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Abstract
We consider a fermionic many body system in Z

d with a short range interaction and quasi-
periodic disorder. In the strong disorder regime and assuming a Diophantine condition on
the frequencies and on the chemical potential, we prove at T = 0 the exponential decay of
the correlations and the vanishing of the Drude weight, signaling non-metallic behavior in
the ground state. The proof combines Ward Identities, Renormalization Group and KAM
Lindstedt series methods.

Keywords Quasi-periodic disorder · Interacting fermions · Localization · Drude weight ·
Small divisors

1 Introduction

The conductivity properties in fermionic systems, describing electrons in metals, are strongly
affected by the presence of disorder, which breaks the perfect periodicity of an ideal lattice
and is unavoidable in real systems. Disorder can be represented either by a random variable
or by a quasi-periodic potential; the first description is more suitable for impurities in solids
while the second appears naturally in quasi-crystals or cold atoms experiments. In absence of
many body interaction disorder produces the phenomenon of Anderson localization [1], con-
sisting in an exponential decay of all eigenstates and in an insulating behavior with vanishing
conductivity. Such a phenomenon relies on the properties of the single particle Schroedinger
equation and it has been the subject of a deep mathematical investigation. With random dis-
order Anderson localization was established for strong disorder in any dimension [2,3] and
in one dimension with any disorder. In the case of quasi-periodic disorder localization in one
dimension is present only for large disorder [4,5], while for weak disorder is absent; in higher
dimensions localization was proved for strong disorder in d = 2 [6,7] and for any d in [8].
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The interplay between disorder and interaction has been deeply analyzed in the physical
literature soon after [1]. The presence of many body interaction induces new processes
which can indeed destroy localization. At zero temperature T = 0 with random disorder
qualitative scaling arguments gave evidence of persistence of localization in d = 3 [9,10]
for short range weak interaction; in d = 1 a second order Renormalization Group analysis
was shown to produce a complex phase diagram [11]. The case of quasi-random disorder
has been less studied, with the exception of [12,13] focusing on the extended weak disorder
regime at T = 0. In more recent times the properties at T > 0 were analyzed in [14], where
perturbative arguments for the vanishing of conductivity up to a certain critical T in any
dimension were given (many body localized phase). Subsequently numerical simulations
found localization in certain systems in all the spectrum and vanishing of conductivity for
any T , a phenomenon calledmany body localization, see [15] for random and [16] for quasi-
periodic disorder. If all states are localized one expects, in a non-equilibrium setting, that
interaction is unable to produce thermalization in an isolated quantum system, a phenomenon
that in classical mechanics is due to closeness to an integrable system. Interacting quantum
systems with quasi-periodic disorder have been realized in cold atoms experiments [17–
19] ; quasi-periodic disorder with many body interaction has been extensively numerically
analyzed [20–28].

While the above works suggest that localization persists in presence of interaction, results
based on numerical or perturbative analysis cannot be conclusive. In particular the presence
of small divisors has the effect that physical informations are difficult to be extracted by lower
order analysis but are typically encoded in convergence or divergence of thewhole series. This
is a well known phenomenon in classical mechanics; the Birkoff series for prime integrals
in Hamiltonian systems are generically diverging while Lindsdtet series for Kolomogorov–
Arnold–Moser (KAM) tori converge, even if both series are order by order finite and present
similar small divisors. Therefore, even if perturbative analysis in [14] or [29] get localization
at finite temperature and in any dimension, one cannot exclude that the series are divergent
and localization eventually disappear (this would say that thermalization in experiments is
eventually reached, even if at long times). A non-perturbative proof ofmany body localization
for all eigenstates has been indeed finally obtained in d = 1 with random disorder in [30] but
the result is based on a certain unproven assumption. A complete proof have been obtained
only with vanishing densities [31,32]. Arguments for breaking of many body localization in
d > 1 have been indeed presented in [33].

In order to get rigorous results as benchmark for conjectures and approximations, a natural
starting point is the zero temperature case in the thermodynamic limit. Our approach is
to compute thermodynamical correlations; they not only provide physical observables at
equilibrium but give also information on the spectrum (so their computation is of interest even
for situation where equilibrium is not reached). In particular at zero temperature they provide
information of correlations over the ground state, while the vanishing of conductivity at any
temperature is a signal ofmanybody localization in all the spectrum. It has beenproven in [34–
36] for one dimensional interacting fermions with strong quasi-periodic disorder the T = 0
exponential decay of 2-point correlations, indicating persistence of localization in the ground
state. Aim of this paper is twofold. The first is to investigate the d > 1 case. We consider a
disorder of the form f ( �ω�x)with f periodic, as the one considered in [6] for the single particle
Schroedinger equation;more general forms of disorder are however possible, as f ( �ω1 �x, �ω2 �x)
considered in [6]. The second aim is to compute the T = 0 conductivity expressed by Kubo
formula, whose properties can be analyzed via a combination of information provided by
Ward Identities with regularity properties of the current correlations. The thermodynamical
quantities are expressed by a series expansion showing a peculiar combinations of properties
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appearing in classical and quantum physics; they show a small divisor problem, as in the
Lindstedt series for KAM [37], but loop graphs appear in the expansion, a signature of
quantum physics totally absent in classical mechanics. In order to achieve convergence and
exclude non perturbative effects one has from one side to show that divisors can be controlled
by number theoretical conditions on frequencies, and from the other that the huge number
of loop graphs is compensated by cancellations from the fermionic anticommutative nature
of the problem.

The paper is organized in the following way. In §2 the model is presented and in §3 the
main results, together with open problems, are presented. In §4 we discuss the implications
of Ward Identities and regularity bounds. In §5 we introduce the Grassmann representation
and in §6 we introduce the multiscale analysis. In §7 we prove the convergence of series
expansion and in §8 we get the asymptotic decay of correlations.

2 Interacting Fermions with Quasi-Periodic Disorder

We introduce the Fock space FL = ⊕
N≥0 h

∧N
L where the N particle Hilbert space h∧N

L is
the set of the totally antisymmetric square integrable functions in �L := {�x ∈ Z

d | �x =
n1�e1 + n2�e2 + ... , −L/2 ≤ ni ≤ L/2 , i = 1, 2, .., d} where �ei are unit vectors. The
a±

�x are fermionic creation or annihilation operators sending an element of h∧N
L in h∧N+1

L

(creation) or h∧N−1
L (annihilation) and {a+

�x , a−
�y } = δ�x,�y , {a+

�x , a+
�y } = {a−

�x , a−
�y } = 0. The

Hamiltonian is

H = − ε

2

∑

�x

d∑

i=1

(a+
�x+�ei a

−
�x + a+

�x a
−
�x+�ei ) + u

∑

�x
φ�xa+

�x a
−
�x + λ

∑

�x

d∑

i=1

a+
�x a

−
�x a

+
�x+�ei a

−
�x+�ei (1)

where a+
�x must be interpreted as zero for �x /∈ �L and φ�x = φ̄( �ω�x) with φ̄(t) : T → R

periodic of period 1. In order to describe a quasi-periodic disorder we impose that �ω is
rationally independent and “badly” approximated by rationals (Diophantine condition). The
first term in (1) represents the kinetic energy of the fermions hopping on a lattice, the second
represents the interaction with a quasi-periodic potential and the last term represents a 2 body
interaction.

There are several interesting limits; λ = 0 is the non interacting limit; λ = u = 0 is the
integrable limit; λ = ε = 0 is the anti-integrable limit (the therminology was introduced in
[38] ). We consider the case in which λ, ε are small with respect to u, and we set u = 1 for
definiteness; that is we consider a perturbation of the anti-integrable limit.

If N = ∑
�x a

+
�x a

−
�x we define

〈·〉β,L = TrFL · e−β(H−μN )

Zβ,L
, Zβ,L = TrFL e

−β(H−μN ) (2)

where μ is the chemical potential, which is fixed by the density in the Grand-Canonical
ensamble, and Zβ,L is the partition function. In the limit β → ∞ they provide information
on the ground states. We define

〈·〉 = lim
β→∞ lim

L→∞〈·〉β,L (3)

The imaginary-time (or Euclidean) evolution of the fermionic operators is

a±
x = ex0(H−μN )a±

�x e
−x0(H−μN ) (4)
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with x = (x0, �x) with x0 ∈ [0, β), The 2-point function is given by

Sβ,L(x, y) = 〈Ta−
x a

+
y 〉β,L (5)

and T is the time order product. We also consider the truncated expectations 〈T A; B〉β,L =
〈T AB〉β,L − 〈T A〉β,L 〈T B〉β,L . The density and the current are given by

ρ�x = a+
�x a

−
�x j i�x = ε

2i
(a+

�x+�ei a
−
�x − a+

�x a
−
�x+�ei ) (6)

The (Euclidean) conductivity density in the zero temperature limit is defined byKubo formula

σ i
�y = lim

p0→0

1

p0
lim

β→∞ lim
L→∞[

∑

�x∈�L

∫ β

0
dx0e

ip0x0〈T ji�x,x0 ; j i�y,0〉β,L+ < τ i�y >β,L ] (7)

where
τ i�y = − ε

2
(a+

�y+�ei a
−
�y + a+

�y a
−
�y+�ei ) (8)

The conductivity can be equivalently expressed in terms of the Fourier transform which
is, in the β → ∞, L → ∞ limit , i = 1, , d

Ĥii (p, �y) =
∑

�x∈�

∫

R

dx0e
ipx < T ji�x,x00; j i�y,0 > (9)

and similarly we define Ĥμν(p, �y), withμ = 0, 1, ...d (μ = 0 is the density andμ = 1, ..., d
the current component). We can rewrite (7) as

σ i
�y = lim

p0→0
lim
�p→0

1

p0
[Ĥii (p, �y)+ < τ i�y >] (10)

Finally the (zero temperature) Drude weight, see e.g., [39,40] , is defined as

Di
�y = lim

p0→0
lim
�p→0

[Ĥii (p, �y)+ < τ i�y >] (11)

In a perfect metal at equilibrium the Drude weight is non-vanishing implying that the con-
ductivity is infinite; a vanishing Drude weight signals a non-metallic behavior.

In the above definitions of conductivity the order in which the limits are taken is essential;
already in the integrable limit u = λ = 0 reversing the order of the limits one obtains a zero
result, while theDrudeweight is indeed non vanishing as a consequence of the non-continuity
of the Fourier transform of the current correlation.

3 Main Result

In the anti-integrable limit λ = ε = 0 the eigenvalues of the Hamiltonian are, �x ∈ �L

H0 =
∑

�x∈�L

φ̄( �ω�x)n �x n �x = 0, 1 (12)

and the single particle eigenfunctions have the form of δ�x,�y . The 2-point function is given by

g(x, y) = δ�x,�ye(φ�x−μ)(x0−y0)

[

θ(x0 − y0)
1

1 + eβ(φ�x−μ)
− θ(y0 − x0)

eβ(φ�x−μ)

1 + eβ(φ�x−μ)

]

(13)
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which can be equivalently written as

g(x, y) = δ�x,�y
1

β

∑

k0= 2π
β

(n0+ 1
2 )

e−ik0(x0−y0)ĝ(�x, k0) = δ�x,�y ḡ(�x; x0 − y0) (14)

with

ĝ(�x, k0) = 1

−ik0 + φ�x − μ
(15)

We define
μ = φ̄(α) (16)

and the occupation number on the ground state is θ(φ̄( �ω�x) − φ̄(α)); the choice of μ fixes
the averaged density. The conductivity is exactly vanishing as the is proportional to ε. The
density correlation is

< ρx; ρy >= δ�x,�y ḡ(�x; x0 − y0)ḡ(�x; y0 − x0) (17)

We want to investigate what happens when we consider a non-vanishing hopping ε �= 0
and interaction λ �= 0. As usual in small divisor problems, we need to impose a Diophantine
condition on the frequencies �ω of the quasi-periodic disorder that is

||( �ω�x)||T ≥ C0|�x |−τ �x ∈ Z
d/�0 (18)

||.|| being the norm on the one dimensional torus with period 1; we require also a Diophantine
condition on the chemical potential, that is

||( �ω�x) ± 2α||T ≥ C0|�x |−τ �x ∈ Z
d/�0 (19)

The complementary of the set of numbersω, α verifying the diophantine conditions for some
C0 has measure O(C0), see e.g., [41].

In general the value of the chemical potential is modified by the interaction; in order to fix
the interacting chemical potential to the value φ̄(α) we choose the bare one to μ = φ̄(α)+ ν

with ν chosen properly.
Our main result is the following

Theorem 3.1 Assume that μ = φ̄(α) + ν and φx = φ̄( �ω�x) with φ̄ : T → R, even, dif-
ferentiable and such that v0 = ∂φ̄(α) �= 0: in addition �ω verifies (18) and α verifies (19).
There exists ε0 and a suitable choice of ν = O(ε0) such that, for |λ| ≤ |ε| ≤ ε0 in the zero
temperature and infinite volume limit

1. The 2-point correlation verifies, for any N

|S(x, y)| ≤ | log��x,�y |CN
e− 1

4 | log |ε|||�x−�y|

1 + (��x,�y |x0 − y0|)N (20)

with
��x,�y = (1 + min(|�x |, |�y|))−τ (21)

2. The density and current correlations verify

|Hμ,ν(x, y)| ≤ �−4
�x,�yCN

e− 1
4 | log |ε|||�x−�y|

1 + (��x,�y |x0 − y0|)N (22)

3. The Drude weight is vanishing
Di

�x = 0 (23)
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In the zero temperature limit the correlations (5) reduce to the ground state average, whose
exponential decay as in (20) is implied by the localization of the ground state. The result holds
with quasi periodic potential of the form φ̄( �ω�x) in any dimension.Moreover theDrudeweight
at T = 0 is vanishing, implying a non-metallic behavior. This result is obtained assuming
a Diophantine condition on the frequencies and on the chemical potential (or equivalently
on the densities), see (19). As the estimate of the radius of convergence ε0 is proportional
to C0 to some power, with fixed ε, λ we get a large measure set of densities for which the
exponential decay is present (but not on an interval).

Information on the conductivity are obtained by combining the Ward Identities following
from the conservation of the current with regularity properties of the Fourier transform of
the correlations, which are related to the decay in the coordinate space. In the case of non-
interacting fermions, or for 1d interacting fermions without disorder, the slow power law
decay of correlations implies a non vanishing Drude weight, see [42]. In the present case,
the decay in space is exponentially fast but the decay in the imaginary time has rate not
uniform in �x, �y, due to the lack of translation invariance. As a consequence, we can deduce
the vanishing of the Drude weight but not of the conductivity.

The analysis is based on an extension of the Lindstedt series approach to KAM tori with
exactRenormalizationGroupmethods for fermions.The correlations are expressedby a series
expansion showing a small divisor problem, as in the Lindstedt series for KAM, in graphs
with loops, which are a peculiarity of quantum physics. Small divisors are controlled by the
Diophantine conditions and the huge number of loop graphs is compensated by cancellations
due to anticommutativity.

While we have proved here the vanishing of the Drude weight, it would be interesting to
understand if also the conductivity is vanishing; a possibility is that a zero result is found only
by a suitable averaging over a phase, that is replacing φ( �ω�x) with φ( �ω�x + α) and averaging
over α.

The effective interaction is irrelevant in the Renormalization Group sense, as consequence
of Diophantine conditions and by cancellations due to anticommutativity. The presence of
spin [43] and an anisotropic hopping [44] produce extra marginal couplings. They can in
principle destroy the convergence result of the present paper, and it is interesting to observe
that numerical [45] or cold atoms experiments [19] have found evidence of delocalization is
such cases. Another important point would be to extend the analysis to a more general kind
of disorder like f ( �ω1 �x, �ω2 �x). The condition of strong disorder is non technical; in the case
of weak quasiperiodic disorder there is no localization; in particular, this is the case of the
interacting Aubry-Andre’ model [46], of the bidimensional Hofstadter model [47] or of three
dimensional Weyl semimetals [48]. Finally, we stress that a rigorous understanding of T = 0
properties of interacting fermions with finite density and random disorder is still unknown.

The main open problem if of course to extend the above result on transport coefficients
to finite temperature to get information on localization beyond the ground state. In order to
do that one needs to perform a Wick rotation at non-zero temperature, but known techniques
to do that works only at T = 0 [39]. Another difficulty is due to the fact that we do not
get ground state localization in an interval of densities, but only in a large measure set.
The absence of thermalization in the classical case is considered related to KAM theorem;
it is interesting to note that the persistence of localization in a quantum system, which is
considered an obstruction to thermalization, is also obtained via the generalization of KAM
methods in a quantum context.
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4 Vanishing of DrudeWeight

We show that the vanishing of Drude weight (23) is consequence of the bound (22) combined
with Ward Identities. Note first that the Fourier transform in the infinite volume limit is
continuous as

|Ĥμ,ν(p, �y)| ≤
∑

�x

∫

dx0|Hμ,ν(x, y)| ≤
∑

�x

∫

dx0�
−4
�x,�yCN

e− 1
4 | log |ε||�x−�y|

1 + (��x,�y |x0|)N

≤ C1

∑

�x
(|�x + �y|5τ + |�y|5τ )e− 1

4 | log |ε||�x ||

≤ C2

∑

�x
e− 1

4 | log |ε||�x ||(|�x |5τ + 2|�y|5τ ) ≤ C3|�y|5τ /(| log |ε||)d+5τ (24)

Ward identities can be deduced from the continuity equation,

∂0ρx = [H , ρx] = −i
∑

i

( j ix − j ix−ei ) (25)

we get, setting ∂i jx ≡ jx − jx−ei , i = 1, ..., d , ei = (0, �ei )
∂0 < Tρx; ρy >= −i

∑

i

∂i < T jix; ρy > +δ(x0 − y0) < [ρx, ρy] >

∂0 < Tρx; j jy >= −i
∑

i

∂i < T jix; j jy > +δ(x0 − y0) < [ρx, j jy ] > (26)

Note that [ρ�x,x0 , ρ�y,x0 ] = 0 while

[ρ�x,x0 , j
j
�y,x0 ] = −iδ�x,�yτ j

�x + iδ�x−�e j ,�yτ
j
�y (27)

so that, in the L, β → ∞ limit

∂0 < Tρx; ρy >= −i
∑

i

∂i < T jix; ρy >

∂0 < Tρx; j jy >= −i
∑

i

∂i < T jix; j jy >

−iδ(x0 − y0)(−δ�x,�y < τ
j
�y > +δ�x−�e j ,�y < τ

j
�y >) (28)

Taking the Fourier transform in x we get, using translation invariance in time and setting
y0 = 0

∑

�x

∫

dx0e
ipx(∂0 < Tρx; j j�y > +i

∑

i

∂i < T jix; j j�y >

+iδ(x0)(−δ�x,�y < τ
j
�y > +δ�x−�e j ,�y < τ

j
�y >) = 0 (29)

with p0 ∈ R and �p ∈ [−π, π)d so that

− i p0 Ĥ0, j (p, �y) + i
∑

i

(1 − e−i pi )(Ĥi, j (p, �y) + e−i �p�y < τ
j
y,0 >) = 0 (30)

Setting j = 1 for definiteness, we set �̄p = (p1, 0, 0) so that

− i p0 Ĥ0,1(p̄, �y) + i(1 − e−i p1)(Ĥ1,1(p̄, �y) + e−i p1 y1 < τ 1y,y0 >) = 0 (31)
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so that
lim
p1→0

(Ĥ1,1(0, p1, �y) + e−i p1 y1 < τ 1y,y0 >) = 0 (32)

but lim p1→0(e−i p1 y1 − 1) = 0. In conclusion

lim
p1→0

(Ĥ1,1(0, p1, �y)+ < τ 1y,y0 >) = 0 (33)

Due to (24) Ĥ1,1(p, �y) is continuous in p so that we can exchange the limits

lim
p0→0

lim
�p→0

(Ĥ1,1(p, �y)+ < τ 1y,y0 >) = D1
�x = 0 (34)

and this shows that theDrudeweight is vanishing.Note the crucial role played by continuity of
the Fourier transform, following by the fast decay of the correlations; without quasi-periodic
disorder the Fourier transform is not continuous due to its slow decay and the Drude weight
is non vanishing.

5 Perturbation Theory and Grassmann Representation

The starting point of the analysis consists in expanding around the anti-integrable limit (12);
defining

H − μN = H0 + V (35)

H0 =
∑

�x
(φ�x − φ̄(α))a+

�x a
−
�x

V = ε
∑

�x,i
(a+

�x+�ei a
−
�x + a+

�x a
−
�x+�ei ) + λ

∑

�x,i
a+

�x a
−
�x a

+
�x+�ei a

−
�x+�ei + ν

∑

�x
a+

�x a
−
�x (36)

and using the Trotter formula one can write the partition function and the correlations as a
power series expansion in λ, ε.

The correlations can be equivalently written in terms of Grassmann integrals. We can
write

eW (η,J ) =
∫

P(dψ)e−V(ψ)−B(ψ,J ,η) (37)

with ei = (0, �ei )

V(ψ) = ε
∑

i

∫

dx(ψ+
x+ei

ψ−
x + ψ+

x−ei
ψ−
x ) + λ

∫

dx
∑

i

ψ+
x ψ−

x ψ+
x+ei

ψ−
x+ei

+ ν

∫

dxψ+
x ψ−

x (38)

Fig. 1 Graphical representation of the three terms in V(ψ) Eq.(38)

123



Vanishing of Drude Weight in Interacting Fermions... Page 9 of 20 36

where
∫
dx = ∑

x∈�L

∫ β
2

− β
2

dx0 and ψ±
x is vanishing outside �L ; moreover

B(ψ, J , η) =
∫

dx[η+
x ψ−

x + ψ+
x η−

x +
d∑

μ=0

Jμ(x) jμ(x)] (39)

with

j0(x) = ψ+
x ψ−

x ji (x) = ε(ψ+
x+ei ψ

−
x − ψ+

x ψ−
x+ei) (40)

The 2-point and the current correlations are given by

SL,β
2 (x, y) = ∂2

∂η+
x ∂η−

y
W (η, J )|0,0 Hμ,ν(x, y) = ∂2

∂ Jμ,x∂ Jν,y
W (η, J )|0,0 (41)

By expanding in λ, ε, ν one can write the correlations as a series expansion, which can be
expressed in terms of Feynman graphs obtained contracting the half lines of vertices, see Fig.
1, and associating to each line the propagator g(x, y). There is a basic difference between the
perturbative expansion in the non interacting case λ = 0 and the interacting case λ �= 0. In
the first case there are only chain graphs, while in the second there are also loops, producing
further combinatorial problems. One can verify that the perturbative expansions obtained by
Trotter formula for (2) and by the Grassmann generating functions are the same (this is true
up to the so called “tadpoles” which can be easily taken into account, see §1 D in [35]). The
identity between (2) and (37) is true in a rigorous sense provided that the Grassmann integral
representation is analytic in a disk uniformly in L, β, as proven in the following sections.
Indeed at finite L, β the partition function in (2) is entire and it coincides order by order with
the Grassmann representation, which is analytic in a disk independent on the volume, so they
coincide. As the denominator of the correlations is non vanishing in this finite disk and the
numerator is entire at finite β, L , also the correlations (2) is analytic and coincide with the
Grassmann representation, and the identity holds also in the limit.

6 Multiscale Decomposition and Renormalization

The difficulty in controlling the perturbative expansion is due to a “small divisor problem”
related to the size of the propagator; the denominator of ĝ(�x, k0) can be arbitrarily small if
�ω�x is close to ±α, a fact which can produce in principle O(n!)-terms which could destroy
convergence. The starting point of the analysis is to separate the propagator in two terms,
one containing the quasi-singularity and a regular part; we write

g(x, y) = g(1)(x, y) +
∑

ρ=±
g(≤0)
ρ (x, y) (42)

where

g(1)(x, y) = δ�x,�y
β

∑

k0

χ(1)( �ω�x, k0) e−ik0(x0−y0)

−ik0 + φ̄( �ω�x) − φ̄(α)
= δ�x,�yg(1)(�x, x0 − y0)

g(≤0)
ρ (x, y)

= δ�x,�y
β

∑

k0

χ(0)
ρ ( �ω�x, k0) e−ik0(x0−y0)

−ik0 + φ̄( �ω�x) − φ̄(α)
= δ�x,�yg(≤0)

ρ (�x, x0 − y0) (43)
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with χ
(0)
ρ ( �ω�x, k0) = ϑ̃ρ( �ω�x)χ̄0(

√
k20 + (φ̄( �ω�x) − φ̄(α))2) with θ̃ρ is the periodic theta

function (θ̃± = 1 if �ω�x mod. 1 is positive/negative and zero otherwise) and χ̄0 such that
C∞(R+) → R such that χ̄0(t) = 1 with t ≤ 1 and χ̄0(t) = 0 for t ≥ γ > 1; moreover
χ(1) + ∑

ρ=± χρ = 1. The “infrared” propagator g(≤0)(x, y) has denominator arbitrarily
small. We can further decompose the infrared propagator as sum of propagators with smaller
and smaller denominators

g(≤0)
ρ (�x, x0 − y0) =

0∑

h=−∞
g(h)
ρ (�x, x0 − y0) (44)

with g(h)
ρ similar g(≤0)

ρ witrh f h replacing χ̄0 with

f h = χ̄0(γ
h
√
k20 + (φ̄( �ω�x) − φ̄(α))2) − χ̄0(γ

h−1
√
k20 + (φ̄( �ω�x) − φ̄(α))2) (45)

For any integer N one has

|g(h)
ρ (�x, x0 − y0)| ≤ CN

1 + (γ h |x0 − y0|)N (46)

if CN is a suitable constant.
The integration of (37) is done iteratively by using two crucial properties of Grassmann

integrations. If P(dψ(1)) and P(dψ(≤0)) are gaussian Grassmann integrations with propa-
gators g(1) and g(≤0), we can write P(dψ) = P(dψ(1))P(dψ(≤0)) so that

eW (η,J ) =
∫

P(dψ(1))P(dψ(≤0))e−V(ψ(1)+∑
ρ=± ψ

(≤0)
ρ )−B(ψ(1)+∑

ρ=± ψ
(≤0)
ρ ,η,J )

=
∫

P(dψ(≤0))e−V(0)(ψ
(≤0)
ρ ,η,J ) (47)

with

V(0)(ψ(≤0)
ρ , η, J ) =

∞∑

n=0

1

n!E
T
1 (V + B; n) (48)

and ET
1 are fermionic truncated expectations with propagator g(1). By

integrating ψ(0), ψ(−1), .., ψ(h+1) one obtains a sequence of effective potentials V(h),
h = 0,−1,−2, ... The way in which we define the integration is dictated by the scaling
dimension which is, as we will see below, D = 1; that is all terms are relevant in the
Renormalization Group sense.

Remark Note that after the integration of ψ1 one gets a theory defined in terms of two
fields ψ+, ψ−. This is due to the fact that φ̄(t) = φ̄(α) in correspondence of two points ±α.
If we consider more general forms of quasi periodic disorder, like φ̄(t1, t2) as the one in [7] ,
then φ̄(t1, t2) − μ = 0 in a set corresponding to a surface. In this case one gets a description
in terms of a field ψρ , with ρ a parameter parametrizing this curve, a situation somewhat
analogue to what happens in interacting fermions with extended Fermi surface.

The multiscale integration is described iteratively in the following way. Assume that we
have already integrated the fields ψ(0), ψ(−1), .., ψ(h+1) obtaining (we set η = 0 for the
moment)

eW (0,J ) =
∫

P(dψ(≤h))e−V(h)(ψ(≤h),J ) (49)
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where P(dψ(≤h)) has propagator

g(≤h)
ρ (x, y) = δ�x,�y

β

∑

k0

χ(h)
ρ (k0, �ω�x) e−ik0(x0−y0)

−ik0 + φ̄( �ω�x) − φ̄(α)
= δ�x,�yg(≤0)

ρ (�x, x0 − y0) (50)

and

V(h)(ψ(≤h), J ) =
∑

l≥0,m≥0

∑

ε,ρ

∫

dx1...dxl dy1...dymHh
l,m(x, y)

l∏

i=1

ψεi (≤h)
ρi ,xi

m∏

i=l

Jyi (51)

If there is a subset of ψ
εi
ρi ,xi with the same ε, ρ and �xi , by the anticommuting properties

of Grassmann variables we can write, if l > 1

l∏

i=1

ψε
�x,x0,i = ψε

�x,x0,1
l∏

i=2

Dε
�x,x0,i ,x0,1 Dε

�x,x0,i ,x0,1 = ψε
�x,x0,i − ψε

�x,x0,1 (52)

We can therefore rewrite that effective potential in the following way

V(h)(ψ(≤h), J ) =
∑

l≥0,m≥0

∑

ε,ρ

∫

dx1...dxldy1...dymHh
l,m(x, y)

l∏

i=1

dσi ψεi
ρi ,xi

m∏

i=l

Jyi (53)

with σ = 0, 1 and d0ψ = ψ and d1ψ = D.
We define resonant the terms with fields with the same coordinate �x , that is xi = (x0,i , �x).

Note that all the resonant terms with l ≥ 4 are such that there are at least two D fields; the
fields have the same ρ index as have the same �ω�x .

We define a renormalization operation R in the following way

1. If l = 2, m = 0

R
∑

�x

∫

dx0,1dx0,2H
(h)
2,0ψ

+(≤h)

�x,x0,1,ρψ
−(≤h)

�x,x0,2,ρ =
∑

�x

∫

dx0,1dx0,2H
(h)
2,0ψ

+(≤h)

�x,x0,1,ρT
−(≤h)

�x,x0,1,x0,2ρ

(54)
with

T−(≤h)

�x,x0,1,x0,2ρ = ψ
−(≤h)

�x,x0,2,ρ − ψ
−(≤h)

�x,x0,1,ρ − (x0,1 − x0,2)∂ψ
−(≤h)

�x,x0,1,ρ (55)

2. R = 0 otherwise

We define R = 1 − L and by definition LV(h) is given by the following expression

LV(h) = γ h F (h)
ν + F (h)

ζ + F (h)
α (56)

where, if H (h)
2,0 (�x, x0 − y0) ≡ H̄ (h)

2,0 ( �ω�x, x0 − y0) one has

νh =
∫

dx0 H̄
(h)
2,0 (ρα, x0) ξh(�x) =

∫

dx0
H̄ (h)
2,0 ( �ω�x, x0) − H̄ (h)

2,0 (ρα, x0)

�ω�x − ρα
(57)

and αh(�x) = ∫
dx0x0 H̄

(h)
2,0 ( �ω�x, x0); moreover

F (h)
ν =

∑

ρ

∑

�x

∫

dx0νhψ
+(≤h)
x,ρ ψ−(≤h)

x,ρ

F (h)
ζ =

∑

ρ

∑

�x

∫

dx0(( �ω�x) − ρα)ζh,ρ(�x)ψ+(≤h)
x,ρ ψ−(≤h)

x,ρ
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F (h)
α =

∑

ρ

∑

�x

∫

dx0αh,ρ(�x)ψ+(≤h)
x,ρ ∂0ψ

−(≤h)
x,ρ (58)

The running coupling constants �vh = (νh, αh, ξh) are independent fromρ, as (37) is invariant
under parity �x → −�x . Note also that (ĝ(k))∗(�x, k0) = ĝ(k)(�x,−k0) so that (Ĥ

(h)
2,ρ (�x, k0))∗ =

Ĥ (h)
2,ρ (�x,−k0), and this implies that νh is real.
Remark The R operation is defined in order to act non trivially on the resonant terms

with two fields and no J fields; they are the only resonant terms with no D fields. This fact
would be not true of there is the spin or an extra degree of freedom, as in the case of lattice
Weyl semimetals [48]. In that case the local part of the effective potential would contain also
effective interactions.

With the above definitions we can write (49)

eW (0,J ) =
∫

P(dψ(≤h−1))

∫

P(dψ(h))e−LV(h)(ψ(≤h),J )−RV(h)(ψ(≤h),J )

=
∫

P(dψ(≤h−1)) e−LV(h)(ψ(≤h−1),J ) (59)

and the procedure can be iterated.

7 Convergence of Series Expansion

The effective potential can be written as a sum over Gallavotti trees τ , see Fig. 2

V(h)(ψ(≤h), J ) =
∞∑

n=1

∑

τ∈Th,n

V (h)(τ, ψ(≤h)) (60)

where τ are trees constructed adding labels to the unlabeled trees, obtained by joining a point,
the root, with an ordered set of n ≥ 1 points, the endpoints, so that the root is not a branching
point.

The set of labeled trees Th,n is defined associating a label h ≤ 0 with the root and
introducing a family of vertical lines, labeled by an integer taking values in [h, 2] intersecting
all the non-trivial vertices, the endpoints and other points called trivial vertices.To a vertex
v is associated hv and, if v1 and v2 are two vertices and v1 < v2, then hv1 < hv2 . Moreover,
there is only one vertex immediately following the root, which will be denoted v0 and can

Fig. 2 A labeled tree
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Fig. 3 A tree of order 5 and the corresponding clusters

not be an endpoint; its scale is h + 1. To the end-points are associated V + B , and in such
a case the scale is 2; or LVhv−1(ψ(≤hv−1), J ) and in this case the scale is hv ≤ 1 and there
is the constraint that hv = hv̄ + 1, if v̄ is the first non trivial vertex immediately preceding
v. The tree structure induces a jerarchy of end-points which can be represented by clusters,
see Fig. 3.

If v0 is the first vertex of τ and τ1, .., τs (s = sv0 ) are the subtrees of τ with root v0,
V (h)(τ, ψ(≤h)) is defined inductively by the relation

V (h)(τ, ψ) = (−1)s+1

s! ET
h+1[V̄ (h+1)(τ1, ψ

(≤h+1)); ..; V̄ (h+1)(τs, ψ
(≤h+1))] (61)

where V̄ (h+1)(τi , ψ
(≤h+1)) it is equal to RV(h+1)(τi , ψ

(≤h+1)) if the subtree τi is non triv-
ial;if τi is trivial, it is equal to LV(h+1). By iterating (61) we get a jerarchy of truncated
expectations, with a certain subset of fields contracted in each expectations. We can therefore
write V (h)(τ, ψ(≤h)) as sum over sets defined in the following way. We call Iv the set of ψ

associated to the end-points following v and Pv is a subset of Iv denoting the external ψ . We
denote by Qvi the intersection of Pv and Pvi ; they are such that Pv = ∪i Qvi and the union
Iv of the subsets Pvi \ Qvi is, by definition, the set of the internal fields of v, and is non
empty if Sv > 1. The effective potential can be therefore written as

V(h)(τ, ψ(≤h)) =
∑

P∈Pτ

V(h)(τ,P) V̄(h)(τ,P) =
∫

dxv0 ψ̃
(≤h)(Pv0)K

(h+1)
τ,P (xv0) , (62)

where ψ̃(≤h)(P) = ∏
f ∈P ψx( f ). If we expand the truncated expectations by the Wick rule

we get a sum of Feynman graphs with an associated cluster structure; an example is in Fig.
4.

The truncated expectations can be written by the Brydges–Battle–Federbush formula

ET
hv

(ψ̃(hv)(P1/Q1), · · · , ψ̃(hv)(Ps/Qs)))

=
∑

Tv

∏

l∈Tv

[
δ�xl ,�yl ḡ

(hv)(�xl , x0,l − y0,l)
]

∫

dPT (t) detGhv,T (t) , (63)

where Tv is a set of lines forming an anchored tree graph between the clusters of points
x(i) ∪ y(i), that is Tv is a set of lines, which becomes a tree graph if one identifies all the
points in the same cluster. Moreover t = {tii ′ ∈ [0, 1], 1 ≤ i, i ′ ≤ s}, dPTv (t) is a probability
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Fig. 4 An example of graph with
λ and ε vertices and the
associated cluster structure; the
propagator in the cluster,
represented as a circle, has scale
h smaller than the scales of the
propagators external to the cluster

Fig. 5 A tree T̄v with attached
wiggly lines representing the
external lines Pv ; the lines
represent propagators with scale
≥ hv connecting
w1, wa , wb, wc, w2,
representing the end-points
following v in τ

measure with support on a set of t such that tii ′ = ui ·ui ′ for some family of vectors ui ∈ R
s

of unit norm.
Gh,T

i j,i ′ j ′ = tii ′δ�xi j ,�yi ′ j ′ ḡ
(h)(�xi j , x0,i j − y0,i ′ j ′) , (64)

We define T̄v = ⋃
w≥v Tw starting from Tv and attaching to it the trees Tv1 , .., TvSv

associated
to the vertices v1, .., vSv following v in τ , and repeating this operation until the end-points
of τ are reached.

The tree T̄v connects the end-points w of the tree τ . To each end-point w we associate
a factor �δiww , and a) �δiw = 0 if w corresponds to a νh, αh, ζh end-point; b) �δiw one among
±�ei , i = 1, 2, 3 if it corresponds to an ε end-point; c) δiw one among 0,±�ei , i = 1, 2, 3 if it
corresponds to a λ end-point. If �xw1 and �xw2 are coordinates of the external fields ψ̃(Pv) we
have, see Fig. 5

�xw1 − �xw2 =
∑

w∈cw1,w2

�δiww (65)

where cw1,w2 is the set of endpoints in the path in T̄ connectingw1 andw2. The above relation
implies, in particular, that the coordinates of the external fields ψ̃(Pv) are determined once
that the choice of a single one of them and of τ, T̄v and P is done. We can therefore write
the effective potential as sum over trees T , setting the Kronecker deltas in the propagators in
l ∈ T equal to 1

V(h)(τ, ψ(≤h)) =
∑

P∈Pτ

∑

T

V(h)(τ,P, T ) V̄(h)(τ,P, T )

=
∑

�x

∫

dx0,v0 ψ̃
(≤h)(Pv0)K

(h+1)
τ,P,T (xv0) , (66)
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where in K (h+1)
τ,P,T the propagators in T are g(h)(�x, x0 − y0) and the determinants are product

of determinats involving propagators with the same �x . We can bound the propagators in T
by ∫

dx0|g(h)(�x, x0 − y0)| ≤ Cγ −h (67)

Moreover the determinants in the BFF formula can be bounded by the Gram-Hadamard
inequality . We introduce an Hilbert space H = R

s ⊗ L2(R1) so that

G̃h,T
i j,i ′ j ′ =

(
ui ⊗ A(x0,i j−, xi j ) , ui ′ ⊗ B(y0,i ′ j ′−, xi j )

)
, (68)

where u ∈ R
s are unit vectors (ui , ui ) = tii ′ , and A, B

(A, B) =
∫

dz0A(�x, x0 − z0)B
∗(�x, z0 − y0) (69)

given by

A(�x, x0 − z0) = 1

β

∑

k0

e−ik0(x0−z0)
√

fh B(�x, y0 − z0) = 1

β

∑

k0

e−ik0(y0−z0)
√

fh
−ik0 + φ̄( �ω�x) − φ̄(α)

Moreover ||Ah ||2 = ∫
dz0|Ah(x ′, z0)|2 ≤ Cγ h and ||Bh ||2 ≤ Cγ −h so that By Gram-

Hadamard inequality we get:

|detG̃hv,Tv (tv)| ≤ C
∑Sv

i=1 |Pvi |−|Pv |−2(Sv−1) . (70)

One get therefore the bound, for |λ|, |�vh | ≤ ε0,

|K (h+1)
τ,P,T (xv0)| ≤ Cnεn0

∏

v

1

Sv!γ
−hv(Sv−1) (71)

which is not suitable for summing over τ and P . In order to improve the above boundwe need
to implement in the bounds some constraints which have been neglected in the derivation of
(71), and to take into account the effect of the presence of the D fields.

We define Vχ the set of non trivial vertices or the trivial ones with non zero internal lines;
we define v′ the first vertex in Vχ following v. We say that v is a non-resonant vertex if in
ψ̃(Pv) there are at least two different coordinates, and a resonant vertex when all coordinates
are equal. We define Sv = SLv + SH

v where SLv is the number of non resonant subtrees
(including trivial ones) and SH

v the number of resonant ones (inluding trivial ones). We also
call H the set of v ∈ Vχ which are resonant and L the v ∈ Vχ which are non resonant.
Consider a non resonant vertex v so that there are at least two fields in Pv with different
spatial coordinates �x , say �xw1 �= �xw2 . The fields ψ̃(≤hv)(Pv) have scale ≤ γ hv′ , v′ ∈ Vχ the
first vertex belonging to Vχ after v so that

||( �ω�xw1) − ρ1α||T ≤ cv−1
0 γ hv′−1 ||( �ω�xw2) − ρ2α||T ≤ cv−1

0 γ hv′−1 (72)

so that

2cv−1
0 γ hv′ ≥ ||( �ω�xw1)−ρ1α||T+||( �ω�xw2)−ρ2α||T ≥ || �ω(�xw1−�xw2)−(ρ1−ρ2)α||T (73)

and by (65)

2cv−1
0 γ hv′ ≥ || �ω(

∑

w∈cw1,w2

�δiww ) + (ρ1 − ρ2)α||T ≥ C0

| ∑w∈cw1,w2
�δiww |τ (74)
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where the Diophantine conditions have been used. Therefore
∑

w∈cw1,w2

|�δiww | ≥ |
∑

w∈cw1,w2

�δiww | ≥ Cγ −hv′/τ (75)

and, if Nv is the number of end-points following v in τ
∑

w∈cw1,w2

|�δiww | ≤ Nv (76)

as |�δiww | = 0, 1 so that
Nv ≥ Cγ −hv′/τ (77)

Note that to each endpoint is associated a small factor ε0 and the fact that Nv is large by (77)
produces a gain for the v with the fields with different �x . Of course there can be several T̄v

with different v passing through the same end-points. Therefore, given a constant c < 1, we
can multiply the contribution to each tree τ with n-endpoints by c−ncn (the factor c−n is of
course armless); we can then write

c =
0∏

h=−∞
c2

h−1
(78)

and associate to each v a factor cNv2h−1
. If there are two fields in Pv (that is external to the

cluster v) with different �x we get in the bounds, by assuming γ
1
τ /2 ≡ γ η > 1 than, for any

N

cAγ
−h
τ 2h = e−| log c|Aγ −ηh ≤ γ Nηh N

[| log |c||A]NeN (79)

as e−αx x N ≤ [ N
α

]Ne−N , and we can choose N = 3/η; therefore given a couple of fields
external to a vertex v with different �x , we can associate a factor γ 2hv′ in the bounds.

On the other hand if there is a D field we get in the bound an extra γ hv′−hv from the
expression

ḡ(hv′ )( �ω�x, x0,1− z0)− ḡ(hv′ )( �ω�x, x0,2− z0) = (x0,1− x0,2)
∫ 1

0
dt∂ ḡ(hv′ )( �ω�x, x̂0,1,2(t)− z0)

(80)
where x̂0,1,2(t) = x0,1 + t(x0,2 − x0,1). In conclusion

1. To each non-resonant v we associate a factor (79) so that we get in the bound an extra
factor

∏
v∈Vχ

γ 2hv SLv

2. There is a factor
∏∗

v γ hv′ where v are the endpoints ν, α, ξ (it comes from the definition
of ν and the presence (x0 − y0) or ( �ω�x − ρα).

3. In the resonant v with l ≥ 2 fields there is a factor
∏

v∈H γ 2(hv′−hv). For l = 2 this it is
due to the R definition, for l ≥ 4 by anticommutativity.

4. In the terms with |Pv| ≥ 8 we can consider the fields ψε
x whose number is maximal; we

can group them in couples connected by path in T̄ non overlapping, and or have different
�x , hence there is a path in T̄ connecting them giving an extra γ 2hv′ , or they have the same
�x so that there is an extra γ 2(hv′−hv). This produces an extra γ −α|Pv |, see §F in [36].

We bound first the effective potential (J = 0). If τ ∈ Th,n , the set of trees with n end-points
and defining

||K (h+1)
τ,P,T || = 1

βLd

∑

�x

∫

dx0,v0 |K (h+1)
τ,P,T | (81)
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we get

||K (h+1)
τ,P,T || ≤ Cnεn0

∏

v

1

Sv!γ
−hv(Sv−1)

∏

v∈Vχ

γ 2hv SLv

∗∏

v

γ hv′
∏

v∈H
γ 2(hv′−hv)

∏

v∈Vχ

γ −α|Pv |

(82)
If the first vertex v0 ∈ Vχ is non resonant we get

∏

v∈Vχ

γ −hv Sv
∏

v

γ hv SLv

∗∏

v

γ hv′
∏

v∈H ,v �=v0

γ hv′ = 1
∏

v∈Vχ

γ hv
∏

v∈H ,v �=v0

γ −hv ≤ γ hv0

(83)
We use that Sv = SLv + SH

v ,
∏

v γ hv SLv = ∏
v∈L γ hv′ ∏∗∗

v γ hv , with
∏∗∗

v is over the first
vertex v ∈ Vχ after the ε, λ endpoints, and that

∏
v∈L γ hv′ ≤ ∏

v∈L γ hv′−hv

||K (h+1)
τ,P,T || ≤ Cnεn0γ

hv0
∏

v

1

Sv!
∏

v∈Vχ

γ (hv′−hv)
∗∗∏

v

γ hv
∏

v∈Vχ

γ −α|Pv | (84)

where
∏∗∗

v is over the vertices v ∈ Vχ following from the end-points associated to ε, λ. Note

that
∑

P[∏v∈Vχ
γ − 1

8 |Pv |] ≤ Cn ; moreover
∑

T[∏v
1
Sv ! ] ≤ Cn . The sum over the trees τ is

done performing the sum of unlabeled trees and the sum over scales. The unlabeled trees can
be bounded by 4n by Caley formula, and the sum over the scales reduces to the sum over hv ,
with v ∈ Vχ , as given a tree with such scales assigned, the others are of course determined.

Let us consider now the case in which the first vertex v0 is resonant; we can distinguish
two cases. If we are considering the contribution to the beta function then there is no R
applied in v0 so that the same bound as above is found with hv0 = h + 1. Instead if R is

applied we get instead of (83), as there is an extra γ
hv′

0
−hv0

∏

v∈Vχ

γ −hv Sv
∏

v

γ hv SLv

∗∏

v

γ hv′
∏

v∈H
γ hv′ = γ

hv′
0

∏

v∈Vχ

γ hv
∏

v∈H
γ −hv ≤ 1 (85)

and the same bound is found, as hv′
0

= h + 1. In conclusion we get

∑

τ∈Th,n

∑

P,T

||K (h+1)
τ,P,T || ≤ Cnεn0γ

h (86)

The running coupling constant αh, ξh verify

αh−1 = αh + O(ε20γ
h
2 ) ξh−1 = ξh + O(ε20γ

h
2 ) (87)

where the factor γ
h
2 is due to the fact that the trees have at least an ε, λ endpoint, from the

factor
∏∗∗

v γ hv in (84) (short memory property). The flow of zh, αh is therefore summable;
in addition one can choose ν so that νh is bounded, by proceeding as in Lemma 2.7 of [36].

8 Decay of Correlations

We consider now the current correlations, which can be written as

Hμ,ν(x, y) =
∑

h,n

∑

τ∈Th,n+2

∑

P,T

Gτ,P,T (x, y) (88)
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where Th,n+2 is the set of trees with n + 2 end-points, two of them associated to the J
end-points. In the trees τ we can identify a vertex vx for the end-point corresponding to Jx,
and vy for the end-point corresponding to Jy with hvx = hvy = +2; we call v̂, with scale ĥ,
the first vertex v ∈ Vχ such that vx , vy follows v̂, and v0 the first vertex ∈ Vχ , with scale h.
There are several constraints.

1. By (65) and using that �x − �y = ∑
w∈Cvx ,vy

�δiww we get n ≥ ∑
w∈Cvx ,vy

|�δiww | ≥ |�x − �y|
2. h ≥ h̄(n) with, if |�z| = 1 + min(|�x |, |�y|)

γ −h̄ ≤ sup
�q=∑n

i=1 �ei

1

|| �ω(�x + �q) − ρα|| ≤ C(|�z| + n)τ (89)

With respect to the bound for the J = 0 case there are the following differences. If T̂v is
the tree connecting the 2 J endpoints, we have an extra γ ĥ due to the fact that we do not
integrate over the coordinates of the J fields, and we can extract from the the propagators in∏

l∈T̄̂v
g(hl ), hl ≥ ĥ a decay factor

1

1 + (γ ĥ |x0 − y0|)N
(90)

Moreover there is no R in the resonant terms with one or two external J lines. We
can multiply and divide by γ −4h̄γ 4h̄ : we can select two paths in τ v0 < v1 < ..vx and
v0 < v′

1 < ..vy , writing

γ 2h̄ = γ 2(h̄−hv1 )...γ
2hv′

x γ 2h̄ = γ
2(h̄−hv′

1
)
...γ

2hv′
y (91)

where v′
x , v

′
y are the first vertex ∈ Vχ after vx , vy . We get therefore the following bound

|Gτ,P,T (x, y)| ≤ γ −4h̄ Cn |ε|nγ ĥ

(γ ĥ |x0 − y0|)N
∏

v

1

Sv !γ
−hv(Sv−1)

∏

v∈Vχ

γ 2hv SLv

∗∏

v

γ hv

∏

v∈H
γ 2(hv′−hv)

∏

v∈Vχ

γ −α|Pv | (92)

where H now includes also resonant terms with one or two J fields. Proceeding as in §7 and
for |x0 − y0| > 1, if Tn are the trees with n end-points

∑

τ∈Th,n

∑

P,T

|Gτ,P,T (x, y)| ≤ γ −3h̄ Cn |ε|n
1 + (γ h̄ |x0 − y0|)N

≤ Cn |ε|n |�z|3τ
(|�z|−3τ |x0 − y0|)N

(1 + n

|�z| )
(N+3)τ (93)

The sum over h ≥ h̄ can be bounded by an an extra γ −h̄ . As |�z| ≥ 1 and n/|�z| ≤ n; we can
sum over n obtaining, remembering the constraint n ≥ |�x − �y|

|Hμ,ν(x, y)| ≤ C
|�z|4τ

(|�z|−3τ |x0 − y0|)N |ε||�x−�y|/4 (94)

The analysis of the 2-point function is done in a similar way; there are 2 endpoints associated
with the externl fields, so with respect to the bound for the effective potential there is an extra
factor γ −2h̄ and an extra γ h̄ from the lack of integration; the sum over the scales produces
an extra |h̄|.
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