − α,

C3tβ, ifβ > 3 − α,

(61)
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Fig. 11 Numerical simulations of the average moments of Lévy walk under the action of constant force in
non-static medium with power-law scale factor by sampling over 104 realizations. The running time PDF of
Lévy walk behaves as Pareto distribution φ(τ) = 1

τ0
α

(1+τ/τ0)
1+α with τ0 = 1 and α = 0.5. Here, we assume

t0 = 1. For (a) and (d), we take β = −1 (squares) and β = 1 (stars). For (b) and (e), we take β = 2 and for
(c) and (f), β = 3

Fig. 12 Numerical simulations of MSDs of Lévy walk under the action of constant force in non-static medium
with power-law scale factor by sampling over 104 realizations. The running time PDF of Lévy walk behaves
as Pareto distribution φ(τ) = 1

τ0
α

(1+τ/τ0)
1+α with τ0 = 1 and α = 0.5. The other parameters are same with

the ones in Fig. 11
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Fig. 13 Numerical simulations of the average moments of Lévy walk under the action of constant force in
non-static medium with power-law scale factor by sampling over 104 realizations. The running time PDF of
Lévy walk behaves as Pareto distribution φ(τ) = 1

τ0
α

(1+τ/τ0)
1+α with τ0 = 1 and α = 1.5. Here, we assume

t0 = 1. For (a) and (d), we take β = −1 (squares) and β = 1 (stars). For (b) and (e), we take β = 1.5 and for
(c) and (f), β = 2

and

〈y2(t)〉 ∼

⎧
⎪⎪⎨

⎪⎪⎩

a2(α−1)(10+α(β−2)−4β)τα−1
0

2(α−5)(α−4)(5−α−2β)
t5−α, ifβ < 5−α

2 ,

a2α(α−1)τα−1
0

4(4−α)
(γ + ln(t)) t5−α, ifβ = 5−α

2 ,

C4t2β, ifβ > 5−α
2 .

(62)

We verify the above results in Figs. 13 and 14. Compared with the traditional Lévy walk
model in static medium, we conclude that the combined action of constant force and non-
static medium accelerates the motion of the diffusion particles. Notably, the dominative term
of the diffusion process depends on the range of α and β. For example, if 0 < α < 1,
the first two moments in physical coordinate respectively appear as t2 and t4 when β < 2,
which are same with the behaviours of particles in static medium under the action of constant
potential. Furthermore, we prove that the non-static medium hardly affects the motion of the
walker when the external potential comes into play. The dominative term of the diffusion
process is the motion caused by external potential. However, the MSD in physical coordinate
behaves as t2β for sufficiently long time when β > 2, which are similar to the result of MSD
of pure Lévy walk model moving in non-static medium with power-law scale factor [75].
Accordingly, we state that the diffusion process is mainly driven by the non-static expansion.
Following the same way, for 1 < α < 2, we conclude the displacement of the particles
is mainly driven by external potential when β < 5−α

2 , whereas it is mainly driven by the
non-static medium when β > 5−α

2 .
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Fig. 14 Numerical simulations of MSDs of Lévy walk under the action of constant force in non-static medium
with power-law scale factor by sampling over 104 realizations. The running time PDF of Lévy walk behaves
as Pareto distribution φ(τ) = 1

τ0
α

(1+τ/τ0)
1+α with τ0 = 1 and α = 1.5. Expect that in (b) and (e), we take

β = 1.75. The other parameters in (a) and (d) as well as in (c) and (f) keep same with the ones of Fig. 13

5 Conclusion

In this paper we establish a Lévy walk model moving under the action of a constant external
force in one dimensional non-static medium and study the dynamics of the model. First, we
build a general equation, governing the PDF of the position of the particles in comoving
coordinate by involving the scale factor. Next, we use Hermite orthogonal polynomials to
approach the solutionof the equation and some representative statistics are obtainedby a series
of functions to be determined. Furthermore, combining with some representative examples
of the running time PDFs φ(t) and scale factors d(t), we get the statistical properties in both
coordinates through analytical analyses and numerical simulations.

For Lévy walk with the running time of exponential distribution, the motion of the particle
is mainly driven by the non-static medium when the scale factor is an exponential function.
Specially, for exponential expansion medium H > 0, the first two moments in comoving
coordinate tend to be a constant, resulting in growing exponentially in physical coordinate.
However, for exponential contraction medium H < 0, the first two moments in comoving
and physical coordinates respectively are exponential growth and constant for sufficiently
long time. Thus, a stationary propagator function emerges for the process with H > 0 in
comoving coordinate or H < 0 in physical coordinate.We analyze the stationary distribution
by numerical simulations. Next, we calculate the kurtosis of stationary distribution in physical
coordinate for H < 0, which reveals that K relies on v0, a, H , λ. For any fixed H , v0, a, we
conclude that the stationary PDF is leptokurtic for small λ and is Gaussian for large λ. The
situation is completely different for non-static medium with power-law scale factor.
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The first two moments in physical coordinate respectively behave as t and t2 after suffi-
ciently long time when β < 1, and are consistent with the first two moments of Lévy walk in
static medium in constant force field. Therefore, the dominative term of the diffusion process
is the motion caused by constant external force. On the other hand, the motion is determined
by the non-static medium when β > 1, since in non-static medium the exponent of the MSD
in physical coordinate is same with the exponent of the MSD of pure Lévy walk. Besides,
the initial value of velocity v0 in each step has no influence on the average displacement in
both scale factors d(t).

For Lévywalkwith Pareto distributed running time,we also analyze the long time dynamic
behaviours of Lévy walk under the combined action of constant force and the non-static
medium. The first two moments in physical coordinate exponentially grow when the scale
factor of the non-static medium exponentially expands with H > 0, i.e., the expansion of
the medium dominates the overall process. The long-time asymptotic behaviour of the first
two moments relies on the category of α when the medium exponentially contracts with
H < 0, both of which are same with the first two moments of Lévy walk in constant force
field in static medium for α ∈ (0, 1) ∪ (1, 2). We conclude that the constant force drives
the overall diffusion process. Finally, after sufficiently long time, we analyze the first two
moments in physical coordinate when the non-static medium is described by power law scale
factor. A critical value βc can be found in this case. When β < βc the MSDs in physical
coordinate are same with the MSDs of Lévy walk in constant force field in static medium for
α ∈ (0, 1)∪ (1, 2), i.e., the dominative term of the process is the motion induced by external
constant potential. However, the MSDs in physical coordinate are similar to the results of
MSDs of pure Lévy walk model moving in non-static medium when β > βc, which implies
that the non-static medium dominates the overall diffusion process. In addition, the critical
value of βc depends on the categories of α; if α ∈ (0, 1) then βc = 2 while if α ∈ (1, 2) then
βc = (5 − α)/2.
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A: A Brief Introduction of Hermite Polynomials

Hermite polynomials are a set of orthogonal polynomials defined on (−∞,∞) with weight
function e−x2 [3]. The standardized Hermite polynomial is given as

Hn(x) = (−1)nex
2 dn

dxn
e−x2 . (63)

Furthermore, its orthogonality can be represented as

∫ ∞

−∞
Hn(x)Hm(x)e−x2dx = √

π2nn!δn,m, (64)
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where δn,m is the Kronecker delta function. By Taylor’s expansion, it has

Hn(x + y) =
n∑

k=0

(
n

k

)

Hk(y)(2x)
n−k, (65)

and the following holds

Hn(γ x) =
� n
2 �

∑

j=0

γ n−2 j (γ 2 − 1) j
(
n

2 j

)
(2 j)!
j ! Hn−2 j (x), (66)

where � n
2 � is the biggest integer smaller than n

2 . The special value of Hermite polynomials
is the value evaluated at zero argument Hn(0), which are called Hermite number,

Hn(0) =
{
0, if n is odd,

(−1)
n
2 2

n
2 (n − 1)!!, if n is even.

(67)

In particular,
H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2. (68)

B: Derivations of (16) and (17)

Plugging (14) into (12) yields

∞∑

n=0

Hn(x)Tn(t)e
−x2 = 1

2

∫ t

0

∞∑

n=0

Hn

(

x −
1
2aτ 2 + v0τ

d(t)

)

Tn(t − τ)

exp

[

−
(

x −
1
2aτ 2 + v0τ

d(t)

)2]

φ(τ)dτ

+ 1

2

∫ t

0

∞∑

n=0

Hn

(

x −
1
2aτ 2 − v0τ

d(t)

)

Tn(t − τ)

exp

⎡

⎣−
(

x −
1
2aτ 2 − v0τ

d(t)

)2
⎤

⎦ φ(τ)dτ + P0(x)δ(t).

(69)

Multiply both sides of (69) by Hm(x), m = 0, 1, 2, · · · , and integrate x over (−∞,+∞).
In accordance with the orthogonality of Hermite polynomials (64), the left hand of (69)
becomes

∫ +∞

−∞

∞∑

n=0

Hn(x)Tn(t)Hm(x)e−x2dx = √
π2mm!Tm(t). (70)

We next focus on the first term of the right hands of (69). After the above manipulations, it can be
written as

1

2

∫ t

0
φ(τ)Tn(t − τ)

∫ +∞

−∞
Hm(x)

∞∑

n=0

Hn

(

x −
1
2aτ 2 + v0τ

d(t)

)

exp

⎡

⎣−
(

x −
1
2aτ 2 + v0τ

d(t)

)2
⎤

⎦ dxdτ
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= 1

2

∫ t

0
φ(τ)Tn(t − τ)

∫ +∞

−∞
Hm

(

y +
1
2aτ 2 + v0τ

d(t)

) ∞∑

n=0

Hn(y) exp(−y2)dydτ

= 1

2

∫ t

0
φ(τ)Tn(t − τ)

∫ +∞

−∞

m∑

k=0

(
m

k

)

Hk(y)

(
aτ 2 + 2v0τ

d(t)

)m−k ∞∑

n=0

Hn(y) exp(−y2)dydτ

= 1

2

m∑

k=0

(
m

k

) ∫ t

0
φ(τ)Tn(t − τ)

(
aτ 2 + 2v0τ

d(t)

)m−k ∫ +∞

−∞
Hk(y)

∞∑

n=0

Hn(y) exp(−y2)dydτ

= 1

2

m∑

k=0

m!
k!(m − k)!

∫ t

0

√
π2kk!

(
aτ 2 + 2v0τ

d(t)

)m−k

Tk(t − τ)φ(τ)dτ

= 1

2

m∑

k=0

m!√π2k

(m − k)!
∫ t

0

(
aτ 2 + 2v0τ

d(t)

)m−k

Tk(t − τ)φ(τ)dτ. (71)

The above procedures are using the properties of Hermite polynomials presented in (64) and
(65) in Appendix A. By the same procedure, the second term of the right hand side of (69)

can be simplified as 1
2

∑m
k=0

m!√π2k

(m−k)!
∫ t
0

(
aτ 2−2v0τ

d(t)

)m−k
Tk(t − τ)φ(τ)dτ . Considering that

the initial distribution of particles behaves as Dirac-delta function, i.e., P0(x) = δ(x), the
third term is reduced to

∫ +∞
−∞ Hm(x)δ(x)δ(t)dx = δ(t)Hm(0). Then we reach the iteration

relation

√
π2mm!Tm(t) =1

2

m∑

k=0

m!√π2k

(m − k)!
∫ t

0

[(
aτ 2 + 2v0τ

d(t)

)m−k

+
(
aτ 2 − 2v0τ

d(t)

)m−k
]

× Tk(t − τ)φ(τ)dτ + δ(t)Hm(0).

(72)

Similarly, by substituting (15) into (13), the relation between Rm(t) and Tm(t) can be obtained
as

√
π2mm!Rm(t) =1

2

m∑

k=0

m!√π2k

(m − k)!
∫ t

0

[(
aτ 2 + 2v0τ

d(t)

)m−k

+
(
aτ 2 − 2v0τ

d(t)

)m−k
]

Tk(t − τ)ψ(τ)dτ.

(73)

With the help of convolution theorem, Eqs. (15) and (16) can be obtained by taking Laplace
transform on (72) and (73).

C: Some Specific Values

The value ofKurtosis of Lévywalk under the action of external constant potential in non-static
medium with exponential contraction scale factor reads

K ∼ 1

(5a2H3 − 11a2H2λ + 6a2Hλ2 − a2λ3 + 2H3λ2v20 − 5H2λ3v20 + 4Hλ4v20 − λ5v20)
2

×
[
3a4(105264H14 − 923232H13λ + 3664808H12λ2 − 8701896H11λ3 + 13759459H10λ4)

(H − λ)2(2H − λ)4(3H − λ)2

+3a4(−15255944H9λ5 + 12151591H8λ6 − 7007718H7λ7 + 2915137H6λ8 − 862504H5λ9)

(H − λ)2(2H − λ)4(3H − λ)2

+3a4(176724H4λ10 − 23936H3λ11 + 1968H2λ12 − 82Hλ13 + λ14)

(H − λ)2(2H − λ)4(3H − λ)2
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+6a2λ2(22752H12 − 154272H11λ + 462896H10λ2 − 809024H9λ3 + 911540H8λ4)v20

(3H − λ)2(2H − λ)4

+6a2λ2(−694298H7λ5 + 365279H6λ6 − 133283H5λ7 + 33349H4λ8 − 5565H3λ9)v20

(3H − λ)2(2H − λ)4

+6a2λ2(589H2λ10 − 36Hλ11 + λ12)v20

(3H − λ)2(2H − λ)4

+3(H − λ)4(4H − λ)λ4(8H3 − 8H2λ + 2Hλ2 − λ3)v40

(2H − λ)2

]

. (74)

Further, we consider K as a function of v0 for any fixed H , λ, a; after sufficiently long time,
for small v0, there is

Kv0→0 ∼ 3(105264H14 − 923232H13λ + 3664808H12λ2 − 8701896H11λ3 + 13759459H10λ4)

(H − λ)2(2H − λ)4(3H − λ)2(5H3 − 11H2λ + 6Hλ2 − λ3)2

+ 3(−15255944H9λ5 + 12151591H8λ6 − 7007718H7λ7 + 2915137H6λ8)

(H − λ)2(2H − λ)4(3H − λ)2(5H3 − 11H2λ + 6Hλ2 − λ3)2

+ 3(−862504H5λ9 + 176724H4λ10 − 23936H3λ11 + 1968H2λ12 − 82Hλ13 + λ14)

(H − λ)2(2H − λ)4(3H − λ)2(5H3 − 11H2λ + 6Hλ2 − λ3)2
;
(75)

similarly, for large v0, it has

Kv0→∞ ∼ 3
(
32H4 − 40H3λ + 16H2λ2 − 6Hλ3 + λ4

)

(2H − λ)4
. (76)

If we consider K as a function of a for any fixed H , λ, v0. By the same method, we find that
Ka→0 = Kv0→∞ and Ka→∞ = Kv0→0.

The value of C in (48) is

C = αa2

64H4
( − 1 + αeHτ0Hατα

0 Γ (−α, Hτ0)
)( − 1 + 2ααe2Hτ0Hατα

0 Γ (−α, 2Hτ0)
)

×
[

6 + α
( − 3 + α(−10 + 7α)

) − 4Hτ0 + 2α(−5 + 9α)Hτ0 + 4(1 + α)H2τ 20 − 8H3τ 30

− 16H2(−1 + α)v20 − 32H3τ0v
2
0 − 26HeHτ0 E1+α(Hτ0)a

2α3τ0 + 16H4τ 40 a
2e2Hτ0

+ a2e2Hτ0
(
(1 − α)α

( − 6 + α(−3 + 7α)
) + 16α(1 + α − 2α2)Hτ0 + 8(1 − 5α)αH2τ 20

)

+ e2Hτ016H2(
(−1 + α)α + 4αHτ0 + 4H2τ 20

)
v20E1+α(2Hτ0)

+ αeHτ0 E1+α(Hτ0)a
2
(( − 6 − 7α3 + 10α2) + α

(
3 + 2Hτ0(9 − 14Hτ0)

))

+ αeHτ0 E1+α(Hτ0)a
24Hτ0

(
1 + Hτ0(1 − 2Hτ0)

) + 16αeHτ0 E1+α(Hτ0)H
2(−1 + α)v20

+ e2Hτ0a2
(
(−1 + α)α

( − 6 + α(−3 + 7α)
) + 8(−1 + α)α(2 + 5α)Hτ0

)
E1+α(2Hτ0)

+ e2Hτ0a216α(−1 + 5α)H2τ 20 E1+α(2Hτ0) + 32αH3τ0v
2
0e

Hτ0 E1+α(Hτ0)

+ 64a2αH3τ 30 e
2Hτ0 E1+α(2Hτ0) + e2Hτ016H4a2τ 40 E1+α(2Hτ0)

− e2Hτ016H2(
(−1 + α)α + 4αHτ0 + 4H2τ 20

)
v20E1+α(2Hτ0)

]

.

(77)
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