Skip to main content
Log in

Heat Transport in an Ordered Harmonic Chain in Presence of a Uniform Magnetic Field

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider heat transport across a harmonic chain of charged particles, with transverse degrees of freedom, in the presence of a uniform magnetic field. For an open chain connected to heat baths at the two ends we obtain the nonequilibrium Green’s function expression for the heat current. This expression involves two different Green’s functions which can be identified as corresponding respectively to scattering processes within or between the two transverse waves. The presence of the magnetic field leads to two phonon bands of the isolated system and we show that the net transmission can be written as a sum of two distinct terms attributable to the two bands. Exact expressions are obtained for the current in the thermodynamic limit, for the the cases of free and fixed boundary conditions. In this limit, we find that at small frequency \(\omega \), the effective transmission has the frequency-dependence \(\omega ^{3/2}\) and \(\omega ^{1/2}\) for fixed and free boundary conditions respectively. This is in contrast to the zero magnetic field case where the transmission has the dependence \(\omega ^2\) and \(\omega ^0\) for the two boundary conditions respectively, and can be understood as arising from the quadratic low frequency phonon dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Basile, G., Bernardin, C., Jara, M., Komorowski, T., Olla, S.: Thermal conductivity in harmonic lattices with random collisions. In: Lepri, S. (ed.) Thermal Transport in Low Dimensions. Lecture Notes in Physics. Springer, Berlin (2016)

    Google Scholar 

  2. Bhat, J.M., Dhar, A.: Transport in spinless superconducting wires. Phys. Rev. B 102, 224512 (2020)

    Article  ADS  Google Scholar 

  3. Bhat, J.M., Dhar, A.: Equivalence of NEGF and scattering approaches to electron transport in the Kitaev chain. arXiv:2101.06376 (2021)

  4. Bernardin, C., Olla, S.: Fourier’s law for a microscopic model of heat conduction. J. Stat. Phys. 121(3), 271–289 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cane, G., Bhat, J.M., Dhar, A., Bernardin, C.: Localization effects due to a random magnetic field on heat transport in a harmonic chain. arXiv:2107.06827 (2021) (to appear in Journal of Statistical Mechanics)

  6. Casher, A., Lebowitz, J.L.: Heat flow in regular and disordered harmonic chains. J. Math. Phys. 12(8), 1701–1711 (1971)

    Article  ADS  Google Scholar 

  7. Dhar, A.: Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 86(26), 5882 (2001)

    Article  ADS  Google Scholar 

  8. Dhar, A., Roy, D.: Heat transport in harmonic lattices. J. Stat. Phys. 125(4), 801–820 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dhar, A., Sen, D.: Nonequilibrium green’s function formalism and the problem of bound states. Phys. Rev. B 73(8), 085119 (2006)

    Article  ADS  Google Scholar 

  10. Giardinà, C., Kurchan, J.: The Fourier law in a momentum-conserving chain. J. Stat. Mech. 2005, 05009 (2005)

    Article  Google Scholar 

  11. Kannan, V., Dhar, A., Lebowitz, J.L.: Nonequilibrium stationary state of a harmonic crystal with alternating masses. Phys. Rev. E 85(4), 041118 (2012)

    Article  ADS  Google Scholar 

  12. Mazur, P., Siskens, Th.J.: Harmonic oscillator assemblies in a magnetic field. Physica 47(2), 245–266 (1970)

    Article  ADS  Google Scholar 

  13. Nakazawa, H.: Energy flow in harmonic linear chain. Prog. Theor. Phys. 39(1), 236–238 (1968)

    Article  ADS  Google Scholar 

  14. Nakazawa, H.: On the lattice thermal conduction. Prog. Theor. Phys. Suppl. 45, 231–262 (1970)

    Article  ADS  Google Scholar 

  15. Roy, D., Dhar, A.: Heat transport in ordered harmonic lattices. J. Stat. Phys. 131(3), 535–541 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8(5), 1073–1078 (1967)

    Article  ADS  Google Scholar 

  17. Saito, K., Sasada, M.: Thermal conductivity for coupled charged harmonic oscillators with noise in a magnetic field. Commun. Math. Phys. 361(3), 951–995 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Suzuki, M.: Ergodicity, constants of motion, and bounds for susceptibilities. Physica 51(2), 277–291 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  19. Sytcheva, A., Löw, U., Yasin, S., Wosnitza, J., Zherlitsyn, S., Thalmeier, P., Goto, T., Wyder, P., Lüthi, B.: Acoustic faraday effect in Tb3Ga5O12. Phys. Rev. B 81(21), 214415 (2010)

    Article  ADS  Google Scholar 

  20. Tamaki, S., Saito, K.: Nernst-like effect in a flexible chain. Phys. Rev. E 98(5), 052134 (2018)

    Article  ADS  Google Scholar 

  21. Tamaki, S., Sasada, M., Saito, K.: Heat transport via low-dimensional systems with broken time-reversal symmetry. Phys. Rev. Lett. 119(11), 110602 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.D. and J.M.B. acknowledge support of the Department of Atomic Energy, Government of India, under Project No. RTI4001. The work of C.B. and G.C. has been supported by the projects LSD ANR-15-CE40-0020-01 of the French National Research Agency (ANR), by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovative programme (Grant Agreement No. 715734) and the French-Indian UCA project ‘Large deviations and scaling limits theory for non-equilibrium systems’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Bernardin.

Additional information

Communicated by Giulio Biroli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, J.M., Cane, G., Bernardin, C. et al. Heat Transport in an Ordered Harmonic Chain in Presence of a Uniform Magnetic Field. J Stat Phys 186, 2 (2022). https://doi.org/10.1007/s10955-021-02848-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02848-5

Keywords

Navigation