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Abstract
We consider a statistical limit of solutions to the compressible Navier–Stokes system in the
high Reynolds number regime in a domain exterior to a rigid body. We investigate to what
extent this highly turbulent regime can be modeled by an external stochastic perturbation,
as suggested in the related physics literature. To this end, we interpret the statistical limit
as a stochastic process on the associated trajectory space. We suppose that the limit process
is statistically equivalent to a solution of the stochastic compressible Euler system. Then,
necessarily, the stochastic forcing is not active—the limit is a statistical solution of the
deterministic Euler system; the solutions S-converge to the limit; if, in addition, the expected
value of the limit process solves the Euler system, then the limit is deterministic and the
convergence is strong in the L p-sense. These results strongly indicate that a stochastic forcing
may not be a suitable model for turbulent randomness in compressible fluid flows.
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1 Introduction

A largely used approach in the mathematical studies of hydrodynamic turbulence is to add
certain stochastic perturbation to the model. For instance, Yakhot and Orszak [29] suggested
that a stochastically perturbed Navier–Stokes system shall possess the same statistical prop-
erties as the deterministic Navier–Stokes system with general inhomogeneous boundary
conditions. It is expected that turbulence is created at the boundary and therefore by bound-
ary conditions, and, accordingly, the study of the associated boundary layer shall play an
essential role. Due to the substantial theoretical difficulties, however, it turns out to be more
easily amenable to rigorous analysis to replace boundary conditions by an external stochastic
forcing term. This is one of the reasons why the field of stochastic PDEs related to motion
of fluids gained a massive importance in the contemporary mathematics research.

Another approach how to observe turbulent behavior of fluids is increasing the Reynolds
number, meaning following the so-called vanishing viscosity regime. On the formal level,
the Navier–Stokes system then approaches the Euler system and the statistical behavior of
the fluid flow shall be therefore reflected in the Euler equations in a certain sense. In the
present paper, we investigate the question whether the turbulent randomness observed along
the vanishing viscosity limit can be obtained from the Euler system directly by including a
suitable stochastic perturbation.

As pointed out, the Euler system is supposed to capture the behavior of real (viscous) fluids
in the vanishing viscosity or, more precisely, large Reynolds number regime. The viscosity
solutions resulting from this process are in turn considered to be physically relevant. Note
that solutions of the (compressible) Euler system are known to develop singularities in a finite
time, whereas the initial-value problem is ill-posed in the class of weak solutions. Relevant
examples in the incompressible case are discussed by Bressan and Murray [4], Buckmaster
and Vicol [5], Elgindi and Jeong [13], and in the compressible case by Chiodaroli et al.
[8], De Lellis and Székelyhidi [11], among others. The class of solutions obtained through
the vanishing viscosity limit may represent a chance to restore well-posedness of the Euler
system in some sense.

A rigorous identification of the vanishing viscosity limit is hampered by two principal
difficulties:

• the absence of sufficiently strong uniform bounds to perform the limit in nonlinear terms;
• the viscous boundary layer created by the incompatibility of the no-slip boundary condi-

tion satisfied by the viscous fluid and the impermeability condition for the Euler system,
see the survey by E [12].

The essential role of viscosity in a neighborhood of objects immersed in a fluid in motion is
demonstrated byD’Alembert’s paradox, see Stewartson [28]. The interaction of the fluidwith
the physical boundary in the high Reynolds number regime gives rise to turbulent phenomena
observed in real world experiments, see the monograph by Davidson [10] or the nice survey
by Bonheure, Gazzola, and Sperone [1], among many others.

Leaving apart the rather complex problem of viscous boundary layer, one may still legit-
imately ask if the Euler system can be used to describe the vanishing viscosity limit out of
the boundary. The appearance of wakes, fluid separation and similar phenomena observed
in the turbulent regime suggests to use statistical methods to obtain a rigorous description.
Apparently, the fluid is driven by the instabilities in the boundary area; whence one may
anticipate the Euler system with complicated oscillatory boundary conditions to be the rele-
vant model. The role of boundary conditions is often replaced by random forcing represented
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by a stochastic integral. The goal of this paper is to discuss to which extent such a scenario
can be rigorously justified.

We consider a compressible, viscous Navier–Stokes fluid in an unbounded domain Q ⊂
Rd , d = 2, 3, exterior to a simply connected convex compact set B. We suppose the non-
slip boundary conditions on ∂ B, and prescribe the far field values of the density �, and the
velocity u for |x | → ∞. The relevant system of equations reads:

∂t� + divx (�u) = 0, (1.1)

∂t (�u) + divx (�u ⊗ u) + ∇x p(�) = divxS(∇xu), (1.2)

with the boundary and far field conditions

u|∂ Q = 0, (1.3)

u → u∞, � → �∞ as |x | → ∞. (1.4)

The viscous stress S is given by Newton’s rheological law

S(∇xu) = μ

(
∇xu + ∇ t

xu − 2

d
divxuI

)
+ λdivxuI, μ > 0, λ ≥ 0; (1.5)

the pressure p is related to the density through the isentropic equation of state

p(�) = a�γ , a > 0, γ > 1. (1.6)

Our aim is to study the asymptotic behavior of solutions to the problem (1.1)–(1.4) in the
vanishing viscosity regime μ ↘ 0, λ ↘ 0. To fix ideas, suppose

μn = εnμ, λn = εnλ, εn → 0 as n → ∞,

and denote the corresponding solution (�n,mn), mn = �nun . Extending the functions u∞,
�∞ inside Q, u∞|∂ Q = 0, we introduce the relative energy

E
(
�, u

∣∣∣�∞, u∞
)

=1

2
�|u−u∞|2+P(�) − P ′(�∞)(� − �∞) − P(�∞), P(�) = a

γ − 1
�γ .

Motivated by the numerical experiments of Elling [14, 15], we describe the vanishing
viscosity limit in a statistical way. To this end, we introduce a suitable trajectory space T in
which the solutions (�n,mn) live and denoteP(T ) the set of Borel probability measures on
T . The Cesàro averages

VN = 1

N

N∑
n=1

δ(�n ,mn) ∈ P(T ), δh -Dirac mass centered at h,

represent statistical solutions of the Navier–Stokes system in the vanishing viscosity regime.
To perform the asymptotic limit N → ∞, we suppose the energy bound

1

N

N∑
n=1

[
sup

t∈(0,T )

∫
Q

E
(
�n,un

∣∣∣�∞,u∞
)

dx + εn

∫ T

0

∫
Q
S(∇xun) : ∇xun dx dt

]
≤ E

(1.7)

uniformly for N → ∞.
Our programme consists of several steps. First, we show that the family of measures VN

is tight; whence

VN → V narrowly in P(T ),
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at least for a suitable subsequence. Then, we denote by (r ,w) the canonical process on T
(see Sect. 3.1 for more details) and introduce the following notion of statistical equivalence.

Definition 1.1 (Statistical equivalence) Let Pi , i = 1, 2, be Borel probability measures on
T . We say that the two measures are statistically equivalent if the following holds:

• Equality of expectations of density and momentum.

EP1

[∫ T

0

∫
Q

rϕ dx dt

]
= EP2

[∫ T

0

∫
Q

rϕ dx dt

]
,

EP1

[∫ T

0

∫
Q
w · ϕ dx dt

]
= EP2

[∫ T

0

∫
Q
w · ϕ dx dt

]
,

(1.8)

for any ϕ ∈ C∞
c ((0, T ) × Q), ϕ ∈ C∞

c ((0, T ) × Q; Rd).
• Equality of expectations of kinetic, internal and angular energy.

EP1

[∫ T

0

∫
Q
1r>0

|w|2
r

ϕ dx dt

]
= EP2

[∫ T

0

∫
Q
1r>0

|w|2
r

ϕ dx dt

]
,

EP1

[∫ T

0

∫
Q

P(r)ϕ dx dt

]
= EP2

[∫ T

0

∫
Q

P(r)ϕ dx dt

]
,

EP1

[∫ T

0

∫
Q
1r>0

1

r
(Jx0 · w) · w ϕ dx dt

]
= EP2

[∫ T

0

∫
Q
1r>0

1

r
(Jx0 · w) · w ϕ dx dt

]
,

(1.9)

for any x0 ∈ Rd , and any ϕ ∈ C∞
c ((0, T ) × Q), where

Jx0(x) = |x − x0|2I − (x − x0) ⊗ (x − x0).

In (1.8) and (1.9), we tacitly assume that all the expectations are finite. In the same spirit,
we say that two stochastic processes defined on possibly different probability spaces are
statistically equivalent, if their probability laws are statistically equivalent.

Remark 1.2 The reader may have expected the statistical equivalence of two stochastic pro-
cesses to be defined as their equivalence in law. We consider instead a much weaker notion,
which postulates only equality of expectations of certain statistically and physically rele-
vant quantities characterizing the fluid flow. In particular, expectations of other quantities or
higher order moments do not need to coincide.

Next, we suppose that the limit V is statistically equivalent to the probability law induced
by a process (�̃, m̃), which is a solution of the stochastically driven Euler equation. Namely,
the process (�̃, m̃) solves in the sense of distributions the system

d�̃ + divxm̃ dt = 0,

dm̃ + divx

(
m̃ ⊗ m̃

�̃

)
dt + ∇x p(�̃) dt = FdW ,

(1.10)

where

FdW =
∑
k≥1

FkdWk

with a family of diffusion coefficients (Fk)k≥1 satisfying a suitable stochastic integrability
assumption and a cylindrical Wiener process (Wk)k≥1.
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Remark 1.3 It becomes clear at this point that a stronger definition of statistical equivalence,
such as equality in law,would be too restrictive andwould immediately rule out the possibility
of modeling the inviscid limit by the stochastic Euler system. Indeed it will be seen in the
analysis below that the limit measure V is supported on momenta of bounded variation in
time with values in some negative Sobolev space. But this is not the case for m̃ satisfying
(1.10) due to the limited regularity of the stochastic integral, unless F ≡ 0. However, the
statistical equivalence in the sense of Definition 1.1, specifically, equality of only several
chosen moments, is a priori not excluded.

Similarly, note that strengthening the statistical bound (1.7) to

sup
n∈N

[
sup

t∈(0,T )

∫
Q

E
(
�n,un

∣∣∣�∞,u∞
)

dx + εn

∫ T

0

∫
Q
S(∇xun) : ∇xun dx dt

]
≤ E

would imply an essentially uniform bound for the limit process, which is also not compatible
with solutions to the stochastic Euler system (1.10). This motivates the more natural and
essentially weaker statistically uniform bound in the sense of the average in (1.7).

Let (�,m) be a Skorokhod representation of the limit measure V . Our main result asserts
that validity of (1.10) necessarily implies:

(1) (�,m) is a weak statistical solution of the deterministic Euler system, in particular, the
genuinely stochastic model becomes irrelevant.

(2) The sequence (�n,mn) S-converges in the sense of [17] to a parametrized measure

Ṽ ∈ L∞
weak−(∗)([0, T ] × Q;P[Rd+1]),

∫ T
0

∫
Q

〈
Ṽt,x ; b

〉
ϕ dx dt = E

[∫ T
0

∫
Q b(�,m)ϕ dx dt

]

for any b ∈ Cc(Rd+1), and any ϕ ∈ Cc((0, T ) × Q).

(3) If, in addition, the barycenter

(�,m) =
∫
T

(r ,w)dV ∈ T

is a weak solution to the Euler system, then the limit is deterministic

V = δ(�,m),

and the sequence (�n,mn) statistically converges to (�,m), specifically,

1

N
#

{
n ≤ N

∣∣∣‖�n − �‖Lγ (K ) + ‖mn − m‖
L

2γ
γ+1 (K ;Rd )

> ε

}
→ 0 as N → ∞

(1.11)

for any ε > 0, and any compact K ⊂ [0, T ] × Q.

The result can be extended to the driving force

σ · ∇xm ◦ dW1 + FdW2

in the absence of the obstacle.
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As a corollary, we obtain the dichotomy proved in [18] in the case Q = Rd : If

�n → � weakly-(*) in L∞(0, T ; Lγ
loc(Q)), mn → m weakly-(*) in L∞(0, T ; L

2γ
γ+1
loc (Q)),

then either

�n → � in Lγ
loc([0, T ] × Q), mn → m in L

2γ
γ+1
loc ([0, T ] × Q; Rd),

or (�,m) is not a solution of the Euler system (1.10) (with F = 0.)
To summarize, the above results can be interpreted in the following way. If we adopt the

statistical limit as our working hypothesis, then the limit fluid motion is never statistically
equivalent to a stochastic Euler system. If, in addition, we accept the Kolmogorov hypothesis
advocated by Chen and Glimm [7] for compressible turbulence (in the case Q = Rd ), then
the S-convergence is the right tool to identify the limit. Last, if the expected value (barycenter)
of the limit statistical solution solves the Euler system, then the statistical limit is a single
deterministic solution. It is worth noting that the results are independent of a specific choice
of the initial data as well as the boundary conditions on ∂ Q. This fact gives rise to full
flexibility to cover all the physically relevant situations. In addition, we do not postulate any
form of energy balance, neither on the approximate nor on the limit level. In the light of
the experimental evidence, cf. [1], our results strongly indicate that a stochastically driven
Euler system is not a relevant model of compressible turbulence driven by a rigid obstacle.
Indeed the graphic material collected in [1] is more reminiscent of the weak rather than
strong convergence in the high Reynolds number regime, which, in view of the above results,
excludes the Euler system to describe the statistical limit.

The paper is organized as follows. In Sect. 2, we collect the available results concerning
the Navier–Stokes problem (1.1)–(1.6). In Sect. 3, we identify the measure V—the statistical
limit of the sequence (�n,mn)n≥1. In Sect. 4, we associate to the statistical limit V a defect
measure—Reynolds stress tensorR—characterizing possible oscillations and concentrations
created in the limit process. It turns out thatR is a positive semi—definite tensor-valued finite
measure on Q. Section 5 is the heart of the paper. We show that R vanishes as long as the
obstacle B is a convex set, and then we examine the statistical convergence in the vanishing
viscosity limit. The paper is concluded by a short discussion in Sect. 6.

2 Navier–Stokes System in Exterior Domain

We recall the available results for the Navier–Stokes system (1.1)–(1.6). For the sake of
simplicity, we suppose that ∂ Q is regular and B = Rd \ Q is a simply connected compact
set. In addition, we suppose that

�∞ > 0, u∞ ∈ R are given constant fields. (2.1)

Accordingly, we may extend u∞ inside Q in such a way that

u∞ ∈ C∞(Q; Rd), u∞(x) = 0 for |x | < L, u∞(x) = u∞ for |x | > 2L (2.2)

for some L > 0.
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2.1 Weak Solutions

First we introduce finite energy weak solution to the problem (1.1)–(1.6). The total energy
defined as

E (�,m) =

⎧⎪⎨
⎪⎩

1
2

|m|2
�

+ P(�) if � > 0,
0 if � = 0, m = 0,
∞ otherwise

m = �u

is a convex l.s.c. function of (�,m) ∈ Rd+1. In view of the non-zero far-field conditions, it
is more convenient to consider the relative energy

E
(
�,m

∣∣∣�∞,u∞
)

= 1

2

|m|2
�

− m · u∞ + 1

2
�|u∞|2 + P(�) − P ′(�∞)(� − �∞) − P(�∞).

As E is convex, the relative energy can be interpreted as the so-called Bregman distance
between (�,m) and (�∞,m∞), m∞ = �∞u∞, specifically

E
(
�,m

∣∣∣�∞,u∞
)

= E(�,m) − ∂�,mE(�∞,m∞) · (� − �∞,m − m∞) − E(�∞,m∞).

Definition 2.1 (Weak solution to Navier–Stokes system) We say that (�,u) is finite energy
weak solution to the Navier–Stokes system (1.1)–(1.6) in (0, T ) × Q if:

• Finite energy and dissipation rate

∫
Q

E
(
�,m

∣∣∣�∞,u∞
)
(τ, ·) dx +

∫ τ

0

∫
Q
S(∇xu) : ∇xu dx dt < ∞ (2.3)

holds for any 0 < τ ≤ T ;
• Equation of continuity

[∫
Q

�ϕ dx

]t=τ2

t=τ1

=
∫ τ2

τ1

∫
Q

[
�∂tϕ + �u · ∇xϕ

]
dx dt

holds for any 0 < τ1 < τ2 < T and ϕ ∈ C1
c ((0, T ) × Q);

• Momentum equation

[∫
Q

�u · ϕ dx

]t=τ2

t=τ1

=
∫ τ2

τ1

∫
Q

[
�u · ∂tϕ + (�u ⊗ u) : ∇xϕ + p(�)divxϕ − S(∇xu) : ∇xϕ

]
dx dt

holds for any 0 < τ1 < τ2 < T and ϕ ∈ C1
c ((0, T ) × Q; Rd).

Note that boundedness of the total energy and the dissipation rate stated in (2.3) yields
the natural bound � ≥ 0 and renders all integrals in the weak formulation finite. The defi-
nition is usually supplemented with the renormalized equation of continuity as well as the
compatibility condition

(u − u∞) ∈ L2(0, T ; D1,2(Q; Rd)) (2.4)
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where D1,2 denotes the homogeneous Sobolev space. The energy bound (2.3) then follows
from the associated energy inequality

d

dt

∫
Q

E
(
�,u

∣∣∣�∞,u∞
)

dx +
∫

Q
S(∇xu) : ∇xu dx

≤ −
∫

Q

(
�u ⊗ u + p(�)I

)
: ∇xu∞ dx + 1

2

∫
Q

�u · ∇x |u∞|2 dx

+
∫

Q
S(∇xu) : ∇xu∞ dx .

We refer the reader to the monographs of Lions [23], Novotný and Straškraba [25,Section
7.12.6] or Kračmar, Nečasová, and Novotný [22] for the relevant existence results for the
initial-value problem under various restrictions imposed on the adiabatic coefficient γ .

Here we consider families of solutions that may fail to satisfy (2.4), meaning we do not
really specify the boundary behavior of the velocity on the rigid body. Similarly, we also
ignore the behavior of the initial state. The only piece of information necessary for our
analysis is the uniform bound (2.3).

3 Statistical Limit

For a given sequence of εn → 0 we consider the vanishing viscosity limit

μn = εnμ, λn = εnλ, μ > 0, λ ≥ 0.

We suppose that the Navier–Stokes system admits a related sequence of weak solutions
(�n,un)∞n=1 in the sense of Definition 2.1. Our goal is to study the statistical properties of
(�n,un)∞n=1. To this end, we associate to this sequence a family of measures VN supported
on the trajectory space

T = Cweak([0, T ]; Lγ
loc(Q) × L

2γ
γ+1
loc (Q; Rd)),

VN = 1

N

N∑
n=1

δ(�n ,mn), mn = �nun, (3.1)

where δ denotes the Dirac mass. Note that any finite energy weak solution belongs to T .
Moreover, motivated by the energy bound (2.3), we assume

1

N

N∑
n=1

[
sup

0≤τ≤T

∫
Q

E
(
�n,mn

∣∣∣�∞,u∞
)

(τ, ·) dx + εn

∫ T

0

∫
Q
S(∇xun) : ∇xun dx dt

]
≤ E

(3.2)

uniformly for N → ∞. Note in particular that we do not assume a uniform bound of the
form

sup
n

[
sup

0≤τ≤T

∫
Q

E
(
�n,mn

∣∣∣�∞,u∞
)

(τ, ·) dx + εn

∫ T

0

∫
Q
S(∇xun) : ∇xun dx dt

]
< ∞.

In fact, such an assumption would render parts of our analysis below trivial. We consider
instead the weaker statistically uniform bound in the sense of the average in (3.2), which is
more natural for the problem under consideration.
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3.1 Statistical Convergence

Our goal is to show

VN → V narrowly in P[T ] (3.3)

at least for a suitable subsequence Nk → ∞ as k → ∞. According to Prokhorov theorem
it is enough to show that (VN )N≥1 is tight. To this end, we denote by (r ,w) the canonical
process on T , that is,

(r ,w) : T → T , (r ,w)(ω, t) = ω(t) for ω ∈ T , t ∈ [0, T ].
We note that the velocity v satisfying w = rv is well defined under each VN . For a prob-
ability measure Q ∈ P(T ), we denote by EQ the expected value in the probability space
(T ,B[T ],Q). From Sect. 4 on, we also use the notation E without any subscript to denote
the expectation on the standard probability space (�,B,P).

Lemma 3.1 Under the hypothesis (3.2), the family (VN )N≥1 is tight in P[T ].
Proof First observe, by virtue of Young’s inequality,

|w| 2γ
γ+1 + rγ � E(r ,w). (3.4)

Consequently, it follows from (3.2) that

EVN

[
sup

0≤τ≤T

∫
K

|w| 2γ
γ+1 dx + sup

0≤τ≤T

∫
K

rγ dx

]

= 1

N

N∑
n=1

[
sup

0≤τ≤T

∫
K

|mn | 2γ
γ+1 dx + sup

0≤τ≤T

∫
K

�
γ
n dx

]
≤ c(K , E)

(3.5)

for any compact K ⊂ Q.
To complete the proof, it is enough to show uniform bounds on the modulus of continuity

of processes

t ∈ [0, T ] �→
∫

Q
r(t)ϕ dx, t ∈ [0, T ] �→

∫
Q
w(t) · ϕ dx, ϕ ∈ C1

c (Q), ϕ ∈ C1
c (Q; Rd),

under VN . As �n , mn satisfy the equation of continuity, we deduce from (3.5)

EVN

⎡
⎣ sup
0≤τ1<τ2≤T

∣∣∣∫Q

[
r(τ2, ·) − r(τ1, ·)

]
ϕ dx

∣∣∣
|τ2 − τ1|

⎤
⎦ ≤ c(ϕ, E). (3.6)

Similarly, the momentum equation yields

EVN

⎡
⎣ sup
0≤τ1<τ2≤T

∣∣∣∫Q

[
w(τ2, ·) − w(τ1, ·)

]
· ϕ dx

∣∣∣
|τ2 − τ1| 12

⎤
⎦ ≤ c(ϕ, E). (3.7)

Here, we have used

‖√εnS(∇xun)‖2L2(Q;Rd×d )
� εn max{μ, λ}

∫
Q
S(∇xun) : ∇xun dx . (3.8)

��
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As the weak topology is not metrizable, the space T is not a Polish space and Prokhorov
theorem does not directly apply. However, T is a sub-Polish space in the sense of
[3,Definition 2.1.3]. Therefore, the Jakubowski–Skorokhod theorem [21] implies (3.3), at
least for a suitable subsequence. In particular,

1

Nk

Nk∑
n=1

b

(∫ T

0

∫
Q

�nϕ1 dx dt, . . . ,
∫ T

0

∫
Q

�nϕm1 dx dt,

∫ T

0

∫
Q
mn · ϕ1 dx dt, . . . ,

∫ T

0

∫
Q
mn · ϕm2

dx dt

)

→ EV

[
b

(∫
Q

rϕ1 dx, . . . ,

∫
Q

rϕm1 dx,

∫
Q
w · ϕ1 dx, . . . ,

∫
Q
w · ϕm2

dx

)]
as k → ∞

(3.9)

for any ϕi ∈ C1
c (Q), i = 1, . . . , m1, ϕi ∈ C1

c (Q; Rd), i = 1, . . . , m2, m1, m2 ∈ N, and
any b ∈ Cc

(
Rm1+m2

)
. In addition, we may also define the barycenter of V on the trajectory

space,

(�,m) = EV [(r ,w)] ,

∫ T

0

∫
Q

�ϕ dx dt = EV

[∫ T

0

∫
Q

rϕ dx dt

]
= lim

k→∞
1

Nk

Nk∑
n=1

[∫ T

0

∫
Q

�nϕ dx dt

]

∫ T

0

∫
Q
m · ϕ dx dt = EV

[∫ T

0

∫
Q
w · ϕ dx dt

]
= lim

k→∞
1

Nk

Nk∑
n=1

[∫ T

0

∫
Q
mn · ϕ dx dt

]

for any ϕ ∈ C1
c ((0, T ) × Q), ϕ ∈ C1

c ((0, T ) × Q; Rd ).

Summarizing we obtain:

Proposition 3.2 (Statistical vanishing viscosity limit) Let (�n,un)∞n=1 be a sequence of weak
solutions to the Navier–Stokes system in the sense of Definition 2.1 with the viscosity coeffi-
cients

μn = εnμ, λn = εnλ, μ > 0, λ ≥ 0, εn ↘ 0.

Suppose the Cesàro averages of the total (relative) energy are bounded as in (3.2).
Then there exists Nk → ∞ and a probability measure V ∈ P[T ] on the trajectory space

T such that (3.9) holds.

4 Reynolds Defect

In order to identify the statistical limit V with a stochastic process, we apply Skorokhod
representation theorem, or rather its generalized version by Jakubowski [21]. It is convenient
to extend the class of variables (�n,mn) to their nonlinear composition appearing in both the
relative energy and the momentum equation. Specifically, we consider the quantities

1�n>0
mn ⊗ mn

�n
∈ L∞

weak−(∗)(0, T ;M(Q; Rd×d
sym )), and p(�n) ∈ L∞

weak−(∗)(0, T ;M(Q)),

(4.1)

where the symbolM denotes the space of all Radon (not necessarily finite) measures on Q.
In view of Riesz representation theorem (see e.g. Rudin [27,Chapter 2, Theorem 2.14]), we
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have

Cc(Q, Rd×d
sym )∗ = M(Q; Rd×d

sym ).

In addition, as the space Cc(Q, Rd×d
sym ) is separable, we conclude

L∞
weak−(∗)(0, T ;M(Q; Rd×d

sym )) = (
L1(0, T ; Cc(Q, Rd×d

sym ))
)∗

,

see e.g. Pedregal [26,Chapter 6, Theorem 6.14]. Consequently, the function spaces in (4.1)
satisfy the assumptions of Jakubowski’s theorem [21]. We consider the extended measure

VN = 1

N

N∑
n=1

δ[
(�n ,mn), 1�n>0

mn⊗mn
�n

, p(�n)
]

∈ P
[
T × L∞

weak−(∗)(0, T ;M(Q; Rd×d
sym )) × L∞

weak−(∗)(0, T ;M(Q))
]
.

It follows from the energy bound (3.2) and Lemma 3.1 that the family (VN )N≥0 is tight.
Now, we apply the version of Skorokhod representation theorem due to Jakubowski [21].
Hence there is a subsequence Nk → ∞ and a family of random variables

(�̃k, m̃k) ∈ T , 1�̃k>0
m̃k ⊗ m̃k

�̃k
∈ L∞

weak−(∗)(0, T ;M(Q; Rd×d
sym )),

p(�̃k) ∈ L∞
weak−(∗)(0, T ;M(Q))

defined on the standard probability space (�,B,P) with the law VNk and such that

(�̃k , m̃k) → (�,m) in T P − a.s.,

1�̃k>0
m̃k ⊗ m̃k

�̃k
→

[
1�>0

m ⊗ m
�

]
weakly-(*) in L∞

weak−(∗)(0, T ;M(Q; Rd×d
sym )) P − a.s.,

p(�̃k) → p(�) weakly-(*) in L∞
weak−(∗)(0, T ;M(Q)) P − a.s. (4.2)

4.1 Asymptotic Limit in the Equation of continuity

In view of (3.3),

V = LT [�,m], (4.3)

where V is the statistical limit identified in Proposition 3.2. Moreover, as the law of the new
variables coincides with VNk , the continuity equation is satisfied P−a.s.:

[∫
Q

�̃kϕ dx

]t=τ2

t=τ1

=
∫ τ2

τ1

∫
Q

[
�̃k∂tϕ + m̃k · ∇xϕ

]
dx dt (4.4)

for any 0 < τ1 < τ2 < T and ϕ ∈ C1
c ((0, T ) × Q). Thus, letting k → ∞, we get

[∫
Q

�ϕ dx

]t=τ2

t=τ1

=
∫ τ2

τ1

∫
Q

[
�∂tϕ + m · ∇xϕ

]
dx dt (4.5)

for any 0 < τ1 < τ2 < T and ϕ ∈ C1
c ((0, T ) × Q) P−a.s.
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4.2 Asymptotic Limit in theMomentum Equation

In accordance with (3.2) we have

E

[
sup

0≤τ≤T

∫
Q

E
(
�̃k, m̃k

∣∣∣�∞,u∞
)

(τ, ·) dx

]
≤ E .

Here and in the sequel, we denote by E (i.e. without any subscript) the expectation on the
probability space (�,B,P). Consequently, it follows from (4.2) that

E
(
�̃k , m̃k

∣∣∣�∞,u∞
)

→ E
(
�,m

∣∣∣�∞, u∞
)

weakly-(*) in L∞
weak−(∗)(0, T ;M(Q)), (4.6)

or, more specifically,

∫ T

0
ψ

∫
Q

E
(
�̃k, m̃k

∣∣∣�∞,u∞
)

ϕ dx dt →
∫ T

0
ψ

∫
Q

ϕ dE
(
�,m

∣∣∣�∞,u∞
)
dt

for any ψ ∈ L1(0, T ), ϕ ∈ Cc(Q) P−a.s. Moreover, passing to expectations we get, by
Fatou’s lemma,

E

[∫ T

0
ψ

∫
Q

ϕ dE
(
�,m

∣∣∣�∞, u∞
)
dt

]
≤ lim inf

k→∞ E

[∫ T

0
ψ

∫
Q

E
(
�̃k , m̃k

∣∣∣�∞, u∞
)

ϕ dx dt

]

≤ E‖ψ‖L1(0,T )‖ϕ‖C(Q), ψ, ϕ ≥ 0. (4.7)

Consequently, unlike its components in (4.2), the limit relative energy is a finite measure on
(0, T ) × Q.

Finally, since (�̃k, m̃k) has the lawVNk , it satisfies the correspondingmomentum equation

[∫
Q
m̃k · ϕ dx

]t=τ2

t=τ1

=
∫ τ2

τ1

∫
Q

[
m̃k · ∂tϕ + 1�̃k>0

m̃k ⊗ m̃k

�̃k
: ∇xϕ + p(�̃k)divxϕ

]
dx dt

−
Nk∑

n=1

1(�̃k ,m̃k )=(�n ,mn)εn

∫ τ2

τ1

∫
Q

[
S(∇xun) : ∇xϕ

]
dx dt

for any 0 < τ1 < τ2 < T and ϕ ∈ C1
c ((0, T ) × Q; Rd). We shall prove that the right hand

side vanishes as k → ∞. In view of (3.8) and (3.2), we obtain

1

Nk

Nk∑
n=1

[∫ T

0
‖√εnS(∇xun)‖2L2(Q;Rd×d )

dt

]
� E,
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hence

E

⎡
⎣
∣∣∣∣∣∣

Nk∑
n=1

1(�̃k ,m̃k )=(�n ,mn)εn

∫ T

0

∫
Q

[
S(∇xun) : ∇xϕ

]
dx dt

∣∣∣∣∣∣
⎤
⎦

= EVNk

⎡
⎣
∣∣∣∣∣∣

Nk∑
n=1

1(r ,w)=(�n ,mn)εn

∫ T

0

∫
Q

[
S(∇xun) : ∇xϕ

]
dx dt

∣∣∣∣∣∣
⎤
⎦

= 1

Nk

Nk∑
i=1

⎡
⎣
∣∣∣∣∣∣

Nk∑
n=1

1(�i ,mi )=(�n ,mn)εn

∫ T

0

∫
Q

[
S(∇xun) : ∇xϕ

]
dx dt

∣∣∣∣∣∣
⎤
⎦

= 1

Nk

Nk∑
i=1

[∣∣∣∣εi

∫ T

0

∫
Q

[
S(∇xui ) : ∇xϕ

]
dx dt

∣∣∣∣
]

� ‖ϕ‖C1((0,T )×Q)

⎛
⎝ 1

Nk

Nk∑
i=1

εi

⎞
⎠

1
2
⎛
⎝ 1

Nk

Nk∑
i=1

[∫ T

0
‖√εiS(∇xui )‖2L2(Q;Rd×d )

dt

]⎞
⎠

1
2

�
√
E‖ϕ‖C1((0,T )×Q)

⎛
⎝ 1

Nk

Nk∑
i=1

εi

⎞
⎠

1
2

.

Since the above right hand side vanishes as k → ∞, we conclude
∫ T

0

(∫
Q
m · ∂tϕ dx +

∫
Q

∇xϕ : d
[
1�>0

m ⊗ m
�

+ p(�)I

])
dt

= 0 for any ϕ ∈ C1
c ((0, T ) × Q) (4.8)

P−a.s.

4.3 Defect Measure in theMomentum Equation

Following [18] we rewrite equation (4.8) in the form∫ T

0

∫
Q

[
m · ∂tϕ + 1�>0

m ⊗ m
�

: ∇xϕ + p(�)divxϕ

]
dx dt

= −
∫ T

0

∫
Q

∇xϕ :
(
d

[
1�>0

m ⊗ m
�

+ p(�)I

]
−

[
1�>0

m ⊗ m
�

+ p(�)I

]
dx

)
dt .

The quantity

R =
[
1�>0

m ⊗ m
�

+ p(�)I

]
−

[
1�>0

m ⊗ m
�

+ p(�)I

]
∈ L∞

weak−(∗)(0, T ;M(Q; Rd×d
sym ))

is called Reynolds defect. A simple but crucial observation is that the tensor-valued measure
R is positively semi-definite in the sense that∫ T

0
ψ

∫
Q
R : (ξ ⊗ ξ)ϕ dx dt ≥ q0 for any ξ ∈ Rd and any ψ ∈ L1(0, T ), ϕ

∈ Cc(Q), ψ, ϕ ≥ 0 P − a.s.
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Indeed this follows from convexity of the function

(�,m) �→ |m · ξ |2
�

+ p(�)|ξ |2 for any ξ ∈ Rd ,

cf. [18] for details.
Our final goal in this section is to show that all components of R are finite measures on

Q. To see this, we compute its trace

0 ≤ trace[R] = |m|2
�̃

+ dp(�) −
[ |m|2

�
+ dp(�)

]
,

and compare it with the defect of relative energy. More precisely, we first observe

1

2

|m|2
�

+ P(�) −
[
1

2

|m|2
�

+ P(�)

]

≤ max

{
1

2
,

1

(γ − 1)d

}(
|m|2
�

+ dp(�) −
[ |m|2

�
+ dp(�)

])

≤ max

{
1

2
,

1

(γ − 1)d

}
max {2, (γ − 1)d}

(
1

2

|m|2
�

+ P(�) −
[
1

2

|m|2
�

+ P(�)

])
.

(4.9)

Next, we write

∫ T

0
ψ

∫
Q

ϕ

(
d

[
1

2

|m|2
�

+ P(�)

]
−

[
1

2

|m|2
�

+ P(�)

]
dx

)
dt

= lim
k→∞

∫ T

0
ψ

[
ϕ

([
1

2

|m̃k |2
�̃k

+ P(�̃k)

]
−

[
1

2

|m|2
�

+ P(�)

])]
dt

= lim
k→∞

∫ T

0
ψ

[
ϕ

(
1

2

|m̃k |2
�̃k

+ 2m̃k · u∞ − 1

2
�̃k |u∞|2

+P(�̃k) − P ′(�∞)(�̃k − �∞) − P(�∞)
)]
dt

−
∫ T

0
ψ

∫
Q

ϕ

(
1

2

|m|2
�

+ 2m · u∞

−1

2
�|u∞|2 + P(�) − P ′(�∞)(� − �∞) − P(�∞)

)
dx dt

= lim
k→∞

∫ T

0
ψ

∫
Q

ϕE
(
�̃k , m̃k

∣∣∣�∞,m∞
)

dx dt −
∫ T

0
ψ

∫
Q

ϕE
(
�,m

∣∣∣�∞,m∞
)

dx dt

=
∫ T

0
ψ

∫
Q

ϕ dE
(
�,m

∣∣∣�∞,m∞
)
dt −

∫ T

0
ψ

∫
Q

ϕE
(
�,m

∣∣∣�∞,m∞
)

dx dt

(4.10)

for any ψ ∈ L1(0, T ), ϕ ∈ Cc(Q) P−a.s., where we have used
∫ T

0
ψ

∫
Q

ϕ�̃k dx dt →
∫ T

0
ψ

∫
Q

ϕ� dx dt,
∫ T

0
ψ

∫
Q

ϕm̃k · u∞ dx dt

→
∫ T

0
ψ

∫
Q

ϕm · u∞ dx dt
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P-a.s.
Thus, combining (4.7) with (4.9) we obtain the desired conclusion

E

[∫ T

0
ψ

(∫
Q

ϕ d trace[R]
)

dt

]
≤ cE‖ψ‖L1(0,T )‖ϕ‖C(Q), ψ ∈ L1(0, T ), ϕ ∈ Cc(Q).

(4.11)

5 Limit Problem

In the preceding two sections, we have identified the limit problem in the vanishing viscosity
regime as a stochastic process (�,m) on the probability space (�,B,P), with paths in the
trajectory space T , satisfying P−a.s.

∫ T

0

∫
Q

[
�∂tϕ + m · ∇xϕ

]
dx dt = 0 for any ϕ ∈ C1

c ((0, T ) × Q), (5.1)

∫ T

0

∫
Q

[
m · ∂tϕ + 1�>0

m ⊗ m
�

: ∇xϕ + p(�)divxϕ
]
dx dt = −

∫ T

0

∫
Q

∇xϕ : dR dt

(5.2)

for any ϕ ∈ C1
c ((0, T ) × Q; Rd), where R is the Reynolds stress,

R ∈ L∞
weak−(∗)(0, T ;M+(Q; Rd×d

sym )),

E

[∫ T

0
ψ

∫
Q

ϕ d trace[R] dt

]
≤ cE‖ψ‖L1(0,T )‖ϕ‖C(Q). (5.3)

In other words, the limit satisfies pathwise the compressible Euler system in the generalized
sense introduced in [2] with the difference that no energy inequality is postulated. Moreover,
since the limit is a stochastic process, it can be regarded as a statistical dissipative solution
in the spirit of [16].

5.1 Stochastic Euler System

As the next step, we investigate the question, whether the randomness accumulated along the
statistical vanishing viscosity limit can be directly modeled by a stochastic perturbation in
the limiting Euler system.We suppose that the limit process (�,m) is statistically equivalent,
in the sense specified in Definition 1.1, to a weak martingale solution (�̃, m̃) of the Euler
system driven by the noise of Itô’s type:

d�̃ + divxm̃ dt = 0, dm̃ + divx

(
m̃ ⊗ m̃

�̃

)
dt + ∇x p(�̃) dt = FdW . (5.4)

Here,W = (Wk)k≥1 is a cylindricalWiener process and the diffusion coefficientF = (Fk)k≥1

is stochastically integrable, that is, progressively measurable and satisfies

E

⎡
⎣∫ T

0

∑
k≥1

‖Fk‖2W−�,2(Q;Rd )
dt

⎤
⎦ < ∞ (5.5)

where W −�,2(Q; Rd) is a possibly negative Sobolev space. A priori, the coefficient F may
depend on the solution (�̃, m̃) provided the above stochastic integrability condition is satis-
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fied. In this setting, the stochastic integral in (5.4) is a martingale, in particular, it has a zero
expectation.

Sinceweonly compare certain statistical properties of the twoprocesses (�,m) and (�̃, m̃),
they can be possibly defined on different probability spaces. Nevertheless, without loss of
generality we assume for notational simplicity that they are both defined on the probability
space (�,B,P) with expectation E.

It holds P−a.s.
∫ T

0

∫
Q

[
m̃ · ϕ∂tψ + ψ1�̃>0

m̃ ⊗ m̃
�̃

: ∇xϕ + ψ p(�̃)divxϕ
]
dx dt

= −
∫ T

0
ψ

∑
k≥1

(∫
Q
Fk · ϕ dx

)
dWk (5.6)

for any (deterministic) ψ ∈ C1
c (0, T ), ϕ ∈ C1

c (Q; Rd). Thus passing to expectations, we
obtain

E

[∫ T

0

∫
Q

[
m̃ · ϕ∂tψ + ψ1�̃>0

m̃ ⊗ m̃
�̃

: ∇xϕ + ψ p(�̃)divxϕ
]
dx dt

]
= 0. (5.7)

Similarly, we consider expectation of the limit equation (5.2) obtaining

E

[∫ T

0

∫
Q

[
m · ϕ∂tψ + ψ1�>0

m ⊗ m
�

: ∇xϕ + ψ p(�)divxϕ
]
dx dt

]

= −E

[∫ T

0
ψ

∫
Q

∇xϕ : dR dt

]
. (5.8)

Comparing (5.7), (5.8) and using the fact that the randomprocesses are statistically equivalent
and that p(�) = (γ − 1)P(�), p(�̃) = (γ − 1)P(�̃), we may infer that

E

[∫ T

0
ψ

(∫
Q

∇xϕ : dR
)

dt

]

= E

[∫ T

0
ψ

∫
Q

(
1�̃>0

m̃ ⊗ m̃
�̃

− 1�>0
m ⊗ m

�

)
: ∇xϕ dx dt

] (5.9)

for any ψ ∈ C1
c (0, T ), ϕ ∈ C1

c (Q).
Our goal is to show that (5.9), together with the fact that (�,m), (�̃, m̃) are statistically

equivalent, imply R = 0 P−a.s. as soon as Q is an exterior domain to a convex body B.

5.1.1 Domains Exterior to a Convex Body

The following result may be of independent interest.

Proposition 5.1 Let Q = Rd \ B where B is a bounded set and let BR be a (closed) ball in
Rd of radius R containing B. Suppose

R ∈ L∞
weak−(∗)(0, T ;M+(Q, Rd×d

sym ))

satisfies (5.9), where (�,m), (�̃, m̃) are statistically equivalent in the sense of Definition 1.1.
Then R|Rd\BR

= 0 P−a.s.
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Proof Without loss of generality, we may suppose that the ball is centered at the origin,
BR = {|x | ≤ R}. Keep in mind that this amounts to replacing x by x − x0 in the following
computations. Consider a smooth convex function

F(Z) = 0 for 0 ≤ Z ≤ R2, 0 < F ′(Z) ≤ F for R2 < Z < R2 + 1, F ′(Z)

= F if Z ≥ R2 + 1,

together with a cut-off function

χ ∈ C∞
c [0,∞), χ(Z) = 1 for Z ≤ 1, χ(Z) = 0 for Z ≥ 2. (5.10)

Now, we take

ϕL(x) = χ

( |x |
L

)
∇x F(|x |2), ϕ ∈ C1

c (Q), L ≥ 1.

as a test function in (5.9). The integral on the left-hand side of (5.9) reads

E

[∫ T

0
ψ

(∫
Q

∇xϕL : dR
)

dt

]

= E

[∫ T

0
ψ

(∫
Rd\BR

χ

( |x |
L

)
∇2

x F(|x |2) : dR
)

dt

]

+ 2

L
E

[∫ T

0
ψ

(∫
L≤|x |≤2L

χ ′
( |x |

L

)
F ′(|x |2)|x |

(
x

|x | ⊗ x

|x |
)

: dR
)

dt

]
,

where, in view of (5.3), dR is a finite measure, and consequently,

2

L
E

[∫ T

0
ψ

(∫
L≤|x |≤2L

χ ′
( |x |

L

)
F ′(|x |2)|x |

(
x

|x | ⊗ x

|x |
)

: dR
)

dt

]

≤ 4E

[∫ T

0
ψ

(∫
L≤|x |≤2L

χ ′
( |x |

L

)
F ′(|x |2)

(
x

|x | ⊗ x

|x |
)

: dR
)

dt

]
→ 0 as L → ∞.

Computing

∇2
x F(|x |2) = 2∇x

(
F ′(|x |2)x

) = 4F ′′(|x |2)(x ⊗ x) + 2F ′(|x |2)I

and using convexity of F together with the positive semi-definitness of R, we obtain

lim
L→∞E

[∫ T

0
ψ

(∫
Q

∇xϕL : dR
)

dt

]

= lim
L→∞E

[∫ T

0
ψ

(∫
Rd\BR

χ

( |x |
L

)
∇2

x F(|x |2) : dR
)

dt

]

≥ 2E

[∫ T

0
ψ

∫
Rd\BR

F ′(|x |2)d trace[R] dt

]
(5.11)

for any ψ ∈ C1
c (0, T ), ψ ≥ 0.
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Finally, in accordance with (1.9), the integral on the right-hand side of (5.9) vanishes.
Indeed we easily compute

E

[∫ T

0
ψ

∫
Q

(
1�̃>0

m̃ ⊗ m̃
�̃

− 1�>0
m ⊗ m

�
: ∇xϕL

)
dx dt

]

= E

[∫ T

0
ψ

∫
Q
4F ′′(|x |2)

(
1�̃>0

|m̃ · x |2
�̃

− 1�>0
|m · x |2

�

)
χ

( |x |
L

)
dx dt

]

+ E

[∫ T

0
ψ

∫
Q
2F ′(|x |2)

(
1�̃>0

|m̃|2
�̃

− 1�>0
|m|2
�

)
χ

( |x |
L

)
dx dt

]

+ 2

L
E

[∫ T

0
ψ

∫
L≤|x |≤2L

F ′(|x |2) 1

|x |2
(
1�̃>0

|m̃ · x |2
�̃

− 1�>0
|m · x |2

�

)
χ ′

( |x |
L

)
dx dt

]
= 0.

Indeed using statistical equivalence of the kinetic and angular energies (1.9) we have

E

[∫ T

0
ψ

∫
Q
1�>0

|m · x |2
�

ϕ(x) dx dt

]

= −E

[∫ T

0
ψ

∫
Q
1�>0(J0 · m) · mϕ(x) dx dt

]
+ E

[∫ T

0
ψ

∫
Q
1�>0

|m|2
�

ϕ(x) dx dt

]

= −E

[∫ T

0
ψ

∫
Q
1�̃>0(J0 · m̃) · m̃ϕ(x) dx dt

]
+ E

[∫ T

0
ψ

∫
Q
1�̃>0

|m̃|2
�̃

ϕ(x) dx dt

]

= E

[∫ T

0
ψ

∫
Q
1�̃>0

|m̃ · x |2
�

ϕ(x) dx dt

]

for any ϕ ∈ Cc(Q).
Going back to (5.11) we may infer that

E

[∫ T

0
ψ

∫
Rd\BR

F ′(|x |2)d trace[R] dt

]
= 0

for any ψ ∈ C1
c (0, T ), ψ ≥ 0, which yields the desired conclusion as F ′(|x |2) > 0 for

|x | > R. ��

Corollary 5.2 Let Q = Rd \ B where B is a compact convex set. Suppose

R ∈ L∞
weak−(∗)(0, T ;M+(Q, Rd×d

sym ))

satisfies (5.9), where (�,m), (�̃, m̃) are statistically equivalent in the sense of Definition 1.1.
Then R = 0 P−a.s.

Proof As B is convex, any x ∈ Q possesses an open neighborhood U (x) such that

U (x) ⊂ Q \ BR

for some ball BR containing B. By Proposition 5.1,

R|U (x) = 0

P−a.s. ��
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5.2 Convergence

Going back to relation (4.10), we also obtain

E
(
�,m

∣∣∣�∞,m∞
)

= E
(
�,m

∣∣∣�∞,m∞
)

P − a.s. (5.12)

As shown in [18], relation (5.12) implies local strong convergence for the Skorokhod repre-
sentation, more specifically,

‖�̃k − �‖γ

Lγ ((0,T )×K ) +
∥∥∥∥∥1�̃k>0

m̃k√
�̃k

− 1�>0
m√
�

∥∥∥∥∥
2

L2((0,T )×K ;Rd )

→ 0 (5.13)

for any compact K ⊂ Q P–a.s.
Finally, we translate the convergence result (5.13) in terms of the original sequence

(�n,mn)∞n=1. Consider b ∈ Cc(Rd+1). It follows from (5.13) that

∫ T

0

∫
Q

1

Nk

Nk∑
k=1

b(�n,mn)ϕ dx dt

= E

[∫ T

0

∫
Q

b(�̃k, m̃k)ϕ dx dt

]
→ E

[∫ T

0

∫
Q

b(�,m)ϕ dx dt

]

for any ϕ ∈ C∞
c ((0, T ) × Q). This can be interpreted as

1

Nk

Nk∑
k=1

b(�n,mn) → E
[
b(�,m)

]

= EV [b(r ,w)] weakly-(*) in L∞((0, T ) × Q) for b ∈ Cc(Rd+1).

Moreover, identifying

1

Nk

Nk∑
k=1

b(�n,mn) = E
[
b(�̃k, m̃k)

]
,

we compute∥∥E [
b(�̃k, m̃k)

] − E
[
b(�,m)

]∥∥
L1((0,T )×K )

≤ E
[‖b(�̃k, m̃k) − b(�,m)‖L1((0,T )×K )

] → 0

for any compact K ⊂ Q. In particular, modulo a subsequence (Nk)k≥1, the sequence
(�n,mn)∞n=1 is S-convergent in the sense of [17] as a consequence of Theorem 2.4 in [17].

We have proved the following result.

Theorem 5.3 (Strong statistical limit) Suppose that Q = Rd \ B, where B is a convex
compact set. Let (�n,mn)∞n=1 be a sequence of weak solutions to the Navier–Stokes system
in the sense of Definition 2.1 with the viscosity coefficients

μn = εnμ, λn = εnλ, μ > 0, λ ≥ 0, εn ↘ 0,

and satisfying the total energy bound (3.2). Let (�,m) be the Skorokhod representation of
the limit V identified in Proposition 3.2. Suppose that (�,m) is statistically equivalent to a
solution (�̃, m̃) of the stochastic Euler system (5.4), driven by a stochastic forcing FdW of
Itô’s type satisfying (5.5).

Then
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• (�,m) is a (weak) statistical solution of the deterministic compressible Euler system.
• The sequence (�n,mn)∞n=1, modulo a subsequence (Nk)k≥1, is S-convergent in the sense

of [17]. Specifically, there is a sequence Nk → ∞ such that

1

Nk

Nk∑
k=1

b(�n,mn) → EV [b(r ,w)] (strongly) in L1((0, T ) × K ) as k → ∞

(5.14)

for any compact K ⊂ Q and any b ∈ Cc(Rd+1).

5.3 Drift force of Stratonovich Type

Revisiting the proof of Theorem 5.3, we may observe that the only used property of the
Itô integral is its vanishing expectation. In other words, the same result remains valid if
we replace the stochastic integral by an arbitrary random variable with zero expectation. A
natural question is therefore whether our result applies to other random perturbations with
generally non-zero expected value. Our goal is to extend Theorem 5.3 to a larger class of
driving forces including, in particular, a Stratonovich type drift term, which is also widely
used in the literature. In particular, a physical justification of a noise of this form in the context
of fluid dynamics can be found in [24]. In [20], it was even proved that a transport noise of
Stratonovich type provides regularization of the incompressible Navier–Stokes system in
vorticity form.

For technical reasons, we restrict ourselves to the space dimension d = 2. Unfortunately,
we are able to show the result only in the absence of the obstacle, meaning Q = R2.

We suppose that the limit process (�,m) is statistically equivalent to a solution (�̃, m̃) of
the problem

d�̃ + divxm̃ dt = 0, dm̃ + divx

(
m̃ ⊗ m̃

�̃

)
dt + ∇x p(�̃) dt = (σ · ∇x )m̃ ◦ dW1 + F dW2,

(5.15)

where σ ∈ R2 is a constant vector. In particular, the weak formulation of the momentum
equation reads

∫ T

0

∫
R2

[
m̃ · ϕ∂tψ + ψ1�̃>0

m̃ ⊗ m̃
�̃

: ∇xϕ + ψ p(�̃)divxϕ
]
dx dt

= −
∫ T

0
ψ

∑
k≥1

(∫
R2

Fk · ϕ dx

)
dW2,k +

∫ T

0
ψ

(∫
R2

m̃ · ∇x (ϕ ⊗ σ) dx

)
◦ dW1.

(5.16)

for any ψ ∈ C1
c (0, T ), ϕ ∈ C1

c (R2; R2).
Using the Itô-Stratonovich correction formula we can write the Stratonovich integral in

(5.16) as a martingale plus the correction term

−1

2

∫ T

0
ψ

∫
R2

m̃ · [(σ ⊗ σ) : ∇2
x ]ϕ dx dt,

provided

E

[∫ T

0

(
ψ

∫
R2

m̃ · ∇x (ϕ ⊗ σ) dx

)2

dt

]
< ∞. (5.17)
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We take this stochastic integrability condition as an additional assumption. Obviously, the
correction term can be written in the form

−1

2

∫ T

0
ψ

∫
R2

m̃ · [(σ ⊗ σ) : ∇2
x ]ϕ dx dt = −1

2

∫ T

0
ψ

∫
R2

(m̃ − m∞) · [(σ ⊗ σ) : ∇2
x ]ϕ dx dt,

with m∞ = �∞u∞.
Similarly to Sect. 5.1, passing to expectations in (5.16) we obtain

E

[∫ T

0
ψ

(∫
R2

∇xϕ : dR
)

dt

]

= E

[∫ T

0
ψ

∫
R2

(m̃ − m∞) · [(σ ⊗ σ) : ∇2
x ]ϕ dx dt

]

+ E

[∫ T

0
ψ

∫
R2

(
1�̃>0

m̃ ⊗ m̃
�̃

− 1�>0
m ⊗ m

�

)
: ∇xϕ dx dt

]

for any ψ ∈ C1
c (0, T ), ϕ ∈ C1

c (R2; R2).

(5.18)

The following steps are inspired by Chae [6]. Similarly to the proof of Proposition 5.1, we
consider the test function

ϕ(x) = χ

( |x |
L

)
x . (5.19)

where χ is the cut-off function introduced in (5.10). Accordingly,

∇xϕ = 1

L
χ ′

( |x |
L

)
x ⊗ x

|x | + χ

( |x |
L

)
I,

∇2
x ϕ = 1

L2 χ ′′
( |x |

L

)
x ⊗ x

|x |2 x − 1

L
χ ′

( |x |
L

)
x ⊗ x

|x |2
x

|x |
+ 1

L
χ ′

( |x |
L

)
I

x

|x | + 1

L
χ ′

( |x |
L

)
1

|x |∇x (x ⊗ x).

Exactly as in the proof of Proposition 5.1 we deduce

E

[∫ T

0
ψ

(∫
R2

d trace[R]
)

dt

]
≤ lim

L→∞
1

L
E

[∫ T

0

∫
L≤|x |≤2L

|m̃ − m∞| dx dt

]

Consequently, we obtain the same conclusion as in Proposition 5.1 if we show

lim
L→∞

1

L
E

[∫ T

0

∫
L≤|x |≤2L

|m̃ − m∞| dx dt

]
= 0. (5.20)

We check easily by direct manipulation that

1{ 1
2 �∞≤�̃≤2�∞

}|m̃ − m∞|2 � E
(
�̃, m̃

∣∣∣�∞,u∞
)

,

1{
�̃< 1

2 �∞ or Q%>2%∞
}|m̃ − m∞| 2γ

γ+1 � E
(
�̃, m̃

∣∣∣�∞,u∞
)

.

Denoting

m̃1 = 1{ 1
2 �∞≤�̃≤2�∞

}(m̃ − m∞), m̃2 = 1{
�̃< 1

2 �∞ or Q%>2%∞
}(m̃ − m∞),
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we get, by Hölder’s inequality,

1

L
E

[∫ T

0

∫
L≤|x |≤2L

|m̃1| dx dt

]

� L
d−2
2 E

[∫ T

0

(∫
L≤|x |≤2L

E
(
�̃, m̃

∣∣∣�∞,u∞
)
dx

) 1
2

dt

]
, (5.21)

and

1

L
E

[∫ T

0

∫
L≤|x |≤2L

|m̃2| dx dt

]

� Ld γ−1
2γ −1

E

⎡
⎣∫ T

0

(∫
L≤|x |≤2L

E
(
�̃, m̃

∣∣∣�∞,u∞
)
dx

) γ+1
2γ

dt

⎤
⎦ . (5.22)

However, as (�̃, m̃) is statistically equivalent to (�,m) we have

E

[∫ T

0

∫
L≤|x |≤2L

E
(
�̃, m̃

∣∣∣�∞,u∞
)
dx dt

]
= E

[∫ T

0

∫
L≤|x |≤2L

E
(
�,m

∣∣∣�∞, u∞
)
dx dt

]

In particular, if d = 2, both integrals (5.21), (5.22) vanish in the asymptotic limit L → ∞.
We have proved the following result.

Theorem 5.4 Let Q = R2. Suppose that (�n,mn)∞n=1 is a sequence of weak solutions to the
Navier–Stokes system in the sense of Definition 2.1 with the viscosity coefficients

μn = εnμ, λn = εnλ, μ > 0, λ ≥ 0, εn ↘ 0,

and satisfying the total energy bound (3.2). Let (�,m) be the Skorokhod representation of
the limit V identified in Proposition 3.2. Suppose that (�,m) is statistically equivalent to a
weak solution (�̃, m̃) of the stochastic Euler system (5.15) driven by a stochastic forcing

(σ · ∇x )m̃ ◦ dW1 + F dW2

and satisfying (5.17) for any ψ ∈ C1
c (0, T ), ϕ ∈ C1

c (R2; R2).
Then

• (�,m) is a (weak) statistical solution of the deterministic compressible Euler system.
• The sequence (�n,mn)∞n=1, modulo a subsequence (Nk)k≥1, is S-convergent in the sense

of [17]. Specifically, there is a sequence Nk → ∞ such that

1

Nk

Nk∑
k=1

b(�n,mn) → EV [b(r ,w)] (strongly) in L1((0, T ) × K ) as k → ∞

for any compact K ⊂ R2 and any b ∈ Cc(R3).

Similarly to the Itô case, we may extend the validity of Theorem 5.4 to random per-
turbations of the form M + N , where M has zero expectation and N satisfies a suitable
assumption so that the corresponding term vanishes in the required sense as it was the case
for the Itô-Stratonovich correction through (5.20).

Remark 5.5 A short inspection of formula (5.18) and the specific form of the test function
(5.19) reveals that the hypothesis concerning statistical equivalence of the angular energies
can be relaxed in (1.9).
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Remark 5.6 It is interesting to note that the same technique can be used to eliminate system
with “effective” viscosity (cf. Davidson [10, Chapter 4]),

∂t �̃ + divxm̃ = 0, ∂tm̃ + divx

(
m̃ ⊗ m̃

�̃

)
+ ∇x p(�̃) dt = μeff�x ũ,

as the turbulent limit provided the velocity field ũ enjoys certain integrability properties.

5.3.1 Three Dimensional Setting

We observe that the proof of Theorem 5.4 goes through also in three spatial dimensions
provided certain stronger assumptions are postulated. We assume that the far field density
vanishes �∞ = 0, and that the adiabatic constant belongs to the physically relevant range
γ ∈ (1, 3]. In that case, the term m̃1 does not appear and the bound for m̃2 indeed vanishes
as L → ∞, which yields the claim of Theorem 5.4.

We can also allow for more complicated spatial domains provided suitable boundary
conditions for both the approximate and the limit systems are considered. As the spatial
domain we may take for instance a domain exterior to a cone,

Q = R3 \ Q, Q =
{
(x1, x2, x3)

∣∣∣x3 ≥ 0, x23 ≤ λ2(x21 + x22 )
}

, λ > 0.

Wesuppose that the solutions of theNavier–Stokes systemsatisfy the complete slip condition,

u · n|∂ Q = 0, (S · n) × n|∂ Q = 0.

Accordingly, the limit Euler system is endowed with the standard impermeability condition

m · n|∂ Q = 0.

Under these circumstances, the function ϕ introduced in (5.19) is still an admissible test
function for both the Navier–Stokes and the Euler system, and the arguments of Sect. 5.3
can be used as soon as �∞ = 0, u∞ = 0. Clearly, such a choice of boundary conditions
eliminates the turbulent boundary layer. The same can be done also in two spatial dimensions
where the assumption �∞ = 0 is not necessary.

5.4 Deterministic Limit

As our final goal, we identify the asymptotic limit in the situation of Theorem 5.3 and under
the additional assumption that the barycenter

(�,m) = EV [(r ,w)]

is a weak solution of the Euler system.
Consider the averages

1

Nk

Nk∑
n=1

�n = �k,
1

Nk

Nk∑
n=1

mn = mk .

Due to convexity of the relative energy, we have

∫
Q

E
(
�k,mk

∣∣∣�∞,u∞
)

dx ≤ 1

Nk

Nk∑
n=1

∫
Q

E
(
�n,mn

∣∣∣�∞,u∞
)

dx,
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and the uniform bound (3.2) yields

sup
0≤t≤τ

∫
Q

E
(
�k,mk

∣∣∣�∞,u∞
)

dx ≤ E . (5.23)

Thus it follows from (5.14) that

�k → � in L p
loc([0, T ] × Q), 1 ≤ p < γ,

mk → m in Lq
loc([0, T ] × Q; Rd), 1 ≤ q <

2γ

γ + 1
.

As (�n,mn) satisfy the momentum equation, we get
∫ T

0

∫
Q
mk · ∂tϕ + 1�k>0

mk ⊗ mk

�k
: ∇xϕ + p(�k)divxϕ dx dt

= 1

Nk

Nk∑
n=1

εn

∫ T

0

∫
Q
S(∇xun) : ∇xϕ dx dt

−
∫ T

0

∫
Q

⎛
⎝ 1

Nk

Nk∑
n=1

[
1�n>0

mn ⊗ mn

�n
+ p(�n)I

]

−
[
1�k>0

mk ⊗ mk

�k
+ p(�k)I

])
: ∇xϕ dx dt,

or, as (�,m) is a weak solution of the Euler system,

∫ T

0

∫
Q

⎛
⎝ 1

Nk

Nk∑
n=1

[
1�n>0

mn ⊗ mn

�n
+ p(�n)I

]
−

[
1�k>0

mk ⊗ mk

�k
+ p(�k)I

]⎞⎠ : ∇xϕ dx dt

=
∫ T

0

∫
Q

([
1�k>0

mk ⊗ mk

�k
+ p(�k)I

]
−

[
1�>0

m ⊗ m
�

+ p(�)I

])
: ∇xϕ dx dt

+ 1

Nk

Nk∑
n=1

εn

∫ T

0

∫
Q
S(∇xun) : ∇xϕ dx dt

+
∫ T

0

∫
Q
(m − mk) · ∂tϕ dx dt → 0 as k → ∞

for any ϕ ∈ C1
c ((0, T ) × Q).

Next, observe that the tensor

R1
k =

⎛
⎝ 1

Nk

Nk∑
n=1

[
1�n>0

mn ⊗ mn

�n
+ p(�n)I

]
−

[
1�k>0

mk ⊗ mk

�k
+ p(�k)I

]⎞
⎠

is positively semi-definite as⎛
⎝ 1

Nk

Nk∑
n=1

[
1�n>0

mn ⊗ mn

�n
+ p(�n)I

]
−

[
1�k>0

mk ⊗ mk

�k
+ p(�k)I

]⎞
⎠ : (ξ ⊗ ξ)

=
⎛
⎝ 1

Nk

Nk∑
n=1

[
1�n>0

|mn · ξ |2
�n

+ p(�n)|ξ |2
]

−
[
1�k>0

|mk · ξ |2
�k

+ p(�k)|ξ |2
]⎞
⎠ ≥ 0
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in view of convexity of the function

(�,m) �→ |m · ξ |2
�

+ p(�)|ξ |2.

Note that boundedness of the energy implies

|mn |2
�n

= 1�n>0
|mn |2
�n

,
|mk |2
�k

= 1�k>0
|mk |2
�k

a.a.

We show that

ess sup
0≤τ≤T

∫
Q
trace[R1

k] dx ≤ c(E).

As we have observed above, this is equivalent to a similar statement for the energy, namely

ess sup
0≤τ≤T

∫
Q

⎛
⎝ 1

Nk

Nk∑
k=1

E(�n,mn) − E(�k,mk)

⎞
⎠ dx ≤ c(E).

However, a simple computation yields

1

Nk

Nk∑
k=1

E(�n,mn) − E(�k,mk) = 1

Nk

Nk∑
k=1

E
(
�n,mn

∣∣∣�∞,m∞
)

− E
(
�k,mk

∣∣∣�∞,m∞
)

,

and the desired conclusion follows from the energy bound (3.2).
Repeating the arguments of Sect. 5.1.1 we conclude

lim
k→∞

∫ T

0

∫
Q

1

Nk

Nk∑
k=1

E(�n,mn)ϕ dx dt =
∫ T

0

∫
Q

E(�,m)ϕ dx dt

for any ϕ ∈ Cc((0, T ) × Rd), ϕ ≥ 0.

(5.24)

As shown in [17,Section 5], relation (5.24) implies

lim
k→∞

1

Nk

Nk∑
k=1

b(�n,mn) → b(�,m)

for any b ∈ Cc(Rd+1). This yields the final conclusion

1

Nk

Nk∑
n=1

(
‖�n − �‖L1((0,T )×K ) + ‖mn − m‖L1((0,T )×K ;Rd )

)
→ 0 as k → ∞.

Consequently, V = δ(�,m) and (�n,mn)∞n=1 statistically converges to (�,m).

Theorem 5.7 In addition to the hypotheses of Theorem 5.3, suppose that

(�,m) = EV [(r ,w)]

is a weak solution to the Euler system.
Then

V = δ(�,m)
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and

1

Nk

Nk∑
n=1

(
‖�n − �‖L1((0,T )×K ) + ‖mn − m‖L1((0,T )×K ;Rd )

)
→ 0 as k → ∞. (5.25)

As shown by Connor [9], relation (5.25) yields statistical convergence, modulo the sub-
sequence (Nk)k≥1, of the sequence (�n,mn): For any ε > 0,

#
{

n ≤ Nk

∣∣∣(‖�n − �‖L1((0,T )×K ) + ‖mn − m‖L1((0,T )×K ;Rd )

)
> ε

}
Nk

→ 0 as k → ∞.

6 Concluding Remarks

We have studied the vanishing viscosity limit for the compressible Navier–Stokes fluid flow
around a convex obstacle. We have shown that the statistical limit cannot be a solution of the
associated Euler system driven by stochastic forcing of Itô’s type. As a consequence, there
are two basic scenarios to describe the statistical limit:

• Oscillatory limit. The limit is in the weak sense and can be described in terms of a
Young measure. In that case, the weak limit is not a weak solution of the Euler system.
Statistically, however, the asymptotic limit is a singleton (Dirac measure). Note that this
scenario is compatible with the hypothesis that the limit is independent of the choice of
εn ↘ 0.

• Statistical limit. The limit is a statistical solution of the Euler system. If this is the
case, the sequence of the Navier–Stokes system S-converges in the sense of [17]. This is
apparently in agreement with the numerical experiments performed by Fjordholm et al.
[19]. At the theoretical level, this alternative is also in agreement with the Kolmogorov
hypothesis concerning turbulent flow that predicts compactness in the strong Lebesgue
sense, see Chen and Glimm [7]. We point out that this scenario is not compatible with
the hypothesis that the limit is independent of εn ↘ 0 unless it is a monoatomic measure
in which case the convergence must be strong.

Thephenomenaof oscillatory and statistical limits are in awaycomplementary.The former
asserts weak (oscillatory) convergence to a single limit, the latter means strong convergence
for any suitable subsequence but non-existence of a single limit. In reality, they can be, of
course, mixed up. In both cases, the generating sequence of solutions of the Navier–Stokes
system is S-convergent in the sense of [17].

The results depend essentially on the properties of the compressible Euler system, and
also on the geometry of the physical space—an unbounded domain exterior to a convex set in
Rd . They might be extended to the case of the full Euler system, however, the zero viscosity
limit here is more delicate as the existence theory for the Navier–Stokes–Fourier system is
available only for a particular class of constitutive equations.
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