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Abstract
Focusing on the diffusion-localization transition, we theoretically analyzed a nonlinear
gravity-type transport model defined on networks called regular ring lattices, which have
an intermediate structure between the complete graph and the simple ring. Exact eigenvalues
were derived around steady states, and the values of the transition points were evaluated for
the control parameter characterizing the nonlinearity. We also analyzed the case of the Bethe
lattice (or Cayley tree) and found that the transition point is 1/2, which is the lowest value
ever reported.

Keywords Diffusion-localization transition · Gravity type transport · Regular ring lattice ·
Bethe lattice

1 Introduction

Transport phenomena [1] have been recognized as one of the most important problems in
many fields, including physics [2–6], biology [7–9], and social science and economics [10–
13]. In particular, the gravity-type transport model has been widely applied in the fields of
social science and economics to investigate phenomena such as world trade [10], human flow
between cities [11], andfirm-to-firmmoney transport [13].One key feature of the gravity-type
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Table 1 List of diffusion-localization transition points γc for known synthetic graphs

Graphs Transition point γc (N → ∞, ν → 0)

Ring 1/2

Complete graph 1

Bidirectional star graph 1

Outward star graph ∞
Among these example graphs, the ring graph has the lowest γc = 1/2

transport model is that the transport quantity depends on the power of the receiver’s quantity,
where the power exponent may be nonzero. Typical cases, including those related to thermal
and chemical transport, do not exhibit this dependency, whereas nonzero power exponents
are observed in some cases in the fields of social science and economics [10, 14, 15]. In this
study, we focus on the effect of the power exponent on the transport properties. We define
a parameter γ that controls transport nonlinearity. In a gravity-type transport system, larger
quantities have a larger flow at positive γ values. Owing to this property, a point with a large
quantity may monopolize a large portion of the flows for some γ . We call this phenomenon
the diffusion-localization transition and focus on estimating the critical value γc at which the
stable steady-state solution bifurcates. Although some graphs with no feedback loops have
a large γc that exceeds 1, some graphs have a transition point γc less than or equal to 1. A
previous study [16] reported that a complete graph has γc = 1, whereas a ring with infinitely
many nodes has γc = 1/2. Table 1 summarizes the γc of several synthetic graphs. This paper
introduces regular ring lattices as a solvable network model and derives an exact formula for
γc. We report the characterization of a structure with a low γc in the context of the interaction
length. We also consider the Bethe lattice as a typical graph to study mathematical models
[17–19]. We analyze the system on the Bethe lattice both theoretically and numerically.

The remainder of this paper is organized as follows. Section 2 describes the gravity
interaction model used in this study. We also provide fundamental tools as the basis for our
analysis in Sect. 2. In Sect. 3, we present an analysis of the diffusion-localization transition
point on regular ring lattices as a generalization of the results reviewed in Sect. 2. In Sect. 4,
we present the second main result of the analysis of the transition point on the Bethe lattices
and present the master equation as an analog of that in Sect. 2. Finally, we discuss the results
and clarify the correspondence between our analysis and the dynamical phase transition of a
biased random walk in Sect. 5.

2 Model and Review of Examples

In [13], a nonlinear relation for Japanesefirm-to-firm transactions is found such that the annual
trading volume fi j from a buyer firm i to a seller firm j is proportional to the powers of their

annual sales Si and S j , namely, fi j ∝ Sα
i S

β
j for some power exponents α > 0 and β ≥ 0;

in addition, A = (Ai j ) is the adjacency matrix of the inter-firm network such that Ai j = 1
if there exists an edge from node i to j , and Ai j = 0 otherwise. In the examples of world
trade [10] and human flow between cities [11], gravity model with distance dependency
has been empirically confirmed. However, unlike in the cases of world trade and human
flow, in the case of firm-to-firm transactions [13], distance dependency is very weak, i.e.,
fi j ∝ (Sα

i S
β
j )/(d

δ
i j )with δ nearly equal to 0, where di j is the physical distance between i and
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j . From this relation, the following mathematical model on a directed network of N nodes
is named as a generalized gravity interaction model [16]:

dSα
i

dt
∝

N∑

k=1

Aki S
β
i∑

j Ak j S
β
j

Sα
k − (1 + νi )S

α
i + Fi , (1)

where α and β are nonlinear power exponents, A = (Ai j ) is the adjacencymatrix of the given
network, νi Sα

i is the dissipation term that leaks out from the network, and Fi is injected from
outside the network. Here, t does not need to correspond to real time because we only need
the stationary solution of Eq. (1), which is the realized S over the network. We assume that
the network structure is fully described by its adjacency matrix Ai j , whose value is 1 if there
is a directed link from i to j and 0 otherwise. β = 0 corresponds to the equipartition where
flow fi j does not depend on the sales of customer S j , also known as PageRank, and β = ∞
corresponds to a monopoly, where fi j is equal to Sα

i for j of the largest sales S j and 0 for
other neighborhood nodes. In this paper, we only consider the case where Fi is independent
of both i and t , namely Fi = F for some constant F . For the stationary solution Si of Eq.
(1) satisfies the following conservation law:

∑

i

Sα
i = NF

ν
. (2)

We consider the following normalized quantity xi such that xi = Sα
i /F for the remainder of

this paper. The equation for xi is

dxi
dt

=
N∑

k=1

Aki x
γ

i∑
j Ak j x

γ

j

xk − (1 + νi )xi + 1, (3)

where γ = β/α for α and β in Eq. (1). Hereafter, we set νi = ν for all nodes i for simplicity.
Thus, it is easy to confirm the following relation for the sum of the steady-state solution x
from Eq. (2):

∑

i

xi = N

ν
. (4)

In this model, the transport property is governed by the network structure A = (Ai j ) and
the nonlinear parameter γ . The formal statement of the diffusion-localization transition of
this model is formulated as follows. There exists some γc depending on the underlying
network structure A = (Ai j ) such that the steady-state solution of the model for γ < γc
bifurcates at γ = γc. In other words, γc is the value of γ at which the stable steady-state
solution for γ < γc becomes unstable. In this study, we used both theoretical tools and
numerical simulations to study the transition point γc. We start the numerical calculation
from the uniform state 1/ν perturbed on one point to obtain a stationary solution when we
perform numerical calculations. The perturbation will decay and diffuse over the system
in the diffusion state, whereas the perturbation will grow in the localization state. For the
diffusion state, we have the same stationary solution for different initial states, as far as we
have performed the numerical calculation. For the numerical calculation, we determine the
convergence by taking the L2-norm of the relative increment as less than or equal to 10−6.
We have confirmed that the absolute error of conservation law (4) is less than or equal to
10−2 under this convergence criterion.

Here, we review the previous results of the diffusion-localization transition on two illus-
trative examples of the ring and complete graphs. These two graphs have different transition
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points, 1
2 and 1. The diffusion-localization transition point γc on the two graphs is derived

by considering the master equation of the linearized equation.
We define the following N × N weight matrix of transport B = (Bki ) of x =

(x1, · · · , xN )� by

Bki (x) = Aki x
γ

i∑
j Ak j x

γ

j

= Aki∑
j Ak j

( x j
xi

)γ (5)

for k, i = 1, 2, · · · , N . The denominator is the sum over the out-neighborhood j of node
k(see Fig. 1). We calculate the perturbation response of B based on the perturbation x from
the stationary solution x.

We consider cases in which a uniform steady-state solution is realized. When all node
degrees are uniform, d , a uniform steady-state solution is realized by symmetry. In such
cases, Bi j = 1

d for adjacent i and j . For the uniform steady-state solution xi = x∀i over
regular graphs, for a sufficiently small perturbation δx , the linear order of the perturbation
response δBki of the matrix element Bki in Eq. (5) is

δBki = Bki (x + x) − Bki (x) = (x + δxi )γ∑
j (x + δx j )γ

− 1

d

= − γ

d2

[∑

j

(δx j
x

− δxi
x

)] + O(|δx|2) (6)

for k, i = 1, 2, · · · , N . The last term represents the second- or higher-order terms of δx.∑
j represents the sum of the d neighborhood nodes of node k. Here, d is the coordination

number; for example, d is N − 1 for the case of a complete graph, and 2 for the case of a
ring.

Thus, from the model equation

dxi
dt

=
∑

k �=i

xγ

i∑
j �=k x

γ

j

xk − (1 + ν)xi + 1 (7)

on the complete graph, the equation of perturbation is given by

dδxi
dt

=
∑

k �=i

(Bkiδxk + δBki x) − (1 + ν)δxi

= 1

N − 1

( ∑

k �=i

δxk − (N − 1)δxi

)
− γ

(N − 1)2
∑

k �=i

( ∑

j �=k

δx j − δxi

)
− νδxi

= (
1 − γ

N − 2

N − 1

) 1

N − 1

( ∑

k

δxk − (N − 1)δxi

)
−

(
γ
N − 2

N − 1
+ ν

)
δxi . (8)

Thus, we can conclude that the transition point on the complete graph is 1 at N → ∞ for
the following reasons: in the region of γ < 1, if δxi > δx j∀ j �= i , then dδxi

dt < 0, which
means that δxi decreases. On the other hand, in the region of γ > 1, if δxi > δx j∀ j �= i ,
then dδxi

dt > 0, which means that δxi increases. This picture can be confirmed in Fig. 1b by
observing the variance of x over the average of x scaled by size N . In the case of the ring, we
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calculate the equation of perturbation δx from a uniform steady-state solution as follows:

δxr (t + �t) − δxr (t)

�t
= 1

2�t

(
δxr+�r − 2δxr + δxr−�r

)

− γ

4�t

(
δxr+2�r − 2δxr + δxr−2�r

)
− νδxr .

We set r as the Euclidean coordinate of nodes i and r ± �r as the coordinate of the neigh-
borhood of node i . Then, we have the following set of equations as a result of the continuum
limit:

∂δx

∂t
= D(γ )

∂2δx

∂r2
− νδx, (9a)

D(γ ) = �r2

2�t
(1 − 2γ ). (9b)

Here,we take the continuum limit of the equation to illustrate its relationshipwith the diffusion
equation. From Eq. (9b), we find that the diffusion coefficient is positive for γ < 1/2 and

negative for γ > 1/2. The first term, �r2
2�t , in Eq. (9b) is the usual diffusion coefficient in one-

dimensional space, and the second term,−γ �r2
�t , is due to the nonlinearity of the interaction.

This indicates that the diffusion-localization transition is caused by the two effects: diffusion
in the usual sense determined by the network topology and the nonlinear effect of preferential
flow towards nodes with larger x . Therefore, a phase transition between a normal diffusion
phase and a localization phase occurs at γc = 1/2. This diffusion equation establishes
linearized gravity-type interactions as diffusion.

The diffusion-localization transition point γc can also be calculated using a linear stability
analysis. γc in this sense is defined as γ , where the largest eigenvalue of the linearized matrix
becomes positive. The general formula of the linearized matrix J = (Ji j ) in Eq. (3) around
x is given as follows:

Ji j = −(1 + ν)δi j + Bi j + γ
∑

k

Bki (δi j − Bkj )
xk
xi

. (10)

We omit the argument x of B to simplify the notation. The term γ
∑

k Bki (δi j − Bkj )
xk
xi

governs the effect of nonlinearity on the linear stability. Note that the sum of the row entries
satisfies

∑
j Ji j = −ν for any x . Thus, J always has an eigenvalue−ν with the corresponding

uniform eigenvector (1, 1, · · · , 1)� ∈ R
N .

In the case of a complete graph, we have Bi j = 1
N−1 for all i �= j . Therefore,

Ji j =
{

(N−2)γ
N−1 − (1 + ν) if i = j,
1

N−1 − (N−2)γ
(N−1)2

if i �= j .

Thus, we obtain the exact eigenvalues of the linearized matrix given by

λ =
⎧
⎨

⎩

−ν,

N
N−1

(
N−2
N−1γ − 1

)
− ν with N − 1 multiplicity.

(11)

Hence, γc for finite N and ν can be calculated as follows:

γc = N − 1

N − 2

[(
1 + N − 1

N

)
ν

]
(12)
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Thus, at a large size limit N → ∞ and zero dissipation limit ν → 0, γc converges to 1.
On the other hand, in the case of the ring, we have Bi j = 1

2 for j = i ± 1. Thus, the
linearized matrix is given by

Ji j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2γ − (1 + ν) if j = i,
1
2 if | j − i | = 1,

− γ
4 if | j − i | = 2,

0 otherwise.

Thus, the formula of the eigenvalues of circulant matrices [20] implies that

λl(γ ) = −γ cos2
(
2πl

N

)
+ cos

(
2πl

N

)
+ γ − (1 + ν) (13)

for l = 0, 1, 2, · · · , N−1, depending onγ .γc is the infimal value ofγ such thatmaxl λl(γ ) >

0 by definition. Hence, γc for the finite N and ν is

γc = min
j

⎛

⎝ 1

2 cos2
(

π j
N

) + ν

sin2
(
2π j
N

)

⎞

⎠ = min
j �=0

⎛

⎝ 1

2 cos2
(

π
N

) + ν

sin2
(
2π j
N

)

⎞

⎠ . (14)

As ν → 0, we can neglect the term ν/ sin2( 2π j
N ) in Eq. (14). This allows us to minimize j

to 1.

γc = min
j �=0

⎛

⎝ 1

2 cos2
(

π j
N

) + ν

sin2
(
2π j
N

)

⎞

⎠ = 1

2 cos2
(

π
N

) . (15)

Therefore, we have γc → 1
2 at the large-size limit N → ∞. The Taylor expansion yields an

asymptotic, which is described as

γc − 1

2
∼ π2

2
N−2, (16)

where the symbol∼ represents themajor term in the limit of N → ∞. Eq. (16)was confirmed
numerically, as shown in Fig. 1c.

We confirmed that the diffused and localized solutions were stable. Figure 1d shows an
example of diffused and localized solutions on the ring and their stability, starting from
a uniform solution with perturbation on the origin. We obtained the uniform solution and
localized solution on the ring for different γ = 0.000, 0.450, 0.518. In Fig. 1e, we show the
decay of the relative change of the L2 norm of the solution ||x(t + 1)||/||x(t)||. We further
numerically confirm that the largest eigenvalue of the linearized matrix at γ > γc is negative.

3 Analysis on Regular Ring Lattices

We consider regular ring lattices, as shown in Fig. 2a, as an example of the interpolation
between the ring and the complete graph. The nodes are assumed to be arranged in a circle.
Each node in this graph interacts with the 2k nearest neighbor. The model equation over a
regular ring lattice is given by

dxi
dt

=
∑

j;0<| j−i |<k

xγ

i∑
j ′;0<| j ′− j |<k x

γ

j ′
x j − (1 + ν)xi + 1. (17)
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(a)  (b) (c)

(d) (e)

Fig. 1 Gravity-type interaction and diffusion-localization transition. a Conceptual diagram of gravity-type
weighted nonlinear transport. Bki is the weight of the transport from node k to node i . bDiffusion-localization
transition over a complete graph with ν = 10−4 for N = 25, 50, 100, and 200. We calculate the steady
solution starting from a uniform solution with perturbation on the origin. The x- and y- axes represent γ

and the variance of x over the average of x scaled by the system size N , respectively. The steady solution
changes from the uniform steady-state solution for γ < 1 to a localized solution for γ > 1. As N increases,
the transition point γc decreases to a theoretical value of 1. c Numerically calculated transition points starting
from a uniform initial state with perturbation on the origin over the ring and the asymptotic behavior described
by Eq. (16) with ν = 10−10. d Steady solutions over a ring with ν = 10−10 for N = 50 starting from a
uniform steady solution with perturbation on the origin. e Convergence of point perturbation on the origin
of the solution shown in Fig. 1d. Stability of the diffused solution and localized solution are illustrated. We

measured the relative change of the L2 norm ||x(t+1)||
||x(t)|| as themeasure of convergencewhere xi is the stationary

solution

This equation includes the previous two examples, i.e., the ring for k = 1, and the complete
graph for k = (N − 1)/2 as special cases. We have the exact eigenvalues of the linearized
matrix on the uniform steady-state solution using the formula of the eigenvalues of the
circulant matrices [20]. The linearized matrix of system (17) is derived as follows: The
matrix element Ji j depends only on the difference m = | j − i |. Therefore, we use both Jm
and Ji j interchangeably.

Ji j = Jm =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ (1 − 1
2k ) − (1 + ν) if m = 0,

1
2k − γ 2k−m−1

(2k)2
if 1 ≤ m ≤ k,

−γ 2k−m+1
(2k)2

if k + 1 ≤ m ≤ 2k,

0 otherwise.

(18)

Here, because m = | j − i | represents the hopping distance from i to j , 1 ≤ m ≤ k and
k + 1 ≤ m ≤ 2k corresponding to distances from nodes i to j are 1 and 2, respectively. To
derive Eq. (18), we count the 2-hop paths from nodes i to j to evaluate the third term of Eq.
(10). The number of 2-hop paths from i to j is determined by m = | j − i | as 2k −m − 1 for
1 ≤ m ≤ k, and 2k − m + 1 for k + 1 ≤ m ≤ 2k. Thus, we obtain the linearized matrix as
in Eq. (18).
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(a) (b) (c)

Fig. 2 Regular ring lattice with 3 nearest neighbors. a Example of a regular ring lattice with N = 15 nodes
interacting with 2 × 3 = 6 nearest neighbors. b Examples of counting 2-hop paths. In this case, the distance
from i to j is one, the distance from k to l is two, the number of 2-hop paths from i to j is three, and the
number of 2-hop paths from k to l is two. c Dependency of the transition point γc of regular ring lattices on the

interaction distance
N

2k
with ν = 10−10 for N = 100, 250, 500, 1000 calculated using Eq. (19) by bisection

method with tolerance 10−6. The rightmost figure corresponds to the ring, and the leftmost figure corresponds

to the complete graph. Inset figure shows the empirical relation that γc is approximated by 1
2

[
1+

(
N
2k

)−2]

A linear stability analysis was performed using Eq. (17). The exact values of the N
eigenvalues λl for l = 0,±1,±2, · · · are

λl(γ ) = γ

(
1 − 1

2k

)
− (1 + ν) + 2

k∑

m=1

[
1

2k
− γ

2k − m − 1

(2k)2

]
cos

(2πl
N

m
)

−2
2k∑

m=k+1

γ
2k − m + 1

(2k)2
cos

(
2πl

N
m

)
, (19)

depending on the value of γ . Note that l = 0 corresponds to λ0 = −ν, which is the largest
eigenvalue in the diffusion phase. From Eq. (19), γc can be determined, as in the case of
the ring. However, unlike in the case of the ring, we cannot theoretically determine l that
maximizes λl at γ = γc. Thus, we employ a bisection method that seeks the infimal value of
γ such that maxl λl(γ ) > 0, where the tolerance of the bisection method is set to 10−6. We
obtained the transition point γc, as shown in Fig. 2c. Figure 2c indicates that the transition
point in the regular ring lattices continuously increases from ring (k = 1), where γc = 1/2
to complete graph(k = (N − 1)/2), where γc = 1 as k increases, and it shows an empirical

relationwhere γc is approximated by
1

2

[
1+

(
N

2k

)−2]
.This result reveals that the proportion

of interacting partners within the total nodes determines the transition point. Eq. (19) includes
the special case of Eq. (13) of k = 1.

The master equation is also calculated for a regular ring lattice. We use

δBi j = Bi j (x + x) − Bi j (x) = − γ

(2k)2

(
k∑

l=1

δxi±l

x
− δx j

x

)
(20)
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(a) (b)    

Fig. 3 Isotropic assumption to simulate the gravity interaction model on the Bethe lattice. a Point of the r -th
layer of the Bethe lattice of coordination number z = 3. There is one adjacent point in the (r − 1)-th layer
and (z − 1) points in the (r + 1)-th layer. b Schematic view of polarization mapping from the Bethe lattice to
a 1D chain with a reflection barrier at the origin. The r -th layer consists of z(z − 1)r−1 points

to calculate the following two equations:

dδxi
dt

=
k∑

m=1

(Bmiδxm + δBmi x) − (1 + ν)δxi

= 1

2k

( k∑

m=1

δxm − 2kδxi

)
− γ

(2k)2

k∑

m=1

( k∑

l=1

δxm±l − δxm

)
− νδxi . (21)

The master equation of perturbation (21) generalizes the two extreme cases of a complete
graph and a ring. In the complete graph, the first and second terms of Eq. (21) can be combined
such that

1

2k

( ∑

m

δxm − 2kδxi

)
− γ

(2k)2
∑

m �=i

( ∑

m �=l

δxm±l − δxm

)
= 1

2k

∑

m �=i

(δxm − 2kδxi )

−γ (2k − 1)

(2k)2
∑

m �=i

(δxm − δxi )

Eq. (8) can then be recovered because 2k = N −1 for a complete graph. The master equation
of the ring can also be recovered from Eq. (21) by setting k = 1.

4 Analysis on Bethe Lattice

To determine the behavior of model (3) on the Bethe lattice, we assume “isotropic x" for
all points in the same layer to ease the computational cost. This assumption enables us to
map the Bethe lattice to the corresponding one-dimensional (1D) chain consisting of “radial
layers" by polarization(see Fig. 3). Following the mapping, the r -th(r ≥ 1) layer of the graph
consists of z(z − 1)r−1 equivalent nodes.
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Using this mapping, we obtain the following set of equations from Eq. (3) for each point
in the r -th layer of the mapped chain:

dx0
dt

= xγ
0

xγ
0 + (z − 1)xγ

2

zx1 − (1 + ν)x0 + 1, (22a)

dx1
dt

= 1

z
x0 + xγ

1

xγ
1 + (z − 1)xγ

3

(z − 1)x2 − (1 + ν)x1 + 1, (22b)

dxr
dt

= xγ
r

xγ
r−2 + (z − 1)xγ

r
xr−1 + xγ

r

xγ
r + (z − 1)xγ

r+2

(z − 1)xr+1 − (1 + ν)xr + 1 (22c)

When we perform a numerical simulation, we set the free boundary condition for the two
outermost layers, that is,

dxR−1

dt
= xγ

R−1

xγ

R−3 + (z − 1)xγ

R−1

xR−2 + (z − 1)xR − (1 + ν)xR−1 + 1, (23a)

dxR
dt

= xγ

R

xγ

R−2 + (z − 1)xγ

R

xR−1 − (1 + ν)xR + 1. (23b)

The steady states of Eqs. (22) and (23) satisfy the following conservation condition:

∑

i

xi = x0 +
R∑

r=1

z(z − 1)r−1xr = N

ν
. (24)

As an approximation, we consider the following homogeneous equation without the dissipa-
tion and injection terms:

xr = xγ
r

(z − 1)xγ
r−2 + xγ

r
xr−1 + xγ

r

(z − 1)xγ
r + xγ

r+2

xr+1. (25)

Note that the uniform steady-state solution is one of the solutions to this equation. More
importantly, however, the exponential solution xr ∝ (z−1)−r is another solution to Eq. (25).

Figure 4 shows an example of a steady-state solution for this equation. The steady-state
solution of the model is almost uniform except in the neighborhood of the boundary layer
for small γ , whereas an exponential-type steady-state solution is observed regardless of the
system size for γ close to 1

2 . The uniform steady-state solution is approximately achieved
for γ < γc, except in the neighborhood of the boundary, while the exponential steady-state
solution is approximately achieved near γc. For the numerical calculation, we determine the
convergence by taking the L2-norm of the relative increment as less than or equal to 10−6.
We confirmed that the absolute error in Eq. (24) is less than or equal to 10−2 under the
convergence criterion.

We study the linearized equation of the model equation at a uniform steady-state solution
with an infinite size limit. First, we sum up Eq. (22) for {xr } in the same layer r . Namely, for
a set of the r -th layer points Sr = {point in the r -th layer}, we define the total normalized
quantity Xr = ∑

i;i∈Sr xi . Then, we obtain the following equation of transport between
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(a) (b)

Fig. 4 Transition from the diffusion phase to the localization phase by increasing γ . The simulation was
performed on the Bethe lattice with a coordination number z = 3. Here, r in the two figures is the distance
from the origin. For the numerical calculation, we determine the convergence by taking the L2-norm of the
relative increment as less than or equal to 10−6. We have confirmed that the absolute error of Eq. (24) is
less than or equal to 10−2 under this convergence criterion. a Numerically calculated normalized steady-state
solutions of Eqs. (22) and (23) for R=50, ν = 10−4 for different γ = 0.000, 0.450, 0.503 starting from the
uniform solutionwith perturbation on the origin. The blue line indicates γ = 0, the red line indicates γ = 0.45,
the purple line indicates γ = 0.503, and the dashed black line indicates the exponential function 2−r of the
layer r . Here, we omit the value of the outermost boundary layer. The diffusion-localization transition near
γ close to 1/2 is clearly shown. b Exponential-type solution obtained at γc = 0.510 with ν = 10−4 for
size R = 25, 50, 100, 200 starting from the uniform solution with perturbation on the origin. These solutions
indicate the scale independence of the exponential solution near the transition point

adjacent layers from Eq. (22):

dX0

dt
= zXγ

0

zXγ
0 + (z − 1)1−2γ Xγ

2

X1 − (1 + ν)X0 + 1, (26a)

dX1

dt
= X0 + Xγ

1

Xγ
1 + (z − 1)1−2γ Xγ

3

X2 − (1 + ν)X1 + z, (26b)

dXr

dt
= (z − 1)Xγ

r

(z − 1)2γ Xγ
r−2 + (z − 1)Xγ

r
Xr−1 + Xγ

r

Xγ
r + (z − 1)1−2γ Xγ

r+2

Xr+1

− (1 + ν)Xr + z(z − 1)r−1. (26c)

At the large-size limit R → ∞, a uniform steady-state solution is achieved because all
the points of the graph become equivalent. Note that a uniform steady-state solution can be
written as Xr = z(z − 1)r−1x for r ≥ 1 and X0 = x for a constant x = 1

ν
. To discuss the

large-size limit, we introduce a unit time �t and lattice spacing �r such that the r -th layer
points of the Bethe lattice are at distance r�r . Then, we discretize Eq. (26c) as follows:

Xr (t + �t) = Fr (X(t)), (27)

where we define Fr (X) by

Fr (X(t)) = (z − 1)Xr (t)γ

(z − 1)2γ Xr−2�r (t)γ + (z − 1)Xr (t)γ
Xr−�r (t)

+ Xr (t)γ

Xr (t)γ + (z − 1)1−2γ Xr+2�r (t)γ
Xr+�r (t) − νXr (t) + z(z − 1)r−1. (28)
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Then, the linearized equation of perturbation δX from the uniform steady-state solution is
denoted as

δXr (t + �t) =
∑

s

∂Fr
∂Xs

(X(t))δXs(t), (29)

where the sum over s = 0,�r , 2�r , and · · · . The nonzero elements of ∂Fr
∂Xs

are computed as
follows:

∂Fr
∂Xr−2�r

= −γ
(z − 1)2

z2
, (30a)

∂Fr
∂Xr−�r

= z − 1

z
, (30b)

∂Fr
∂Xr

= γ
1

z2

(
1 + (z − 1)2

)
− ν, (30c)

∂Fr
∂Xr+�r

= 1

z
, (30d)

∂Fr
∂Xr+2�r

= −γ
1

z2
. (30e)

We use Eq. (30) to linearize Eqs. (27) and (28). The resulting perturbation δX for the uniform
steady-state solution satisfies the following equation

δXr (t + �t) − δXr (t)

�t
= − z − 2

z

�r

�t

[
δXr − δXr−�r

�r
− 2γ

δXr − δXr−2�r

2�r

]

+ �r2

z�t

[
δXr−�r − 2δXr + δXr+�r

�r2
− 22γ

z

δXr−2�r − 2δXr + δXr+2�r

(2�r)2

]

− νδXr .

When z = 2, for a sufficiently small �r and �t , we can approximate the differences in Eq.
(31) by first- and second-order derivatives, which results in Eq. (9a). If the differences in Eq.
(31) are approximated by a derivative for a sufficiently small but finite �t,�r , Eq. (31) can
be formally rewritten as the following partial differential equation:

∂δX

∂t
= −μ(γ )

∂δX

∂r
+ D(γ )

∂2δX

∂r2
− νδX , (31a)

μ(γ ) = z − 2

z

�r

�t
(1 − 2γ ), (31b)

D(γ ) = 1

z

�r2

�t

(
1 − 22γ

z

)
, (31c)

where μ and D are the formal drift and diffusion coefficients, respectively. For a large
coordination number limit z → ∞, the diffusiveness will be lost, and the system behaves as
a 1D system. By mapping the Bethe lattice to a 1D chain, diffusion from the origin in the
original Bethe lattice is mapped to the drift in a 1D chain. The drift coefficient μ in Eq. (31b)
is positive for γ < 1/2 and negative for γ > 1/2. The first term, z−2

z
�r
�t , in Eq. (31b) is the

net flow according to the gradient of δX coming from one layer inward, and the second term,
−2γ z−2

z
�r
�t , is due to the nonlinearity of the interaction. Although the sign of D(γ ) in Eq.

(31c) may change at γ = z
22
, it is always larger than 1

2 for z ≥ 3. Therefore, localization is
caused by changing the sign of the drift coefficient μ in Eq. (31b). The role of μ is dominant
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(a) (b)

Fig. 5 Asymptotics of transition point γc toward 1
2 for Bethe lattices with coordination number a z = 3 and

bz = 4. The horizontal axis and vertical axis represent the reciprocal of the system radius R and γc − 1
2 in

logarithmic scales, respectively. Here, we use ν = 10−4 and resolution dγ = 10−4 of γ for both figures. Both
z = 3 and z = 4 exhibit similar asymptotics. We obtain steady solution numerically starting from uniform
state with perturbation on the origin. We note that transition points for each R did not depend on the initial
state of numerical calculation of stationary solution

in describing the transitions. Hence, we can conclude that γc = 1
2 . The transition point is

independent of the coordination number z ≥ 3 of the Bethe lattice.
The dependency of the size on γc is obtained by calculating the largest eigenvalues of

the linearized matrix of Eqs. (22) and (23) for the numerically obtained steady solution of
Eqs. (22) and (23) in Fig. 5 for the z = 3 and z = 4 cases. For the numerical calculation,
we determine the convergence by taking the L2-norm of the relative increment as less than
or equal to 10−6. In each case, these figures show similar asymptotics of γc − 1

2 . Figure 5
implies that the asymptotics of γc on the system size N are logarithmic. These simulation
results confirm the independence of γc = 1

2 on z.

5 Discussion

In this paper, we review an analysis of the diffusion-localization transition on the complete
graph and the ring as prototypes and confirm that the transition point γc is 1 and 0.5, respec-
tively, at the large limit.

Next, we generalize the results of the complete graph and the ring to the regular ring
lattices by giving the general formula of the transition point γc depending on the ratio of
interacting pairs over the total number of nodes. We give a generalized eigenvalue formula
of the linearized matrix, including the special cases of the complete graph and the ring, and
show that regular ring lattices have transition points γc between 1

2 and 1, corresponding
to the ring and the complete graph, respectively. A challenge in generalizing the diffusion
coefficient of the ring is that there is no available method for measuring the effect of the
aggregation process in the neighborhood on the diffusiveness at a given site. This problem is
essential because the structural dependency of the transition point γc may be determined by
such an effect. We further relate theoretical critical points 1

2 and 1 to the real-world example
of firm-to-firm transactions reported in [16]. The transition point on firm-to-firm transactions
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is reported to be 0.9, between 1
2 and 1. This suggests that the link density of the transaction

network is between the ring and the complete graph. We found the regular ring lattices as
a series of graphs with a transition point between 0.5 and 1; in particular, we can construct
a graph on which the transition point is 0.9. One further topic is clarifying the difference
between this example and the real transaction network.

Finally, we show that the nonlinear gravity-type transport model on the Bethe lattice has
γc = 1

2 . By calculating the master equation and its drift coefficient of the linearized model,
we argue that the diffusion-localization transition point γc of the model at the large-size
limit is 1

2 in networks other than Euclidean lattices. In our analysis, the key point is to map
the system to a 1D chain by polarization. The diffusion-localization transition on the Bethe
lattice is understood by a sign change in the drift coefficient of the master equation. This
result verifies a microscopic picture of the diffusion-localization transition that particles at
the origin that has gone outside once will return again. Unlike spin systems [18] in which the
transition points of the 1D chain and Bethe lattice are different, their transition points of them
are the same for the system we analyzed. Bethe lattice shows different transition points from
the mean field results. The relation between the mean-field behavior and the Bethe lattice is a
further discussion point to be studied. The methodology of our analysis using polarization is
quite similar to that of the analysis of a biased random walk on the Bethe lattice [21], which
assumes a constant uniform central field toward the origin. The model of biased randomwalk
over the Bethe lattice with coordination number z is described as follows: the probability of
hopping toward the origin is x

z , where the bias parameter 0 ≤ x ≤ z and the probability of
hopping to go further is z−x

z . One difference between our model and the constant central field
model is that our model does not directly assume a central bias toward the origin but assumes
a localization parameter that conquers diffusiveness. The limitation of our approach is the
assumption of polarization. The general formula of the transition point γc on the regular ring
lattices and Cayley trees based on linear stability analysis is still unknown. The behavior of
the interaction length (see Fig. 2) and the asymptotic behavior of the transition point on the
Bethe lattice (see Fig. 5) can be understood by finding such a formula to verify our numerical
result in Fig. 2c of the regular ring lattices and the logarithmic convergence of the transition
point of the Cayley trees to that of the Bethe lattice 1

2 .
To study the diffusion-localization phenomena in real-world complex networks, we also

need to consider the direction of the edges of the graphs. Because nonlinear gravity interac-
tions have beenobserved inmanyfields, themathematical foundation of thismodel, especially
of the nonlinear effect of transport over a complex network topology, is expected to be studied.
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