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Abstract
This article establishes cutoff thermalization (also knownas the cutoff phenomenon) for a class
of generalizedOrnstein–Uhlenbeck systems (Xε

t (x))t≥0 with ε-small additive Lévy noise and
initial value x . The driving noise processes include Brownian motion, α-stable Lévy flights,
finite intensity compound Poisson processes, and red noises, and may be highly degenerate.
Window cutoff thermalization is shown under mild generic assumptions; that is, we see an
asymptotically sharp∞/0-collapse of the renormalizedWasserstein distance from the current
state to the equilibrium measure με along a time window centered on a precise ε-dependent
time scale tε . In many interesting situations such as reversible (Lévy) diffusions it is possible
to prove the existence of an explicit, universal, deterministic cutoff thermalization profile. That
is, for generic initial data x we obtain the stronger resultWp(Xε

tε+r (x), μ
ε) ·ε−1 → K ·e−qr

for any r ∈ R as ε → 0 for some spectral constants K , q > 0 and any p ≥ 1 whenever
the distance is finite. The existence of this limit is characterized by the absence of non-
normal growth patterns in terms of an orthogonality condition on a computable family of
generalized eigenvectors ofQ. Precise error bounds are given. Using these results, this article
provides a complete discussion of the cutoff phenomenon for the classical linear oscillator
with friction subject to ε-small Brownian motion or α-stable Lévy flights. Furthermore, we
cover the highly degenerate case of a linear chain of oscillators in a generalized heat bath at
low temperature.
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1 Introduction

The notion of cutoff thermalization (also known as the cutoff phenomenon or abrupt thermal-
ization in the literature) has gained growing attention in recent years in the physics literature
with applications to quantum Markov chains [72], chemical kinetics [8], quantum infor-
mation processing [73], the Ising model [79], coagulation-fragmentation equations [83,84],
dissipative quantum circuits [67] and open quadratic fermionic systems [104]. The term “cut-
off” was originally coined in 1986 by Aldous and Diaconis in their celebrated paper [4] on
card shuffling, where they observed and conceptualized the asymptotically abrupt collapse of
the total variation distance between the current state of their Markov chain and the uniform
limiting distribution at a precise deterministic time scale.

At this point we refrain from giving a full account on the mathematical literature on
the cutoff phenomenon and refer to the overview article [41] and the introduction of [16].
Standard references in the mathematics literature on the cutoff phenomenon for discrete time
and space include [1,3,4,9,15,18,32,33,40,42,74–78,80,103,109]. As introductory texts on
the cutoff phenomenon in discrete time and space we recommend [68] and Chapter 18 in the
monograph [78].

Although shown to be present in many important Markov chain models, cutoff thermal-
ization is not universal. For instance, for reversible Markov chains Y. Peres formulated the
widely used product condition, that is, the divergence of the product between the mixing time
and the spectral gap for growing dimension, see introduction of [57]. The product condition
is a necessary condition for pre-cutoff in total variation (see Proposition 18.4 in [78]), and a
necessary and sufficient condition for cutoff in the L2 sense (see [32]). This condition can
be used to characterize cutoff for a large class of Markov chains, but it fails in general, see
Chapter 18 in [78] for the details. The alternative condition that the product of the spectral
gap and the maximal (expected) hitting time diverges is studied in [2] and [[56], Theorem 1].
In [17] p. 1454 the authors explain the limitations of the hitting time approach to characterize
cutoff in general. To the best of our knowledge, there is no well-developed general theory
as in the reversible case. However, Theorem 1.1 in [76] yields an abstract sufficient hitting
time condition for the detection of the cutoff phenomenon, which is valid in reversible and
non-reversible settings, see Section 3, Example 3.4 in [76].

This article establishes just such a criterion for the class of general (reversible and non-
reversible) ergodic multidimensional Lévy-driven Ornstein–Uhlenbeck processes in contin-
uous space and time for small noise amplitude with respect to the (Kantorovich-Rubinstein-)
Wasserstein-distance. Recall that the classical d-dimensional Ornstein–Uhlenbeck process
is given as the unique strong solution of

dXε
t = −QXε

t dt + εdBt , Xε
0 = x, ε > 0, (1.1)

where Q is a square matrix and B = (Bt )t≥0 a given d-dimensional Brownian motion.
For the definitions see for instance [89,93]. The marginal Xε

t (x) at a fixed time t > 0
has the Gaussian distribution N (0, ε2�t ), where the covariance matrix �t has an integral
representation given in Theorem 3.1 of [98] or Sect. 6.1 of this article. Furthermore, if Q
has eigenvalues with positive real parts, the process (Xε

t (x))t≥0 has the unique limiting
distribution με = N (0, ε2�∞), where �∞ = limt→∞ �t , see Theorem 4.1 and 4.2 in
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[98]. Since Q has full rank, �∞ is known to be invertible. Moreover, the Gaussianity of the
marginals and the limiting distribution leads to an explicit formula for the relative entropy

H(Xε
t (x) | με) = 1

2

(
1

ε2
(e−Qt x)∗�−1∞ (e−Qt x) + Tr(�−1∞ �t ) − d + log

‖�∞‖
‖�t‖

)
, (1.2)

where ‖ · ‖ = det. Note that Tr(�−1∞ �t ) − d + log
(‖�∞‖/‖�t‖

) → 0 for any time scale
t → ∞, thus the first term in formula (1.2) turns out to be asymptotically decisive, when t
is replaced by some tε → ∞ as ε → 0. In particular, for a positive multiple of the identity,
Q = q · Id , q > 0, and tε := q−1| ln(ε)|, the following dichotomy holds for any x �= 0:

H(Xε
δ·tε (x) | με) ≈ε

1

2

( |�− 1
2∞ e−Q δ·tε x |

ε

)2

∝ ε2(δ−1) ε→0−→
{

∞ for δ ∈ (0, 1)

0 for δ > 1

}
.

(1.3)
The discussion of formula (1.3) for a general asymptotically exponentially stable matrix −Q
is given in Sect. 6.1 of this article. The fine study of the dichotomy in (1.3) and its dependence
on x for general Q, is the core of cutoff thermalization for relative entropy in the context of
continuous time and space. The main shortcoming of formula (1.2) is that it is not robust and
hard to generalize to

(I) general degenerate noise such as the linear oscillator with noise only in the position and
(II) non-Gaussian white Lévy noise processes or red noise processes, such as α-stable Lévy

flights, Poissonian jumps, Ornstein–Uhlenbeck processes, or even deterministic drifts.

Additionally, it is not obvious in general how formula (1.2) would imply an analogous
dichotomy to the asymptotics in (1.3) for

(III) statisticallymore tractable distances such as the total variation or theWasserstein distance.

In [14] items (I) and (II) have been addressed for smooth density situations in the technically
demanding total variation distance under natural but statistically hardly verifiable regular-
ization conditions. In this article, we study the generalized Ornstein–Uhlenbeck process
Xε· (x) = (Xε

t (x))t≥0 given as the unique strong solution of the linear ordinary stochastic
differential equation with additive Lévy noise

dXε
t = −QXε

t dt + εdLt , Xε
0 = x, (1.4)

with the cutoff parameter ε > 0, where Q is a general d-dimensional square matrix that has
eigenvalues with positive real parts and L = (Lt )t≥0 is a general (possibly degenerate) Lévy
process with values in Rd . The purpose of this article is twofold. First, it establishes window
cutoff thermalization in the limit of small ε for the family of processes (Xε· (x))ε∈(0,1] in terms
of the renormalizedWasserstein distance whenever the latter is finite and Xε· (x) has a unique
limiting distribution με for each ε. The notion of window cutoff thermalization turns out to
be a refined and robust analogue of the dichotomy (1.3) which addresses the issues (I)–(III)
for the renormalized Wasserstein distance, that is, informally, with a limit of the following
type

lim
ε→0

Wp(X
ε
δ·tε (x), μ

ε) · ε−1 =
{

∞ for δ ∈ (0, 1)

0 for δ > 1

}
. (1.5)

Secondly, we study the stronger notion of a cutoff thermalization profile, that is, the existence
of the limit for any fixed r ∈ R

lim
ε→0

Wp(X
ε
tε+r (x), μ

ε) · ε−1 = Px (r). (1.6)
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The presence of a cutoff thermalization profile for generic x turns out to be characterized by
the absence of non-normal growth effects, that is, the orthogonality of asymptotic (t → ∞)
generalized eigenvectors of the exponential matrix e−Qt . In [12,14] such limits have been
studied and characterized for the total variation distance. The limit there, however, turns out
to be hard to calculate or even to simulate numerically, while in our setting for p ≥ 1 the
limit (1.6) is shown to take the elementary explicit shape

Px (r) = Kx · e−qx r , r ∈ R,

where the positive constants Kx and qx in general depend on the initial condition x . For
generic values of x , that is, x having a non-trivial projection on one of the eigenspaces of
the eigenvalues of Q with smallest real part and highest multiplicity, it turns out to be the
spectral gap of Q. In addition, our normal growth characterization is applicable in concrete
examples of interest such as the linear oscillator. The Markovian dynamics of (1.4) implies
(whenever regularity assumptions, such as hypoellipticity, are satisfied) that the probability
densities pε

t of the marginals Xε
t (x) are governed by the Fokker–Planck or master equation

∂t p
ε
t = (Aε)∗ pε

t ,

where the generator Aε in general amounts to a full-blown unbounded linear integro-
differential operator. Therefore state-of-the-art analytic methods, at best, are capable of
studying the spectrum ofAε (numerically), which yield an upper bound for exponential con-
vergence to the equilibrium με for sufficiently large time in the case of the spectrum lying
in the left open complex half-plane. See for instance [88] Section “Hypoelliptic Ornstein–
Uhlenbeck semigroups” or Theorem 3.1 in [10]. However, these types of results can only
establish (qualitative) upper bounds, which do not reflect the real convergence of pε

t to the
equilibrium distribution με . It is with more flexible probabilistic techniques (coupling or
replica) that it is possible to show cutoff thermalization in this level of generality.

The first work on cutoff thermalization covering certain equations of the type (1.1) is by
Barrera and Jara [12] in 2015 for scalar nonlinear dissipative SDEs with a stable state and
ε-small Brownian motion in the unnormalized total variation distance dTV using coupling
techniques. The authors show that for this natural (d = 1) gradient system, there always
is a cutoff thermalization profile which can be given explicitly in terms of the Gauss error
function. The follow-up work [13] covers cutoff thermalization with respect to the total
variation distance for (1.1) in higher dimensions, where the picture is considerably richer, due
to the presence of strong and complicated rotational patterns. Window cutoff thermalization
is proved for the general case. In addition, the authors precisely characterize the existence
of a cutoff thermalization profile in terms of the omega limit sets appearing in the long-
term behavior of the matrix exponential function e−Qt x in Lemma B.2 [13], which plays
an analogous role in this article. We note that in (1.1) and [13] the Brownian perturbation is
nondegenerate, and hence the examples of the linear oscillator or linear chains of oscillators
subject to small Brownian motion are not covered there. The results of [14] mentioned above
cover cutoff thermalization for (1.4) for nondegenerate noise dL in the total variation distance
and yield many important applications such as the sample processes and the sample mean
process. The proof methods are based on concise Fourier inversion techniques. Due to the
mentioned regularity issue concerning the total variation distance the authors state their results
under the hypothesis of continuous densities of themarginals, which to date ismathematically
not characterized in simple terms. Their profile function is naturally given as a shift error
of the Lévy–Ornstein–Uhlenbeck limiting measure for ε = 1 and measured in the total
variation distance. These quantities are theoretically highly insightful, but almost impossible
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to calculate and simulate in examples. Their abstract characterization of the existence of a
cutoff-profile given in [13], which assesses the behavior of the mentioned profile function on
a suitably defined omega limit set, is shown to be also valid in our setting (see Theorem 3.3).

While the total variation distance with which the cutoff phenomenon was originally stated
is equivalent to the convergence in distribution in finite spaces, it is much more difficult to
analyze in continuous space and is not robust to small non-smooth perturbations. There have
also been attempts to describe the cutoff phenomenon for quantum systems in other types of
metrics such as the trace norm, see for instance [72]. In this context theWasserstein setting of
the present article has the following four advantages in contrast to the original total variation
distance.

(1) It does not require any regularity except some finite pth moment, p > 0. This allows
us to treat degenerate noise and to cover second order equations. As an illustration we give a
complete discussion of cutoff thermalization of the damped linear oscillator in theWasserstein
distance subject to Brownian motion, Poissonian jumps without any regularizing effect, α-
stable processes including the Cauchy process and a deterministic perturbation. In the same
sense we cover chains of linear oscillators in a generalized heat bath at low temperature.

(2) In contrast to the relative entropy and the total variation distance the Wasserstein
distance has the particular property of shift linearity for p ≥ 1, which reduces the rather
complicated profile functions of [12–14] to a simple exponential function with no need for
costly and complex simulation. In addition, the profile is universal and does not depend on
which Wasserstein distance is applied nor on the statistical properties of the noise. For p ∈
(0, 1) shift linearity seems not to be feasible, however we give upper and lower bounds which
essentially account for the same. Therefore we may cover the case of the linear oscillator
under ε-small α-stable perturbations including the Cauchy process for α = 1.

(3) We also obtain cutoff thermalization for the physical observable finite pth moments,
which cannot be directly deduced from any result in [12–14]. Our findings also naturally
extend to small red noise and general ergodic perturbations as explained in Sect. 6.2.

(4) Due to the homogeneity structure of the Wasserstein distance we give meaningful
asymptotic error estimates and estimates on the smallness of ε needed in order to observe
cutoff thermalization on a finite interval [0, T ].

The Wasserstein distance also entails certain minor drawbacks. First, a price to pay is to
pass from the unnormalized total variation distance (due to 0-homogeneity dTV(εU1, εU2) =
dTV(U1,U2)) to the renormalizedWasserstein distanceWp/ε. This is fairly natural to expect
for any distance based on norms such as the L p-norm, p ≥ 1 due to the 1-homogeneity
Wp(εU1, εU2) = εWp(U1,U2). The second issue is that concrete evaluations of theWasser-
stein distance are complicated in general. For d = 1 and 1 ≤ p < ∞ theWasserstein distance
has the explicit shape of an L p-distance for the quantiles F−1

U1
and F−1

U2

Wp(U1,U2) =
(∫ 1

0
|F−1

U1
(θ) − F−1

U2
(θ)|pdθ

) 1
p

.

However, there are no known higher dimensional counterparts of this formula. While by
definition Wasserstein distances are minimizers of L p-distances, they are always bounded
above by the L p-distance (by the natural coupling); however, lower bounds are typically hard
to establish.

The dynamics of models (1.1) with small Brownian motion have been studied since the
early days of Arrhenius [7], Ornstein and Uhlenbeck [85], Eyring [46] Kramers [70]. Since
then, an enormous body of physics literature has emerged and we refer to the overview
articles [61] on the exponential rates and [53] on the related phenomenon of stochastic

123



27 Page 6 of 54 G. Barrera et al.

resonance. For an overview on the Ornstein–Uhlenbeck process see [66]. However, in many
situations Brownian motion alone is too restrictive for modeling the driving noise, as laid
out in the article by Penland and Ewald [91], where the authors identify the physical origins
of stochastic forcing and discuss the trade off between Gaussian vs. non-Gaussian white
and colored noises. In particular, heavy-tailed Lévy noise has been found to be present in
physical systems such as for instance [22,31,43–45,52,101]. In the mathematics literature
the dynamics of the exit times of ordinary, delay and partial differential equations with
respect to such kind of Brownian perturbations is often referred to as Freidlin-Wentzell
theory. It was studied in [19–21,23,26,34,35,47,49,100] and serves as the base on which
metastability and stochastic resonance results are derived, for instance in [24,25,48,51,99].
More recent extensions of this literature for the non-Brownian Lévy case often including
polynomial instead of exponential rates include [38,55,58–60,62–65] and references therein.
A different, recent line of research starting with the works of [27–30,36] treats ε-small
and simultaneously 1/ε-intensity accelerated Poisson random measures which yield large
deviations for ε-parametrized Lévy processes, also in the context of Lévy processes, where
this behavior typically fails to hold true.

The paper is organized as follows. After the setup and preliminary results the cutoff
thermalization phenomenon is derived in Sect. 3.1. The main results on the stronger notion
of profile cutoff thermalization are presented in Sect. 3.2 followed by the generic results
on the weaker notion of window cutoff thermalization in Sect. 3.3. Section 4 is devoted to
the applications in physics such as gradient systems and a complete discussion of the linear
oscillator and numerical results of a linear Jacobi chains coupled to a heat bath. In Sect.
5 several conceptual examples illustrate certain mathematical features such as the fact that
leading complex eigenvalues not necessarily destroy the profile thermalization. Moreover,
we highlight the dependence of the thermalization time scale on the initial data x , and Jordan
block multiplicities of Q. In Sect. 6 we discuss the pure Brownian case for relative entropy,
the validity of the results for general ergodic driven noises such as red noise and derive
conditions on ε for observing the cutoff thermalization on a given finite time horizon. The
proofs of the main results are given in the appendix.

2 The Setup

2.1 The Lévy Noise Perturbation dL

Let L = (Lt )t≥0 be a Lévy process with values in R
d , that is, a process with stationary and

independent increments starting from 0 almost surely, and càdlàg paths (right-continuous
with left limits). The most prominent examples are the Brownian motion and the compound
Poisson process. For an introduction to the subject we refer to [6,97]. The characteristic
function of themarginal Lt has the following (Lévy–Khintchine) representation for any t ≥ 0

u �→ E[ei〈u,Lt 〉]
= exp

(
t
[
i〈u, b〉 − 1

2
〈�u, u〉 +

∫
Rd

(
ei〈u,y〉 − 1 − i〈u, y〉1{|y| ≤ 1})ν(dy)

])
,

for a drift vector b ∈ R
d ,� a d×d covariancematrix and ν a sigma-finitemeasure onRd with

ν({0}) = 0 and
∫
Rd

(1 ∧ |z|2)ν(dz) < ∞.
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Hypothesis 2.1 (Finite pth moment) For p > 0 the Lévy process L has finite pth moments,
which is equivalent to ∫

|z|>1
|z|pν(dz) < ∞,

where ν is the Lévy jump measure.

Remark 2.1 (1) In case of L = B being a Brownian motion Hypothesis 2.1 is true for any
p > 0.

(2) For p ∈ (0, 2) it also covers the case of α-stable noise for α ∈ (p, 2). Note that the latter
only has moments of order p < α and hence no finite variance.

2.2 The Ornstein–Uhlenbeck Process (X"
t (x))t≥0

We consider the following Ornstein–Uhlenbeck equation subject to ε-small Lévy noise

dXε
t = −QXε

t dt + εdLt , Xε
0 = x, (2.1)

where Q is a deterministic d × d matrix. For ε > 0 and any x ∈ R
d the SDE (2.1) has a

unique strong solution. By the variation of constant formula

Xε
t (x) = e−Qt x + ε

∫ t

0
e−Q(t−s)dLs =: e−Qt x + εOt , (2.2)

where Ot is a stochastic integral which is defined in our setting by the integration by parts
formula

Ot = Lt −
∫ t

0
e−Q(t−s)QLsds.

In general, for t > 0 the marginals Xε
t (x) may not have densities and are only given in terms

of its characteristics due to the irregular non-Gaussian jump component, see Proposition 2.1
in [82]. For the case of pure Brownian noise, the marginal Xε

t (x) exhibits a Gaussian density.
Its mean and covariance matrix are given explicitly in Section 3.7 in [89].

2.3 Asymptotic Exponential Stability of−Q

Hypothesis 2.2 (Asymptotic exponential stability of −Q) The real parts of all eigenvalues
of Q are positive.

By formula (2.2) it is clearly seen, that the fine structure of e−Qt x determines its dynamics.
In general, calculating matrix exponentials is complicated. For basic properties and some
explicit formulas we refer to [5], Chapters 7.10 and 7.14. Roughly speaking, for symmetric
Q and generic x ∈ R

d , x �= 0, the behavior of e−Qt x is given by e−λt 〈v, x〉v+o(e−λt )where
λ > 0 is the smallest eigenvalue ofQ and v is its corresponding eigenvector. For asymmetric
Q the picture is considerably blurred by the occurrence of multiple rotations. The complete
analysis reads as follows and is carried out in detail in the examples.

Lemma 2.1 Assume Hypothesis 2.2. Then for any initial value x ∈ R
d , x �= 0, there exist

a rate q := q(x) > 0, multiplicities 
 := 
(x), m := m(x) ∈ {1, . . . , d}, angles θ1 :=
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θ1(x), . . . , θm := θm(x) ∈ [0, 2π) and a family of linearly independent vectors v1 :=
v1(x), . . . , vm := vm(x) in C

d such that

lim
t→∞

∣∣∣∣∣
eqt

t
−1 e
−Qt x −

m∑
k=1

eitθkvk

∣∣∣∣∣ = 0. (2.3)

Moreover,

0 < lim inf
t→∞

∣∣∣∣∣
m∑

k=1

eitθkvk

∣∣∣∣∣ ≤ lim sup
t→∞

∣∣∣∣∣
m∑

k=1

eitθkvk

∣∣∣∣∣ ≤
m∑

k=1

|vk |. (2.4)

The numbers {q ± iθk, k = 1, . . . ,m} are eigenvalues of the matrix Q and the vectors
{vk, k = 1, . . . ,m} are generalized eigenvectors of Q.

The lemma is established as Lemma B.1 in [13], p. 1195-1196, and proved there. It is stated
there under the additional hypothesis of coercivity 〈Qx, x〉 ≥ δ|x |2 for some δ > 0 and
any x ∈ R

d . However, inspecting the proof line by line it is seen that the authors only use
Hypothesis 2.2 of the matrix Q. Hence the result is valid under the sole Hypothesis 2.2. For
a detailed understanding of the computation of the exponential matrix we refer to the notes
of [107], in particular, Theorem 22 and Section 3.

Remark 2.2 The precise properties (2.3) and (2.4) turn out to be crucial for the existence of
a cutoff thermalization profile. Note that, in general, the limit

lim
t→∞

∣∣∣∣∣
m∑

k=1

eitθkvk

∣∣∣∣∣
does not exist. However, if in addition Q is symmetric we have θ1 = · · · = θm = 0 and
consequently,

lim
t→∞

∣∣∣∣∣
m∑

k=1

eitθkvk

∣∣∣∣∣ =
∣∣∣∣∣
m∑

k=1

vk

∣∣∣∣∣ �= 0.

2.4 TheWasserstein DistanceWp

Given two probability distributionsμ1 andμ2 onRd with finite pth moment for some p > 0,
we define the Wasserstein distance of order p as follows

Wp(μ1, μ2) = inf
�

(∫
Rd×Rd

|u − v|p�(du, dv)

)min{1/p,1}
, (2.5)

where the infimum is takenover all joint distributions (also called couplings)�withmarginals
μ1 and μ2. The Wasserstein distance quantifies the distance between probability measures,
for an introduction we refer to [106]. For convenience of notation we do not distinguish a
random variable U and its law PU as an argument of Wp . That is, for random variables U1,
U2 and probability measure μ we write Wp(U1,U2) instead of Wp(PU1 ,PU2), Wp(U1, μ)

instead of Wp(PU1 , μ) etc.

Lemma 2.2 (Properties of theWasserstein distance) Let p > 0, u1, u2 ∈ R
d be deterministic

vectors, c ∈ R and U1,U2 be random vectors in R
d with finite pth moment. Then we have:

(a) The Wasserstein distance is a metric, in the sense of being definite, symmetric and satis-
fying the triangle inequality in the sense of Definition 2.15 in [94].
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(b) Translation invariance: Wp(u1 +U1, u2 +U2) = Wp(u1 − u2 +U1,U2).
(c) Homogeneity:

Wp(cU1, cU2) =
{

|c| Wp(U1,U2) for p ∈ [1,∞),

|c|p Wp(U1,U2) for p ∈ (0, 1).

(d) Shift linearity: For p ≥ 1 it follows

Wp(u1 +U1,U1) = |u1|. (2.6)

For p ∈ (0, 1) equality (2.6) is false in general. However we have the following inequality

max{|u1|p − 2E[|U1|p], 0} ≤ Wp(u1 +U1,U1) ≤ |u1|p. (2.7)

(e) Domination: For any given coupling �̃ between U1 and U2 it follows

Wp(U1,U2) ≤
( ∫

Rd×Rd
|v1 − v2|p�̃(dv1, dv2)

)min{1/p,1}
.

(f) Characterization: Let (Un)n∈N be a sequence of random vectors with finite pth moments
and U a random vector with finite pth moment the following are equivalent:

(1) Wp(Un,U ) → 0 as n → ∞.

(2) Un
d−→ U as n → ∞ and E[|Un |p] → E[|U |p] as n → ∞.

(g) Contraction: Let T : Rd → R
k , k ∈ N, be Lipschitz continuouswith Lipschitz constant 1.

Then for any p > 0
Wp(T (U1), T (U2)) ≤ Wp(U1,U2). (2.8)

The proof of Lemma 2.2 is given in Appendix A.

Remark 2.3 (1) Property d) is less widely known and turns out to be crucial to simplify the
thermalization profile for p ≥ 1 from a complicated stochastic quantity to a deterministic
exponential function, while still being useful for p ∈ (0, 1).

(2) In general, the projection of a vector-valued Markov process to single coordinates is
known to be non-Markovian. However, not surprisingly property g) allows to estimate
theWasserstein distance of its projections. This is used in Sect. 6.2 for degenerate systems
and mimics the analogous property for the total variation distance given in Theorem 5.2
in [39].

Lemma 2.3 (Wasserstein approximation of the total variation distance) Let U1 and U2 be
two random variables taking values onRd . Assume that there exists p ∈ (0, 1) small enough
such that U1 and U2 possesses finite pth moments. Then

dTV(U1,U2) = lim
p′→0

Wp′(U1,U2).

The content of this lemma is announced in Section 2.1 in [86]. The proof is given in
Appendix A.

Remark 2.4 Assume that for any x �= 0 and p ∈ (0, 1) the formulaWp(x+O∞,O∞) = |x |p
is valid. By Lemma 2.3 we have

dTV(x + O∞,O∞) = lim
p′→0

Wp′(x + O∞,O∞) = lim
p′→0

|x |p′ = 1.
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Hence for any x �= 0, dTV(x + O∞,O∞) = 1 which in general false whenever O∞ has a
continuous positive density inRd , for instance, forO∞ being α-stable with index α ∈ (0, 2].
In other words,Wp(x +O∞,O∞) = |x |p breaks down for p sufficiently small in all smooth
density situations.

2.5 Limiting Distribution�"

We fix ε > 0. By Proposition 2.2 in [82], Hypotheses 2.1 and 2.2 yield the existence of
a unique equilibrium distribution με and its characteristics are given there. Moreover, the
limiting distribution με has finite pth moments. It is the distribution of εO∞, where O∞ is
the limiting distribution of Ot as t → ∞ (with respect to the weak convergence). In fact, it
follows the stronger property.

Lemma 2.4 Let Hypotheses 2.1 and 2.2 be satisfied. Then for any x �= 0, ε > 0 and 0 <

p′ ≤ p we have Wp′(Xε
t (x), μ

ε) → 0 as t → ∞.

Proof First note, there exist positive constants q∗ and C0 such that |e−Qt | ≤ C0e−q∗t for any
t ≥ 0 due to the usual Jordan decomposition and the estimate

|e−Qt | ≤
(
sup
s≥0

max
0≤ j≤d−1

s j

j ! e
−(q−q∗)s

)
e−q∗t = C0e

−q∗t , (2.9)

where q is the minimum of the real parts of the eigenvalues of Q. Then for any t ≥ 0 and
x, y ∈ R

d

|Xε
t (x) − Xε

t (y)|p
′ ≤ |e−Qt |p′ |x − y|p′ ≤ C p′

0 e−q∗ p′t |x − y|p′
.

Hence

Wp′(Xε
t (x), X

ε
t (y)) ≤

(
C0e

−q∗t |x − y|
)min{1,p′}

.

By disintegration of the invariant distribution με we have

Wp′(Xε
t (x), μ

ε) = Wp′(Xε
t (x), X

ε
t (μ

ε)) ≤
∫
Rd

Wp′(Xε
t (x), X

ε
t (y))μ

ε(dy)

≤
(
C0e

−q∗t
)min{1,p′} ∫

Rd
|x − y|min{1,p′}με(dy)

≤
(
C0e

−q∗t |x |
)min{1,p′} + (C0e

−q∗t )min{1,p′}
∫
Rd

|y|min{1,p′}με(dy).

(2.10)

Since Xε∞ = εO∞, it follows∫
Rd

|y|min{1,p′}με(dy) = εmin{1,p′}
E[|O∞|min{1,p′}] < ∞.

As a consequence, lim
t→∞ sup

|x |≤R
Wp′(Xε

t (x), μ
ε) = 0 for any R > 0 and ε > 0. ��

Observe that

Xε
t (x) = e−Qt x + εOt , where Ot :=

∫ t

0
e−Q(t−s)dLs .

123



Cutoff Thermalization for Ornstein–Uhlenbeck Systems... Page 11 of 54 27

In particular,

Wp′(Ot ,O∞) ≤
(
C0e

−q∗t
)min{1,p′}

E[|O∞|min{1,p′}]. (2.11)

By the exponential stability hypothesis we have e−Qt x → 0 as t → ∞. Therefore, Slutsky’s

theorem yields Xε
t (x)

d−→ εO∞ as t → ∞, where O∞ has distribution μ1.

Remark 2.5 It is not difficult to see that Hypothesis 2.1 yields for 1 ≤ p′ ≤ p

E
[|O∞|min{1,p′}] ≤ |b|C0

q∗
+ |�1/2| C0√

2q∗

+ C0

q∗

√∫
|z|≤1

|z|2ν(dz) + exp

(
C0

q∗

∫
|z|>C−1

0

|z|ν(dz)

)
, (2.12)

where q∗ > 0 is given at the beginning of the proof of the preceding Lemma 2.4. The proof
of the jump part and drift is elementary and given in [108] p.1000-1001. The Brownian
component can be easily estimated by the Itô isometry, see for instance [71] Section 5.6.

3 TheMain Results

3.1 The Derivation of Cutoff Thermalization

3.1.1 The Key Estimates for p ≥ 1

Recall that με has the distribution of εO∞. For transparency we start with 1 ≤ p′ ≤ p. On
the one hand, by Lemma 2.2 properties a), b), c) and d) we have

Wp′(Xε
t (x), μ

ε) = Wp′(e−Qt x + εOt , εO∞)

≤ Wp′(e−Qt x + εOt , e
−Qt x + εO∞) + Wp′(e−Qt x + εO∞, εO∞)

= Wp′(εOt , εO∞) + |e−Qt x |
= εWp′(Ot ,O∞) + |e−Qt x |. (3.1)

On the other hand, since p′ ≥ 1, property d) in Lemma 2.2 with the help of properties a), b)
and c) yields

|e−Qt x | = Wp′(e−Qt x + εO∞, εO∞)

≤ Wp′(e−Qt x + εO∞, e−Qt x + εOt ) + Wp′(e−Qt x + εOt , εO∞)

= εWp′(O∞,Ot ) + Wp′(Xε
t (x), μ

ε). (3.2)

Combining the preceding inequalities we obtain

|e−Qt x |
ε

− Wp′(Ot ,O∞) ≤ Wp′(Xε
t (x), μ

ε)

ε
≤ |e−Qt x |

ε
+ Wp′(Ot ,O∞). (3.3)

Since the Wp′(Ot ,O∞) → 0 as t → ∞, for any tε → ∞ as ε → 0 we have

Wp′(Otε ,O∞) → 0 as ε → 0. It remains to show abrupt convergence of | e−Qtxε x
ε

| for
the correct choice of txε . Therefore, the refined analysis of the linear system e−Qt x carried
out in Lemma 2.1 is necessary.
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Remark 3.1 Note that the preceding formula (3.3) is valid for any p of Hypothesis 2.1. If L
has finite moments of all orders, that is, formally p = ∞, we may pass to the limit in (3.3)
and obtain

|e−Qt x |
ε

− W∞(Ot ,O∞) ≤ W∞(Xε
t (x), μ

ε)

ε
≤ |e−Qt x |

ε
+ W∞(Ot ,O∞). (3.4)

This is satisfied for instance in the case of pure Brownian motion or uniformly bounded
jumps. Moreover

W∞(Ot ,O∞) = lim
p→∞Wp(Ot ,O∞) ≤ lim

p→∞

∫
Rd

Wp(Ot ,Ot (z))P(O∞ ∈ dz)

≤ |e−Qt | · E[|O∞|] → 0, as t → ∞.

3.1.2 The Key Estimates for p ∈ (0, 1)

We point out that for 0 < p′ ≤ p the distance Wp′ satisfies all properties of Lemma 2.2,
however, with modified versions of c) and d). Therefore, the upper bound (3.1) has the shape

Wp′(Xε
t (x), μ

ε) ≤ Wp′(e−Qt x + εOt , e
−Qt x + εO∞) + Wp′(e−Qt x + εO∞, εO∞)

= ε p′Wp′(Ot ,O∞) + ε p′Wp′
(e−Qt x

ε
+ O∞,O∞

)

and the lower bound (3.2) reads

ε p′Wp′
(e−Qt x

ε
+ O∞,O∞

)
= Wp′(e−Qt x + εO∞, εO∞)

≤ Wp′(e−Qt x + εO∞, e−Qt x + εOt )

+ Wp′(e−Qt x + εOt , εO∞)

= ε p′Wp′(O∞,Ot ) + Wp′(Xε
t (x), μ

ε).

The combination of the preceding inequalities yields

Wp′
(e−Qt x

ε
+ O∞,O∞

)
− Wp′(Ot ,O∞) ≤ Wp′(Xε

t (x), μ
ε)

ε p′

≤ Wp′
(e−Qt x

ε
+ O∞,O∞

)
+ Wp′(Ot ,O∞).

(3.5)

Remark 3.2 For p′ ∈ (0, 1), property d) in Lemma 2.2 yields

|e−Qt x |p′

ε p′ − 2E[|O∞|p′ ] ≤ Wp′
(e−Qt x

ε
+ O∞,O∞

) ≤ |e−Qt x |p′

ε p′ . (3.6)

3.2 The First Main Result: Characterizations of Profile Cutoff Thermalization

This subsection presents the first cutoff thermalization results of in the sense of (1.6) for the
system (1.4) with x �= 0.
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Remark 3.3 Note that for initial value x = 0 there is no cutoff thermalization. Indeed, by
property c) in Lemma 2.2 we have

Wp′(Xε
t (0), μ

ε) = Wp′(εOt , εO∞) = εmin{1,p′}Wp′(Ot ,O∞).

Hence for any tε → ∞ as ε → 0 we have

lim
ε→0

Wp′(Xε
tε (0), μ

ε)

εmin{1,p′} = lim
ε→0

Wp′(Otε ,O∞) = 0

excluding a cutoff time scale separation.

3.2.1 Explicit Cutoff Thermalization Profile in Case of First Moments p ≥ 1

The first main result characterizes the convergence ofWp′(Xε
t (x), μ

ε)/ε to a profile function
for x �= 0 and 1 ≤ p′ ≤ p.

Theorem 3.1 (Cutoff thermalization profile) Let ν satisfy Hypothesis 2.1 for some 1 ≤ p ≤
∞. LetQ satisfy Hypothesis 2.2 and x ∈ R

d , x �= 0, with the spectral representation q > 0,

,m ∈ {1, . . . , d}, θ1, . . . , θm ∈ [0, 2π) and v1, . . . , vm ∈ C

d of Lemma 2.1.
Then the following statements are equivalent.

(i) The ω-limit set

ω(x) :=
{
accumulation points of

m∑
k=1

eitθkvkast → ∞
}

(3.7)

is contained in a sphere, that is, the function

ω(x) � u �→ |u| is constant. (3.8)

(ii) For the time scale

txε = 1

q
| ln(ε)| + 
 − 1

q
ln(| ln(ε)|) (3.9)

the system (Xε
t (x))t≥0 exhibits for all asymptotically constant window sizeswε → w > 0

the abrupt thermalization profile for any 1 ≤ p′ ≤ p in the following sense

lim
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

ε
= Px (r) for any r ∈ R,

where

Px (r) := e−rqw

q
−1 |v| for any representative v ∈ ω(x). (3.10)

Under either of the conditions, for ε sufficiently small, we have the error estimate∣∣∣∣∣
Wp′(Xε

txε +r ·wε
(x), με)

ε
− Px (r)

∣∣∣∣∣ ≤ Wp′(Otxε ,O∞) +
∣∣∣ |e−Q(txε +r ·wε)x |

ε
− Px (r)

∣∣∣ (3.11)

which for generic x yields a constant Cx such that∣∣∣∣∣
Wp′(Xε

txε +r ·wε
(x), με)

ε
− Px (r)

∣∣∣∣∣ ≤ Cx ε
1∧g

q . (3.12)
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The proof of Theorem 3.1 is given at the end of Appendix B. In the sequel, we essentially
characterize when the function

ω(x) � u �→ |u|
is constant. We enumerate v1, . . . , vm as follows. Without loss of generality we assume
that θ1 = 0, that is, v1 ∈ R

d . Otherwise we take v1 = 0 and eliminate it from the sum∑m
k=1 e

iθk tvk . Without loss of generality we assume that m = 2n + 1 for some n ∈ N. We
assume that vk and vk+1 = v̄k are complex conjugate for all even number k ∈ {2, . . . ,m}.
For k ∈ {2, . . . ,m} we write vk = v̂k + i v̌k where v̂k, v̌k ∈ R

d . Since

eiθk tvk = [cos(θk t)v̂k − sin(θk t)v̌k] + i[sin(θk t)v̂k + cos(θk t)v̌k],
the decomplexification given in Lemma E.1 yields the representation

m∑
k=1

eiθk tvk = v1 + 2
n∑

k=1

(
cos(θ2k t)v̂2k − sin(θ2k t)v̌2k

)
, (3.13)

where v1 ∈ R
d .

Remark 3.4 Note that the angles θ2, . . . , θ2n in (3.13) coming from Lemma 2.1 are rationally
2π-independent for generic matrices Q and initial values x . In other words, they satisfy the
non-resonance condition

h1θ2 + · · · + hnθ2n /∈ 2π · Z (3.14)

for all (h1, . . . , hn) ∈ Z
n \ {0}.

Theorem 3.2 Let the assumptions of Theorem 3.1 be satisfied. In addition, we assume that
the angles θ2, . . . , θ2n are rationally 2π -independent according to (3.14) in Remark 3.4.
Then i) and ii) in Theorem 3.1 are equivalent to the following normal growth condition: the
family of Rd -valued vectors

(v1, v̂2, v̌2, . . . , v̂2n, v̌2n) is orthogonal and satisfies |v̂2k | = |v̌2k | for k = 1, . . . , n.

(3.15)
In this case the profile function has the following shape

Px (r) = e−rqw

q
−1 |
m∑
j=1

vk |, r ∈ R. (3.16)

The proof is given in Appendix E. It consists of a characterization of Theorem 3.1 item i),
that is, the property of ω(x) being contained in a sphere. This characterization is carried
out in two consecutive steps in Appendix E under the non-resonance condition (3.14) given
in Remark 3.4. Lemma E.2 yields the necessary implication, while Lemma E.3 states the
sufficiency.

Remark 3.5 (1) It is clear that under item i) of Theorem 3.1 the profile can be defined as

Px (r) = e−rqw

q
−1 |u|

for any representative u ∈ ω(x). Under the assumption of non-resonance of Remark
3.4 we have that u = ∑m

j=1 vk ∈ ω(x). Indeed, since the θ2, . . . , θ2n are rationally

independent ((eiθ2t , . . . , eiθ2n t ))t≥0 is dense in the torus Sn1 , see Corollary 4.2.3 in [105].
Hence we approximate the point (1, . . . , 1) for a subsequence tk → ∞ as k → ∞ and
hence u = ∑m

j=1 vk ∈ ω(x) and (3.16) is valid.
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(2) The existence of a thermalization profile boils down to the precise geometric structure
of the complicated limit set ω(x). However, it is not difficult to cover several cases of
interest. In particular, in the case Q being symmetric ω(x) = {∑m

j=1 vk} since all the
rotation angles vanish, the function (3.8) is trivially constant.

(3) The shape of the thermalization profile given in (3.10) is suprisingly universal:

Px (r) = e−rqw

q
−1 |u| = Wp′
(
e−rqw

q
−1 u + O∞,O∞
)

.

It does not depend on the parameters 1 ≤ p′ ≤ p ∈ [1,∞] (beyond finite moments of
order p) nor on the statistical properties of the driving noise ν due to the shift linearity
(2.6), item d) of Lemma 2.2. For p = 2 item d) of Lemma 2.2 is well-known and a direct
consequence of Pythagoras’ theorem, see for instance [87], Section 2, p. 412. We give
the proof for general p ≥ 1 in Appendix A.

(4) The statistical information of L enters in the rate of convergence on the right-hand side
of (3.11). Indeed, by (2.10) we have generically

Wp′(Otxε ,O∞) ≤ E[|O∞|] · |e−Qtxε | ≤ C0E[|O∞|]ε, (3.17)

where C0 is given in (2.9). Moreover, E[|O∞|] is bounded explicitly in terms of the
characteristic of the noise and the matrix Q, see (2.12).

(5) The order of the asymptotic error |Px (r) − |e−Q(txε +r ·w)x |
ε

| depends inherently on the
spectral structure of Q. In the worst case its rates of convergence are of logarithmic
order 1/txε , see formula (5.1) in the example of Sect. 5.3. In Sect. 5.1 we see the optimal
rate of convergence where this error is zero. However, this is not the generic picture.
Generically all eigenvalues λ1, λ2, . . . , λd ∈ C have different real parts (up to pairs of
complex conjugate eigenvalues) with multiplicity 1. Without loss of generality we label
λ1, λ2, . . . , λd ∈ C by ascending (positive) real parts. Moreover, q = Re(λ1) in the
generic case. Under the assumption of a thermalization profile we count with the speed
of convergence of order e−gtxε = K (x)εg/q, where

g =
{
Re(λ2) − q, if λ2 �= λ̄1,

Re(λ3) − q, if λ2 = λ̄1,
(3.18)

and since any initial datum x has the unique representation x = ∑d
j=1 c j (x)v j and hence

K (x) can be taken as
K (x) = max

j=1,...,d
|c j (x)v j |, (3.19)

where v j are the eigenvectors associated to the eigenvalue λ j .
(6) By (3.11), item (3) and item (5) we obtain the generic order of magnitude of ε such

that the asymptotic approximation holds for concrete systems in terms of the noises
characteristics, Q, the long-term dynamics of |e−Qt |, and the initial value x .

3.2.2 Abstract Cutoff Thermalization Profile in Case of p ∈ (0, 1)

This result is stated in order to cover perturbations of the Cauchy process, where p < 1 and
other stable processes such as the Holtsmark process p < 1

2 . Here the profile function does
exist but remains abstract.
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Theorem 3.3 (Abstract cutoff thermalization profile for any p > 0) Let the assumptions (and
the notation) of Theorem 3.1 be valid for some 0 < p ≤ ∞. Then for any 0 < p′ ≤ p the
following statements are equivalent.

(i) For any λ > 0, the function ω(x) � u �→ Wp′(λu + O∞,O∞) is constant, where ω(x)
is given in (3.7).

(ii) For the time scale txε given in (3.9) the system (Xε
t (x))t≥0 exhibits for all asymptotically

constantwindow sizeswε → w > 0 the abrupt thermalization profile for any 0 < p′ ≤ p
in the following sense

lim
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{1,p′} = Px,p′(r) for any r ∈ R,

where

Px,p′(r) := Wp′
(e−rqw

q
−1 v + O∞,O∞
)

for any representative v ∈ ω(x). (3.20)

The proof is given in Appendix B.

Remark 3.6 (1) For 1 ≤ p′ ≤ p Theorem 3.3 with the help of property d) in Lemma 2.2
recovers an abstract version of Theorem 3.1 which also extends to p < 1.

(2) The (asymptotic) error estimates of Theorem 3.1 are harder to obtain for 0 < p′ < 1.
(3) For (nondegenerate) pure Brownian motion, the existence of a cutoff thermalization

profile in total variation distance is equivalent to the set �−1/2ω(x) being contained in a
sphere, where� is the covariance matrix of the invariant distribution, see Corollary 2.11
in [13]. In Corollary 4.14 of [11] it is shown that a corresponding geometric condition is
at least sufficient. For further unexpected properties in the pure α stable case, see [101].

3.3 The SecondMain Result: GenericWindow Cutoff Thermalization

Roughly speaking, condition (3.8) in item i) of Theorem 3.1 (as well as item i) in Theorem
3.3) fails to hold if the rotational part of Q is too strong. However, for the general case we
still have abrupt thermalization in the following weaker sense.

Theorem 3.4 Let the assumptions (and the notation) of Theorem 3.1 be valid for some 0 <

p ≤ ∞. Then the system (Xε
t (x))t≥0 exhibits window cutoff thermalization on the time scale

txε = 1

q
| ln(ε)| + 
 − 1

q
ln(| ln(ε)|)

and in the sense that for all asymptotically constant window sizes wε → w > 0 it follows

lim
r→−∞ lim inf

ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{1,p′} = ∞ and lim
r→∞ lim sup

ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{1,p′} = 0.

for all 0 < p′ ≤ p.

The proof is given Appendix C. In contrast to other distances, the Wasserstein distance also
implies the cutoff thermalization for the physical observables as follows.

Corollary 3.1 Let the assumptions (and the notation) of Theorem 3.1 be valid for some p > 0.
Then we have for any 0 < p′ ≤ p < ∞ and x �= 0

lim
r→∞ lim inf

ε→0

1

ε p′ E[|Xε
txε +r ·wε

(x)|p′ ] = lim
r→∞ lim sup

ε→0

1

ε p′ E[|Xε
txε +r ·wε

(x)|p′ ] = E[|O∞|p′ ]
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and

lim
r→−∞ lim inf

ε→0

1

ε p′ E[|Xε
txε +r ·wε

(x)|p′ ] = lim
r→−∞ lim sup

ε→0

1

ε p′ E[|Xε
txε +r ·wε

(x)|p′ ] = ∞.

For the proof we refer to Appendix D.

Corollary 3.2 Let the assumptions (and the notation) of Theorem 3.1 be valid for some p > 0.
Then we have

lim
ε→0

Wp(X
ε
δ·tε (x), μ

ε) · ε−1 =
{

∞ for δ ∈ (0, 1)

0 for δ > 1

}
.

This corollary justifies formula (1.5) in the introduction. For the proof we refer to Appendix
D.

Remark 3.7 (1) In general for 1 ≤ p′ ≤ p there is no thermalization profile in the sense
of Theorem 3.1 (and Theorem 3.3). However, it is easy to see that a cutoff thermaliza-
tion profile implies window cutoff thermalization. The contrary not always holds. For
instance, for different values of u ∈ ω(x) there is no unique candidate for the profile. To
be more precise,

lim sup
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

ε
= e−rqw

q
−1 |û|

and

lim inf
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

ε
= e−rqw

q
−1 |ǔ|,

where ǔ, û ∈ ω(x). The discussion of the linear oscillator given in Sect. 4.2 yields an
example where ω(z) is not contained in a sphere for any z �= 0. The case of subcritical
damping always exhibits complex eigenvalues which together with the precise struc-
ture of the dynamics excludes a thermalization profile and only window thermalization
remains valid.

(2) The error estimate in Remark 3.5 item (4) remains untouched and item (5) is slightly
adapted as follows. Here we consider the error term∣∣∣∣∣

e−Qtxε x

ε
−

m∑
k=1

eit
x
ε θkvk

∣∣∣∣∣ , (3.21)

which analogously depends on the spectral structure of Q. Generically all eigenvalues
λ1, λ2, . . . , λd ∈ C have different real parts (up to pairs of complex conjugate eigen-
values) with multiplicity 1. Without loss of generality we label λ1, λ2, . . . , λd ∈ C by
ascending (positive) real parts. Moreover, q = Re(λ1) in the generic case. The speed
of convergence of (3.21) is of order e−gtxε = K (x)εg/q, where g is given in (3.18) and
K (x) given in (3.19) is estimated identically.

(3) In Sect. 5.1 we give an (ad hoc) linear (2 × 2)-system showing a thermalization profile
in the presence of complex (conjugate) eigenvalues for all initial values.

(4) The example in Sect. 5.2 represents a system where the presence of a thermalization
profile depends on the initial value x .

(5) We finally construct in Sect. 5.3 a system with arbitrary high logarithmic corrections
terms.
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4 Physics Examples

4.1 Gradient Systems

For a symmetric Q, Theorem 3.1 applies to the gradient case

dXε
t = −∇U(Xε

t )dt + εdLt with Xε
0 = x �= 0

for the quadratic potential form U(z) = (1/2)z∗Qz. Indeed, by the spectral decomposition
we have an orthonormal basis v1, v2, . . . , vd ∈ R

d with corresponding eigenvalues 0 < λ1 ≤
· · · ≤ λd such that

e−Qt x =
d∑
j=1

e−λ j t 〈v j , x〉v j .

Let τ(x) = min{ j ∈ {1, . . . , d} : 〈v j , x〉 �= 0} and J = { j ∈ {τ(x), . . . , d} : λ j = λτ(x)}.
Hence

lim
t→∞ eλτ(x)t e−Qt x =

∑
j∈J

〈v j , x〉v j �= 0.

That is, for p ≥ 1 the cutoff thermalization profile is Px (r) = e−rλτ(x)w|∑ j∈J 〈v j , x〉v j |.
More generally, [14], Proposition A.4.ii) yields a complete description of the spectral decom-
position of non-symmetric Q with real spectrum.

4.2 The Linear Oscillator

In this subsectionwe provide a complete discussion of the cutoff thermalization of the damped
linear oscillator driven by different noises at small temperature. We consider{

dXε
t = Y ε

t dt,
dY ε

t = −κXε
t dt − γY ε

t dt + εdLt
(4.1)

with initial conditions Xε
0 = x , Y ε

0 = y and Lévy noise L = (Lt )≥0 satisfying Hypothesis
2.1 for some p > 0. Examples of interest are the following:
For p ≤ ∞ we cover

(1) standard Brownian motion,
(2) deterministic (linear) drift,
(3) discontinuous compound Poisson process with finitely many point increments.

For p < α for some α > 0

(4) α-stable Lévy flight with finite first moment for index α ∈ (1, 2),
(5) α-stable Lévy flight with index α ∈ (0, 1] including the Cauchy flight when α = 1. See

[54] and [101] for a thorough discussion.

We rewrite the system (4.1) as a vector valued Ornstein–Uhlenbeck process

d

(
Xε
t

Y ε
t

)
= −Q

(
Xε
t

Y ε
t

)
dt + εdLt ,

where

Q :=
(
0 −1
κ γ

)
and Lt :=

(
0
Lt

)
. (4.2)
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Let z = (x, y)∗ �= (0, 0)∗. In the sequel, we compute e−Qt z. The eigenvalues of −Q are
given by

λ± = −γ ±√
γ 2 − 4κ

2
.

Note that for any γ, κ > 0 the respective real parts are strictly negative.

4.2.1 Overdamped Linear Oscillator

� = γ 2 − 4κ > 0. In this case, −Q has two real different eigenvalues

λ− := 1

2
(−γ − √

�) <
1

2
(−γ + √

�) =: λ+ < 0

with the respective eigenvectors v− and v+. The exponential matrix is given by

e−Qt = (v− v+) diag
(
e−λ−t , e−λ+t) (v− v+)∗ for t ≥ 0.

Recall z = (x, y)∗ �= (0, 0)∗. We denote by z̃ := (v− v+)∗z = (z̃1, z̃2)∗ the coordinate
change of z. Note that

e−Qt z = (v− v+)(z̃1e
−λ−t , z̃2e

−λ+t )∗.

This formula yields that for any z �= 0 there exist an explicit q > 0 and u �= 0 such that

lim
t→∞ eqt e−Qt z = uz . (4.3)

Indeed, if z̃1 = 0 then z̃2 �= 0 and we have lim
t→∞ eλ+t e−Qt z = (v− v+)(0, z̃2)∗ =: uz �= 0.

If z̃2 = 0 then z̃1 �= 0 and we have lim
t→∞ eλ−t e−Qt z = (v− v+)(z̃1, 0)∗ =: uz �= 0. Finally,

if z̃1 �= 0 and z̃2 �= 0. Then lim
t→∞ eλ−t e−Qt z = (v− v+)(z̃1, 0)∗ =: uz �= 0. In particular, for

any z �= 0, the omega limit set ω(z) defined in (3.7) consists of a single point uz .
Hence for the noises (1)–(4), Theorem 3.1 applies for 1 ≤ p′ ≤ p and thermalization

profile holds at the time scale

txε = 1

q
| ln(ε)|,

with profile

Pz(r) = e−rqw|uz |
for all window sizes w > 0. Roughly speaking, for any 1 ≤ p′ ≤ p Theorem 3.1 yields for
some positive Kp,p′

Wp′(Xε
txε +r ·w(x), με) ≈ε ε e−rqw|u| + ε2Kp,p′E[|O∞|].

For the noise (5), Theorem 3.3 still implies profile thermalization, however, the profile is
given by the abstract formula

Px,p′(r) = Wp′
(
e−rqwuz + O∞,O∞

)

for any p′ ≤ p < α.
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4.2.2 Critically Damped Linear Oscillator:1 = �2 − 4� = 0

In this case, −Q has a repeated real eigenvalue λ := λ− = λ+ = −γ /2 < 0 and the matrix
exponential is given by

e−Qt = eλt I2 + eλt t(−Q − λI2) for t ≥ 0.

Let z = (x, y)∗ �= (0, 0)∗. On the one hand, if z ∈ Ker(−Q − λI2), that is, in Lemma 2.1
we have 
 = 1, and e−λt e−Qt z = uz for uz = z. On the other hand, z �= Ker(−Q − λI2)
which corresponds to 
 = 2 yields

lim
t→∞

e−λt

t
e−Qt z = (−Q − λI2)z =: uz �= 0.

In particular, for any z �= 0, the omega limit set ω(z) defined in (3.7) consists of the a single
point uz . Hence for the noises (1)–(4) Theorem 3.1 still applies for 1 ≤ p′ ≤ p and profile
thermalization holds true at the modified time scale

txε = 1

q
| ln(ε)| + 
 − 1

q
ln(| ln(ε)|)

with the modified profile

Pz(r) = e−rw(γ/2)

(γ /2)
−1 |u|

for all window sizes w > 0. Roughly speaking, for any 1 ≤ p′ ≤ p Theorem 3.1 yields for
some positive constant Kp,p′

Wp′(Xε
txε +r ·w(x), με) ≈ε ε · e

−rw(γ/2)

(γ /2)
−1 |u| + ε2| ln(ε)|
−1 · Kp,p′ E[|O∞|].

For the noise (5), Theorem 3.3 still implies profile thermalization, however, the modified
profile is also given by the abstract formula

Px,p′(r) = Wp′
(
e−rqwuz + O∞,O∞

)

for any p′ ≤ p < α.
In the sequel, we discuss the general case of complex conjugate eigenvalues in order to

treat the subcritical case.

4.2.3 Non-normal Growth of the Linear Oscillator for Complex Eigenvalues

Recall that the eigenvalues of Q are given by

λ− = λ̂ − i λ̌ and λ+ = λ̂ + i λ̌, λ̌ �= 0.

By the Jacobi formula, see for instance Theorem 1 in [81], Part Three, Sec 8.3, we have

det(eλ̂t e−Qt ) = e2λ̂t e− trace(Qt) = 1. (4.4)

By the Lagrange interpolation theorem (see Theorem 7.11, p.209, in [5]) we have

e−Qt = e−tλ−

−2i λ̌
(−Q + λ+ I2) + e−tλ+

2i λ̌
(−Q + λ− I2)
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= e−t λ̂eit λ̌

2i λ̌
(Q − λ+ I2) − e−t λ̂e−i t λ̌

2i λ̌
(Q − λ− I2)

= −e−t λ̂

λ̌
Re
(
eit λ̌(Q − λ+ I2)

)
. (4.5)

Let z = (x, y)∗ �= (0, 0)∗. The preceding equality yields

|et λ̂e−Qt z| = 1

|λ̌| |Re
(
eit λ̌(Q − λ+ I2)z

)
|.

Moreover, by (4.4) we deduce

lim inf
t→∞ |eλ̂t e−Qt z| > 0. (4.6)

Additionally by the periodicity we have that

lim sup
t→∞

|eλ̂t e−Qt z| < ∞. (4.7)

Note that |et λ̂e−Qt z| is a constant function if and only if |Re
(
eit λ̌(−Q + λ+ I2)z

)
| is so,

too. In the sequel, we characterize when the function

t �→ |Re
(
eit λ̌(Q − λ+ I2)z

)
| is constant.

Let
a(z) := Re((Q − λ+ I2)z) and b(z) := Im((Q − λ+ I2)z). (4.8)

Note that
Re(eit λ̌(Q − λ+ I2)z) = cos(λ̌t)a(z) − sin(λ̌t)b(z). (4.9)

Combining (4.5) with (4.9) yields

eλ̂t e−Qt z = −1

λ̌

(
cos(λ̌t)a(z) − sin(λ̌t)b(z)

)
. (4.10)

As a consequence, the Pythagoras theorem yields

|Re(eit λ̌(Q − λ+ I2)z)|2 = | cos(λ̌t)a(z) − sin(λ̌t)b(z)|2
= cos2(λ̌t)|a(z)|2 + sin2(λ̌t)|b(z)|2 − 2 cos(λ̌t) sin(λ̌t)〈a(z), b(z)〉.

(4.11)

Remark 4.1 Note that equation (4.11) does not require any specific structure of Q. It only
uses that d = 2, Q ∈ R

2⊗2 and the existence of conjugate complex, non-real eigenvalues.
For this (more general) case we state the following lemma.

Lemma 4.1 (Profile cutoff characterization by the absence of non-normal growth) For d = 2
the following statements are equivalent.

(i) The function t �→ |Re(eit λ̌(Q − λ+ I2)z)| is constant.
(ii) |a(z)|2 = |b(z)|2 and 〈a(z), b(z)〉 = 0, where a(z) and b(z) are given in (4.8).
(iii) For some R > 0

ω(z) ⊂ {|u| = R},
where

ω(z) = {u ∈ R
2 | eλ̂tn e−Qtn z → u for some (tn)n∈N, tn → ∞}.
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Proof The proofs of ii)�⇒ i) and ii) �⇒ iii) are immediately from (4.11).

We continuewith i)�⇒ ii) and assume that t �→ |Re(eit λ̌(Q−λ+ I2)z)| is constant. Evaluating
in tn = πn

λ̌
, n ∈ N we obtain

|Re(eitn λ̌(Q − λ+ I2)z)|2 = |a(z)|2.
Now, we evaluate in sn = π+2nπ

2λ̌
, n ∈ N and deduce

|Re(eisn λ̌(Q − λ+ I2)z)|2 = |b(z)|2.
Hence |a(z)|2 = |b(z)|2 as in ii). Inserting the preceding equalities in (4.11), we have for
any t ≥ 0

|a(z)|2 = |Re(eit λ̌(Q − λ+ I2)z)|2 = |a(z)|2 − 2 cos(λ̌t) sin(λ̌t)〈a(z), b(z)〉.
Since λ̌ �= 0 the latter implies 〈a(z), b(z)〉 = 0.

We continue with iii) �⇒ ii). For the sequence tn = 2πn
λ̌
, n ∈ N, applied to (4.10) yields

− a(z)
λ̌

∈ ω(z). This implies R = | a(z)
λ̌

|. For the sequence tn = 1
λ̌
(2πn + π

2 ), n ∈ N, we have
b(z)
λ̌

∈ ω(z), and hence also R = | b(z)
λ̌

|. This and λ̌ �= 0 gives |a(z)| = |b(z)|. For the inner
product we use that (4.5) and (4.11) imply

|et λ̂e−Qt z|2 = 1

λ̌2
| cos(λ̌t)a(z) − sin(λ̌t)b(z)|2

= 1

λ̌2
cos2(λ̌t)|a(z)|2 + 1

λ̌2
sin2(λ̌t)|b(z)|2 − 2

λ̌2
cos(λ̌t) sin(λ̌t)〈a(z), b(z)〉

= cos2(λ̌t)R2 + sin2(λ̌t)R2 − 2

λ̌2
cos(λ̌t) sin(λ̌t)〈a(z), b(z)〉

= R2 − 2

λ̌2
cos(λ̌t) sin(λ̌t)〈a(z), b(z)〉.

For tn = π/4+2πn
λ̌

in (4.10) we have
√
2

2λ̌
(b(z) − a(z)) ∈ ω(z). In addition, for this tn we

obtain

R2 = lim
n→∞ |etn λ̂e−Qt z|2 = R2 − 4

λ̌
〈a(z), b(z)〉,

which yields that 〈a(z), b(z)〉 = 0. ��

With this result at hand we complete the discussion of the linear oscillator in the sequel.

4.2.4 Subcritically Damped Linear Oscillator:1 = �2 − 4� < 0

Recall that the eigenvalues of Q in the case of (4.1) are given by

λ− = λ̂ − i λ̌ and λ+ = λ̂ + i λ̌,

where

λ̂ = γ

2
and λ̌ =

√
4κ − γ 2

2
�= 0.
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By (4.6) and (4.7) for the noises (1)–(5) Theorem 3.4 implies window thermalization for any
0 < p′ ≤ p at time scale

txε = 2

γ
| ln(ε)| for any initial condition (x, y) ∈ R

2, (x, y) �= (0, 0).

In the sequel, by using the shift linearity property d) in Lemma 2.2 we exclude the existence
of a cutoff thermalization profile for any 1 ≤ p′ ≤ p and noises (1)–(4).

Lemma 4.2 Let 1 ≤ p′ ≤ p. For any γ > 0 and κ > 0 such that γ 2 − 4κ < 0, there is no
cutoff thermalization profile for any (x, y) �= (0, 0).

Proof We apply Lemma 4.1 to (4.2). Recall z = (x, y)∗ �= 0. A straightforward calculation
yields

a(z) =
(

− γ

2
x − y, κx + γ

2
y
)∗

and b(z) = −
√
4κ − γ 2

2
(x, y)∗.

The condition 〈a(z), b(z)〉 = 0 reads as

0 = −
(γ

2
x + y

)
x +

(
κx + γ

2
y
)
y = −γ

2
x2 − xy + κxy

+ γ

2
y2 = −γ

2
x2 + (κ − 1)xy + γ

2
y2,

that is,
γ x2 − γ y2 − 2(κ − 1)xy = 0. (4.12)

Since (x, y) �= (0, 0), the preceding equality yields x �= 0 and y �= 0. The condition
|a(z)|2 = |b(z)|2 is equivalent to

γ 2

4
x2 + y2 + γ xy + κ2x2 + γ 2

4
y2 + κγ xy =

(
κ − γ 2

4

)
(x2 + y2).

Simplifying we obtain

(γ 2 + 2κ(κ − 1))x2 + (γ 2 + 2(1 − κ))y2 + 2γ (κ + 1)xy = 0. (4.13)

For κ = 1 we have that (4.12) yields x2 = y2. Substituting in (4.13) we obtain

0 = γ 2x2 ± 2γ x2 = (γ 2 ± 2γ )x2.

Since x2 > 0 and γ > 0, the unique solution is γ = 2,which implies γ 2−4κ = 4−4 = 0 and
gives a contradiction to the subcritical damping γ 2 − 4κ < 0 of this case. As a consequence
κ = 1 excludes profile thermalization for any parameters γ > 0 and (x, y) �= (0, 0). In the
sequel, we assume κ �= 1. Multiplying (4.13) by (κ − 1) we have

((κ −1)γ 2+2κ(κ −1)2)x2+((κ −1)γ 2−2(κ −1)2)y2+2γ (κ −1)(κ +1)xy = 0. (4.14)

Inserting the expression for 2(κ − 1)xy being given in (4.12) into (4.14) we obtain

0 = ((κ − 1)γ 2 + 2κ(κ − 1)2)x2 + ((κ − 1)γ 2 − 2(κ − 1)2)y2 + (κ + 1)γ 2(x2 − y2)

= ((κ − 1)γ 2 + 2κ(κ − 1)2 + (κ + 1)γ 2)x2 + ((κ − 1)γ 2 − 2(κ − 1)2 − (κ + 1)γ 2)y2

= 2(κ(γ 2 + (κ − 1)2)x2 − 2(γ 2 + (κ − 1)2)y2.

Since γ 2 + (κ − 1)2 > 0, we obtain κx2 − y2 = 0. In other words, y = ±√
kx . Substituting

in (4.12) we have

0 = γ x2 − γ 2y2 − 2(κ − 1)xy =
(
γ − γ κ ∓ 2(κ − 1)

√
κ
)
x2

123



27 Page 24 of 54 G. Barrera et al.

which implies γ − γ κ ∓ 2(k − 1)
√

κ = 0. Hence γ (1 − κ) = ±2(κ − 1)
√

κ . Since κ �= 1
we have γ = ∓2

√
κ which implies γ 2 − 4κ = 0 and gives a contradiction to the subcritical

damping γ 2 − 4κ < 0. As a consequence for any κ > 0 and γ > 0 such that γ 2 − 4κ < 0,
there is no profile thermalization for any initial condition (x, y) �= (0, 0). ��

This concludes the complete analysis of the linear oscillator (4.1).

4.3 Linear Chain of Oscillators in a Thermal Bath at LowTemperature

4.3.1 Window Cutoff Thermalization for the Linear Chain of Oscillators

Our results cover the setting of Jacobi chains ofn oscillatorswith nearest neighbor interactions
coupled to heat baths at its two ends, as discussed in Section 4.1 in [92] and Section 4.2 in
[69]. For the sake of simplicity we show window cutoff thermalization for n oscillators with
the Hamiltonian

H : Rn × R
n → R

(p, q) �→ H(p, q) := 1

2

n∑
i=1

p2i + 1

2

n∑
i=1

γ q2i + 1

2

n−1∑
i=1

κ(qi+1 − qi )
2.

Coupling the first and the nth oscillator to a Langevin heat bath eachwith positive temperature
ε2 and positive coupling constantsς1 andςn yields for Xε = (X1,ε, . . . , X2n,ε) = (pε, qε) =
(pε

1, . . . , p
ε
n, q

ε
1 , . . . , q

ε
n) the system

dXε
t = −QXε

t dt + εdLt ,

where Q is a 2n × 2n-dimensional real matrix of the following shape

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ς1 0 . . . 0 κ + γ −κ 0 0 . . . 0
0 0 . . . 0 −κ 2κ + γ −κ 0 0 . . . 0

. . . . . .
. . .

. . .
. . .

. . . . . .
. . .

. . .
. . .

0 . . . 0 0 . . . 0 −κ 2κ + γ −κ

0 0 . . . 0 ςn 0 . . . 0 −κ κ + γ

−1 0 . . . 0 0 0 . . . 0
0 −1 . . . 0 0
...

. . .
. . .

...
. . .

...

. . . −1 0
0 . . . 0 −1 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and Lt = (L1
t , 0, . . . , L

n
t , 0, . . . , 0)

∗. Here L1, Ln are one dimensional independent Lévy
processes satisfying Hypothesis 2.1 for some p > 0. By Section 4.1 in [92] Q satisfies
Hypothesis 2.2. Consequently by Theorem 3.4 the system exhibits window cutoff thermal-
ization for any initial condition x �= 0. The presence of a thermalization profile depends
highly on the choice of the parameters κ , ς1, ς2, γ .
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4.3.2 Numerical Example of a Linear Chain of Oscillators

In the sequel, we set ς1 = ςn = κ = 1, γ = 0.01 and n = 5. The following computations
are carried out in Wolfram Mathematica 12.1. The interaction matrix Q is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1.01 −1 0 0 0

0 0 0 0 0 −1 2.01 −1 0 0

0 0 0 0 0 0 −1 2.01 −1 0

0 0 0 0 0 0 0 −1 2.01 −1

0 0 0 0 1 0 0 0 −1 1.01

−1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with the following eigenvalues

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
λ̄1
λ2
λ̄2
λ3
λ̄3
λ4
λ̄4
λ5
λ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0263377 + 1.88656 · i
0.0263377 − 1.88656 · i
0.104782 + 1.55549 · i
0.104782 − 1.55549 · i
0.234099 + 1.06262 · i
0.234099 − 1.06262 · i
0.395218 + 0.517319 · i
0.395218 − 0.517319 · i
0.452655 + 0. · i
0.0264706 + 0. · i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since we have 10 complex eigenvalues, we obtain a base of 10 eigenvectors v1, v̄1, v2,

v̄2, v3, v̄3, v4, v̄4, v5, v6 where v1, v2, v3, v4 ∈ C
10 \ R10 and v5, v6 ∈ R

10, maintaining the
natural ordering. Hence for the initial condition x we have the unique representation

x =
4∑
j=1

(c j (x)v j + c̄ j (x)v̄ j ) + c5(x)v5 + c6(x)v6,

where c1(x), c2(x), c3(x), c4(x) ∈ C and c5(x), c6(x) ∈ R. We note that the minimum of
real parts of the eigenvalues is taken by the eigenvalues λ1, λ̄1. Let q = Re(λ1) = 0.0263377
and θ = arg(λ1) = 1.55684. Hence, for generic x (not properly contained in any eigenspace)
we have

eqt e−Qt x ≈ eiθ t c1(x)v1 + ēiθ t c̄1(x)v̄1 + 2e(q−0.0264706)tRe(c6(x)v6)

= 2Re(eiθ t c1(x)v1) + 2e(q−0.0264706)tRe(c6(x)v6),
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where c6(x) is a constant depending on x and

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.112319 − 0.0891416 · i
−0.448508 + 0.0287844 · i
0.579305 + 0. · i
−0.448508 + 0.0287844 · i
0.112319 − 0.0891416 · i
0.0464105 + 0.060184 · i
−0.0119363 − 0.237904 · i
−0.00428606 + 0.307009 · i
−0.0119363 − 0.237904 · i
0.0464105 + 0.060184 · i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The vector of c j = c j (x) is given by

c(x) = (c1, c̄1, c2, c̄2, c3, c̄3(x), c4, c̄4, c5, c6)
∗ = [v1|v̄1|v2|v̄2|v3|v̄3|v4|v̄4|v5|v6]−1x .

For instance for x = e1 = (1, 0, . . . , 0) we obtain

c(e1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0800993 − 0.0495081 · i
0.0800993 + 0.0495081 · i
0.186213 − 0.0967681 · i
0.186213 + 0.0967681 · i
0.371378 − 0.158507 · i
0.371378 + 0.158507 · i
−0.0619613 + 0.787062 · i
−0.0619613 − 0.787062 · i
1.62062 + 5.543 · 10−16 · i
1.2715 + 2.33866 · 10−16 · i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence

c1(e1)v1 = ŵ + i · w̌ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00396485
0.00886695
0.0101247
0.0197063
0.0218997
0.0375945
0.0340029
−0.043929
0.12981
0.101846

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ i ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.00793113
−2.28066 · 10−9

−0.0169701
−0.001468
−0.0310825
−0.00568992
0.0661107
−0.0599756
−0.0802337
−0.0629493

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and consequently

eqt e−Qt e1 ≈ 2 cos(θ t)ŵ − 2 sin(θ t)w̌.

In the sequel, we check the existence of a thermalization profile for p ≥ 1. A straightforward
computations show that |ŵ| = 0.181073 �= 0.140425 = |ŵ| and 〈ŵ, w̌〉 = −0.0130705 �=
0. Hence Theorem 3.2 yields the absence of a thermalization profile.

Recall that e−qtε = ε. Hence

e−Qtε x

ε
= eqtεe−Qtε ≈ (eiθtεc1(x)v1 + ēiθtε c̄1(x)v̄1) + 2e(q−0.0264706)tεRe(c6(x)v6)

123



Cutoff Thermalization for Ornstein–Uhlenbeck Systems... Page 27 of 54 27

= 2Re(eiθtεc1(x)v1) + 2ε(0.0264706−q)/qRe(c6(x)v6)

= 2Re(eiθtεc1(x)v1) + 2ε0.0001329Re(c6(x)v6).

The low order of the error is essentially due to the relative spectral gap (0.0264706−q)/q.

5 Conceptual Examples

In the sequel, we give mathematical examples illustrating typical features of linear systems.
We startwith a non-symmetric linear systemwith complex (conjugate) eigenvalues exhibiting
always a thermalization profile. This is followedby an adhoc example illustrating the sensitive
dependence of a thermalization profile on the initial condition. Finally we provide an example
of repeated eigenvalues, where a log-log correction in the thermalization time scale appears.

5.1 Example: Leading Complex Eigenvalues Do Not Exclude Profile

Let

Q :=
(

λ θ

−θ λ

)
with λ > 0 and θ �= 0.

The eigenvalues of −Q are given by −λ ± iθ . A straightforward computation yields

e−Qt = e−λt
(
cos(θ t) − sin(θ t)
sin(θ t) cos(θ t)

)
.

Hence for any z = (x, y)∗ we have

|eλt e−Qt z| =
∣∣∣∣
(
cos(θ t) − sin(θ t)
sin(θ t) cos(θ t)

)
z

∣∣∣∣ = |z|.

As a consequence, Theorem 3.1 implies a thermalization profile for any initial value z �= 0.

5.2 Example: The Initial Value Strongly Determines the Cutoff

We consider an embedding of the linear oscillator (4.1) inR3. Assume the case of subcritical
damping γ 2 < 4κ for positive parameters γ, κ, λ,

Q :=
(

λ 0
0 Q1

)
and Q1 =

(
0 −1
κ γ

)
.

The matrixQ1 is precisely the one for the linear oscillator (4.2) analyzed in Example 4.2. A
straightforward computation shows

e−Qt =
(
e−λt 0
0 e−Q1t

)
.

For any initial value z = (z1, 0, 0) with z1 �= 0 we have |eλt e−Qt z| = |z1| and therefore
a thermalization profile is valid due to Theorem 3.1. However, for any z = (0, z2, z3) with
(z2, z3) �= (0, 0) we have |e γ

2 t e−Qt z| = |e−Q1t (z2, z3)∗| which by the case of subcritical
damping (γ 2 < 4κ) discussed in Sect. 4.2 does not have a cutoff thermalization profile.
Instead, by Theorem 3.4 only window cutoff thermalization is valid. That is, the presence of
a thermalization profile is sensitive with respect to the initial condition.
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In the sequel, we emphasize the presence of a threshold effect for the existence of a
thermalization profile with respect to the parameters due to competing real parts of the
eigenvalues. Let z = (z1, z2, z3) with z1 �= 0, (z2, z3) �= (0, 0). If in addition γ

2 < λ we
have

lim
t→∞ eλt |e−Qt z| = |z1|,

which implies that ω(z) ⊂ {|u| = |z1|} and therefore by Theorem 3.1 a thermalization
profile. However, if γ

2 ≥ λ we have

lim
t→∞ e

γ
2 t |e−Qt z| = lim

t→∞ e
γ
2 t e−λt |z1| + lim

t→∞ e
γ
2 t |e−Q1t (z2, z3)

∗|,

which is not constant, as discussed in Sect. 4.2, and has only window thermalization (by
Theorem 3.4), but no profile due the negative result in Lemma 4.2.

5.3 Example: Multiplicities in the Jordan block Yield Logarithmic Corrections

Let Q be a d-squared matrix with all its eigenvalues equal to λ > 0. Theorem 7.10 p.209 in
[5] yields

e−Qt = e−λt
d−1∑
j=0

tk

k! (−Q + λId)
k .

For z ∈ R
d , z �= 0 let

l(z) = max{k ∈ {0, . . . , d − 1} : (−Q + λId)
k z �= 0}.

Then

eλt e−Qt z =
d−1∑
k=0

tk

k! (−Q + λId)
k z =

l(z)∑
k=0

tk

k! (−Q + λId)
k z.

On the one hand, if l(z) = 0 we have eλt e−Qt z = z. On the other hand, if l(z) ≥ 1 we obtain

eλt

t l(z)
e−Qt z =

l(z)−1∑
k=0

tk−l(z)

k! (−Q + λId)
k z + 1

l(z)! (−Q + λId)
l(z)z. (5.1)

Hence

lim
t→∞

eλt

t l(z)
e−Qt z = 1

l(z)! (−Q + λId)
l(z)z �= 0,

and in this case 
(z) = l(z) + 1 ≥ 2, where 
(z) is the constant given in Lemma 2.1. Due
to Theorem 3.1 there is always a thermalization profile. However, if 
(z) ≥ 2, the log-log
correction in (3.9) appears. Note that a log-log correction and the presence of a thermalization
profile are independent properties. It is not complicated to construct an example with no
thermalization profile and log-log correction.
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6 Extensions and Applications

This section contains the cutoff phenomenon for the relative entropy in the Brownian case, for
the Wasserstein distance with stationary red noises and comments about the computational
observation of the cutoff phenomenon.

6.1 Cutoff Thermalization in the Relative Entropy

In this subsection we discuss the asymptotics in the explicit formula (1.2) of the relative
entropy for general exponentially asymptotically stable −Q.

The strongest notion of thermalization of interest is given in terms of the Kullback-Leibler
divergence also called relative entropy. For pure Brownian perturbations the marginals of

dXε
t (x) = −QXε

t (x)dt + εσdBt , Xε
0 = x,

for some σ ∈ R
d×d are known to be

Xε
t (x)

d= N (e−Qt x, ε2�t ),

where

�t = e−Qt
( ∫ t

0
eQsσσ ∗eQ∗sds

)
e−Q∗t

is a symmetric and non-negative definite square matrix, see Proposition 3.5 in [89]. Since
Q satisfies Hypothesis 2.2, we have e−Qt x → 0 and ε2�t → ε2�∞ as t → ∞ which
implies the existence of a unique limiting distribution με = N (0, ε2�∞). A priori, �t

and �∞ may degenerate, however, Theorem 3.4 applies for p = ∞ and Theorem 3.3
is valid under condition (3.8). If additionally we assume that −Q and σ are controllable,
i.e. Rank[−Q, σ ] = d , the matrices �t and �∞ turn out to be non-singular. Moreover,
�∞ is the unique symmetric positive definite solution of the Lyapunov matrix equation
Q�∞ + �∞Q∗ = σσ ∗. The relative entropy is given explicitly by formula (1.2), which we
rewrite as

H(Xε
t (x)|με) − 1

2ε2
(e−Qt x)∗�−1∞ e−Qt x = 1

2

(
Tr(�−1∞ �t ) − d + ln

(det(�∞)

det(�t )

))
.

For any tε → ∞ as ε → 0 we have that the error term in the right-hand side of the preceding
equality tends to zero as ε → 0. In the sequel, we analyze the asymptotic quadratic form

1

2ε2
(e−Qt x)∗�−1∞

(
e−Qt x

) = 1

2

∣∣∣�−1/2∞
e−Qt x

ε

∣∣∣2.
By Lemma 2.1 it has the spectral decomposition

lim
t→∞

∣∣∣∣∣
eqt

t
−1 e
−Qt x −

m∑
k=1

eitθkvk

∣∣∣∣∣ = 0. (6.1)

For the scale txε and wε given in Theorem 3.1 we have

lim
ε→0

(txε + r · wε)

−1e−q(txε +r ·wε)

ε
= q1−
e−qwr . (6.2)
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Lemma 1 implies∣∣∣∣∣
∣∣∣�−1/2∞

e−Q(txε +r ·wε)x

ε

∣∣∣−
∣∣∣�−1/2∞

(txε + r · wε)

−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk

∣∣∣
∣∣∣∣∣

≤ |�−1/2∞ | (t
x
ε + r · wε)


−1

εeq(txε +r ·wε)

∣∣∣∣∣
(
eq(txε +r ·wε)

e−Q(txε +r ·wε)x

(txε + r · wε)
−1 −
m∑

k=1

ei(t
x
ε +r ·wε)θkvk

)∣∣∣∣∣ .
Combining the preceding inequality with (6.1) and (6.2), yields

lim sup
ε→0

∣∣∣�−1/2∞
e−Q(txε +r ·wε)x

ε

∣∣∣ = q1−
e−qwr lim sup
ε→0

∣∣∣�−1/2∞
m∑

k=1

ei(t
x
ε +r ·wε)θkvk

∣∣∣

≤ q1−
e−qwr
∣∣∣�−1/2∞

∣∣∣
m∑

k=1

|vk | (6.3)

and

lim inf
ε→0

∣∣∣�−1/2∞
e−Q(txε +r ·wε)x

ε

∣∣∣ = q1−
e−qwr lim inf
ε→0

∣∣∣�−1/2∞
m∑

k=1

ei(t
x
ε +r ·wε)θkvk

∣∣∣

≥ q1−
e−qwr |�1/2∞ |−1 lim inf
ε→0

∣∣∣
m∑

k=1

ei(t
x
ε +r ·wε)θkvk

∣∣∣

≥ q1−
e−qwr |�1/2∞ |−1 lim inf
t→∞

∣∣∣
m∑

k=1

eitθkvk
∣∣∣. (6.4)

Hence the analogue of Theorem 3.4 is valid for the relative entropy, that is,

lim
r→∞ lim sup

ε→0

∣∣∣�−1/2∞
e−Q(txε +r ·wε)x

ε

∣∣∣ = 0

and by (2.4) in Lemma 2.1

lim
r→−∞ lim inf

ε→0

∣∣∣�−1/2∞
e−Q(txε +r ·wε)x

ε

∣∣∣ = ∞.

Moreover, we have the analogue of Theorem 3.1 with the following modification. By (6.3)
and (6.4) the existence of a cutoff thermalization profile holds if and only if the geometric
condition of |�−1/2∞ ω(x)| being contained in a sphere is satisfied, where ω(x) is given in
(3.7). Recall that the normal growth condition (3.15) in Theorem 3.2 under the non-resonance
hypothesis (3.14) in Remark 3.4 is given by

(v1, v̂2, v̌2, . . . , v̂2n, v̌2n) being orthogonal and satisfying

|v̂2k | = |v̌2k | for k = 1, . . . , n.

This characterization of the thermalization profile changes for the relative entropy to the
following weighted normal growth condition:

(�
−1/2∞ v1, �

−1/2∞ v̂2, �
−1/2∞ v̌2, . . . , �

−1/2∞ v̂2n, �
−1/2∞ v̌2n) is orthogonal and satisfies

|�−1/2∞ v̂2k | = |�−1/2∞ v̌2k | for k = 1, . . . , n.

(6.5)
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In case of (6.5) the thermalization profile is given by

P̃x (r) = q1−
e−qwr |�−1/2∞ u|, (6.6)

where u is any representative ofω(x). To our knowledge, this result is original and not known
in the literature due to the lack of Lemma 2.1.

6.2 Cutoff Thermalization for Small Red andMore General Ergodic Noises

In this subsection we show that our results remain intact if we replace the driving Lévy noise
by red noise or more general ergodic noises.

In the sequel, we consider the generalized Ornstein–Uhlenbeck process (Xε
t (x))t≥0

dXε
t = −QXε

t dt + εdUt , Xε
0 = x, (6.7)

where the matrix Q satisfies Hypothesis 2.2. Equation (6.7) is driven by (i) a stationary
multidimensional Ornstein–Uhlenbeck process (Ut )t≥0 given by

dUt = −�Utdt + dLt , U0
d= μ̃, (6.8)

where the matrix � satisfies Hypothesis 2.2, L = (Lt )t≥0 fulfills Hypothesis 2.1 for some

p > 0 andU0 is independent of L . We point out thatUt
d= μ̃ for all t ≥ 0.We stress that with

more technical effort the subordinated linear process (Ut )t≥0 can be replaced by virtually
any ergodic (Feller-) Markov process which is sufficiently integrable. For illustration of the
ideas we focus on the stationary driving noise given by (6.8). By the variation of constant
formula we have

Xε
t = e−Qt x + εe−Qt

∫ t

0
eQsdUs =: e−Qt x + εUt .

Note that

d

(
Xε
t

Ut

)
= �ε

(
Xε
t

Ut

)
dt +

(
ε

1

)
dLt .

where

�ε :=
(−Q −ε�

0 −�

)
. (6.9)

Since Q and � satisfy Hypothesis 2.2 and �ε is an upper block matrix, we have that �ε

also satisfies Hypothesis 2.2. In particular, the vector process ((Xε
t ,Ut ))t≥0 is an Ornstein–

Uhlenbeck process and hence Markovian. As a consequence, Theorem 4.1 in [98] yields
the existence and uniqueness of an invariant and limiting distribution (for the weak conver-

gence) (Xε∞,U0) of ((Xε
t ,Ut ))t≥0. Hence Xε∞

d= εU∞. We continue with the estimate of
Wp′(Xε

t , X
ε∞). For any 1 ≤ p′ ≤ p the analogous computations used in (3.3) yield

|Wp′(Xε
t , X

ε∞)

ε
− |e−Qt x |

ε
| ≤ Wp′(Ut ,U∞).

Hence cutoff thermalization occurs whenever Wp′(Ut ,U∞) → 0 as t → ∞. Properties a),
b) and d) of Lemma 2.2 imply

Wp′(Ut ,U∞) = Wp′(X1
t − e−Qt x, X1∞)

≤ Wp′(X1
t − e−Qt x, X1∞ − e−Qt x) + Wp′(X1∞ − e−Qt x, X1∞)
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= Wp′(X1
t , X

1∞) + |e−Qt x |. (6.10)

We point out that the vector process (X1
t ,Ut )t≥0 is a Markov process. Since in general

projections of Markovian processes are not Markovian, we study the process Xt in more
detail. Due to the triangle structure we have the dependences X1

t (x,U0) andUt (U0). In case
of initial data (x, u) instead of (x,U0) in (6.7) and (6.8) we write (for ε = 1) X1

t (x, u)

and Ut (u). Analogously to the total variation distance, Theorem 5.2 in [39] the Wasserstein
exhibits a contraction property which for completeness is shown here. By the contraction
property g) in Lemma 2.2 for the projection T (x, u) = x we have

Wp′(X1
t (x,U0), X

1∞) ≤ Wp′((X1
t (x,U0),Ut (U0)), (X

1∞,Ut (U0))) (6.11)

for any 1 ≤ p′ ≤ p. We note that

Wp′((X1
t (x,U0),Ut (U0)), (X

1∞,Ut (U0))) = Wp′((X1
t (x,U0),Ut (U0)), (X

1∞,U0)).

(6.12)
Lemma 2.4 applied to the vector-valued Ornstein–Uhlenbeck process ((X1

t (x,U0),

Ut (U0)))t≥0 instead of (Xε
t (x))t≥0 where �1 replaces Q yields the limit

lim
t→∞Wp′((X1

t (x,U0),Ut (U0)), (X
1∞,U0)) = 0.

The preceding limit with the help of (6.11) implies

lim
t→∞Wp′(X1

t (x,U0), X
1∞) = 0.

Therefore the cutoff thermalization behavior of the Ornstein–Uhlenbeck driven system (6.7)
is the same as the white noise driven system (2.1) given in Theorem 3.1 and Theorem 3.4.
This is not surprising since the shift-linearity property of the Wasserstein distance for p ≥ 1
cancels out the specific invariant distribution.

6.3 Conditions on " for the Observation of the Cutoff on a Fixed Interval [0, T]

This subsection provides bounds on the size of ε in order to observe cutoff on a fixed (large)
interval [0, T ]. Similar observations have been made in Section IV of [8] in order illustrate
the optimal tuning of the parameter ε.

Our main results contain the time scale tε → ∞ as ε → 0 at which thermalization occurs.
However, the computational resources can only cover up to finite time horizon T > 0. In the
sequel, we line out estimates on the smallest of ε in order to observe the cutoff thermalization
before time T/2 ∈ [0, T ], that is, T ≥ 2txε for ε � 1. In other words, we have the lower
bound

ε ≥ e−(qT/2). (6.13)

Since our results are asymptotic, it is required that ε < ε0, where ε0 typically depends of
Q, x and E[|O∞|].

Given an error η > 0. In the light of estimates (3.3) (p ≥ 1) and (3.5) (p ∈ (0, 1)) we
carry out the following error analysis. In the sequel, we always consider a generic initial
condition x . Formula (3.17) in item (4) of Remark 3.5 yields the following upper bound of
the error

C0E[|O∞|]ε ≤ η/2, (6.14)

where the constant C0 is given in terms of the spectral gap in (2.9) and an upper bound of
E[|O∞|] is expressed in terms of the noise parameters in the estimate (2.12). By Remark 3.7
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item (2) we have an error of order

K (x)εg/q ≤ η/2, (6.15)

where the spectral gap g is given in (3.18) and the constant K (x) is estimated in (3.19).
Combining (6.13) (6.14) and (6.15) and solving for ε yields

e−(qT/2) ≤ ε ≤ min

{
η

2C0E[|O∞|] ,
(

η

2K (x)

)q/g
}

. (6.16)
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Appendix A. Proof of Lemma 2.2 (Properties of the Wasserstein Dis-
tance)

Proof of Lemma 2.2 Property a) is shown for p ≥ 1 in [106] p. 94. The proof for p ∈ (0, 1)
follows by the same reasoning with the help of the subadditivity of the mapR+ � r → r p ∈
R+. Item b) is straightforward for any p > 0 due to the translation invariance in formula
(2.5). The homogeneity property of item c) follows directly from (2.5) for any p > 0.
In the sequel we show item d). Since we are not aware of a proof in the literature the statement
is shown here. Synchronous replica (U1,U1) with joint law �(du, du) (natural coupling)
yields the upper bound for any p > 0 as follows

Wp(u1 +U1,U1) ≤
(∫

Rd×Rd
|u1 + u − u|p�(du, du)

)min{1,1/p}
= |u1|min{1,p}. (A.1)

We continue with the lower bound for p ≥ 1. Let π any coupling (joint law) between u1+U1

and U1. Note that ∫
Rd×Rd

(u − v)π(du, dv) =
∫
Rd×Rd

uπ(du, dv)

−
∫
Rd×Rd

vπ(du, dv) = E[u1 +U1] − E[U1] = u1.
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Then the triangular inequality yields

|u1| =
∣∣∣
∫
Rd×Rd

(u − v)π(du, dv)

∣∣∣ ≤
∫
Rd×Rd

|u − v|π(du, dv).

Minimizing over all possible coupling between u1 +U1 and U1 we obtain

|u1| ≤ W1(u1 +U1,U1). (A.2)

For p ≥ 1, Jensen’s inequality with the help of (A.1) and (A.2) yields

|u1| ≤ W1(u1 +U1,U1) ≤ Wp(u1 +U1,U1) ≤ |u1|,
such that Wp(u1 +U1,U1) = |u1|.
For p ∈ (0, 1), the triangle inequality and the translation invariance b) imply

|x |p = Wp(x, 0) ≤ Wp(x, x +U ) + Wp(x +U ,U ) + Wp(U , 0)

= Wp(x +U ,U ) + 2E[|U |p],
and hence

Wp(x +U ,U ) ≥ |x |p − 2E[|U |p]. (A.3)

Combining (A.1) and (A.3) we obtain (2.7). This finishes the proof of item d).
Property e) is straightforward. The characterization in item f) is proven Theorem 6.9 in [106]
for p ≥ 1. For p ∈ (0, 1) we refer to Remark 1.4 in [50].
For completenesswe give a proof of item g).We apply theKantorovich duality (Theorem5.10
p. 57-58 in [106]) for the cost function c(x, y) = |x− y|p for any x, y ∈ R

k and some p > 0.
Let X̃ = T (X) and Ỹ = T (Y ). By item iii) of Theorem 5.10 in [106] we have

Wp(X̃ , Ỹ ) = max
(ψ,ϕ)

(
E[ϕ(Ỹ ) − ψ(X̃)]

)min{1, 1p }
,

where the maximum is running over all integrable functions ψ and ϕ such that

ϕ(x) − ψ(y) ≤ |x − y|p (A.4)

for all x, y ∈ R
k . In addition, item iii) of Theorem 5.10 in [106] states the existence of a

respective maximizer (ϕ∗, ψ∗). The preceding equality yields

Wp(X̃ , Ỹ ) =
(
E[ϕ∗(Ỹ ) − ψ∗(X̃)]

)min{1, 1p }
=
(
E[ϕ∗(T (Y )) − ψ∗(T (X))]

)min{1, 1p }

=
(
E[ϕ∗ ◦ T (Y ) − ψ∗ ◦ T (X)]

)min{1, 1p }
.

(A.5)
Using (A.4) and the fact that T is Lipschitz continuous with Lipschitz constant 1, we have
for any u, v ∈ R

d

ϕ∗ ◦ T (u) − ψ∗ ◦ T (v) = ϕ∗(T (u)) − ψ∗(T (v)) ≤ |T (u) − T (v)|p ≤ |u − v|p

and hence

Wp(X , Y ) ≥
(
E[ϕ∗ ◦ T (Y ) − ψ∗ ◦ T (X)]

)min{1, 1p }
. (A.6)

The statement of item g) is a direct consequence of (A.5) and (A.6). ��
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Proof of Lemma 2.3 Let p′ ∈ (0, p]. Given U1,U2 let π be some joint distribution of
(U1,U2). By definition

Wp′(U1,U2) = inf
π

∫
Rd×Rd

|u1 − u2|p′
π(du1, du2)

= inf
π

∫
Rd×Rd

|u1 − u2|p′
1{u1 �= u2}π(du1, du2)

≤
∫
Rd×Rd

|u1 − u2|p′
1{u1 �= u2}π(du1, du2).

Note that for any u1, u2 ∈ R
d

|u1 − u2|p′ ≤ 1{|u1 − u2| ≤ 1} + |u1 − u2|p1(|u1 − u2| > 1) ≤ 1 + |u1 − u2|p

and |u1−u2|p′
1{u1 �= u2} → 1{u1 �= u2} as p′ → 0 for any u1, u2 ∈ R

d . By the dominated
convergence theorem we obtain

lim
p′→0

Wp′(U1,U2) ≤ lim
p′→0

∫
Rd×Rd

|u1 − u2|p′
1{u1 �= u2}π(du1, du2)

=
∫
Rd×Rd

1{u1 �= u2}π(du1, du2).

Minimizing over all joint distributions π of U1,U2 we obtain

lim
p′→0

Wp′(U1,U2) ≤ dTV(U1,U2).

Moreover, the dominated convergence theorem also yields the lower bound∫
Rd×Rd

1{u1 �= u2}π(du1, du2) = lim
p′→0

∫
Rd×Rd

|u1 − u2|p′
1{u1 �= u2}π(du1, du2)

≥ lim
p′→0

Wp′(U1,U2).

Minimizing π as above we deduce

dTV(U1,U2) ≥ lim
p′→0

Wp′(U1,U2)

and consequently

dTV(U1,U2) = lim
p′→0

Wp′(U1,U2).

��

Appendix B. Proof of Theorem 3.1 and Theorem 3.3 (Cutoff Thermaliza-
tion Profile)

The following proposition presents the core arguments of the subsequent proofs of Theorem
3.1 and Theorem 3.3.

Proposition B.1 For any 0 < p′ ≤ p it follows

lim sup
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{p′,1}
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= lim sup
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)
(B.1)

and

lim inf
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{p′,1}

= lim inf
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)
. (B.2)

In particular, the limit

lim
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{p′,1} exists (B.3)

if and only if the limit

lim
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)
exists. (B.4)

Proof of Proposition B.1 Let 0 < p′ ≤ p. We first treat the case 0 < p′ ≤ 1. By (3.5), for
any 0 < p′ ≤ 1, we have

∣∣∣∣Wp′(Xε
t (x), μ

ε)

ε p′ − Wp′
(
e−Qt x

ε
+ O∞,O∞

)∣∣∣∣ ≤ Wp′(Ot ,O∞).

We continue with the case p′ ≥ 1. By (3.3) and property d) in Lemma 2.2 for any p′ ≥ 1,
we obtain ∣∣∣∣Wp′(Xε

t (x), μ
ε)

ε
− Wp′

(
e−Qt x

ε
+ O∞,O∞

)∣∣∣∣ ≤ Wp′(Ot ,O∞).

Combining the preceding inequalities we obtain for any 0 < p′ ≤ p
∣∣∣∣Wp′(Xε

t (x), μ
ε)

εmin{p′,1} − Wp′
(e−Qt x

ε
+ O∞,O∞

)∣∣∣∣ ≤ Wp′(Ot ,O∞). (B.5)

Let txε be the time scale given in Theorem 3.1 and wε → w > 0, as ε → 0. By (2.11) we
have Wp′(Ot ,O∞) → 0 whenever t → ∞. Consequently,

lim sup
ε→0

Wp′(Xε
txε +r ·wε

(x), Xε∞)

εmin{p′,1} = lim sup
ε→0

Wp′
(e−Q(txε +r ·wε)x

ε
+ O∞,O∞

)

and

lim inf
ε→0

Wp′(Xε
txε +r ·wε

(x), Xε∞)

εmin{p′,1} = lim inf
ε→0

Wp′
(e−Q(txε +r ·wε)x

ε
+ O∞,O∞

)
.

In the sequel, we study the asymptotics of the drift term e−Qt x
ε

. By Lemma 2.1 it has the
spectral decomposition

lim
t→∞

∣∣∣∣∣
eqt

t
−1 e
−Qt x −

m∑
k=1

eitθkvk

∣∣∣∣∣ = 0. (B.6)
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A straightforward calculation shows

lim
ε→0

(txε + r · wε)

−1e−q(txε +r ·wε)

ε
= q1−
e−qwr . (B.7)

With the help of the spectral decomposition (B.6) and the triangle inequality we have

Wp′

(
e−Q(txε +r ·wε)x

ε
+ O∞,O∞

)

≤ Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)

+ Wp′

((
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk − e−Q(txε +r ·wε)x

ε

)
+ O∞,O∞

)

= Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)
+ Rx

ε , (B.8)

where

Rx
ε := Wp′

((
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk − e−Q(txε +r ·wε)x

ε

)
+ O∞,O∞

)
.

On the other hand, analogous reasoning yields

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)

≤ Wp′

(
e−Q(txε +r ·wε)x

ε
+ O∞,O∞

)
+ Rx

ε . (B.9)

Combining (B.8) and (B.9) we have
∣∣∣∣Wp′

(
e−Q(txε +r ·wε)x

ε
+ O∞,O∞

)

− Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

) ∣∣∣∣ ≤ Rx
ε . (B.10)

In the sequel, we show Rx
ε → 0 as ε → 0. By continuity of Wp′ it is enough to prove

∣∣ (txε + r · wε)

−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk − e−Q(txε +r ·wε)x

ε

∣∣ → 0, ε → 0.

By limit (B.6) and limit (B.7) we obtain for ε → 0

∣∣ (txε + r · wε)

−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk − e−Q(txε +r ·wε)x

ε

∣∣

= (txε + r · wε)

−1

εeq(txε +r ·wε)

∣∣ m∑
k=1

ei(t
x
ε +r ·wε)θkvk − eq(txε +r ·wε)e−Q(txε +r ·wε)x

(txε + r · wε)
−1

∣∣ → 0.
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Inequality (B.10) with the help of the preceding limit yields

lim sup
ε→0

Wp′

(
e−Q(txε +r ·wε)x

ε
+ O∞,O∞

)

= lim sup
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)
.

The analogous result holds for the lower limit. ��
Proof of Theorem 3.3 We start with the proof of i) �⇒ ii). Statement i) implies that for any
λ ≥ 0 the map

ω(x) � u �→ Wp′(λu + O∞,O∞)

defined on

ω(x) =
{
accumulation points of

m∑
k=1

eitθkvk as t → ∞
}

.

is constant. Hence

lim sup
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)

= Wp′
(
q1−
e−qwr û + O∞,O∞

)
. (B.11)

Indeed, by definition of upper limits, there is a sequence (εn)n∈N, εn → 0, n → ∞ for which
the upper limit is the true limit, i.e.,

lim sup
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)

= lim
n→∞Wp′

(
(txεn + r · wεn )


−1

εne
q(txεn+r ·wεn )

m∑
k=1

ei(t
x
εn+r ·wεn )θkvk + O∞,O∞

)
.

By (B.7) we have that the sequence(
(txεn + r · wεn )


−1

εne
q(txεn+r ·wεn )

m∑
k=1

ei(t
x
εn+r ·wεn )θkvk

)

n∈N
is uniformly bounded. Then the Bolzano–Weierstrass theorem yields a subsequence (εn j ) j∈N
of (εn)n∈N such that

lim
j→∞

(txεn j
+ r · wεn j

)
−1

εn j e
q(txεn j

+r ·wεn j
)

m∑
k=1

e
i(txεn j

+r ·wεn j
)θk

vk = q1−
e−qwr û

for some û ∈ ω(x). By continuity we deduce

lim sup
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)
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= lim
n→∞Wp′

(
(txεn + r · wεn )


−1

εne
q(txεn+r ·wεn )

m∑
k=1

ei(t
x
εn+r ·wεn )θkvk + O∞,O∞

)

= lim
j→∞Wp′

⎛
⎝ (txεn j

+ r · wεn j
)
−1

εn j e
q(txεn j

+r ·wεn j
)

m∑
k=1

e
i(txεn j

+r ·wεn j
)θk

vk + O∞,O∞

⎞
⎠

= Wp′(q1−
e−qwr û + O∞,O∞).

An analogous reasoning also justifies

lim inf
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)

= Wp′
(
q1−
e−qwr ǔ + O∞,O∞

)
, (B.12)

where ǔ ∈ ω(x). For λ = q1−
e−qwr we obtain

lim
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)

= Wp′
(
q1−
e−qwr u + O∞,O∞

)
, (B.13)

where u is any element in ω(x). It follows the proof of ii) �⇒ i). Statement ii) yields the
existence of the limit (B.3). By Proposition B.1 we have that the limit (B.4) also exists. Pick
an arbitrary element u ∈ ω(x). Then there exists a sequence of (εn)n∈N, εn → 0, n → ∞
such that

lim
n→∞

m∑
k=1

ei(t
x
εn+r ·wεn )θkvk = u.

By (B.7) we have

lim
n→∞

(txεn + r · wεn )

−1

εne
q(txεn+r ·wεn )

m∑
k=1

ei(t
x
εn+r ·wεn )θkvk = q1−
e−qwr u. (B.14)

On the other hand, the existence of the limit (B.4) implies for any (ε̃n)n∈N such that ε̃n → 0,
as n → ∞ the limit

lim
n→∞Wp′

(
(tx

ε̃n
+ r · wε̃n )


−1

ε̃ne
q(tx

ε̃n
+r ·wε̃n )

m∑
k=1

ei(t
x
ε̃n

+r ·wε̃n )θkvk + O∞,O∞

)

= Wp′
(
q1−
e−qwr ũ + O∞,O∞

)

for some ũ ∈ ω(x). In particular for ε̃n = εn we have

Wp′
(
q1−
e−qwr ũ + O∞,O∞

) = lim
n→∞Wp′

(
(txεn + r · wεn )


−1

εne
q(txεn +r ·wεn )

m∑
k=1

ei(t
x
εn +r ·wεn )θk vk + O∞,O∞

)

= Wp′
(
q1−
e−qwr u + O∞,O∞

)
,

where the last equality follows by (B.14) and continuity. As a consequence, the function

ω(x) � u �→ Wp′
(
q1−
e−qwr u + O∞,O∞

) = Wp′
(
q1−
e−qwr ũ + O∞,O∞

)
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is constant. Since r ∈ R is arbitrary, we obtain the statement i) for arbitrary λ > 0. ��
Proof of Theorem 3.1 By Theorem 3.3 we have that profile thermalization holds if and only if
for any λ ≥ 0 the shift map S∞

λ : ω(x) → [0,∞) defined by S∞
λ (u) = Wp′(λu+O∞,O∞)

is constant. Since 1 ≤ p′ ≤ p, property d) of Lemma 2.2 yields

Wp′(v + O∞,O∞) = |v|
for any v ∈ R

d . Therefore, S∞
λ (u) = |λu| for any u ∈ ω(x). Consequently, the map S∞

λ is
constant if and only if ω(x) is a contained in a sphere. In this case, (B.13) yields the cutoff
thermalization profile

Px (r) = q1−
e−qwr |u|,
where u is any element in ω(x). ��

Appendix C. Proof of Theorem 3.4 (Window Cutoff Thermalization)

Proof of Theorem 3.4 Let 0 < p′ ≤ p. By Proposition B.1 we have

lim sup
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{p′,1}

= lim sup
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)

and

lim inf
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{p′,1}

= lim inf
ε→0

Wp′

(
(txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk + O∞,O∞

)
.

In particular, Property d) in Lemma 2.2 yields

|uε|min{p′,1} − 2E[O∞|p′ ] ≤ Wp′(uε + O∞,O∞) ≤ |uε|min{p′,1}, (C.1)

where

uε = (txε + r · wε)

−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk .

We start with the upper limit. Therefore by (B.7) and (C.1) we have

lim sup
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{p′,1} ≤ lim sup
ε→0

|uε|min{p′,1}

≤ q1−
e−qwr lim sup
ε→0

∣∣∣∣∣
m∑

k=1

ei(t
x
ε +r ·wε)θkvk

∣∣∣∣∣
≤ e−qwrq1−


m∑
k=1

|vk |.
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Hence,

lim
r→∞ lim sup

ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{p′,1} = 0.

We continue with the lower limit. By (B.7) and (C.1) we have

lim inf
ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{p′,1} ≥ lim inf
ε→0

|uε|min{p′,1} − 2E[|O∞|p′ ]

= q1−
e−qwr lim inf
ε→0

∣∣∣∣∣
m∑

k=1

ei(t
x
ε +r ·wε)θkvk

∣∣∣∣∣− 2E[|O∞|p′ ]

≥ q1−
e−qwr lim inf
t→∞

∣∣∣∣∣
m∑

k=1

eiθk tvk

∣∣∣∣∣− 2E[|O∞|p′ ]

By (2.4) in Lemma 2.1 we have lim inf t→∞ |∑m
k=1 e

iθk tvk | > 0. Hence,

lim
r→−∞ lim inf

ε→0

Wp′(Xε
txε +r ·wε

(x), με)

εmin{p′,1} = ∞.

Appendix D. Proof of Corollary 3.1 and Corollary 3.2 (Moment Thermal-
ization Cutoff)

The following lemma is used in the proof of Corollary 3.1 and in Sect.6.1.

Lemma 1 For any d × d matrix A it follows∣∣∣∣∣
∣∣∣Ae−Q(txε +r ·wε)x

ε

∣∣∣−
∣∣∣A (txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk

∣∣∣
∣∣∣∣∣

≤ |A| (t
x
ε + r · wε)


−1

εeq(txε +r ·wε)

∣∣∣∣∣
(
eq(txε +r ·wε)

e−Q(txε +r ·wε)x

(txε + r · wε)
−1 −
m∑

k=1

ei(t
x
ε +r ·wε)θkvk

)∣∣∣∣∣ .

Proof The inverse triangle inequality and the submultiplicativity of matrix norm imply∣∣∣∣∣
∣∣∣Ae−Qt x

∣∣∣− ∣∣∣A t
−1

eqt

m∑
k=1

eitθkvk
∣∣∣
∣∣∣∣∣ ≤

∣∣∣Ae−Qt x − A
t
−1

eqt

m∑
k=1

eitθkvk
∣∣∣

≤ |A|
∣∣∣e−Qt x − t
−1

eqt

m∑
k=1

eitθkvk
∣∣∣.

In particular, we have∣∣∣∣∣
∣∣∣Ae−Q(txε +r ·wε)x

ε

∣∣∣−
∣∣∣A (txε + r · wε)


−1

εeq(txε +r ·wε)

m∑
k=1

ei(t
x
ε +r ·wε)θkvk

∣∣∣
∣∣∣∣∣

≤ |A| (t
x
ε + r · wε)


−1

εeq(txε +r ·wε)

∣∣∣∣∣
(
eq(txε +r ·wε)

e−Q(txε +r ·wε)x

(txε + r · wε)
−1 −
m∑

k=1

ei(t
x
ε +r ·wε)θkvk

)∣∣∣∣∣ .
��
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We show the moment thermalization of Corollary 3.1.

Proof of Corollary 3.1 For convenience we start with the case p′ ≥ 1 and we write ‖X‖p′ =
(E[|X |p′ ])1/p′

. We start with the proof of

lim
r→∞ lim sup

ε→0

1

ε p′ E[|Xε
txε +r ·wε

(x)|p′ ] = E[|O∞|p′ ].

Note that

1

ε
‖Xε

t (x)‖p′ = 1

ε
‖e−Qt x + εOt‖p′ ≤ 1

ε
|e−Qt x | + ‖Ot‖p′ .

Hence

1

ε p′ ‖Xε
t (x)‖p′

p′ ≤
(1

ε
|e−Qt x | + ‖Ot‖p′

)p′
.

Since Wp(Ot ,O∞) → 0 as t → ∞, we have ‖Ot‖p′ → ‖O∞‖p′ < ∞ as t → ∞. The
preceding inequality yields

lim sup
ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
p′ ≤ lim sup

ε→0

(1
ε
|e−Q(txε +r ·wε)x | + ‖Otxε +r ·wε‖p′

)p′

=
(
lim sup

ε→0

(1
ε
|e−Q(txε +r ·wε)x | + ‖Otxε +r ·wε‖p′

))p′

=
(
lim sup

ε→0

(1
ε
|e−Q(txε +r ·wε)x |)+ ‖O∞‖p′

)p′
.

By Lemma 1 and the continuity of y �→ |y|p′
, sending r → ∞ we obtain

lim
r→∞ lim sup

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
p′

≤
(

lim
r→∞ lim sup

ε→0

(1
ε
|e−Q(txε +r ·wε)x |)+ ‖O∞‖p′

)p′
= ‖O∞‖p′

p′ . (D.1)

We continue with the proof of

lim
r→∞ lim inf

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
p′ ≥ ‖O∞‖p′

p′ .

Note that

‖Ot‖p′ = 1

ε
‖εOt‖p′ ≤ 1

ε
‖Xε

t (x)‖p′ + 1

ε
|e−Qt x |.

Hence

lim inf
ε→0

‖Otxε +r ·wε‖p′ + lim inf
ε→0

(− 1

ε
|e−Q(txε +r ·wε)x |) ≤ lim inf

ε→0

(1
ε
‖Xε

txε +r ·wε
(x)‖p′

)
.

Since for a general family (aε)ε>0 we have lim infε→0(−aε) = − lim supε→0 aε it follows

‖O∞‖p′ − lim sup
ε→0

1

ε
|e−Q(txε +r ·wε)x | ≤ lim inf

ε→0

1

ε
‖Xε

txε +r ·wε
(x)‖p′ .

By continuity we have
(

‖O∞‖p′ − lim sup
ε→0

1

ε
|e−Q(txε +r ·wε)x |

)p′

≤ lim inf
ε→0

( 1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
p′
)
.
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By Lemma 1, and sending r → ∞ we have

‖O∞‖p′
p′ ≤ lim

r→∞ lim inf
ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
p′ . (D.2)

Combining (D.1) and (D.2) we obtain

lim
r→∞ lim inf

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
p′ = lim

r→∞ lim sup
ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
p′ = ‖O∞‖p′

p′ .

In the sequel, we show

lim
r→−∞ lim inf

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
p′ = ∞.

Note that

1

ε
|e−Qt x | = 1

ε
‖Xε

t (x) − εOt‖p′ ≤ 1

ε
‖Xε

t (x)‖p′ + ‖Ot‖p′

and hence

1

ε p′ |e−Qt x |p′ ≤
(1

ε
‖Xε

t (x)‖p′ + ‖Ot‖p′
)p′

.

lim inf
ε→0

1

ε p′ |e−Q(txε +r ·wε)x |p′ ≤ lim inf
ε→0

(1
ε
‖Xε

txε +r ·wε
(x)‖p′ + ‖Otxε +r ·wε‖p′

)p′

=
(
lim inf

ε→0

(1
ε
‖Xε

txε +r ·wε
(x)‖p′ + ‖Otxε +r ·wε‖p′

))p′

=
(
lim inf

ε→0

(1
ε
‖Xε

txε +r ·wε
(x)‖p′

)+ ‖O∞‖p′
)p′

.

Sending r → −∞, Lemma 1 yields

∞ = lim
r→−∞ lim inf

ε→0

1

ε p′ |e−Q(txε +r ·wε)x |p′

≤
(

lim
r→−∞ lim inf

ε→0

(1
ε
‖Xε

txε +r ·wε
(x)‖p′

)+ ‖O∞‖p′
)p′

.

Hence

lim
r→−∞ lim inf

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
p′ = ∞.

We continue with the case p′ ∈ (0, 1) and we write ‖X‖p′ = E[|X |p′ ]. We start with the
proof of

lim
r→∞ lim sup

ε→0

1

ε p′ E[|Xε
txε +r ·wε

(x)|p′ ] = E[|O∞|p′ ].

Note that

1

ε p′ ‖Xε
t (x)‖p′ = 1

ε p′ ‖e−Qt x + εOt‖p′ ≤ 1

ε p′ |e−Qt x |p′ + ‖Ot‖p′ .

Hence

1

ε p′ ‖Xε
t (x)‖p′ ≤ 1

ε p′ |e−Qt x | + ‖Ot‖p′ .
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Since Wp(Ot ,O∞) → 0 as t → ∞, we have ‖Ot‖p′ → ‖O∞‖p′ < ∞ as t → ∞. The
preceding inequality yields

lim sup
ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′ ≤ lim sup
ε→0

1

ε p′ |e−Q(txε +r ·wε)x |p′ + ‖Otxε +r ·wε‖p′

= lim sup
ε→0

(1
ε
|e−Q(txε +r ·wε)x |)p′ + ‖O∞‖p′

=
(
lim sup

ε→0

1

ε
|e−Q(txε +r ·wε)x |

)p′
+ ‖O∞‖p′ .

By Lemma 1 and the continuity of y �→ |y|p′
, sending r → ∞ we obtain

lim
r→∞ lim sup

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′

≤
(

lim
r→∞ lim sup

ε→0

1

ε
|e−Q(txε +r ·wε)x |

)p′
+ ‖O∞‖p′ = ‖O∞‖p′

p′ . (D.3)

We continue with the proof of

lim
r→∞ lim inf

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′ ≥ ‖O∞‖p′ .

Note that

‖Ot‖p′ = 1

ε p′ ‖εOt‖p′ ≤ 1

ε p′ ‖Xε
t (x)‖p′ + 1

ε p′ |e−Qt x |p′
.

Hence

lim inf
ε→0

‖Otxε +r ·wε‖p′ + lim inf
ε→0

(− 1

ε p′ |e−Q(txε +r ·wε)x |p′) ≤ lim inf
ε→0

( 1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
)
.

Since for a general sequence (aε)ε>0 we have lim infε→0(−aε) = − lim supε→0 aε it follows

‖O∞‖p′ − lim sup
ε→0

1

ε p′ |e−Q(txε +r ·wε)x |p′ ≤ lim inf
ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′ .

By Lemma 1, and sending r → ∞ we obtain

‖O∞‖p′ ≤ lim
r→∞ lim inf

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′ . (D.4)

Combining (D.3) and (D.4) we obtain

lim
r→∞ lim inf

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′ = lim
r→∞ lim sup

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′ = ‖O∞‖p′ .

In the sequel, we show

lim
r→−∞ lim inf

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′ = ∞.

Note that

1

ε p′ |e−Qt x |p′ = 1

ε p′ ‖Xε
t (x) − εOt‖p′ ≤ 1

ε p′ ‖Xε
t (x)‖p′ + ‖Ot‖p′

and hence

lim inf
ε→0

1

ε p′ |e−Q(txε +r ·wε)x |p′ ≤ lim inf
ε→0

( 1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′ + ‖Otxε +r ·wε‖p′
)
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= lim inf
ε→0

( 1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
)+ ‖O∞‖p′ .

Sending r → −∞, Lemma 1 yields

∞ = lim
r→−∞ lim inf

ε→0

1

ε p′ |e−Q(txε +r ·wε)x |p′ ≤ lim
r→−∞ lim inf

ε→0

( 1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′
)+ ‖O∞‖p′ .

Hence

lim
r→−∞ lim inf

ε→0

1

ε p′ ‖Xε
txε +r ·wε

(x)‖p′ = ∞.

��
In the sequel we prove Corollary 3.2.

Proof of Corollary 3.2 Let txε be the time scale given in Theorem 3.1. By (B.5) we have for
any δ > 0

lim sup
ε→0

Wp′(Xε
δtxε

(x), Xε∞)

εmin{p′,1} = lim sup
ε→0

Wp′
(e−Q(δtxε )x

ε
+ O∞,O∞

)
(D.5)

and

lim inf
ε→0

Wp′(Xε
δtxε

(x), Xε∞)

εmin{p′,1} = lim inf
ε→0

Wp′
(e−Q(δtxε )x

ε
+ O∞,O∞

)
. (D.6)

By (2.4) given in Lemma 2.1 we have

0 < lim inf
ε→0

∣∣∣∣∣
eq(δtxε )

(δtxε )

−1 e

−Q(δtxε )x

∣∣∣∣∣ ≤ lim sup
ε→0

∣∣∣∣∣
eq(δtxε )

(δtxε )

−1 e

−Q(δtxε )x

∣∣∣∣∣ < ∞ (D.7)

for any δ > 0. A straightforward calculation shows

lim
ε→0

(δtxε )

−1e−q(δtxε )

ε
=
{

∞ for δ ∈ (0, 1),

0 for δ > 1.

}
(D.8)

Since

e−Q(δtxε )x

ε
= (δtxε )


−1e−q(δtxε )

ε

eq(δtxε )

(δtxε )

−1 e

−Q(δtxε )x,

the relations (D.5), (D.6), (D.7) and the limit (D.8) imply with the help of the continuity of
Wp′ the desired result:

lim
ε→0

Wp′(Xε
δtxε

(x), Xε∞)

εmin{p′,1} =
{

∞ for δ ∈ (0, 1),

0 for δ > 1.

}

��

Appendix E. Proof of Theorem 3.2 (Normal Growth Characterization)

We start with the following lemma, which shows that the C-linear independence of a family
of pairs complex conjugate vectors implies the R-linear independence of the family of real
and imaginary parts, in which the characterization in Theorem 3.2 is stated. The lemma is
used in the representation (3.13). The proof is given for completeness.
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Lemma E.1 (Complexification) For any d ∈ N let d ≥ 2n + r for some n, r ∈ N0. Consider
an arbitrary family of linearly independent vectors (w1, . . . , wr , v1, v̄1, . . . , vn, v̄n) in C

d ,
where v̄ j denotes the complex conjugate of v j . Assume that w1, . . . , wr ∈ R

d . For short we
write v j = v̂ j + i v̌ j , with v̂ j , v̌ j ∈ R

d . Then the family of vectors

(w1, . . . , wr , v̂1, v̌1, . . . , v̂n, v̌n)

is linear independent in R
d .

Proof Let α1, β1, . . . , αn, βn, γ1, . . . , γr ∈ R such that

γ1w1 + · · · + γrwr + α1v̂1 + β1v̌1 + · · · + αn v̂n + βn v̌n = 0.

Let ĝ j = γ j and ǧ j = 0, and for j ∈ {1, . . . , n} ĉ j = d̂ j = α j/2 and č j = −ď j = −β j/2.
Then for c j = ĉ j + i č j and d j = d̂ j + i ď j we have

g1w1 + · · · + grwr + c1v1 + d1v̄1 + . . . + cnvn + dn v̄n = 0.

By Hypothesis w1, . . . , wr , v1, v̄1, . . . , vn, v̄n is a family of linearly independent vectors in
C
2d and hence g1 = · · · = gr = c1 = d1 = · · · = cn = dn = 0 which is equivalent to

γ1 = · · · = γr = α1 = β1 = · · · = αn = βn = 0 as desired. ��
In the sequel, we characterize in Lemmas E.2 and E.3 under the non-resonance hypothesis
(3.14) given in Remark 3.4 when the function ω(x) � u �→ |u| is constant, which is the
statement of Theorem 3.1 item i), and compute the norm of (3.13). Using representation
(3.13) ofω(x) defined by (3.7) we prepare the statement of Lemmas E.2 and E.3. Lemma E.2
yields the necessity, while Lemma E.3 states the sufficiency of the normal growth condition
(3.15) of Theorem 3.3. The Pythagoras theorem yields

∣∣∣∣∣
m∑

k=1

eiθk tvk

∣∣∣∣∣
2

= |v1|2 + 4

〈
v1,

n∑
k=1

(
cos(θ2k t)v̂2k − sin(θ2k t)v̌2k

)〉

+ 4

∣∣∣∣∣
n∑

k=1

(
cos(θ2k t)v̂2k − sin(θ2k t)v̌2k

)∣∣∣∣∣
2

= |v1|2 + 4
n∑

k=1

(
cos(θ2k t)〈v1, v̂2k〉 − sin(θ2k t)〈v1, v̌2k〉

)

+ 4

∣∣∣∣∣
n∑

k=1

(
cos(θ2k t)v̂2k − sin(θ2k t)v̌2k

)∣∣∣∣∣
2

.

We continue with the last term on the right-hand side of the preceding expression omitting
the prefactor

∣∣∣∣∣
n∑

k=1

(
cos(θ2k t)v̂2k − sin(θ2k t)v̌2k

)∣∣∣∣∣
2

=
n∑

k=1

| cos(θ2k t)v̂2k − sin(θ2k t)v̌2k |2

+
∑
k �=k′

〈cos(θ2k t)v̂2k − sin(θ2k t)v̌2k, cos(θ2k′ t)v̂2k′ − sin(θ2k′ t)v̌2k′ 〉
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=
n∑

k=1

(
cos2(θ2k t)|v̂2k |2 + sin2(θ2k t)|v̌2k |2 − 2 cos(θ2k t) sin(θ2k t)〈v̂2k, v̌2k〉

)

+
∑
k �=k′

cos(θ2k t) cos(θ2k′ t)〈v̂2k, v̂2k′ 〉 +
∑
k �=k′

sin(θ2k t) sin(θ2k′ t)〈v̌2k, v̌2k′ 〉

−
∑
k �=k′

sin(θ2k t) cos(θ2k′ t)〈v̌2k, v̂2k′ 〉 −
∑
k �=k′

cos(θ2k t) sin(θ2k′ t)〈v̂2k, v̌2k′ 〉.

Combining the preceding equalities we deduce
∣∣∣∣∣
m∑

k=1

eiθk tvk

∣∣∣∣∣
2

= |v1|2

+ 4
n∑

k=1

cos(θ2k t)〈v1, v̂2k〉 − 4
n∑

k=1

sin(θ2k t)〈v1, v̌2k〉

+ 4

∣∣∣∣∣
n∑

k=1

(
cos(θ2k t)v̂2k − sin(θ2k t)v̌2k

)∣∣∣∣∣
2

= |v1|2 + 4
n∑

k=1

cos(θ2k t)〈v1, v̂2k〉 − 4
n∑

k=1

sin(θ2k t)〈v1, v̌2k〉

+ 4
n∑

k=1

(
cos2(θ2k t)|v̂2k |2 + sin2(θ2k t)|v̌2k |2 − 2 cos(θ2k t) sin(θ2k t)〈v̂2k, v̌2k〉

)

+ 4
∑
k �=k′

cos(θ2k t) cos(θ2k′ t)〈v̂2k, v̂2k′ 〉 + 4
∑
k �=k′

sin(θ2k t) sin(θ2k′ t)〈v̌2k, v̌2k′ 〉

− 4
∑
k �=k′

sin(θ2k t) cos(θ2k′ t)〈v̌2k, v̂2k′ 〉 − 4
∑
k �=k′

cos(θ2k t) sin(θ2k′ t)〈v̂2k, v̌2k′ 〉. (E.1)

After rearrangement of the sums, we obtain

|
m∑

k=1

eiθk tvk |2 = |v1|2 + 4
n∑

k=1

cos(θ2k t)〈v1, v̂2k〉 − 4
n∑

k=1

sin(θ2k t)〈v1, v̌2k〉

+ 4|
n∑

k=1

cos(θ2k t)v̂2k |2 + 4|
n∑

k=1

sin(θ2k t)v̌2k |2

− 8
∑
k,k′

sin(θ2k t) cos(θ2k′ t)〈v̌2k, v̂2k′ 〉. (E.2)

Lemma E.2 Assume that the family (v1, v̂2, v̌2 . . . , v̂2n, v̌2n) is orthogonal and |v̂2k | = |v̌2k |
for all k. Then the function

t �→
∣∣∣

m∑
k=1

eiθk tvk
∣∣∣

is constant and has the value |v1|2 + 4
∑n

k=1 |v̂2k |2 and consequently ω(x) � u �→ |u| is
constant.
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Proof The orthogonality hypothesis in relation (E.1) yields∣∣∣∣∣
m∑

k=1

eiθk tvk

∣∣∣∣∣
2

= |v1|2 + 4
n∑

k=1

cos2(θ2k t)|v̂2k |2 + 4
n∑

k=1

sin2(θ2k t)|v̌2k |2.

Since |v̂2k | = |v̌2k | for all k, the Pythagoras identity yields the desired result. ��
Lemma E.3 If the function

ω(x) � u �→ |u| (E.3)

is constant and the angles θ2, . . . , θ2n are rationally independent according to Remark 3.4
then the family of Rd -valued vectors (v1, v̂2, v̌2 . . . , v̂2n, v̌2n) is orthogonal and satisfies
|v̂2k | = |v̌2k | for all k = 1, . . . , n.

Proof By (E.2) we have∣∣∣∣∣
m∑

k=1

eiθk tvk

∣∣∣∣∣
2

= |v1|2 + 4
n∑

k=1

cos(θ2k t)〈v1, v̂2k〉 − 4
n∑

k=1

sin(θ2k t)〈v1, v̌2k〉

+ 4

∣∣∣∣∣
n∑

k=1

cos(θ2k t)v̂2k

∣∣∣∣∣
2

+ 4

∣∣∣∣∣
n∑

k=1

sin(θ2k t)v̌2k

∣∣∣∣∣
2

− 8
∑
k,k′

sin(θ2k t) cos(θ2k′ t)〈v̌2k, v̂2k′ 〉.

Since the angles θ2, . . . , θ2n are rationally independent, Corollary 4.2.3 in [105] and the
assumption that the function (E.3) is constant implies that the following function F is constant:

F(x) = |v1|2 + 4
n∑

k=1

xk〈v1, v̂2k〉 − 4
n∑

k=1

yk〈v1, v̌2k〉 + 4

∣∣∣∣∣
n∑

k=1

xk v̂2k

∣∣∣∣∣
2

+ 4

∣∣∣∣∣
n∑

k=1

yk v̌2k

∣∣∣∣∣
2

− 8
∑
k,k′

ykxk′ 〈v̌2k, v̂2k′ 〉, (E.4)

where x = (x1, . . . , xn) ∈ [−1, 1]n and x2k + y2k = 1 for all k. We point out that for each xk

there are two solutions yk = ±
√
1 − x2k for the equation x2k + y2k = 1 and all combinations

of signs of yk are admitted.

Step 1: We start with the proof of 〈v1, v̂2k〉 = 0 for all k. Since the function F is constant,
comparing the choices xk = 1 and yk = 0 for all k with xk = −1 and yk = 0 for all k yields

|v1|2 + 4
n∑

k=1

〈v1, v̂2k〉 +
n∑

k=1

|v̂2k |2 = |v1|2 − 4
n∑

k=1

〈v1, v̂2k〉 +
n∑

k=1

|v̂2k |2,

which implies
n∑

k=1

〈v1, v̂2k〉 = 0. (E.5)

Comparing the choice x1 = −1, xk = 1 for k ≥ 2, and consequently yk = 0 for all k with
x1 = 1, xk = −1 for k ≥ 2, and consequently yk = 0 for all k we have

|v1|2 − 4〈v1, v̂2〉 + 4
n∑

k=2

〈v1, v̂2k〉 + 4| − v̂2 +
n∑

k=2

v̂2k |2
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= |v1|2 + 4〈v1, v̂2〉 − 4
n∑

k=2

〈v1, v̂2k〉 + 4|v̂2 −
n∑

k=2

v̂2k |2

= |v1|2 + 4〈v1, v̂2〉 − 4
n∑

k=2

〈v1, v̂2k〉 + 4| − v̂2 +
n∑

k=2

v̂2k |2,

which implies

〈v1, v̂2〉 −
n∑

k=2

〈v1, v̂2k〉 = 0. (E.6)

Combining (E.5) and (E.6) we obtain 〈v1, v̂2〉 = 0. Analogously it is shown 〈v1, v̂2k〉 = 0 for
all k ≥ 2. Switching the role of xk and yk in the preceding reasoning also shows 〈v1, v̌2k〉 = 0
for all k.

Step 2: By Step 1 formula (E.4) boils down to

F(x) =|v1|2 + 4

∣∣∣∣∣
n∑

k=1

xk v̂2k

∣∣∣∣∣
2

+ 4

∣∣∣∣∣
n∑

k=1

yk v̌2k

∣∣∣∣∣
2

− 8
∑
k,k′

xk yk′Ck,k′ ,

where Ck,k′ = 〈v̌2k, v̂2k′ 〉. The choice x1 =
√
2
2 , xk = ±1 for all k ≥ 2 implies y1 = ±

√
2
2

and yk = 0 for k ≥ 2. Hence

|v1|2 + 4|
√
2

2
v̂2 +

n∑
k=2

(±)v̂2k |2 + 2|v̌2|2 − 4C1,1 − 4
√
2
∑
k≥2

(±)Ck,1

= |v1|2 + 4|
√
2

2
v̂2 +

n∑
k=2

(±)v̂2k |2 + 2|v̌2|2 + 4C1,1 + 4
√
2
∑
k≥2

(±)Ck,1

for any sequence of signs ±. Consequently,

C1,1 + √
2
∑
k≥2

(±)Ck,1 = 0

for any sequence of signs ±. Therefore Ck,1 = 0 for all k ≥ 1. Analogously, we infer that
Ck,k′ = 0 for all k, k′ ≥ 1. This proves that 〈v̂2k, v̌2k′ 〉 = 0 for all k, k′.

Step 3: By Step 2 we obtain

F(x) =|v1|2 + 4

∣∣∣∣∣
n∑

k=1

xk v̂2k

∣∣∣∣∣
2

+ 4

∣∣∣∣∣
n∑

k=1

yk v̌2k

∣∣∣∣∣
2

.

For any choice x1 ∈ {−1, 1}, xk = 1 (which implies yk = 0) for all k ≥ 2, the Pythagoras
theorem yields

F(x) =|v1|2 + 4|x1v̂2k +
n∑

k=2

v̂2k |2 = |v1|2 + 4|v̂2k |2 + 4

∣∣∣∣∣
n∑

k=2

v̂2k

∣∣∣∣∣
2

+ 8

〈
x1v̂2,

n∑
k=2

v̂2k

〉
,

which implies 〈
v̂2,

n∑
k=2

v̂2k

〉
= 0,
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due to x1 can be chosen ±1. An analogous reasoning yields

n∑
k=1
k �=k′

〈v̂2k′ , v̂2k〉 = 0. (E.7)

for any k′ ≥ 1.
For any choice xk ∈ {−1, 1} (which implies yk = 0) for all k, the Pythagoras theorem

yields

F(x) = |v1|2 + 4

∣∣∣∣∣
n∑

k=1

xk v̂2k

∣∣∣∣∣
2

= |v1|2 + 4|x1v̂2 + x2v̂4 +
∑
k≥3

xk v̂2k |2

= |v1|2 + 4|x1v̂2 + x2v̂4|2 + 4

∣∣∣∣∣∣
∑
k≥3

xk v̂2k

∣∣∣∣∣∣
2

+ 8

〈
x1v̂2 + x2v̂4,

∑
k≥3

xk v̂2k

〉
.

Specifying xk = 1 for all k ≥ 3 and comparing it with xk = −1 for all k ≥ 3 implies〈
x1v̂2 + x2v̂4,

∑
k≥3

v̂2k

〉
= 0.

Then

〈x1v̂2,
∑
k≥3

v̂2k〉 + 〈x2v̂4,
∑
k≥3

v̂2k〉 = 0.

Bearing in mind (E.7), summing and subtracting v̂4 and v̂2 in the corresponding sums above
yields

〈x1v̂2,−v̂4〉 + 〈x2v̂4,−v̂2〉 = 0.

Since x1, x2 ∈ {−1, 1} is arbitrary, we infer 〈v̂2, v̂4〉 = 0. By analogous reasoning it is shown
that 〈v̂2k, v̂2k′ 〉 = 0 for all k �= k′. Switching the role of xk and yk in the preceding reasoning
also shows 〈v̌2k, v̌2k′ 〉 = 0 for all k �= k′.

Combining Step 1-3 shows that the family (v1, v̂2, v̌2 . . . , v̂2n, v̌2n) is orthogonal.
Step 4: In the sequel, we prove |v̂2k | = |v̌2k | for all k. By Step 3 we obtain

F(x) =|v1|2 + 4
n∑

k=1

x2k |v̂2k |2 + 4
n∑

k=1

y2k |v̌2k |2.

The choice x1 = ζ , xk = 1 for all k ≥ 2 implies y1 = ±√1 − ζ 2, yk = 0 for all k ≥ 2.
Therefore the quadratic polynomial

ζ �→ F((ζ, 1, . . . , 1)) = |v1|2 + 4
n∑

k=2

|v̂2k |2 + 4ζ 2|v̂2k |2 + 4(1 − ζ 2)|v̌2|2

= |v1|2 + 4
n∑

k=2

|v̂2k |2 + 4|v̌2|2 + 4ζ 2(|v̂2|2 − |v̌2|2)

is constant. Consequently, |v̂2|2 = |v̌2|2. Analogously it is shown that |v̂2k |2 = |v̌2k |2 for all
k ≥ 2. ��
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