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Abstract
We derive a multi-species BGK model with velocity-dependent collision frequency for a
non-reactive, multi-component gas mixture. The model is derived by minimizing a weighted
entropy under the constraint that the number of particles of each species, total momentum,
and total energy are conserved. We prove that this minimization problem admits a unique
solution for very general collision frequencies. Moreover, we prove that the model satisfies
an H-Theorem and characterize the form of equilibrium.
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1 Introduction

In this paper, we present a BGK-type model for gas mixtures that, in the case of two species,
takes the form

∂t f1 + v · ∇x f1 = ν11(M11 − f1) + ν12(M12 − f1),

∂t f2 + v · ∇x f2 = ν22(M22 − f2) + ν21(M21 − f2),
(1)

along with appropriate boundary and initial conditions. Here f1 = f1(x, v, t) and f2 =
f2(x, v, t) are the number densities of species of mass m1 and m2, respectively, with respect
to the phase space measure dxdv; x ∈ R

3 is the position coordinate of phase space; v ∈ R
3

is the velocity coordinate; and t ≥ 0 is time. The relaxation operator on the right hand side
of (1) involves target functions of the form

Mkj = exp(mkλ
k j
0 + mkλ

k j
1 · v + mkλ

k j
2 |v|2), (2)

which depend on parameters λk j = (λ
k j
0 , λ

k j
1 , λ

k j
2 ) ∈ R×R

3 × (−∞, 0), and (non-negative)
collision frequencies νk j . These parameters depend implicitly on f1 and f2, and once speci-
fied, determine the BGK operator.

The purpose of the relaxation operator in (1) is to provide an approximation of the
multi-species Boltzmann collision operator that is more computationally tractable, but still
maintains important structural properties. In the single-species case, the original BGKmodel
[2] serves this purpose. In particular, it has the same collision invariants as the Boltzmann
operator (which lead to conservation of number, momentum, and energy) and it satisfies anH-
Theorem. In the multi-species case, these requirements are not as straight-forward to satisfy,
but it can be done. There are many BGK models for gas mixtures proposed in the literature
[1,5,10,12,14–16,23,28], many of which satisfy these basic requirements and, in addition, are
able to match some prescribed relaxation rates and/or transport coefficients that come from
more complicated physics models or from experiment. Many of these approaches have been
extended to accommodate ellipsoid statistical (ES-BGK) models, polyatomic molecules,
chemical reactions or quantum gases; see for example [3,4,13,24–27,31].

A common feature of all the models mentioned above is that they only allow for colli-
sion frequencies which are independent of the microscopic velocity v of the particles [30].
However, the collision frequencies in principle should depend on the microscopic velocity,
which is typically neglected for the reason of simplicity. In the case of neutral gases, veloc-
ity independent collision frequency leads to transport properties in the fluid regime that are
inconsistent with the full kinetic collision operator, e.g., the Prandtl number. Models such as
the ES-BGKmodel and the Shakov model make changes to the target Maxwellian to provide
extra degrees of freedom to the system and correct this defect, but still retain the constant
collision frequency assumption. Some attempts have been proposed to re-introduce velocity
dependence in the case of variable hard spheres interactions for neutral gases [22], for which
velocity-dependent collision frequencies are monotonically increasing and are well-defined.

In the case of Coulomb interactions, i.e. plasmas, the Boltzmann cross section is evenmore
strongly dependent on the relative velocity of the particles, as particles with small relative
velocity, or grazing collisions, are the dominant event. As a result, the cross section is near-
singular in both the relative velocity and scattering angle variables, and approximating it with
a single, constant value is likely to miss the rich underlying features of the grazing collision
physics. Indeed, in a widely used model in hydrodynamic modeling of plasmas, based on
a non-conservative but velocity-dependent BGK model [21], the exponent of the velocity
component directly appears in the formulas for electrical and thermal conductivity. While
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we derive a conservative velocity dependent BGK model in this paper, we follow the spirit
of [21] and define our velocity-dependent collision frequency in terms of the momentum
transfer cross section, which results in a collision frequency that is decreasing in the limit of
large relative velocities [20].

The velocity-dependent BGK model of this paper provides two advantages over more
accurate Boltzmann and Fokker–Planck–Landau collision models from a computational per-
spective. Though computation of this model is not the focus of this paper, we mention these
motivating concerns here for completeness; numerical discretization will be the subject of
future work. First, like other BGKmodels it is amenable to implicit time discretization, which
allows for time steps that exceed the frequently stiff collision frequency.While someproposed
methods allow for time steps larger than the collision frequency in the Boltzmann or Landau–
Fokker–Planck models [17], these methods are only weakly asymptotic preserving and it can
be unclear without a priori knowledge of the size of the deviation from local Maxwellians.
Furthermore, multispecies extension of these methods [18] penalize each species with a sin-
gle relaxation operator rather than penalizing individual reaction pairs, which can lead to
inaccuracies in cases where some collisional combinations are more important than others.

Another concern is the computational cost of a collision operator evaluation. The main
cost of the BGK model presented here lies in the evaluation of the parameters in the target
Maxwellians. When the collision frequencies are constant with respect to velocity, these
parameters can be computed explicitly in terms of the given moments. In the velocity-
dependent case, an optimization problem (similar to (8) and (15) presented below) must
be solved numerically via a dual formulation. The main cost here lies in a Newton solve—
specifically, the evaluation of the integrals that appear in the gradient and Hessian of the dual
objective functions. In practice, the cost of the optimization will depend on the details of the
implementation [34–37]. However, assuming that the velocity grid that is used to discretize
the BGK equation in velocity space is also used to evaluate the integrals, then the method
will scale like O(N 3). For comparison, currently the fastest algorithms for the evaluating the
Boltzmann collision operator are spectral methods. In three velocity dimensions, the com-
plexity of evaluating specialized kernels is O(MN 3 log N ) [32], while for general kernels,
the complexity is O(MN 4 log N ) [33]. Here N is the number of points in each dimension of
the velocity space andM is the number of quadrature points needed to accurately approximate
integrals over the unit sphere S2 in R3. In practice, the size of M is problem dependent; and
while M � N 2 is typical, it is not unusual to have M ≥ N [33]. Thus, while more expensive
than the constant frequency case, the BGKmodel with velocity-dependent frequencies is still
expected to be less expensive than evaluating the Boltzmann collision operator.

In this paper, we derive amodel of the form (1) that allows for velocity-dependent collision
frequencies. Our derivation includes as a by-product the single-species BGK model with
velocity-dependent collision frequency thatwas proposed in [29].We identify target functions
that are consistent with the conservation laws for (1) and satisfy an entropy minimization
principle. In particular, intra-species collisions (between the same species) should preserve
mass, momentum, and energy within a species; that is,

∫
mkνkk

⎛
⎝ 1

v

|v|2

⎞
⎠ (Mkk − fk)dv = 0, k ∈ {1, 2}. (3)

Meanwhile inter-species collisions (between different species) should preserve the mass of
each species, but only the combined momentum and energy of both; that is,
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∫
m1ν12(M12 − f1)dv = 0,

∫
m2ν21(M21 − f2)dv = 0

∫
m1ν12

(
v

|v|2
)

(M12 − f1)dv +
∫

m2ν21

(
v

|v|2
)

(M21 − f2)dv = 0.
(4)

When the collision frequencies are independent of v, the integrals in (3) and (4) can be
computed explicitly, thereby providing relationships between the parameters λk j and the
moments of f1 and f2 with respect to {1, v, |v|2}. In the single-species case, this relationship
defines the target function as theMaxwellian associated to f , while in the multi-species case,
additional constraints must be imposed. However, when the collision frequencies depend on
v, the aforementioned integrals are not always computable in closed form and the relationship
between the parameters λk j and the moments of f1 and f2 with respect to {1, v, |v|2} cannot
be written down analytically.

In spite of the difficulty of relating the target parameters to the moments of the kinetic
distributions, the entropy minimization formulation can be still used to establish a unique
set of parameters, under the conditions λ121 = λ211 and λ122 = λ212 . We do so by adapting the
strategy from [19] to fit the current setting. While a more abstract approach based solely on
convex optimization tools can also be used [6], we follow [19] because it provides a more
concrete connection to the application at hand. Our proof provides a rigorous justification
for the target function used in [29] for the single species case. It also leads to an H-Theorem
for the multi-species system (1).

The remainder of the paper is organized as follows. In Sect. 2, we motivate the choice of
the target Maxwellians as solutions of minimization problems of the entropy under certain
constraints. In Sect. 3, we prove existence and uniqueness of the minimization problems. In
Sect. 4,weprove consistencyof themodelmeaning that it satisfies the conservationproperties,
the H-Theorem and Maxwell distributions with equal mean velocity and temperature in
equilibrium. In Sect. 5, we briefly summarize the straightforward extension to the case of N
species, still with binary interactions.

2 The Structure of the Target Functions

In this section, we motivate the form of the target functions in (2). It will be convenient in
what follows to define the strictly convex function

h(z) = z ln z − z, z > 0, (5)

and the vector-valued function

ak(v) =
⎛
⎜⎝
ak0(v)

ak1(v)

ak2(v)

⎞
⎟⎠ =

⎛
⎝ mk

mkv

mk |v|2

⎞
⎠ . (6)

Since h is convex and h′(z) = ln(z), it follows that

h(x) ≥ h(y) + ln(y)(x − y), ∀ y, x ∈ R
+. (7)
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2.1 The One Species Target Maxwellians

We seek a solution of the weighted entropy minimization problem

min
g∈χk

∫
νkkh(g)dv, k ∈ {1, 2}, (8)

where

χk =
{
g

∣∣∣ g ≥ 0, νkk(1 + |v|2)g ∈ L1(R3),

∫
νkka

k(v)(g − fk)dv = 0

}
. (9)

The choice of the set χk ensures the conservation properties (3) for intra-species collisions.
The motivation for weighting the usual objective by the collision frequencies in (8) is that
the ansatz will take the form (2). Indeed, by standard optimization theory, any critical point
(Mkk, λ

kk) of the Lagrange functional Lk : χk × R
5 → R, given by

Lk(g, α) =
∫

νkkh(g)dv − α ·
∫

νkka
k(v)(g − fk)dv, (10)

satisfies the first-order optimality condition

δLk

δg
(Mkk, λ

kk) = νkk(lnMkk − λkk · ak(v)) = 0, (11)

which implies then that

Mkk = exp (λkk · ak) = exp (mkλ
kk
0 + mkλ

kk
1 · v + mkλ

kk
2 |v|2). (12)

In Sect. 3.1, we prove in a rigorous way that there exists a unique function of the form (12)
that satisfies these constraints.

Theorem 1 Suppose that there exists λkk ∈ R×R
3 ×R such that the function Mkk given in

(12) is an element of χk . Then Mkk is the unique minimizer of (8).

Proof According to (7)

h(g) ≥ h(Mkk) + λkk · ak(g − Mkk), (13)

point-wise in v. Thus, because νkk ≥ 0, it follows that for all g ∈ χk ,∫
νkkh(g)dv ≥

∫
νkkh(Mkk)dv +

∫
νkkλ

kk · ak(g − Mkk)dv =
∫

νkkh(Mkk)dv (14)

Hence Mkk is a minimizer of (8), and uniqueness follows directly from the strict convexity
of h. 
�

2.2 TheMixture Target Maxwellians

For interactions between species, we seek a solution of the weighted entropy minimization
problem

min
g1,g2∈χ12

∫
ν12h(g1)dv +

∫
ν21h(g2)dv, (15)
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where

χ12 =
{
(g1, g2)

∣∣∣ g1, g2 > 0, ν12(1 + |v|2)g1, ν21(1 + |v|2)g2 ∈ L1(R3),

∫
m1ν12g1dv =

∫
m1ν12 f1dv,

∫
m2ν21g2dv =

∫
m2ν21 f2dv,

∫
m1ν12

(
v

|v|2
)

(g1 − f1)dv +
∫

m2ν21

(
v

|v|2
)

(g2 − f2)dv = 0

}
.

(16)

Here, χ12 is chosen such that the constraints (3) for inter-species collisions are satisfied.
Similar to the case of intra-species collisions, we consider the Lagrange functional L : χ ×
R × R × R

3 × R → R

L(g1, g2, α
1
0, α

2
0, α1, α2) =

∫
ν12h(g1)dv +

∫
ν21h(g2)dv

− α1
0

∫
m1ν12(g1 − f1)dv − α2

0

∫
m2ν21(g2 − f2)dv

− α1 ·
(∫

m1ν12v(g1 − f1)dv +
∫

m2ν21v(g2 − f2)dv

)

− α2

(∫
m1ν12|v|2(g1 − f1)dv +

∫
m2ν21|v|2(g2 − f2)dv

)
.

(17)

Any critical point (M12, M21, λ
1
0, λ

2
0, λ1, λ2) of L satisfies the first-order optimality condi-

tions

δL

δg1
(M12, M21, λ

1
0, λ

2
0, λ1, λ2) = ν12(lnM12 − λ12 · a1(v)) = 0, (18)

δL

δg2
(M12, M21, λ

1
0, λ

2
0, λ1, λ2) = ν21(lnM21 − λ21 · a2(v)) = 0, (19)

where λ12 = (λ10, λ1, λ2) and λ21 = (λ20, λ1, λ2). Therefore

M12 = exp(λ12 · a1(v)) = exp
(
m1λ

12
0 + m1λ1 · v + m1λ2|v|2) (20)

M21 = exp(λ21 · a2(v)) = exp
(
m2λ

21
0 + m2λ1 · v + m2λ2|v|2) . (21)

Since we only require conservation of the combined momentum and kinetic energy, there
is only one Lagrange multiplier for the momentum constraint and one Lagrange multiplier
for the energy constraint. Therefore, λ121 = λ211 and λ122 = λ212 in (2). When the collision
frequency is constant, this restriction is the same as the one used in [15], but more restrictive
than the model in [23].

In the next section, we prove the existence of functions of the form (2) that satisfy the
constraints in (3) and (4). As in the single species case, it follows that these functions are
unique minimizer of the corresponding minimization problem.

Theorem 2 Assume that there exist λ120 ∈ R, λ210 ∈ R, λ121 = λ211 ∈ R
3, and λ122 = λ212 ∈ R

such that the pair (M12, M21), where Mkj is defined in (2), is an element of χ12. Then
(M12, M21) is the unique minimizer of (15).

123



A Consistent BGK Model with Velocity-Dependent Collision... Page 7 of 17 31

Proof According to (7)

h(g) ≥ h(Mkj ) + λk j · ak(g − Mkj ), (22)

point-wise in v, for any measurable function g and k, j ∈ {1, 2}. Therefore, since νk j ≥ 0,
it follows that for any measureable functions g1 and g2,∫

ν12h(g1)dv +
∫

ν21h(g2)dv ≥
∫

ν12h(M12)dv +
∫

ν21h(M21)dv

+ λ12 ·
∫

ν12a
1(g1 − M12)dv + λ21 ·

∫
ν21a

2(g2 − M21)dv.

(23)

Since λ121 = λ211 and λ122 = λ212 ,

λ12 ·
∫

ν12a
1(g1 − M12)dv + λ21 ·

∫
ν21a

2(g2 − M21)dv

= λ120

∫
ν12m1(g1 − M12)dv + λ210

∫
ν21m2(g2 − M21)dv

+ λ121 ·
(∫

ν12m1v(g1 − M12)dv +
∫

ν21m2v(g2 − M21)dv

)

+ λ122

(∫
ν12m1|v|2(g1 − M12)dv +

∫
ν21m2|v|2(g2 − M21)dv

)
.

(24)

If (g1, g2) and (M12, M21) are elements of χ12, then the constraints in (16) imply that each
of the terms above is zero. In such cases, (23) reduces∫

ν12h(g1)dv +
∫

ν21h(g2)dv ≥
∫

ν12h(M12)dv +
∫

ν21h(M21)dv, (25)

which shows that (M12, M21) solves (15). Since the collision frequencies ν12 and ν21 are
non-negative and h is strictly convex, it follows that this solution is unique. 
�

3 Existence and Uniqueness of the Target Maxwellians

In this section, we prove the existence of the multipliers λ11, λ22, λ12 and λ21 such that the
single-species targets M11 and M22 satisfy (3) and the mixture targets M12 and M21 satisfy
(4). We follow closey the strategy laid out in [19], although some variations will be needed
to account for the velocity-dependent collision frequencies and the mixture targets.

Throughout the paper, we denote a distribution function of exponential form by

expkλ(v) := exp(λ · ak(v)), λ = (λ0, λ1, λ2) ∈ R
5. (26)

and let

Dkj = {g ≥ 0 | νk j (1 + |v|2)g ∈ L1(R3), g �≡ 0}, Λk j = {λ ∈ R
5 | expkλ ∈ Dkj }. (27)

For any g ∈ Dkj the moment map μk j is given by

μk j (g) =

⎛
⎜⎜⎝

μ
k j
0

μ
k j
1

μ
k j
2

⎞
⎟⎟⎠ (g) =

∫
νk j a

k(v)g(v)dv. (28)
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We make the following assumptions about the collision frequencies.

Assumption 1 Each frequency νk j is strictly positive and defined such that

Λ := Λk j = {λ | expkλ ∈ L1(R3)} = {λ ∈ R
5 | λ2 < 0} (29)

is independent of k and j .

Roughly speaking, these assumptions are used to ensure integrability properties that are
satisfied when the collision frequencies are independent of the velocity. They are used in the
technical details of the proofs below, but are in practice satisfied by many realistic frequency
models.

3.1 Target Functions for Intra-species Collisions

We start the intra-species case; that is, for k ∈ {1, 2}, we show the existence of multiplier λkk

such that Mkk satisfies (3). The basic idea is to show that the dual function

z(λ; ρ) = μkk
0 (expkλ) − λ · ρ (30)

is differentiable and attains its minimum on Λ for any ρ ∈ μkk(Dkk). Then the necessary
condition for an extremum in Λ yields

0 = ∇λz(λ
kk) =

∫
νkk(v)ak(v) exp(λkk · ak(v))dv − ρ, (31)

which gives ρ = μkk(expk
λkk

).

Lemma 1 The function z is strictly convex and twice Fréchet differentiable on Λ.

Proof It is sufficient to prove that φ(λ) = μkk
0 (expkλ) is strictly convex and twice Fréchet

differentiable, with first derivative Dφ(λ) = μkk(expkλ) and Hessian Hφ(λ) = ∫
ak(v) ⊗

ak(v) expkλ dv. Convexity following immediately from convexity of the exponential function
and linearity of the integral. Specifically, given λ(1), λ(2) and two positive scalars θ1, θ2 such
that θ1 + θ2 = 1, it follows that expk

θ1λ(1)+θ2λ(2) ≤ θ1 expkλ(1) +θ2 expkλ(2) . Hence

φ(θ1λ
(1) + θ2λ

(2)) = μkk
0 (expk

θ1λ(1)+θ2λ(2) ) ≤ μkk
0 (θ1 exp

k
λ(1) +θ2 exp

k
λ(2) )

= θ1φ(λ(1)) + θ2φ(λ(2)).
(32)

For any nonzero δ ∈ R
5

φ(λ + δ) − φ(λ) − Dφ(λ) · δ

|δ| =
∫

fδ(v)dv, (33)

where

fδ(v) = νkk(v) expkλ(v)

(
expkδ (v) − 1 − ak(v) · δ

|δ|

)
. (34)

A Taylor series expansion shows that∣∣∣∣∣
expkδ (v) − 1 − δ · ak(v)

|δ|

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=2

(δ · ak(v))n

n!
1

|δ|

∣∣∣∣∣ ≤ |ak(v)|
∞∑
n=1

|δ · ak(v)|n
n!

≤|ak(v)| exp(|δ · ak(v)|)
(35)
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Therefore fδ(v) ≤ expkλ/2(v)gδ(v), where

gδ(v) := νkk(v)|ak(v)| expkλ/2(v) exp(|δ · ak(v)|)
≤ νkk(v)|ak(v)|

(
expkλ/2+δ(v) + expkλ/2−δ(v)

)
.

(36)

Because Λ is open, for |δ| sufficiently small, expλ/2+δ(v) and expλ/2−δ(v) are elements of
Dkk , in which case gδ is integrable. Moreover, expλ/2 is bounded. Hence fδ is bounded above
by an integrable function and the dominated convergence theorem gives

lim
δ→0

∫
fδ(v)dv =

∫
lim
δ→0

fδ(v)dv = 0. (37)

The existence of the Hessian can be proven in an analogous way. 
�
Lemma 2 For fixed λ ∈ Λ, ξ ∈ S5, and ρ ∈ μkk(Dkk), the function

zξ (s) = z(λ + sξ ; ρ) (38)

attains its unique minimum in the open interval

I (ξ, λ) := (−sb(−ξ, λ), sb(ξ, λ)) (39)

where

sb(ξ, λ) := sup{s : λ + sξ ∈ Λ}
takes the value +∞ if the boundary ∂Λ is not met in the direction ξ.

Proof The fact that z is strictly convex and differentiable with respect to λ implies that zξ is
strictly convex and differentiable with respect to s. Hence it attains a unique minimum on
the closure of I (ξ, λ).

We now show that zξ cannot attain its minimum on the boundary of I (ξ, λ). Suppose
first that sb(ξ, λ) < ∞. According to Assumption 1, λ + sb(ξ, λ)ξ /∈ Λ. Hence by Fatou’s
Lemma,

lim
s→sb(ξ,λ)

∫
νkk exp

k
λ+sξ dv ≥

∫
νkk exp

k
λ+sb(ξ,λ)ξ dv = ∞ (40)

which implies that lims→sb(ξ,λ) zξ (s) = +∞.
Suppose now that sb(ξ, λ) = ∞. There are two cases:

Case 1: ξ · ak(v) ≤ 0 for a.e. v ∈ R
3. Since ρ ∈ μkk(Dkk), there exists g ∈ Dkk such that

ρ = μkk(g). By definition, g is not identically zero and by Assumption 1 νkk > 0.
Thus the set

Ω := {v ∈ R
3 | ξ · ak(v) < 0} ∩ {v ∈ R

3 | νkk(v)g(v) > 0} (41)

has positive measure. Hence

ξ · ρ = ξ · μkk(g) =
∫

νkk(v)ξ · ak(v)g(v)dv < 0 (42)

so that

lim
s→∞ zξ (s) = lim

s→∞

∫
expkλ+sξ dv − (λ + sξ) · ρ ≥ lim

s→∞ −(λ + sξ) · ρ = ∞. (43)
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31 Page 10 of 17 J. Haack et al.

Case 2: {v ∈ R
3 : ξ · ak(v) > 0} has positive measure.

Then there exists an ε > 0 such that B = {v ∈ R
3 : ξ · ak(v) ≥ ε} has positive

measure. Hence

lim
s→∞ zξ (s) ≥ lim

s→∞

((∫
B

νkk(v) expkλ dv

)
exp(sε) − (λ + sξ)ρ

)
= ∞ (44)

due to exponential growth in s. 
�
Theorem 3 For any ρ ∈ μkk(Dkk), the function z(·; ρ) has a unique minimizer λ∗ ∈ Λ.

Proof Let {λ(�)}∞�=0 be an infimizing sequence such that z(λ(�)) → z∗, where

z∗ = inf
λ∈Λ

z(λ).

Let d(�) = λ(�) − λ(0); � ≥ 1 and set ξ (�) = d(�)/||d(�)||. Then ξ (�) → ξ∗ ∈ S4 possibly
via a subsequence, because S4 is compact. For any ξ ∈ S4, let s∗(ξ) = argmins∈R z(λ(0) +
sξ ; ρ) which, according to Lemma 2, is well-defined. Because z is strictly convex and twice
differentiable,

(i) g(ξ, s) := ∂s z(λ
(0) + sξ ; ρ) = 0 if and only if s = s∗(ξ)

(i i) ∂s g(ξ, s) > 0

Thus the implicit function theorem implies that s∗ is a C1 function in a neighbourhood
N (ξ∗) ⊂ Λ that satisfies

g(ξ, s∗(ξ)) = 0. (45)

Let �∗ be large enough that ξ (�) ∈ N (ξ∗) for all � ≥ �∗. Then

z(λ(�); ρ) = z(λ(0) + d(�); ρ) = z(λ(0) + ||d(�)||ξ (�); ρ) ≥ z(λ(0) + s∗(ξ (�))ξ (�); ρ). (46)

Because s∗ is continuous on N (ξ∗) the sequence s∗(ξ (�)) → s∗(ξ∗) with |s∗(ξ∗)| < ∞.
Moreover, since z is continuous

z∗ = lim
�→∞ z(λ(�)) ≥ lim

�→∞ z(λ(0) + s∗(ξ (�))ξ (�)) = z(λ(0) + s∗(ξ∗)ξ∗) ≥ z∗, (47)

where first inequality follows from (46). Hence the infimum is attained at λ∗ = λ(0) +
s∗(ξ∗)ξ∗ ∈ Λ.

Corollary 1 Given any fk ∈ Dkk, there exists a unique multiplier λkk such that Mkk given
by (2) solves (8).

Proof Let ρk = μkk( fk). According to Theorem 3, z(·, ρk) has a unique minimizer in Λ,
which we denote by λkk . By Lemma 1, z(·, ρk) is also differentiable, so the first-order
optimality condition (31) implies that ρk = μkk(expλkk ). The result then follows from
Theorem 1. 
�

3.2 Target Functions for Inter-species Collisions

In this section we show the existence of the multipliers λ12 = (λ120 , λ121 , λ122 ) ∈ R×R
3 ×R

and λ21 = (λ210 , λ211 , λ212 ) ∈ R×R
3 ×R such that λ121 = λ211 , λ122 = λ212 , and M12 and M21

satisfy (4). Denote

λ = (λ10, λ
2
0, λ1, λ2) λ1 = (λ10, λ1, λ2) λ2 = (λ20, λ1, λ2) (48)

123



A Consistent BGK Model with Velocity-Dependent Collision... Page 11 of 17 31

and use this notation for other vectors when appropriate.
Given g1, g2 ∈ D, let

μ̄(g1, g2) =

⎛
⎜⎜⎜⎝

μ12
0 (g1)

μ21
0 (g2)

μ12
1 (g1) + μ21

1 (g2)

μ12
2 (g1) + μ21

2 (g2)

⎞
⎟⎟⎟⎠ . (49)

For any ρ̄ ∈ μ̄(D12 × D21), introduce the dual function

z̄(λ; ρ̄) = μ12
0 (exp1

λ1
) + μ21

0 (exp2
λ2

) − λ · ρ̄. (50)

Similar to the intra-species case, our goal is to show that for any such ρ̄, z(λ; ρ̄) attains its
minimum on

Λ̄ = {λ ∈ R
6 : λ1, λ2 ∈ Λ}. (51)

Then the necessary first-order condition for a minimum at λ

0 = ∇λz(λ; ρ̄) = μ̄(exp1
λ1

(v), exp2
λ2

(v)) − ρ̄, (52)

which recovers the required constraints in (4), if we set λ12 = λ1 and λ21 = λ2.

Lemma 3 The function z̄ defined in (50) is strictly convex and twice Fréchet differentiable
on Λ̄.

Proof Differentiability of the z̄ can be deduced as in the intra-species case by simply following
the arguments of Lemma 1. We skip these details. Convexity also follows in a similar way.
Let φ̄(λ) = μ12

0 (exp1
λ1

) + μ21
0 (exp2

λ2
), then convexity of the exponential function implies

that for any θ ∈ (0, 1), λ ∈ Λ̄, and β ∈ Λ̄,

φ̄(θλ) + φ̄((1 − θ)β) = μ12
0 (exp1

θλ1+(1−θ)β1) + μ21
0 (exp2

θλ2+(1−θ)β2)

≤ μ12
0 (θ exp1

λ1
+(1 − θ) exp1

β1) + μ21
0 (θ exp2

λ2
+(1 − θ) exp2

β2)

= θφ̄(λ) + (1 − θ)φ̄(β)

(53)

Thus φ̄ is strictly convex, as is z̄, since the two functions differ only by a linear term. 
�
Lemma 4 For λ ∈ Λ̄, ξ ∈ S5, and ρ̄ ∈ μ̄(D12 × D21), the function

z̄ξ : s �→ z̄(λ + sξ ; ρ̄) (54)

attains its unique minimum in the open interval

Ī (ξ, λ) := (−s̄b(−ξ, λ), s̄b(ξ, λ)), (55)

where

s̄b(ξ, λ) = sup{s : λ1 + sξ1, λ2 + sξ2 ∈ Λ}. (56)

Proof We follow the arguments of the proof of Lemma 2. The fact that z̄ is strictly convex
and differentiable with respect to λ implies that z̄ξ is strictly convex and differentiable with
respect to s. Hence z̄ξ attains a unique minimum on the closure of Ī (ξ, λ).

We therefore need only show that z̄ξ cannot attain its minimum on the boundary of Ī (ξ, λ).
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Suppose first that s̄b(ξ, λ) < ∞. By Fatou’s Lemma,

lim
s→s̄b(ξ,λ)

{∫
ν12 exp

1
λ1+sξ1 dv +

∫
ν21 exp

2
λ2+sξ2 dv

}

≥
{∫

ν12 exp
1
λ1+s̄b(ξ,λ)ξ1

dv +
∫

ν21 exp
2
λ2+sb(ξ,λ)ξ2

dv

}
dv (57)

Assumption 1 implies that λ1 + s̄b(ξ, λ)ξ1 /∈ Λ or λ2 + s̄b(ξ, λ)ξ2 /∈ Λ. Hence at least one
of the integrals on the right-hand side above is ∞, which implies

lim
s→s̄b(ξ,λ)

zξ (s) = μ12
0 (exp1

λ1
) + μ21

0 (exp2
λ2

) − λ · ρ̄ = ∞. (58)

Now suppose instead that s̄b(ξ, λ) = ∞. There are two cases:
Case 1: ξ1 · a1(v) ≤ 0 and ξ2 · a2(v) ≤ 0 for a.e v ∈ R

3.
Since ρ̄ ∈ μ̄(D12 × D21), there exist g1, g2 ∈ D12 × D21 such that ρ̄ = μ̄(g1, g2); that is

ρ̄ = μ̄(g1, g2) =

⎛
⎜⎜⎜⎝

μ12
0 (g1)

μ21
0 (g2)

μ12
1 (g1) + μ21

1 (g2)

μ12
2 (g1) + μ21

2 (g2)

⎞
⎟⎟⎟⎠ . (59)

By definition, g1 and g2 are not identically zero, and by Assumption 1, νk j > 0. Thus the
sets

Ω1 := {v ∈ R
3 | ξ1 · a1(v) < 0} ∩ {v ∈ R

3 | ν12(v)g1(v) > 0} and (60)

Ω2 := {v ∈ R
3 | ξ2 · a2(v) < 0} ∩ {v ∈ R

3 | ν21(v)g2(v) > 0} (61)

both have positive measure. Hence

ξ · ρ̄ = ξ1 · μ12(g1) + ξ2 · μ21(g2) (62)

=
∫

ν12ξ
1 · a1(v)g1(v)dv +

∫
ν21ξ

2 · a2(v)g2(v)dv < 0, (63)

so that

lim
s→∞ z̄ξ (s) = lim

s→∞
{
μ12
0 (exp1

λ1+sξ1) + μ21
0 (exp2

λ2+sξ2) − (λ + sξ) · ρ̄
}

(64)

> lim
s→∞ {−(λ + sξ) · ρ̄} = ∞. (65)

Case 2: The set {v ∈ R
3 | ξ1 · a1(v) > 0} or {v ∈ Ω | ξ2 · a2(v) > 0} has positive measure.

Without loss of generality, assume that {v ∈ R
3 | ξ1 · a1(v) > 0} has positive measure.

Then, there exists some ε > 0 such that B = {v ∈ R
3 | ξ12 · a1(v) > ε} also has positive

measure. Hence

lim
s→∞ z̄ξ (s) ≥ lim

s→∞

((∫
B

ν12 exp
1
λ1
dx

)
exp(sε) − (λ + sξ) · ρmix

)
= ∞. (66)

due to exponential growth in s. 
�
Theorem 4 For any ρ̄ ∈ μ̄(D12 × D21), the function z̄(·, ρ̄) has a unique minimizer λ∗ ∈ Λ̄.

The proof of this theorem is analogous to the proof of Theorem 3 in the intra-species case.

Corollary 2 Given any f1 ∈ D12 and f2 ∈ D21, there exist multipliers λ12 and λ21 such that
λ211 = λ121 , λ212 = λ122 , and the corresponding functions M12 and M21 given in (2) solve (4).
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Proof Let ρ̄ = μ̄( f1, f2). According to Theorem 4, z̄(·, ρ̄) has a unique minimizer, which
we denote by λ∗ = ((λ∗)10, (λ∗)20, (λ∗)1, (λ∗)2). By Lemma 1, z̄(·, ρ̄) is also differentiable,
so the first-order optimality condition (52) implies that ρ̄ = μ̄(exp1

(λ∗)1 , exp
2
(λ∗)2). The result

then follows from Theorem 2. Finally, we set

λ12 = ((λ∗)10, (λ∗)1, (λ∗)2) and λ21 = ((λ∗)20, (λ∗)1, (λ∗)2) (67)

and define M12 and M21 according to (2). 
�

4 Consistency of theModel

The conditions (3) and (4) lead to standard conservation laws and an entropy dissipation
statement. We recall a few definitions:

Definition 2 Themass density,momentum, and energy of an integrable distribution g = g(v)

of particles with mass m are given by the moments

ρg =
∫

mg(v)dv, qg =
∫

mvg(v)dv, and Eg = 1

2

∫
m|v|2g(v)dv, (68)

respectively. The associated mean velocity and temperature are given by

ug = qg
ρg

=
∫

vg(v)dv∫
g(v)dv

and Tg = 2

3

Eg

ρg/m
− 1

3

|qg|2
ρg

= 1

3

∫
m|v − ug|2g(v)dv∫

g(v)dv
. (69)

4.1 Conservation Properties

An immediate consequence of (3) and (4) is the following.

Theorem 5 (Conservation of the number of each species, total momentum and total energy)
The space-homogeneous form of (1) satisfies

∂tρ f1 = ∂tρ f2 = 0, ∂t
(
q f1 + q f2

) = 0, ∂t
(
E f1 + E f2

) = 0 (70)

4.2 Entropy Dissipation and the Structure of Equilibria

Define the total entropy density

H(g1, g2) =
∫

h(g1)dv +
∫

h(g2)dv (71)

and the dissipation density

S(g1, g2) = S11(g1) + S12(g1, g2) + S21(g1, g2) + S22(g2) (72)

=
∫

ν11 ln g1(M11 − g1)dv +
∫

ν12 ln g1(M12 − g1)dv (73)

+
∫

ν21 ln g2(M21 − g2)dv +
∫

ν22 ln g2(M22 − g2)dv (74)

Theorem 6 Assume g1, g2 > 0. Then S(g1, g2) ≥ 0 with equality if and only if g1 and g2
are two Maxwellian distributions with equal mean velocity and temperature.
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Proof In [29], it is shown that Skk(g) ≥ 0 with equality if and only if g is a Maxwellian.
Thus it remains to show a similar result for the combined quantity S12(g1, g2)+ S21(g1, g2).
We begin with the following claim:

I (g1, g2) :=
∫

ν12 lnM12(M12 − g1)dv +
∫

ν21 lnM21(M21 − g2)dv = 0. (75)

Indeed an explicit calculation gives

lnM12 = m1λ
12
0 + m1λ1 · v + m1λ2|v|2 and lnM21 = m2λ

21
0 + m2λ1 · v + m2λ2|v|2,

(76)

which when substituted into (75) gives

I (g1, g2) =
∫

ν12(m1λ
12
0 + m1λ1 · v + m1λ2|v|2)(M12 − g1)dv (77)

+
∫

ν21(m2λ
21
0 + m2λ1 · v + m2λ2|v|2)(M21 − g2)dv = 0, (78)

due to the constraints (4). From (75), it follows that

S12(g1, g2) + S21(g1, g2) = S12(g1, g2) + S21(g1, g2) − I (g1, g2)

=
∫

ν12 ln

(
g1
M12

)
(M12 − g1)dv +

∫
ν21 ln

(
g2
M21

)
(M21 − g2)dv

≤ 0.

(79)

with equality if and only if g1 = M12 and g2 = M21. Moreover, a direct calculation shows
that the functions M12 and M21 have the same mean velocity and temperature:

uM12 = uM21 = −λ1

λ2
and TM12 = TM21 = − 1

2λ2
(80)


�

Corollary 3 (Entropy inequality for mixtures) Assume that f1, f2 > 0 are a solution to
(1) where the target Maxwellians have the shape (2), then we have the following entropy
inequality

∂t (H( f1, f2)) + ∇x ·
(∫

v(h( f1) + h( f2))dv

)
≤ 0 (81)

with equality if and only if f1 and f2 are two Maxwellian distributions with equal mean
velocity and temperature.

Proof A direct calculation with (1) gives

∂t H( f1, f2) + ∇x ·
∫

(h( f1) + h( f2))vdv = S( f1, f2). (82)

The result then follows immediately from the previous theorem. 
�
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5 The N-Species Case

The two-species case can be extended to a system of N -species that undergo binary collisions.
We consider the N -species kinetic equation,

∂t fi + v · ∇x fi =
N∑
j=1

νi j (Mi j − fi ), i = 1, . . . , N . (83)

The quantity νi i is the collision frequency of particles of species i with itself whereas νi j is
the collision frequency of particles of species i with species j , with i, j = 1, . . . , N , i �= j .
We only have terms of this form and not terms containing indices of more than two species
because we consider only binary interactions.

For fixed i, j ∈ {1, . . . , N } the target Maxwellians Mii , Mj j , Mi j and Mji are given by
(2). The single species target Maxwellians Mii and Mj j will be determined such that they
satisfy (3). The functions Mi j and Mji will be determined such that we obtain conservation
of mass of each species and conservation of total momentum and total energy in interactions
between these two species, i.e.,∫

νi j Mi j dv =
∫

νi j fi dv,

∫
ν j i M ji dv =

∫
ν j i f j dv

∫
νi j

(
miv

mi |v|2
)

(Mi j − fi )dv = −
∫

ν j i

(
m jv

m j |v|2
)

(Mji − f j )dv.

(84)

as an obvious generalization of (4). All the proofs concerning existence and uniqueness of
the target Maxwellians and the H-Theorem can be proven exactly in the same way as for two
species. For the total entropy H( f1, . . . , fN ) = ∫

(h( f1) + · · · + h( fN ))dv we obtain

∂t (H( f1, . . . , fN )) + ∇x ·
(∫

v(h( f1) + · · · + h( fN ))dv

)
≤ 0. (85)

Conclusion

We have presented a multi-species BGKmodel in which the collision frequencies depend on
the microscopic velocity. The model is formally derived based on an entropy minimization
principle, which implies that the target functions take the form of Maxwellians. However,
contrary to classical BGK models with velocity-independent frequencies, the relationship
between the Maxwellian parameters and the moments of the distribution function is not
analytic. Thus some effort is required to establish rigorously the existence of parameters
which satisfy first-order optimality conditions. We also show that the derived model satisfies
an H-Theorem and that it can be extended to the case of arbitrarily many species undergoing
binary collisions.

In future work, we will develop numerical tools for discretizing the model developed here,
including the numerical solution of the defining optimization problem. A numerical code will
enable computational explorations about how to choose the collision frequencies and what
benefit is providing by their flexibility. Also, because the motivation for the model is the
simulation of multi-species plasmas, we will extend it for use in such contexts by adding
self-consistent fields.
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