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Abstract
We consider the Curie–Weiss Potts model in zero external field under independent symmetric
spin-flip dynamics. We investigate dynamical Gibbs–non-Gibbs transitions for a range of
initial inverse temperatures β < 3, which covers the phase transition point β = 4 log 2
(Ellis and Wang in Stoch Process Appl 35(1):59–79, 1990). We show that finitely many
types of trajectories of bad empirical measures appear, depending on the parameter β, with
a possibility of re-entrance into the Gibbsian regime, of which we provide a full description.
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1 Introduction

1.1 Research Context

The past years have seen progress from various directions in the understanding of Gibbs–non-
Gibbs transitions for trajectories of measures under time-evolution, and also more general
transforms ofmeasures. TheGibbs property of ameasure describing the state of a large system
in statistical mechanics is related to the continuity of single-site conditional probabilities,
considered as a function of the configuration in the conditioning. If a measure becomes
non-Gibbsian, there are internal mechanisms which are responsible for the creation of such
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discontinuous dependence. This leads to the study of hidden phase transitions, which was
started in the particular context of renormalization group pathologies in van Enter et al. [30].

Such studies have been made for a variety of systems in different geometries, for different
types of local degrees of freedom, and under different transformations. Let us mention here
time-evolved discrete lattice spins [19,31], continuous lattice spins [23,33], time-evolved
models of point particles in Euclidean space [15], and models on trees [34]. For a discus-
sion of non-Gibbsian behavior of time-evolved lattice measures in regard to the approach
to a (possibly non-unique) invariant state under dynamics, see [16], for relevance of non-
Gibbsianness to the infinite-volume Gibbs variational principle (and its possible failure) see
[24,25]. For recent developments for one-dimensional long-range systems, and the relation
between continuity of one-sided (vs. two-sided) conditional probabilities see [2–4,29].

In the present paper we are aiming to contribute to the understanding of Gibbs–non-
Gibbs transformations for mean-field models, in the sense of the sequential Gibbs property
[6,9–11,14,17,18,21]. Usually there is a somewhat incomplete picture for lattice models,
due to the difficulty to find sharp critical parameters. Mean-field models on the other hand
are often “solvable” in terms of variational principles which arise from the large deviation
formalism, while the remaining model-dependent task to characterize the minimizers and
understand the corresponding various bifurcations can be quite substantial. We choose to
work for our problem in the so-called two-layer approach, in which one needs to understand
the parameter dependence of the large-deviation functional of a conditional first-layer system.
In this functional the conditioning provides an additional parameter given by an empirical
measure on the second layer. This is more direct than working in the Lagrangian formalism
on trajectory space, which would provide additional insights on the nature of competing
histories that explain the current state of the system at a discontinuity point [9,20,28,32].

Compared to the Curie–Weiss Ising model, the Fuzzy Potts model and the Widom–
Rowlinson models, we find in the present analysis of the time-evolved Curie–Weiss Potts
model significantly more complex transition phenomena, see Theorem 2 and Fig. 2. This has
to be expected as already the behavior of the fully non-symmetric static model is subtle [22].
It forces us to make use of the computer for exact symbolic computations, in the derivation
of the transition curves (BU, ACE and TPE in Fig. 2, discussed in Sects. 4.4, 4.5 and 4.6),
along with some numerics for our bifurcation analysis. We believe that these tools (see p. 44)
may also be useful elsewhere.

Now, our approach rests on singularity theory [1,5,12,13,27] for the appropriate condi-
tional rate functional of the dynamical model. This provides us with a four-parameter family
of potentials, for a two-dimensional state-variable taking values in a simplex. It turns out that
the understanding of the parameter dependence of the dynamical model is necessarily based
on the good understanding of the bifurcation geometry of the free energy landscape of the
static case for general vector-valued fields [22]. In that paper, which generalizes the results
of Ellis and Wang [8], and Wang [35], we lay out the basic methodology. Therein we also
explain the phenomenology of transitions (umbilics, butterflies, beak-to-beak) from which
we need to build here for the dynamical problem.

As a result of the present paper we show that the unfoldings of the static model indeed
reappear in the dynamical setup, and acquire new relevance as hidden phase transitions.
It is important to note that, in order for this to be true, we have to restrict to mid-range
inverse temperatures β < 3. More work has still to be done to treat the full range of inverse
temperatures for the dynamicalmodel, wheremore general transitions seem to appear for very
low temperatures. For the scope of the present paper, it is this close connection between the
static model [22] in fully non-symmetric external fields, and the symmetrically time-evolved
symmetric model in intermediate β range, which is really crucial to unravel the types of

123



Dynamical Gibbs–non-Gibbs Transitions... Page 3 of 35 15

Fig. 1 Thisfigure shows the non-Gibbs region for themid-range temperature regimeweconsider. Theboundary
of this region consists of three different curves which correspond to exit scenarios of bad empirical measures

trajectories of bad empirical measures of Theorem 2. It would be challenging to exploit
whether an analogous non-trivial connection, that we observe for our particular model, holds
for more general classes of models. This clearly asks for more research.

1.2 Overview and Organization of the Paper

In the present paper we study the simplest model which is, together with its time-evolution,
invariant under the permutation group with three elements: We consider the 3-state Curie–
Weiss Potts model in zero external field, under an independent symmetric stochastic spin-flip
dynamics. Based on previous examples [21], one may expect loss without recovery of the
Gibbs property for all initial temperatures lower than a critical one (which then may or may
not coincide with the critical temperature of the initial model), and Gibbsian behavior for all
times above the same critical temperature. We show that this is not the case for our model,
and the behavior is much more complicated: The trajectories of the model show a much
greater variety, depending on the initial temperature. We find a regime of Gibbs forever (I),
a regime of loss with recovery (II) and a regime of loss without recovery (III). Figure 1
shows the non-Gibbs region in the two-dimensional space of initial temperature and time.
The boundary of this non-Gibbs region consists of three different curves which correspond
to exit scenarios of different types of bad empirical measures. Bad empirical measures are
points of discontinuity of the limiting conditional probabilities as defined in Definition 1.
Under the time evolution t ↑ ∞ (or equivalently gt ↓ 0 given by (4)) the systemmoves along
vertical lines of fixed β towards the temperature axis. Intersections with a finite number of
lines occur along this way, which are responsible for the transitions described in our main
theorem, Theorem 2. These additional relevant lines are shown in Fig. 2. Theorem 2 rests on
the understanding of the structure of stationary points of the time-dependent conditional rate
function given in Formula (9) via singularity theory.

It turns out that the bifurcations we encounter for general values of the four-dimensional
parameter (α, β, t) ∈ �2 × (0,∞) × (0,∞) (see (6)) are of the same types as for the static
model depending on a three-dimensional parameter. However, this holds only if we restrict
to mid-range inverse temperatures β < 3 and to endconditionings α taking values in the unit
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simplex (and not in the full hyperplane spanned by the simplex). Nevertheless, in order to
understand the relevant singularities, the analysis is best done by first relaxing the probability
measure constraint on the parameter α and allow it to take values in the hyperplane. The
analysis proceeds with a description of the bifurcation set, where the structure of stationary
points of the conditional rate function changes, and the Maxwell set, where multiple global
minimizers appear. To pick from these transitions the ones which are relevant to the problem
of sequential Gibbsianness and visible on the level of bad empirical measures, we have to
take the probability measure constraint for α into account. This step is neither necessary in
the static Potts nor in the dynamical symmetric Ising model. The lines Symmetric cusp exit
(SCE), Asymmetric cusp exit (ACE), Triple point exit (TPE) andMaxwell triangle exit (MTE)
depicted in the full phase diagram in Fig. 2 are examples of such exit scenarios. For those lines
there is an exit of a certain particular critical value of α from the unit simplex (observation
window). The detailed dynamical phase diagram in Fig. 2 shows more information about the
transitions during time evolution. We claim that the list of transitions is complete. The reason
is that all transition phenomena are connected to lines which describe local bifurcations, and
in particular fold lines, and all of these we can detect. Indeed, local bifurcations are obtained
via the catastrophe map (vanishing of first derivative) and vanishing of Hessian (degeneracy
condition). The latter condition was explicit in the static model, here it is less explicit which
makes things more difficult, and we are supported by numerics for a complete scan. In this
we are greatly helped by the reduction to compact domains, which is possible because of 7.
Exploiting symmetry in the transitions which are seen then allows us to write the explicit
low-dimensional systems of equations for the specific lines which we present in our analysis.
Preliminary investigations show that the structural similarity with the static case may no
longer be valid in the regime β > 3. Therefore we leave the region of very low temperatures
for future research.

We describe the model we are considering together with its time-evolution in Sect. 1.3
where we also define what we mean by Gibbsianness (or the sequential Gibbs property). In
Sect. 2 we present our main theorem and describe the transitions of the sets of bad empirical
measures as a function of the parameters β and t . We will establish the connection between
the analysis of the potential functionGα,β,t and the Gibbs property of the time-evolvedmodel
in Sect. 3. The analysis of the potential function using the methods of singularity theory is
then carried out in the Sects. 4 and 5.

1.3 TheModel and Sequential Gibbsianness

We consider the mean-field Potts model with three states in vanishing external field under
an independent symmetric spin-flip dynamics. The space of configurations in finite-volume
n ≥ 2 is defined as �n = {1, 2, 3}n and the Hamiltonian of the initial model is

Hn(σ ) = − 1

2n

n∑

i, j=1

δσi ,σ j . (1)

So at time t = 0 the distribution of the model is given by

μn,β(σ ) = e−βHn(σ )

∑
σ̃∈�n

e−βHn(σ̃ )
. (2)
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We consider a rate-one symmetric spin-flip time-evolution in terms of independent Markov
chains on the sites with transition probabilities

pt (a, b) = egt1b=a

egt + 2
(3)

from state a to b where

gt = log

(
1 + 2e−3t

1 − e−3t

)
. (4)

We are interested in the Gibbsian behavior of the time-evolved measure

μn,β,t (η) =
∑

σ∈�n

μn,β(σ )

n∏

i=1

pt (σi , ηi ). (5)

The unit simplex

�2 = {ν ∈ R
3 | νi ≥ 0,

3∑

i=1

νi = 1} (6)

contains the empirical distributions of spins. By Gibbsian behavior we mean the existence
of limiting conditional probabilities in the following sense.

Definition 1 The point α in �2 is called a good point if and only if the limit

γβ,t (·|α) := lim
n→∞ μn,β,t (·|ηn,2, . . . , ηn,n) (7)

exists for every family ηn,k ∈ {1, 2, 3} with n ≥ 2 and 2 ≤ k ≤ n such that

lim
n→∞

1

n − 1

n∑

k=2

δi,ηn,k = αi . (8)

for i in {1, 2, 3}. We call α bad, if it is not good. The model μβ,t is called sequentially Gibbs
if all α in the unit simplex �2 are good points.

2 Dynamical Gibbs–non-Gibbs Transitions: Main Result

Our main result on the dynamical Gibbs–non-Gibbs transitions in the high-to-intermediate
temperature regime for the initial inverse temperature β < 3 is as follows. This temperature
regime ranges from high temperature, covering the phase transition temperature (Ellis–Wang
inverse temperature β = 4 log 2), up to the elliptic umbilic point β = 3 (where the central
stationary point of the time-zero rate function in zero external field changes from minimum
to maximum).

Essential parts of the structure of the trajectories of dynamical transitions as a function of
time t in the regime β < 3 remain unchanged over the three inverse-temperature intervals I,
II and III, which were already visualized in Fig. 1. The type of transitions can be understood
as deformations of the sequences of transitions found in the static Potts model in general
vector-valued fields analyzed in [22], where in that case only the one-dimensional parameter
β was varied. Observe that however, the dynamical transitions we describe here, do not
necessarily occur in a monotonic order with respect to what is seen in the static model under
temperature variation. This is for instance (but not only) apparent in the phenomenon of
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Fig. 2 This figure shows the dynamical phase diagram which displays all lines in the two-dimensional space
of 1

β
and gt

β
at which the structure of the bifurcation set slice or the Maxwell set slices changes. We have also

marked the six important temperatures in the magnified plot on the right

recovery of Gibbsianness. At very low temperatures (β > 3) different bifurcations seem to
occur which will be left for future research. While reading the following theorem it is useful
to have Fig. 2 in mind as the inverse temperatures and transition times are related to the lines
depicted in the dynamical phase diagram. More precisely, βNG appears as the projection of
the SCE line to the inverse temperature axis, the butterfly exit temperature βBE appears as the
projection of the intersection point of SCE and BU and β∗ as the projection of the intersection
point of TPE and B2B. Moreover, 8

3 is the projection to the inverse temperature axis of the
special point where the lines ACE, B2B and MTE meet.

Theorem 2 Consider the time-evolved Curie–Weiss Potts model given by (1–2) in zero exter-
nal field, for initial inverse temperature β > 0 and at time t > 0 under the symmetric spin-flip
dynamics (3–5). Then the following holds.

(I) For β < βNG ≈ 2.52885 the time-evolved model is sequentially Gibbs for all t > 0.
(II) For βNG < β < 4 log 2 the time-evolved model loses and then recovers the Gibbs

property at sharp transition times. More precisely, there exist βBE < β∗ in this interval
such that the following types of trajectories of sets of bad empirical measures occur:

(a) For β < βBE the bad empirical measures are given by three symmetric straight lines
which are first growing with time from the midpoints of the simplex edges towards
the center, then shrinking with time again.

(b) For βBE < β < 8
3 the bad empirical measures are given by three symmetric straight

lines in a first time interval tNG(β) < t < tBU(β). For a second time interval
tBU(β) < t < tTPE(β), the set of bad empirical measures consists of three symmetric
Y-shaped sets not touching. For tTPE(β) < t < tACE(β) the set of bad empirical
measures consists of six disconnected arcs. For t > tACE(β) the system is Gibbsian
again.

(c) For 8
3 < β < β∗ and tNG(β) < t < tBU(β) the bad empirical measures consist of

three symmetric straight lines. For tBU(β) < t < tTPE(β), the set of bad empirical
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measures consists of three Y-shaped sets not touching. For tTPE(β) < t < tB2B(β)

the set of bad empirical measures consists of six disconnected arcs. For tB2B(β) <

t < tMTE(β) the set of bad empirical measures consists of three disconnected arcs.
For t > tMTE(β) the system is Gibbsian again. The inverse temperature β∗ is given
by the intersection point of the two lines B2B and TPE in Fig. 2.

(d) For β∗ < β < 4 log 2 and tNG(β) < t < tBU(β) the bad empirical measures consist
of three symmetric straight lines. For tBU(β) < t < tB2B(β), the set of bad empirical
measures consists of three Y-shaped sets not touching. For tB2B(β) < t < tTPE(β)

the set of bad empirical measures consists of a triangle with curved edges and
three symmetric straight lines attached. For tTPE(β) < t < tMTE(β) the set of bad
empirical measures consists of three disconnected arcs. For t > tMTE(β) the system
is Gibbsian again.

(III) For 4 log 2 < β < 3 the time-evolved model loses the Gibbs property without recovery at
a sharp transition time and the set of bad empirical measures has the following structure:
For t ≤ tNG(β) the time-evolved model is Gibbsian. For tNG(β) < t < tBU(β) the bad
empirical measures are given by three symmetric straight lines which are growing with
time and become Y-shaped sets for tBU(β) < t < tB2B(β). For tB2B(β) < t < tEW(β)

the sets then touch and form one connected component consisting of a central triangle
with three straight lines attached to the vertices. The central triangle then shrinks to
a point at t = tEW(β) and the bad empirical measures are given by three symmetric
straight lines which meet in the simplex center for all t > tEW(β).

The meaning and computation of these lines are discussed in Sects. 4 and 5. While only
the three lines SCE, ACE and MTE appear as part of the boundary line of the non-Gibbs
region, the other lines are relevant for structural changes of the set of bad empirical measures.
There are lines which are explicit in the sense that they are given in terms of zeros of one-
dimensional non-linear functions, for example, the entry time tNG(β) (formula (59)) or the
butterfly unfolding time tBU(β) (Formula (72)). The least explicit lines are theMTE and TPE
lineswhich involve aMaxwell set computation, themost explicit line is SCEwhich is given in
parametric form s �→ (β(s), gt (s)) as described in Proposition 9. Figure 3 gives a graphical
overview of the possible types of sequences of bad empirical measures with increasing time
for the different temperature regimes. There is an even more detailed graphic that illustrates
all the transitions involved in the bifurcation set as well as in the Maxwell set. You can find
this graphic in the electronic supplemental material 1 (ESM)

3 Infinite-Volume Limit of Conditional Probabilities

The existence of the infinite-volume limit of the conditional probabilities, that is, the question
of sequential Gibbsianness, can be transformed into an optimization problem of a certain
potential function. As the parameters (β, t) are fixed throughout this section let us write μn

for the measure μn,β,t .

Theorem 3 Suppose the Hubbard–Stratonovič (HS) transform Gα,β,t : R3 → R given by

Gα,β,t (m) = 1

2
β〈m,m〉 −

3∑

b=1

αb log
3∑

a=1

eβma+gt1a=b (9)

has a unique global minimizer, then α is a good point, that is, the infinite-volume limit of the
conditional probabilities μn(·|αn) with αn → α exists independently of the choice of (αn).
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Fig. 3 These are the typical sequences of bad empirical measures α for the inverse temperature regimes
described in Theorem 2. The corners of the triangles correspond to the extremal points (1, 0, 0), (0, 1, 0) and
(0, 0, 1) of the simplex of empirical measures α. With increasing time, you can observe the structural change
of the set of bad empirical measures as it passes the various transition times. For example in (II.b) straight lines
enter the simplex, become non-touching Y-shaped sets at the butterfly transition time tBU(β) and move out of
the simplex. The midpoints of the Y-shaped sets exit at tTPE(β) and the set leaves the simplex completely at
tACE(β). In (II.c) the midpoints of the Y-shaped sets leave the unit simplex at tTPE(β) and the two respective
arcs connect at the beak-to-beak transition time tB2B(β). The remaining three arcs move towards the corners
and leave the unit simplex at tMTE(β). The exit of the midpoints of the Y-shaped sets and the connection of
the six arcs occurs in reversed order in the next row (II.d). In (III) the central triangle shrinks to a point and
forms the star-like set that remains in the simplex forever
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The idea of the proof goes as follows:We can rewrite the conditional probabilitiesμn(·|αn)

in terms of an expected value with respect to a disordered mean-field Potts model μ̄n (see
Lemma 4). Thus, we have to study the weak convergence of Ln , where Ln is the empirical
distribution of the spins σ2, . . . , σn . Note that this is equivalent to the weak convergence of

W√
β(n−1)

+ Ln with some independent standard normal variableW . Because of the represen-

tation of the distribution of W√
β(n−1)

+ Ln in terms of the function Gαn ,β,t (Lemma 5), we
can prove the theorem by an asymptotic analysis of integrals of the form

∫

R3
f (m)e−(n−1)Gαn ,β,t (m) dm (10)

as was done by Ellis and Wang [8]. So it suffices to prove the Lemmata 4 and 5. A point is
good if the respective random field model shows no phase transition, that is, the law of large
numbers holds. To be precise, we have the following representation:

Lemma 4 The finite-volume conditional probabilities are given by

μn(η1|η2, . . . , ηn) = μ̄n[η2, . . . , ηn]( f η1
n ) (11)

where

f η1
n (σ2, . . . , σn) =

∑
a exp

(
β
n

∑n
i=2 1σi=a

)
pt (a, η1)

∑
a exp

(
β
n

∑n
i=2 1σi=a

) (12)

and μ̄n is a quenched random field Potts model

μ̄n[η2, . . . , ηn](σ2, . . . , σn) =
exp

(
β
2n

∑n
i, j=2 1σi=σ j

)∏n
i=2 pt (σi , ηi )

∑
σ̃2,...,σ̃n

exp
(

β
2n

∑n
i, j=2 1σ̃i=σ̃ j

)∏n
i=2 pt (σ̃i , ηi )

. (13)

Proof The proof follows from explicit computations with conditional probabilities. ��
This representation of the conditional probabilities transforms the problem of understand-

ing bad points to the analysis of disordered mean-field models and their phase transitions.
This analysis is done using the Hubbard–Stratonovič transformation which is successfully
used for many models [7,8,21].

Lemma 5 Write

Ln = 1

n − 1

n∑

i=2

δσi (14)

for the empirical measure of n − 1 spins with law μ̄n[η2, . . . , ηn] ◦ L−1
n . Furthermore,

let W be a standard normal random vector in R
3 independent of Ln. The distribution of

W/
√

β(n − 1) + Ln has a density proportional to e−(n−1)Gαn ,β,t with respect to Lebesgue
measure.

Proof Denote by σ2, . . . , σn independent {1, 2, 3}-valued random variables each distributed
according to pt (dσi , ηi )with a fixed boundary configuration η2, . . . , ηn with empirical mea-
sure αn . We denote the expectation with respect to this distribution by E. Then in order to
calculate the distribution of

Yn := W√
β(n − 1)

+ Ln = W√
β(n − 1)

+ 1

n − 1

n∑

i=2

δσi (15)
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we calculate for every bounded continuous function f the expectation

E( f (Yn)) = (2π)− 3
2

Zn,β [η2, . . . , ηn]E
[∫

f
(
w/

√
β(n − 1) + Ln

)
e− ‖w‖2

2 + β
2 (n−1)‖Ln‖2dw

]

(16)

where Zn,β [η2, . . . , ηn] = E[e β
2 (n−1)‖Ln‖2 ] is the partition function for the disordered Potts

model. Now we apply the transformation m = w/
√

β(n − 1) + Ln and obtain

(2π)− 3
2

Zn,β [η2, . . . , ηn]E
[∫

f (m) exp

(
−(n − 1)

β

2
‖m‖2 + (n − 1)β〈m, Ln〉

)
dm

]
. (17)

In order to complete the proof, we have to calculate the expectation

E[exp((n − 1)β〈m, Ln〉)] =
n∏

i=2

E[exp(βmσi )]

=
n∏

i=2

3∑

a=1

eβma+gt1ηi=a

egt + 2

= 1

(egt + 2)n−1

n∏

i=2

3∑

a=1

eβma+gt1ηi=a .

(18)

Now we take the logarithm to raise the expression back into the exponent again. So the
expected value (16) of the bounded continuous function f is equal to the following up to a
normalizing constant:

∫
f (m) exp

(
−(n − 1)

β

2
‖m‖2 +

n∑

i=2

log
∑

a

eβma+g1ηi=a

)
dm (19)

We can now identify Gαn ,β,t in the exponent using that

n∑

i=2

log
3∑

a=1

eβma+gt1ηi=a = (n − 1)
3∑

b=1

1

n − 1

n∑

i=2

1ηi=b log
3∑

a=1

eβma+gt1b=a

= (n − 1)
3∑

b=1

αn(b) log
3∑

a=1

eβma+gt1b=a .

(20)

��

4 Recovery of the Gibbs Property

The regime β < 8
3 is split into three parts given by the intervals (0, βNG], (βNG, βBE] and

(βBE, 8
3 ). In the first part we find that the model is sequentially Gibbs for all times t > 0

whereas in the other two parts the system recovers from a state of non-Gibbsian behavior.
The driving mechanism in this “recovery regime” is due to the butterfly singularity which is
already found in the static model [see [22], Sect. 2.4.1] . However, in contrast to the static
model the bifurcation set might leave the unit simplex so that in order to answer the Gibbs–
non-Gibbs question the location of this set (and the contained Maxwell set) with respect to
the unit simplex is also important.
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4.1 Elements from Singularity Theory

In order to investigate theGibbs–non-Gibbs transitionswehave to study the globalminimizers
of the potential Gα,β,t (Theorem 3). We will use concepts from singularity theory to derive
and explain our results.

Singularity theory allows us to understand how the stationary points of the potential
change with varying parameters. This can be achieved by looking at the geometry of the
so-called catastrophe manifold, which contains the information about the stationary points
of the potential for every possible choice of parameter values. More precisely, it consists
of the tuples (m, α, β, t) in R

3 × �2 × (0,∞) × (0,∞) such that m is a stationary point
of Gα,β,t given by (9). The bifurcation set consists of those parameter values (α, β, t) in
�2 × (0,∞) × (0,∞) such that there exists a degenerate stationary point m in R3, that is, a
point at which the Hessian has a zero eigenvalue. The parameter values of the bifurcation set
give rise to a partition of the parameter space whose cells contain parameters at which the
number and nature of stationary points do not change. Although we are only interested in α

that are bad empirical measures, hence probability measures, it is convenient to loosen this
constraint and consider α in the hyperplane H = {m ∈ R

3|m1 + m2 + m3 = 1} into which
the unit simplex is embedded. The following proposition is the basis for the analysis of the
bifurcation set.

Proposition 6 Let � denote the map from R
3 × (0,∞) to the space of 3 × 3 matrices with

real entries Mat(3,R) given by its components

�b,a(M, t) = eMa+gt1b=a

3∑
c=1

eMc+gt1b=c

. (21)

Then we have the following:

(a) Let ρ be any permutation of {1, 2, 3}. Then
ρ−1�(M, t)ρ = �(ρM, t) (22)

where we interpret the permutation ρ as a 3 × 3-matrix and M as a column vector.
For example, if M2 = M3, we find �3,3(M, t) = �2,2(M, t) and also �1,2(M, t) =
�1,3(M, t).

(b) � maps R3 × (0,∞) into the general linear group GL(3,R) and the inverse matrix of
�(M, t) is given by the formulas

�−1
a,a(M, t) = (egt + 1)e−Ma

e2gt + egt − 2

3∑

c=1

eMc+gt1c=a (23)

�−1
b,a(M, t) = − e−Mb

e2gt + egt − 2

3∑

c=1

eMc+gt1c=a (24)

for two distinct elements a, b of {1, 2, 3}.
(c) The catastrophemanifold of theHS-transformGα,β,t is the graph of themap (m, β, t) �→

α = χ(m, β, t) given by

χ(m, β, t) =
(

∑

a

ma�
−1
a,b(βm, t)

)3

b=1

(25)
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from H×(0,∞)×(0,∞) to H. Forχ(m, β, t) to lie in the unit simplex�2 it is necessary
(but generally not sufficient) that m lies in �2.

(d) Consider the coordinates (x, y, z)T = ϕβ(m) where

ϕβ(m) = β

6

⎛

⎝

√
3(m3 − m2)

2m1 − m2 − m3

2m1 + 2m2 + 2m3 − 2

⎞

⎠ (26)

for m ∈ R
3. In these coordinates, the β-scaled simplex β�2 is an equilateral triangle in

the (x, y)-plane centered at the origin. The Hessian matrix of Gα,β,t in these coordinates
is in block diagonal form:

D2(Gα,β,t ◦ ϕ−1
β )(x, y, z) =

⎛

⎜⎜⎝

∂2Gα,β,t

∂x2
∂2Gα,β,t

∂x∂ y 0
∂2Gα,β,t

∂x∂ y
∂2Gα,β,t

∂ y2
0

0 0 3
β

⎞

⎟⎟⎠ (27)

The set of degenerate stationary points is given by the solutions (m, β, t) of the following
equation:

∂2Gχ(m,β,t),β,t

∂x2
∂2Gχ(m,β,t),β,t

∂ y2
−

(
∂2Gχ(m,β,t),β,t

∂x∂ y

)2

= 0 (28)

Before we present the proof, let us stress the importance of this proposition. The matrix
�(M, t) naturally appears in the derivatives of Gα,β,t and has the two important properties:
Firstly, �(M, t) is a strictly positive Markov transition kernel and secondly the map M �→
�(M, t) is compatible with the symmetry of the model.

Remark 7 The fact that the catastrophe manifold is given as a graph allows us to write the
bifurcation set

B = {(α, β, t) | ∃m ∈ �2 : DGα,β,t (m) = 0, det D2Gα,β,t (m) = 0}
as the set of (χ(m, β, t), β, t) such that

detG ′′
χ(m,β,t),β,t (m) = 0 (29)

with (m, β, t) ∈ H ×(0,∞)×(0,∞). We can therefore take the same point of view as in the
static case [cf. [22], Lemma 3]: We study the zeros of the Hessian determinant as a function
of m with β and t fixed. This is a two-dimensional problem since we only have to consider
points in the unit simplex �2. Additionally, �2 is bounded so that we can simply compute
the zeros of the Hessian determinant numerically on a discretization of �2 as accurately as
we want to. In this way we can get insight into the global shape of the bifurcation set.

It is convenient to look at B as composed of the bifurcation set slices B(β, t) =
{α | (α, β, t) ∈ B}, that is, we can write

B =
⋃

β>0
t>0

B(β, t) × {(β, t)}.

Figure 4 shows an example of the zeros of theHessian determinant togetherwith the respective
image under the map χ(·, β, t) for a fixed pair (β, t). We now continue with the proof of the
above proposition.
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Fig. 4 The left column shows the solutions to the degeneracy condition (28) for β = 2.755, gt = 0.5 (above)
and gt = 0.45 (below) computed using a uniform triangular grid. The right column shows the image of the
solutions under the catastrophe map χ(·, β, t) restricted to a square. The branches of the degenerate points on
the left and their corresponding images under χ(·, β, t) on the right are marked with the same color. Note that
despite the fact that the degenerate stationary points in the left plot lie inside of �2 in the right plot we see
that parts of the bifurcation set slice lie outside of the simplex. This is a major difference to the static case

Proof of Proposition 6 Let us prove the claims in increasing order. Fix arbitrary M ∈ R
3 and

positive t . The following equation proves (22).

�b,a(ρM, t) = eMρ(a)+gt1b=a

3∑
c=1

eMc+gt1b=c

= eMρ(a)+gt1ρ(b)=ρ(a)

3∑
c=1

eMc+gt1ρ(b)=c

= �ρ(b),ρ(a)(M, t) (30)

We proceed with the second point. Note that the matrix �(M, t) can be written as the
product DE of the diagonal matrix D = (Da,b) with entries

1a=b∑3
c=1 e

Mc+gt1c=b
(31)

for a, b ∈ {1, 2, 3} and the matrix

E =
⎛

⎝
eM1+gt eM2 eM3

eM1 eM2+gt eM3

eM1 eM2 eM3+gt

⎞

⎠ . (32)
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Since det �(M, t) = det(D) · det(E) and the determinant of D is clearly positive, we have
to check that det(E) is positive to see that �(M, t) is in the general linear group. We find
that the determinant of E is given by

det(E) = eM1+M2+M3(e3gt − 3egt + 2) (33)

which is clearly positive for all positive gt .
To prove the formula for the inverse, let a, b and d be pairwise different elements of

{1, 2, 3}. Substituting the right-hand sides of (23–24), we have the following

�b,a�
−1
a,a = egt + 1

e2gt + egt − 2

∑
c e

Mc+gt1c=a

∑
c e

Mc+gt1c=b

�b,b�
−1
b,a = −egt

e2gt + egt − 2

∑
c e

Mc+gt1c=a

∑
c e

Mc+gt1c=b

�b,d�
−1
d,a = −1

e2gt + egt − 2

∑
c e

Mc+gt1c=a

∑
c e

Mc+gt1c=b

�a,a�
−1
a,a = (egt + 1)egt

e2gt + egt − 2

2�a,d�
−1
d,a = −2

e2gt + egt − 2
.

Adding the right-hand sides of the first three equations yields zero and adding those of the
last two gives one. This proves the formula for the inverse.

We now prove that the catastrophe manifold is the graph of χ . First, let us check that the
rangeofχ is indeed the hyperplane H . Take an arbitrary point (m, β, t) in H×(0,∞)×(0,∞)

and let α = χ(m, β, t).

3∑

b=1

αb =
3∑

b=1

3∑

a=1

ma�
−1
a,b(βm, t) (34)

Since (1, 1, 1)T is an eigenvector of �(βm, t) for the eigenvalue 1, it is also an eigenvector
of �−1(βm, t) for the same eigenvalue. Therefore, we find

3∑

b=1

αb =
3∑

a=1

ma = 1, (35)

so α is an element of H . Next, we show that the catastrophe manifold is the graph of χ . The
differential of Gα,β,t is given by

G ′
α,β,t (m) = β

(
ma −

3∑

b=1

αb�b,a(βm, t)

)3

a=1

. (36)

Since �(βm, t) is invertible, the equation G ′
α,β,t (m) = 0 can be solved for α and we find

α = χ(m, β, t). Assume α is in �2, then G ′
α,β,t (m) = 0 implies that m also lies in �2 since

0 < �b,a(βm, t) < 1 for all b, a in {1, 2, 3}.
To show (27) and (28) observe that the second partial derivatives of Gα,β,t are given by

∂2Gα,β,t

∂mb∂ma
= β

(
1a=b − β

3∑

c=1

αc
∂�c,a

∂Mb

)
(37)
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where � = �(βm, t). The partial derivatives of �c,a are elements of the tangent space of �2

for every c in {1, 2, 3}, that is, summing over a yields zero. Furthermore, we compute the
inverse ϕ−1

β

ϕ−1
β (x1, x2, x3) = 1

3

⎛

⎝
1
1
1

⎞

⎠ + x1
β

⎛

⎝
0√
3

−√
3

⎞

⎠ + x2
β

⎛

⎝
2

−1
−1

⎞

⎠ + x3
β

⎛

⎝
1
1
1

⎞

⎠ .

Together with this we find

∂2G̃α,β,t

∂xi∂x3
=

3∑

a,b=1

∂2Gα,β,t

∂mb∂ma

∂(prb ◦ ϕ−1
β )

∂xi

∂(pra ◦ ϕ−1
β )

∂x3

= 1

β

3∑

a,b=1

∂2Gα,β,t

∂mb∂ma

∂(prb ◦ ϕ−1
β )

∂xi

=
3∑

b=1

∂(prb ◦ ϕ−1
β )

∂xi
= 3

β
1i=3

(38)

where G̃α,β,t (x1, x2, x3) := Gα,β,t ◦ ϕ−1
β (x1, x2, x3) and pra : R3 → R denotes the projec-

tion onto the a-th component. So we find that the Hessian D2(Gα,β,t ◦ϕ−1
β ) is indeed a block

diagonal matrix. Since β > 0 and α = χ(m, β, t), the condition for degenerate stationary
points detG ′′

α,β,t (m) = 0 is equivalent to Eq. (28). ��

4.2 Universality Hypothesis Connecting theMid-range Dynamical Model with the
Static Model

In our work we are guided by the following universality hypothesis, which provides a useful
organizing principle to understand the transitions which appear. It is suggested by the univer-
sality seen in local bifurcation theory, and verified for our model in the full set of mid-range
temperatures β < 3, by means of our analytical treatment in the sequel of the paper, aided
in some parts by computer algebra and numerics.

There exists a map from the two parameters temperature and time of the dynamical model
to one effective temperature parameter of the static model of the form

(β, t) �→ βst(β, t) (39)

which for our model is defined on the whole subset {(β, t) |0 < β < 3, t > 0} of the positive
quadrant (and not only locally) and this map has the following property.

At fixed (β, t) the bifurcation set slice B(β, t) ⊂ �2, in the space of endconditionings α

for the dynamical model, is diffeomorphic to a subset of the corresponding bifurcation set
slice Bst(βst) ⊂ �2 of the static model under a smooth (β, t)-dependent map

�2 � α �→ αst(α, β, t). (40)

See [[22], Fig. 2, p. 973] for nine prototypical examples of such slices for the static model.
Moreover the corresponding Maxwell sets of the dynamical and the static model get mapped
onto each other by the same diffeomorphism. For corresponding values of (α, β, t) for the
dynamical model and (βst, αst) the structure of stationary points of the rate functionals of the
dynamical and the static model is identical. The image of �2 under αst(·, β, t), which we
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call the effective observation window, always contains the uniform distribution. However, it
may be much smaller than �2 for some parameter values. In fact, this will happen as t ↑ ∞,
as we will see. The choice of the map βst(β, t) from dynamical to static parameters has some
freedom and therefore it is (only) uniquely defined on the critical lines EW, B2B and BU
of the dynamical model (see Fig. 2) which get mapped to the corresponding static values
βst = 4 log 2, βst = 8

3 , and βst = 18
7 [see [22], Table 1].

The following conjecture underlies this hypothesis, as it expresses the structural similarity
of dynamical and static rate functional, by means of a parameter-dependent map acting on
the state space �2, compare with the definition of equivalent potentials in [[27], Chapter 6,
Sect. 1].

Conjecture 8 There exists a set U which contains the unit simplex �2 and is open in the
hyperplane H such that

(a) there exists a smooth map ψ1 from the subset

D = {(α, β, t) | β < 3, t > 0, α ∈ U } (41)

of the parameter space of the time-evolved model to the parameter space (0,∞) × �2

of the static model such that the map (α, β) �→ ψ1(α, β, t0) is a diffeomorphism from
D ∩ {(α, β, t) : t = t0} to the respective image of this intersection for every t0 > 0.

(b) there exists a smooth mapψ2 from D×�2 to the state space �2 of the static model such
that the map m �→ ψ2(α, β, t,m) defined on the interior of �2 is a diffeomorphism onto
its image for every (α, β, t) in D.

(c) For every (α, β, t) in D the map m �→ ψ2(α, β, t,m) maps the contour lines in �2 for
Gα,β,t in the dynamical model to the contours in �2 for fψ1(α,β,t) where fβ,α denotes
the potential (5) of the static model [see [22], Sect. 1.2].

(d) There exists a function (β, t) �→ βst(β, t) on (0, 3) × (0,∞) such that

pr1 ◦ ψ1(α, β, t) = βst(β, t) (42)

where pr1 denotes the projection (0,∞) × �2 → (0,∞). In other words, the effective
static inverse temperature βst does not depend on the dynamical α.

A comparison of Fig. 9 with [[22], Fig. 5], gives evidence for the existence of the map ψ1

as the bifurcation set slice of the static model looks structurally similar to the bifurcation set
slice in a neighbourhood of the unit simplex of the dynamical model. The contour plots in
the rightmost plots of the two figures support the existence of the map ψ2 as the contour plot
of the dynamical potential Gα,β,t looks structurally similar to a subset of the contour plot
of the static potential fβst(β,t),αst(α,β,t). Note, however, that we are not going to construct the
maps ψ1 and ψ2 in the following sections of the paper and we do not need to do it. Instead,
we explicitly compute the critical lines from the dynamical potential following the ideas of
singularity theory. This means that the lines can be found independently of the construction
of the maps ψ1 and ψ2. The behavior of the model in the vicinity of these lines follows from
Thom’s classification theorem [see [26], Sect. 5 of Chapter 3] and our global analysis is
supported by the global numerical analysis of the relevant parts of the dynamical bifurcation
set. In the following sections we now proceed with the discussion of the critical lines.

4.3 The Symmetric Cusp Exit (SCE) Line and the Non-Gibbs Temperature

The non-Gibbs inverse temperature βNG is defined as the supremum of all β such that μn,β,t

is sequentially Gibbsian for all positive t . It turns out to be a maximum. As the type of
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transitions of the dynamical model for mid-range temperatures can be understood in terms
of the static case, let us remark that in the static Potts model the first type of bad empirical
measures that show up with increasing β are due to three symmetric cusp singularities, the
“rockets” [see [22], Figs. 2 and 4] and that there are no bad empirical measures for β ≤ 2.
Therefore, in the dynamical model, we look for symmetric cusp points that have just passed
the simplex edges in their midpoint and moved outside, which leads us to the symmetric cusp
exit line in the dynamical phase diagram. A cusp is a singularity which occurs in a parameter-
dependent double-well potential with at most two different minima [see [27], pp. 174–176].
These minima may collide with the maximum between the two for a certain values of the
parameters, which shows transitions to a one-minimum situation. Translated to our two-
dimensional potential, the cusp manifests itself in the merging of two local minima near the
simplex edge. This merging happens on the axis of symmetry. Without loss of generality we
consider the simplex edge where α1 = 0.

Proposition 9 Fix any positive β and t, let m be a point in H with (x, y, z)-coordinates
(0, y, 0).

(a) The point α = (0, 1
2 ,

1
2 ) in H is a symmetric cusp point on the simplex edge if and only

if
∂Gα,β,t

∂ y = 0 and
∂2Gα,β,t

∂x2
= 0 which translates to

6

β
y + egt + 1 − 2e3y

egt + 1 + e3y
= 0 (43)

6

β
+ 3(egt − 1)2

(egt + 1 + e3y)2
− 3(egt + 1)

egt + 1 + e3y
= 0. (44)

(b) The solutions of the system (43–44) can be explicitly parametrized in the form

β = 2s(2es + F(s))

4es − F(s)
(45)

gt = log

(
1

2
F(s) − 1

)
(46)

where

F(s) = −(s − 1)es − 4s +
√

((s − 1)es + 4s)2 + 8(2s + e2s). (47)

for s < 0.
(c) The non-Gibbs temperature is given via

βNG = 2s0(2es0 + F(s0))

4es0 − F(s0)
≈ 2.52885 (48)

where s0 is the unique zero in (−∞, 0) of

64 s3 + 64 s2 + s(s2 + s + 6)e3 s + 4 s(5 s + 6)e2 s − 8 s(2 s − 3)es√
((s − 1)es + 4s)2 + 8(2s + e2s)

− 16 s2 − s(s + 2)e2 s + 4 s(s − 2)es − 8 s.

(49)

Proof Let us first prove (a). A symmetric cusp point α is the image of a symmetric degenerate
stationary point m under the map χ(·, β, t) at which the tangent vector of the curve of
degenerate stationary points (given by vanishing Hessian determinant) is parallel to the
direction of degeneracy. The partial derivatives of Gα,β,t with respect to x and z vanish
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at m because of symmetry, so it is sufficient for a stationary point m to have a vanishing
partial derivative with respect to the y-coordinate of m (see the chart given by (26)). Now,
for the gradient we note that

∂Gα,β,t

∂ y
= 2m1 − m2 − m3 −

3∑

b=1

αb(2�b,1 − �b,2 − �b,3)

= 6

β
y −

3∑

b=1

αb(3�b,1 − 1)

= 6

β
y + 1 − 3e3y

e3y + egt + 1

(50)

where we have abbreviated �b,a = �b,a(βm, t) and used the fact that α lies on the simplex
edge α = (0, 1

2 ,
1
2 ). This yields Eq. (43).

We will now derive Eq. (44). Note that the mixed partial derivative, which appears in the
degeneracy condition (28), vanishes at partially symmetric points:

∂2Gα,β,t

∂x∂ y
= −3

3∑

b=1

αb
∂�b,1

∂x
= 3

√
3

3∑

b=1

αb�b,1(�b,3 − �b,2) (51)

Plugging in α = (0, 1
2 ,

1
2 ), the right-hand side of the last equality in (51) vanishes because

�3,3 − �3,2 = �2,2 − �2,3 for points m which have the partial symmetry m2 = m3. There-
fore the degeneracy condition (28) is in product form. We calculate the remaining partial
derivatives:

∂2Gα,β,t

∂ y2
= 6

β
− 9(�2,1 − �2

2,1) = 9

(
�2,1 − 1

2

)2

− 9

4
+ 6

β
(52)

∂2Gα,β,t

∂x2
= 6

β
− 3

(
�2,2 + �2,3 − (�2,3 − �2,2)

2
)

(53)

The partial derivative (52) is always positive for β < 8
3 . This means we only have to consider

the zeros of (53). This yields Eq. (44).
We will now explain the parametrization of the set of solutions given in (b). First note that

the variable β can be eliminated from Eq. (44) using Eq. (43) for all y �= 0. When we set
w = egt + 1 we find that the resulting equation is a quotient of quadratic polynomials in w:

−w2 + ((3y − 1)e3y + 12y)w − 2(6y + e6y)

y(w + e3y)2
= 0 (54)

Since w > 2, it suffices to consider the numerator of the left-hand side. The discriminant of
this quadratic polynomial is given by

D = ((3y − 1)e3y + 12y)2 + 8(6y + e6y). (55)

It is positive for all real y. Therefore, this polynomial has two real roots. Because w > 2, we
choose the larger of the two solutions

w = 1

2

(
−(3y − 1)e3y − 12y + √

D
)

= 1

2
F(s) (56)

where we have defined s = 3y and used the definition of F(s) in Eq. (47). Furthermore,
F(s) > 4 for s �= 0 such that Eq. (46) yields positive values for gt .
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Finally we address (c): The non-Gibbs inverse temperature is theminimal value of β along
the curve given by the parametrization (45–46). Therefore we calculate the derivative of (45)
which gives

dβ

ds
= −2 · 2(3s − 1)es F(s) − 6ses F ′(s) + F2(s) − 8e2s

(4es − F(s))2
. (57)

Since 4es − F(s) is never zero for any s in (−∞, 0), we only have to consider the numerator
of the fraction. We calculate the derivative of F

F ′(s) = −ses − 4 + ((s − 1)es + 4s)(4 + ses) + 8(1 + e2s)√
((s − 1)es + 4s)2 + 8(2s + e2s)

. (58)

Putting everything together, dβ/ds = 0 is exactly fulfilled for the zero of the function defined
in (49). ��
Lemma 10 The entry time tNG(β) into the non-Gibbs region for β in (βNG, 3) and the exit
time tG(β) out of the non-Gibbs region for β in (βNG, βBE) are given by the two branches of
the SCE line when viewed as a function of β. The butterfly exit inverse temperature βBE is
discussed in Proposition 11. More precisely, we can parametrize the entry and exit times in
the following way:

tNG(β) = 1

3
log

(
2(β − 3y∗)e3y∗ + β + 6y∗

2((β − 3y∗)e3y∗ − β − 6y∗)

)
(59)

tG(β) = 1

3
log

(
2(β − 3y∗)e3y∗ + β + 6y∗
2((β − 3y∗)e3y∗ − β − 6y∗)

)
(60)

where y∗ is the largest root and y∗ is the smallest root in (−β
6 , 0) of

y �→ 2 β2 + 24β y + 72 y2 − (
β2 + 3β y − 18 y2 − 9β

)
e6 y

− 4
(
β2 + 3β y − 18 y2

)
e3 y .

(61)

Proof We only discuss the entry time. The formula for the exit time is proved analogously.
The entry time tNG is given by the first entry of rockets into the unit simplex while increasing
the time t and keeping β fixed. This is because, if the pentagrams unfold at all under increase
of time, they unfold after the rockets have entered the unit simplex �2. This will be clear in
the next subsectionwherewe compute the butterfly line. So let us consider the system (43–44)
and fix any positive β < 3. Since the relation (4) between gt and t is strictly monotonically
decreasing, we have to look for the maximal gt such that (β, gt , y) with negative y is a
solution to the system (43–44), which defines the symmetric cusp exit line. Here, y is a
magnetization-type variable. We can solve Eq. (43) for w = egt + 1 to obtain

w = 2(β − 3y)e3y

β + 6y
. (62)

Plugging this into the left-hand side of the degeneracy condition (44), we arrive at

2e−6y

3β2

(
2β2 + 24β y + 72y2 − (β2 + 3β y − 18y2 − 9β)e6y

− 4(β2 + 3β y − 18y2)e3y
)

= 0.

(63)

This yields the expression of (61). Since the right-hand side of (62) is increasing with y, we
have to pick the largest root of (61). ��
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Fig. 5 The thick blue line,which ends at the non-Gibbs temperature 1
βNG

,marks the entry time in the dynamical
phase diagram. Time is a monotonically decreasing function of gt so the first time we hit the symmetric cusp
exit line when moving on a vertical line of fixed temperature corresponds to the entry time

4.4 The Butterfly Unfolding (BU) Line and Butterfly Exit Temperature

A butterfly is a singularity for a parameter-dependent potential with up to threeminima,which
undergo various transitions depending on the value of its parameters [see [27], pp. 178–180].
Slicing the corresponding bifurcation set yields typical patterns of a curve which undergoes
changes from a self-intersecting form to a form without self-intersections. It is common to
describe this as (unfolding of) a butterfly. This unfolding is a very important mechanism
since it changes the set of bad empirical measures from straight lines to Y-shaped, branching
curves. The mechanism is already present in the static case, however, in contrast to the static
case we have to deal with the fact that in some parameter regions the pentagrams do not
fully lie inside of the unit simplex. This leads us to the definition of a butterfly exit inverse
temperature βBE for which at some point in time t > 0 there is a cusp point on an edge of
the simplex that is about to unfold into a pentagram. By definition, βBE lies between βNG

and 8
3 . The value

8
3 is the first inverse temperature for which a beak-to-beak scenario inside

of the unit simplex appears as we will see in Sect. 4.7.

Proposition 11 Let v(m, β, t) = pr2◦ϕβ ◦χ(m, β, t) be the vertical coordinate ofχ(m, β, t)
and let β(s) and t(s) be given by (45–46). The butterfly exit βBE is given by

βBE = 2s0(2es0 + F(s0))

4es0 − F(s0)
≈ 2.59590 (64)

where s0 < 0 is the largest zero of

s �→ ∂2v

∂x2

(
m(s), β(s), t(s)

)
+ ∂v

∂ y

(
m(s), β(s), t(s)

)
γ̈s(0) (65)

and γs is the implicit function y = γs(x) defined in a neighbourhood of (x, y) = (0, s
3 ) by

the degeneracy condition (28).
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Fig. 6 This figure shows a plot of
the function (65) which is
involved in the expression for the
butterfly exit (BE) temperature in
Proposition 11

Note that Eq. (65) is explicitly computed by a computer program because its expression
is very complicated. Nevertheless it is possible to plot the function (see Fig. 6).

Proof Let us first fixβ betweenβNG and 8
3 and a positive t . Consider a pointα on themidpoint

of one of the edges of �2 such that (α, β, t) belongs to the bifurcation set. Furthermore,
without loss of generality by symmetry let us assume that α2 = α3. To this point corresponds
a degenerate stationary point m that has the same symmetry m2 = m3. We can solve the
degeneracy condition (28) in a neighbourhood ofm in the form y = γβ,t (x) such that γβ,t (0)
is the y-coordinate of m. In α-space in a neighbourhood of α = χ(m, β, t) we can now
write the bifurcation set as χ(ϕ−1

β (x, γβ,t (x), 0), β, t). We know that the vertial component
v = pr2 ◦ ϕβ(α) of α fulfills

d2

dx2
v (γs0(x), β∗, t∗) = 0 (66)

when we follow the curve γs through the bifurcation set. This is because it has a minimum
before the pentagram unfolds and it has a maximum after the pentagram has unfolded. The
curve γ of degenerate stationary points is obtained by solving Eq. (28) in the form y = γ (x)
around (0, y∗)where y∗ = pr2◦ϕβ(m∗) is the vertical component ofm∗. Let us now compute
the second derivative of the v-component of the curve:

d2v

dx2

∣∣∣∣
x=0

= d

dx

(
∂v

∂x
+ ∂v

∂ y
γ̇ (x)

)

= ∂2v

∂x2

∣∣∣∣
x=0

+ ∂v

∂ y

∣∣∣∣
x=0

γ̈ (0)

(67)

The other mixed partial derivatives of v vanish since γ̇ (0) = 0 because of symmetry. ��

Furthermore, we compute γ̈ (0) via implicit differentiation: Let us write f (x, y) for the
left-hand side of (28) viewed as a function in the unit simplex in (x, y)-coordinates. By
implicit differentiation we then find:

γ̇ (x) = −∂ f

∂x

/
∂ f

∂ y
(68)
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Fig. 7 This figure shows the bifurcation set sliced at two points on the symmetric cusp exit line. The left plot
shows a slice before the butterfly exit point is passed (lower point in the phase diagram), the right plot shows
a slice after the butterfly exit point (intersection point of yellow and blue line) on the symmetric cusp exit line

And therefore:

γ̈ (0) = −
∂2 f
∂x2

∂ f
∂ y

+
∂ f
∂x

∂2 f
∂x∂ y

(
∂ f
∂ y )2

= −
∂2 f
∂x2

∂ f
∂ y

− γ̇ (0)
∂2 f
∂x∂ y
∂ f
∂ y

= −∂2 f

∂x2

/
∂ f

∂ y
.

(69)

Using the symbolic calculus tools (see p. 44) we can obtain an expression for (65).
Using a similar approach it is possible to compute the line in the dynamical phase diagram

for which we find butterfly points no matter where these points are with respect to the unit
simplex. The key idea that the vertical component of the curve in α-space has a vanishing
second derivative with respect to the curve parameter stays the same. But since we do not
restrict the point in α-space to lie on the unit simplex we lose one equation and we end up
with a one-dimensional set of solutions.

Proposition 12 For β in (βBE, 8
3 ) the butterfly unfolding happens at the unique butterfly

transition time tBU(β) which is obtained as follows: Define a function H via

H(β, s) = H1(β, s) + √
H2(β, s) (70)

where

H1(β, s) = βe2s − se2s + 4βes − 4ses + β + 2s − 3e2s − 3es

H2(β, s) = (
β2 − 2 (β − 3)s + s2 − 6β + 9

)
e4 s

+ 2
(
4β2 − (8β − 9)s + 4 s2 − 9β − 9

)
e3 s

+ 3
(
6β2 − 2 (5β − 6)s + 4 s2 − 18β + 3

)
e2 s

+ 2
(
4β2 + 2 (2 β − 15)s − 8 s2 − 15β

)
es

+ β2 + 4βs + 4 s2

and a function

t(β, s) = 1

3
log

(
H(β, s) + 6es

H(β, s) − 12es

)
. (71)
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Fig. 8 This figure shows two bifurcation set slices that illustrate the exit of the asymmetric cusp points. The
central plot shows the bifurcation set slice for a time at which the exit has not yet happened (upper point in
the phase diagram). The rightmost plot shows the bifurcation set slice exactly on the purple line ACE, that is,
when the exit is just happening

Then the butterfly transition time tBU(β) is given by

tBU(β) = t(β, s∗(β)) = 1

3
log

(
H(β, s∗(β)) + 6es∗(β)

H(β, s∗(β)) − 12es∗(β)

)
(72)

and s∗(β) < 0 is the largest zero of

s �→ ∂2v

∂x2

(
ϕβ

(
0,

s

3
, 0

)
, β, t(β, s)

)
+ ∂v

∂ y

(
ϕβ

(
0,

s

3
, 0

)
, β, t(β, s)

)
γ̈β,t(β,s)(0). (73)

Proof Using the same reasoning as in the proof of Proposition 11, we find that the point m
maps under χ(·, β, t) to a point α that is about to unfold into a pentagram if

d2

dx2

∣∣∣∣
x=0

v(ϕ−1
β (x, γβ,t (x), 0), β, t) = 0 (74)

where γβ,t is obtained by solving the degeneracy condition (28) in the form y = γβ,t (x) in a
neighbourhood of the pointm. This equation is now dependent onm, β and t , that is, we have
one equation and three variables (m is one-dimensional because m2 = m3). Additionally,
since we know that the direction of degeneracy is the x-direction, we have the equation

∂2Gα,β,t

∂x2

∣∣∣∣
x=0

= 0. (75)

This equation can be solved for w = egt + 1 which yields (70). Plugging this into (74), we
are left to find the zeros of (73) for some fixed β in the interval (βBE, 8

3 ). ��

4.5 Reentry into Gibbs: The Asymmetric Cusp Exit (ACE) Line

In the β-regime (βNG, βBE), three pentagrams unfold inside of the simplex at an inter-
mediate time and leave the simplex as t increases further. Since we are interested in
phase-coexistence of the first layer model μ̄n (Lemma 4) and the phase-coexistence lines
of the pentagram end in the asymmetric cusp points of the pentagrams, we must compute the
exit time tG(β) of these points for β in the above regime. Like in the previous subsection,
this is done using a combination of symbolic and numerical computation (see p. 44). The key
idea here is to obtain exact equations which then will be solved using numerical computation.
Imagine the pentagram shape, which is best seen in the middle plot of Fig. 7, and consider
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the vertical coordinate of the points along the pentagram as a function of the curve parameter.
This function has local maxima at the asymmetric cusp points, so that we ask for the first
derivative to vanish. The second equation, to which we refer as the exit condition, states that
point under consideration lies on the simplex edge.

Proposition 13 Fix a positive β and positive t and consider the set of solutions m to the
degeneracy condition (28) with α = χ(m, β, t).

(a) There is exactly one branch of solution with m2 = m3 and it is given by the graph of a
map x �→ y = γβ,t (x).

(b) Furthermore, define the map (x, y) �→ v(x, y) via

v(x, y) = (ϕβ)1 ◦ χ(ϕ−1
β (x, y, 0), β, t). (76)

Then the asymmetric cusps of the pentagrams are on the simplex edges if and only if the
exit condition

v (x, γβ,t (x)) = −1

6
β (77)

and the local maximum condition

∂v

∂x
(ϕβ(x, γβ,t (x), 0)) + ∂v

∂ y
(ϕβ(x, γβ,t (x), 0))γ̇β,t (x) = 0. (78)

are fulfilled.

Proof The location of the asymmetric cusps of the pentagrams on the curve x �→
χ(ϕ−1

β (x, γβ,t , 0), β, t) are given by the local maxima of the vertical component v(x) as
a function of the curve parameter x (see Fig. 8). This yields (78). Equation (77) comes from
the constraint that the cusp point lies on the simplex edge because for points on the edge the
vertical component equals − 1

6β in the chart (26). ��
Now, similarly to the case for the butterfly line, the computation of γ̇β,t (x) by hand is

impractical. Thereforewe compute the expression symbolicallywith the help of the computer.
This allows us to numerically determine the course of the line in the dynamical phase diagram.
Now, because it is impossible to solve the degeneracy Eq. (28) in the form y = γβ,t (x)
explicitly, we proceed as follows. Note that it is possible to solve (77) for β and plug it into
Eq. (78). We then fix some value of gt , and numerically solve the system consisting of the
degeneracy condition (28), where β is substituted from (77), and Eq. (78), where γβ,t is
substituted by y and

γ̇β,t (x) = −∂ f

∂x

/
∂ f

∂ y
(79)

where f denotes the left-hand side of (28) considered as a function of (x, y). This yields two
equations in the two variables x and y.

4.6 The Triple Point Exit (TPE) Line

To each of the three pentagrams there belongs a special point, the triple point [see [22],
Sects. 3.2]. This point is characterized by the coexistence of three global minima, that is,
the functional values of all the three minimizers are equal. First, we discuss the existence of
these points and then we determine for each fixed positive β the exit time ttriple(β). This is
the last time for which there are bad empirical measures with partial symmetry that lie inside
the unit simplex.
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Proposition 14 For each pair (β, t) in

{(β, t) | βBE < β < 4 log 2, t > tBU(β)} (80)

there exists exactly one α in the hyperplane H with α1 ≤ α2 ≤ α3 such that Gα,β,t has
precisely three global minimizers.

Proof By symmetry, the triple point α has the partial symmetry α2 = α3. Therefore consider
the curve v �→ α(v) = ϕ−1

β (0, v, 0)which crosses theα-region for which the potentialGα,β,t

has three minimizers two of which lie inside the same fundamental cell m1 ≤ m2 ≤ m3.
There is always such a region because the pentagrams have already unfolded (t > tbut).
This gives rise to the two maps v �→ m(v) and v �→ m̃(v) which map v to one of the
two minimizers m(v) or m̃(v) inside this cell. Assume that ϕβ(m(v)) = (x(v), y(v), 0) and
ϕβ(m̃(v)) = (0, ỹ(v), 0)with ỹ(v) > y(v) and x(v) > 0. Now, we can define the difference

g(v) := Gα(v),β,t (m(v)) − Gα(v),β,t (m̃(v)) (81)

for all v such that α(v) lies in the former regime. Therefore

g′(v) = log
(egt+2x + e3y+x + 1)(egt+3ỹ + 2)2(egt + e2x + e3y+x )

(egt+x+3y + e2x + 1)2(egt + e3ỹ + 1)2
(82)

since m(v) and m̃(v) are stationary points. ��
Since the pentagrams in the bifurcation slices leave the simplex (observation window),

it is necessary for a discussion of the bad empirical measures that we find the time when
the triple points leave the unit simplex. The problem that we have to solve is stated in the
following proposition.

Proposition 15 Fix any positive β in the interval (βBE, 4 log 2) and let α be the midpoint of
the edge of the simplex with α2 = α3. First, define the function

t(β, y) = 1

3
log

(
2(β − 3y)e3y + β + 6y

2((β − 3y)e3y − β − 6y

)
(83)

The exit time tTPE(β) is then given by tTPE(β) = t(β, ỹ(β)) where ϕβ(0, ỹ(β)) and
ϕβ(x(β), y(β)) lie in the fundamental cell m1 ≤ m2 ≤ m3 and the triple (ỹ(β), x(β), y(β))

is a solution to the following system of equations.

Gα,β,t(β,ỹ) ◦ ϕβ(0, ỹ, 0) = Gα,β,t(β,ỹ) ◦ ϕβ(x, y, 0) (84)

(ϕβ)1 ◦ χ((ϕβ)−1(0, ỹ, 0), β, t(β, ỹ)) = (ϕβ)1 ◦ χ((ϕβ)−1(x, y, 0), β, t(β, ỹ)) (85)

(ϕβ)2 ◦ χ((ϕβ)−1(0, ỹ, 0), β, t(β, ỹ)) = (ϕβ)2 ◦ χ((ϕβ)−1(x, y, 0), β, t(β, ỹ)) (86)

The first equation asks that Gα,β,t takes the same values on the two points y, ỹ whereas the
last two assert that the corresponding points in the bifurcation set slice coincide.

Note that the expressions of the Eqs. (84–86) are computed symbolically by the computer
(see p. 44 for more information). They are not displayed here because of their length. Figure 9
shows a contour plot of the HS transform Gα,β,t with α = (0, 1

2 ,
1
2 ) and (β, t) on the line

TPE.

Proof The system of equations mainly comes from two ingredients: equal depth of two
minimizers and same end-conditioning α for these two minimizers. The triple point is char-
acterized by a coexistence of three global minimizers and since a triple point α must fulfill
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Fig. 9 The four-dimensional parameter (α, β, t) is represented by the two red dots in the two plots on the left.
The first of these plots displays a region of the dynamical phase diagram and the second plot the respective
bifurcation set slice clipped to a rectangle near the lower simplex edge which is represented by the dashed
horizontal line. The rightmost plot shows contour lines of the potential Gα,β,t for the respective parameter.
As expected for a triple point, the contour lines show three equally deep minimizers of the potential

Fig. 10 The beak-to-beakmechanism is characterized by themerging of two horns of two different pentagrams.
This merging joins two connected components of the complement of the bifurcation set slice when crossing
the red line from right to left. As can be seen in the two rightmost plots, this merging happens on the axis
of symmetry. The red dots in the dynamical phase diagram on the left mark the time–temperature pairs that
correspond to the bifurcation set slices from left to right. The dots in the central plot correspond to the points
of the same color in Fig. 11

the symmetry relation α2 = α3, we find that it is sufficient to compare the two minimizers
in the fundamental cell m1 ≤ m2 ≤ m3. Because α2 = α3, we always have one symmetric
stationary point so that the two minimizers have the coordinates (0, ỹ, 0) and (x, y, 0). Since
we know that either minimizer is a stationary point, we can use the vanishing of the first
partial derivative of Gα,β,t with respect to the y-coordinate to eliminate the time variable t
from the equations. This yields the function in Eq. (83). Using this function we can eliminate
the variable t from the equal depth condition and the other two equations that require that
the minimizers belong to the same end-conditioning α. ��

4.7 The Beak-to-Beak (B2B) Line

The beak-to-beak point in the static model is characterized as a cusp point that lies in
a segment from the center of the simplex to one vertex, that is, for example it has y >

0. The following proposition describes the line of beak-to-beak points and a parametric
representation in terms of roots of a cubic polynomial. Note that, despite the fact that the
line continues to exist for β > 3, the structural behavior of the bifurcation set around the
beak-to-beak point might change in the regime β > 3.

Proposition 16 Fix any positive β and t, let m be a point in H with coordinates (0, y, 0).
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(a) The point α = χ(m, β, t) is a beak-to-beak point if and only if

−(β + 6y − 2)(egt + 1)e−3y − (β − 3y − 1)egt+3y + egt (egt + 1) = 0 (87)

(β + 6y − 4)(egt + 1)e−3y − (β − 3y − 2)egt+3y = 0 (88)

(b) The solutions to this system can be parametrized in terms of s = 3y in the form

β(s) = 2(s − 2)w∗(s) + (s + 2)(w∗(s) − 1)e2s

(w∗(s) − 1)e2s − w∗(s)
(89)

gt (s) = log(w∗(s) − 1) (90)

where s > s∗ ≈ 0.66656 and w∗(s) is the unique root in the interval (2,∞) of the cubic
polynomial

(e3s − es)w3 − (6se2s + e4s + 2e3s − 3e2s − es − 2)w2+
(6se2s + 2e4s + 3e3s − 3e2s − 2es)w − e4s − 2e3s .

(91)

The positive real number s∗ is the unique root in (0,∞) of the function

s �→ −12se2s − e4s + 4e3s + 6e2s − 8es + 8. (92)

(c) The beak-to-beak point enters the simplex for s = 2/3 > s∗ at which β = 8
3 and

gt = log(2) − 2
3 ≈ 0.026481.

Proof From the analysis of the staticmodel [see [22], Fig. 2, rightmost plot of the first row and
neighbouring plots for smaller or larger β] we know that the beak-to-beak point (α∗, β∗, t∗)
is such that if we fix α = α∗ but change the parameters β or t we either find that α = α∗
is contained in a cell with two minimizers or in a cell with one minimizer. Since α∗ lies on
the axis of symmetry, we know α∗ = χ(m∗, β∗, t∗) where m∗ lies on the axis of symmetry
as well, and we find in coordinates ϕβ(α∗) = (0, v(m∗, β∗, t∗), 0), so it suffices to study, for
the reparametrized time variable w = egt + 1,

v(m, β,w) = (ϕβ)2 ◦ χ(m, β, t) =
(β + 6y)we−3y − (β − 3y)(w − 1)e3y + 3(w2 − w + 2)y − β

3(w2 − w − 2)

(93)

as a function of the y-coordinate ofm. In Fig. 11 you see a minimum and a maximum collide
and form a saddle point. This is exactly the beak-to-beak behavior. The point (β, t) for which
this collision has just happened is given by the vanishing of the first and second derivatives
of v(m, β,w) with respect to the y-coordinate of m. Now, the derivatives are given by:

dv

dy
(m, β,w) = −(β + 6y − 2)we−3y − (β − 3y − 1)(w − 1)e3y + w2 − w + 2

w2 − w − 2
(94)

d2v

dy2
(m, β,w) = 3(β + 6y − 4)we−3y − 3(β − 3y − 2)(w − 1)e3y

w2 − w − 2
(95)

Since w > 2, it suffices to consider the numerators of the above expressions. This yields
Eqs. (87) and (88).

Let us now prove the parametric form of the solutions. Equation (88) is linear in β as
long as egt + 1 − egt+6y �= 0 and can then be solved for β to yield (89) after substituting
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Fig. 11 This figure shows how v(m, β, w) behaves as a function of the y-coordinate of m for gt ≈ 0.07012.
In the left plot (β ≈ 2.6685) you see that there is a region for v(m, β, w) such that there exist three solutions to
the equation v(m, β, w) = v0. In the right plot (β ≈ 2.7267) this region is gone. For any v0 in this region, we
find three zeros of the partial derivative of the potential with respect to the y-coordinate of m corresponding
to two local minimizers and a saddle point. The red and blue dots correspond to the same dots in the central
plot of Fig. 10

w = egt + 1 and s = 3y. Suppose now egt + 1 − egt+6y = 0 which is equivalent to
egt = 1

e6y−1
. Equation (88) would in this case read

(9y − 2)e3y

e6y − 1
= 0 (96)

which is only fulfilled for y = 2
9 . However, this leads to the contradiction egt = 1

e
4
3 −1

< 1

but gt > 0. Therefore, we can assume that we can solve (88) for β. Plugging this into Eq. (87)
we arrive at the following fraction of polynomials in w.

(e3s − es)w3 − (6se2s + e4s + 2e3s − 3e2s − es − 2)w2

+ (6se2s + 2e4s + 3e3s − 3e2s − 2es)w − e4s − 2e3s

es
(
(w − 1)e2s − w

) = 0. (97)

The denominator is not zero because we are able to solve for β. Thus, it suffices to consider
the numerator which yields Formula (91).

We will now discuss the roots larger than 2 of this cubic polynomial. It is convenient to
change variables θ = w − 2, so that we are interested in the positive roots of the following
polynomial:

θ3(e3s − es) − (6se2s + e4s − 4e3s − 3e2s + 5es − 2)θ2

− (18se2s + 2e4s − 7e3s − 9e2s + 10es − 8)θ

− 12se2s − e4s + 4e3s + 6e2s − 8es + 8

(98)

Using Descartes’ rule of signs, we know that the number of positive roots is equal to the
number of sign changes among consecutive, nonzero coefficients of the polynomial or it less
than it by an even number. Note that the coefficients in increasing order for s = 0 are given
by (9, 12, 3, 0). Therefore we do not find any positive roots for very low positive values of
s. The first sign changes appears for the coefficient of order zero which yields Eq. (92). All
of the coefficients except the highest order coefficient eventually become negative. However,
with increasing s this happens with increasing order of the coefficient so that we have only
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Fig. 12 This plot shows the
function (99) whose zeros
determine the entry of the
beak-to-beak point into the
simplex. We see that we have a
unique zero and that this zero
corresponds to an entry into the
simplex since there is a sign
change from plus to minus

one sign change between consecutive coefficients for each s larger than s∗. Thus, for all
s > s∗ there exists only one root w∗(s) larger than 2.

Finally, to prove (c), note that points of entry (or exit) of the beak-to-beak point into the
simplex are given as rootsw to the s-dependent cubic polynomial (91) for which additionally
the entry condition

v
(
ϕ−1

β(s)(0, s/3, 0), β(s), w∗(s)
)

= β(s)

6

is fulfilled. Exact computationwith the solution formula to (91) for the numerically suggested

guess s = 2
3 , which then leads to w∗(s) = 1 + 2e− 2

3 and β = 8
3 , shows that this is indeed

the case for the values as claimed in (c). The uniqueness of this point follows because the
function of one argument

s �→ ṽ(s) := v
(
ϕ−1

β(s)(0, s/3, 0), β(s), w∗(s)
)

− β(s)

6
(99)

is monotonically decreasing in the interval (s∗, s0) where s = s0 is the unique solution to
β(s) = 3 (at this stage Fig. 12 shall be sufficient for us).

��

4.8 Reentry into Gibbs: TheMaxwell Triangle Exit (MTE) Line

For β in the interval ( 83 , 4 log 2) the model displays recovery as well but due to a different
mechanism.After the horns of twopentagramshave touched, theMaxwell setwhich consisted
of three connected components now has become one connected component. It consists of
three straight lines on the axes of symmetry and a triangle with curved edges. The model
recovers from the non-Gibbsianness when this triangle completely leaves the unit simplex
which happens on another line in the dynamical phase diagram we callMaxwell triangle exit
(MTE).

Proposition 17 For any β in the interval ( 83 , 4 log 2) define the function

w(β, y) = 1 + (β + 6y)e−3y

β − 3y
. (100)
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Fig. 13 The zeros of the left-hand
sides of the two Eqs. (101) and
(102) for β = 2.8. The red curve
corresponds to the solutions of
(101) and the blue curve to the
solutions of (102). The
intersection of the red curve with
diagonal is of course a trivial
solution and not the one we are
looking for

The Maxwell triangle leaves the simplex at t = tMTE(β) = 1
3 log

w(β,y)+1
w(β,y)−2 where y in

(−β
6 ,

β
3 ) is such that there exists a y′ in (−β

6 ,
β
3 ) and (y, y′) is a solution of the system

(β + 6y)(β − 3y′)e−3y − (β + 6y′)(β − 3y)e−3y′ = 0 (101)

−2y − y′ − 3

β

(
(y′)2 − y2

)
+ log

β

3

(
−2 (β − 3 y)e3 y − (β + 6 y)e3 y

′) = 0 (102)

Before we come to the proof, let us remark the following: Of course, it is impractical to
solve this system by hand. However, for fixed β we can show the zeros of the left-hand sides
of both equations. Figure 13 shows them in the relevant rectangle (−β

6 ,
β
3 ) × (−β

6 ,
β
3 ). The

line as depicted in the dynamical phase diagram is obtained via a numerical solution of this
system of equations.

Proof Letm = ϕ−1
β (0, y, 0) be any point on the axis of symmetry withm2 = m3. This point

is mapped to α = (1, 0, 0) by the catastrophe map χ(·, β, t) if and only if

6y

β
+ 1 − 3(w − 1)e3y

(w − 1)e3y + 2
= 0 (103)

which is the equation ∂Gα,β,t
∂ y = 0 where α = (1, 0, 0) and we have substituted w = egt + 1.

Solving this equation for w we find two solutions one of which is positive. This yields (100).
Let m′ = ϕ−1

β (0, y′, 0) be any point on the same axis of symmetry. The value of Gα,β,t

at these two points m and m′ are equal if and only if Gα,β,t − Gα,β,t = 0. Plugging in t =
1
3 log

w(β,y)+1
w(β,y)−2 and α = (1, 0, 0) yields (102). Equation (101) comes from the fact thatm and

m′ are stationary points that belong to the same timevariable t , that is,w(β, y)−w(β, y′) = 0.
If we multiply this equation by (β − 3y)(β − 3y′) we arrive at (101). ��

5 Loss of the Gibbs PropertyWithout Recovery

If β lies in the interval (4 log 2, 3), the model displays the loss of the Gibbs property without
recovery. This is due to the uniform distribution which becomes bad after a sharp transition
time and stays bad forever. This behavior is analogous to the behavior in the static model
described by the Ellis–Wang theorem [8].
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5.1 The Ellis–Wang (EW) Line

The static model has a phase-coexistence of four states at inverse temperature 4 log 2 in zero
field [8]. The first layer model as discussed in this paper has a whole line of such points
which we refer to as Ellis–Wang points.

Proposition 18 Suppose α = ( 13 ,
1
3 ,

1
3 ), that is, it represents the uniform distribution.

(a) The HS transform Gα,β,t has a point of phase-coexistence with four global minimizers
if and only if there exists a solution (s, β, t) to the following system of equations.

3y

β
+ 1

e3y+gt + 2
− e3y

e3y + egt + 1
= 0 (104)

3y (1 + 3y

β
) + log

(egt + 2)3

(egt + 1 + e3y)2(e3y+gt + 2)
= 0 (105)

(b) The solutions to the above systems can be parametrized in terms of s = 3y given via

β = s
(
es(w∗(s) − 1) + 2

)
(es + w∗(s))

(es − 1)(w∗(s)es + w∗(s) − es)
, (106)

gt = log(w∗(s) − 1) (107)

where s > 2 log 2 and w∗(s) is the unique zero in (2,∞) of

w �→ s

(
1 + (es − 1)(wes − es + w)

(w + es)(wes − es + 2)

)
+ log

(w + 1)3

(w + es)2(wes − es + 2)
. (108)

Proof First, let us derive the system of equations (104–105). Since α has the full symmetry,
that is, it is invariant under any permutation of S3, it suffices to consider the equal-depth of
the central minimum m0 with one of the three outer ones denoted by m. In the following, we
assume m2 = m3. The relative difference between the values is given by

Gα,β,t (m) − Gα,β,t (m0) = y + 3y2

β
− 1

3
log(egt+3y + 2)

− 2

3
log(egt + e3y + 1) + log(egt + 2).

(109)

By collecting the logarithmic terms and multiplying the equation by 3 we find (105). Equa-
tion (104) comes from the fact thatm is a stationary point. So we calculate the relevant partial
derivative

∂Gα,β,t

∂ y
= 6y

β
+ 1 − �1,1 − 2�2,1 (110)

where �b,a = �b,a(βm, t). The partial derivative with respect to the x-coordinate of m
vanishes because of symmetry. Plugging in the expressions for �1,1 and �2,1 yields (104).

Now, let us come to the parametrization. Equation (106) follows by substituting w =
egt + 1 and s = 3y in Eq. (104) and solving for β which is possible since s �= 0. Plugging
this into Eq. (105) and making the same substitutions we find (108). Note that w∗(s) is
increasing with s and that the solution of w∗(s) = 2 is s = 2 log 2. For lower values of s
(108) has no zeros larger than two. ��
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5.2 The Elliptic Umbilics (EU) Line

In the static model there is a special point called elliptic umbilic. This catastrophe at the
center of the unit simplex is responsible for the fact that the central minimum changes to a
maximum. The local model for the potential at the elliptic umbilic point, which is the exact
point where the chance from minimum to maximum occurs, is given by the polynomial

x2y − 1

3
y3 + const.

A discussion of the elliptic umbilic catastrophe together with the two other umbilic catastro-
phes, hyperbolic and parabolic umbilic, can be found in [27, pp.180–191]. In the dynamical
model–due to the additional parameter gt–we have a whole line of these points. This line we
call the line of elliptic umbilics (EU).

Proposition 19 For each β ≥ 3 define the function

w(β) = β − 1 + √
β(β − 3). (111)

Fix some β ≥ 3 and let α = ( 13 ,
1
3 ,

1
3 ) and t = 1

3 log
w(β)+1
w(β)−2 . Then:

(a) The Hessian G ′′
α,β,t (m) at m = ( 13 ,

1
3 ,

1
3 ) has a double zero eigenvalue.

(b) The Taylor expansion of Gα,β,t at m = ( 13 ,
1
3 ,

1
3 ) for β = 3 (and therefore gt = 0) up to

the third order is given by

x2y − 1

3
y3 + 1

2
z2 − log 3 − 1

2
. (112)

Proof First, we check that the Hessian has a double zero eigenvalue. Let α equal ( 13 ,
1
3 ,

1
3 )

and consider the Hessian ofGα,β,t atm = ( 13 ,
1
3 ,

1
3 ). With the same arguments as in the proof

of Proposition 9, we find that the Hessian is diagonal. Furthermore, since α and m have the

full symmetry, the two second order partial derivatives ∂2Gα,β,t

∂ y2
and ∂2Gα,β,t

∂x2
are equal. Let us

consider the partial derivative with respect to y.

∂2Gα,β,t

∂ y2
= 6

β
− 3 (�1,1 − �2

1,1 + 2(�2,1 − �2
2,1))

= 6

β
− 3

(
egt

egt + 2
− e2gt

(egt + 2)2
+ 2

egt + 2
− 2

(egt + 2)2

)

= 6

β
− 3 (1 − (w − 1)2 + 2

(w + 1)2
)

= 6
w2 + 2(1 − β)w + 1 + β

β(w + 1)2

(113)

where�b,a = �b,a(βm, t) andwe have substitutedw = egt +1. Setting this equal to zero and
solving for w yields (111) since the other root of the quadratic polynomial in the numerator
is always less than two.

Now we come to (b). Plugging β = 3 and gt = 0 into the HS transform and writing it in
the (x, y, z)-coordinates we arrive at

Gα,β,t (m) = 3

2
〈m,m〉 − log

3∑

a=1

e3ma = x2 + y2 + 1

2
z2 + √

3x

+ y − 1

2
− log(1 + e2

√
3x + e

√
3x+3y).

(114)
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Using the Taylor expansion of the logarithm and the exponential function, (112) follows by
an elementary computation. Note that (114) is actually the HS transform of the static Potts
model. ��

Using symbolic computation with the help of a computer, it is also possible to obtain a
Taylor expansion for every pair (β, gt ) on the Elliptic umbilic line. Because of symmetry,
the β-dependent coefficients of x2y and y3 differ only by a factor of − 1

3 . This means that for
any (β, gt ) on the Elliptic umbilic line the potential Gα,β,t with α representing the uniform
distribution has the following Taylor expansion up to order three around the simplex center.

A1(β)

A2(β)
(x2y − 1

3
y3) + 3

2β
z2 − 1

6
β − log(β + √

β(β − 3)) (115)

The functions A1(β), A2(β) are given as follows:

A1(β) = 7077888β10 − 107937792 β9 + 700710912 β8 − 2523156480 β7

+5502422016β6 − 7445737728β5 + 6152433408β4

−2930719968β3 + 712130940 β2 − 67493007β + 1062882

+27 B(β)
√

β(β − 3) (116)

B(β) = 262144β9 − 3604480 β8 + 20840448β7 − 65802240 β6

+123282432 β5 − 139366656β4 + 92378880 β3 − 33102432 β2

+5380020 β − 255879 (117)

A2(β) = 1048576β12 − 16515072 β11 + 111476736β10 − 421134336β9

+975421440 β8 − 1426553856β7 + 1307674368β6

−720555264β5 + 218245104β4 − 30311820 β3

+1240029β2 + C(β)
√

β(β − 3) (118)

C(β) = 1048576β11 − 14942208β10 + 90243072 β9 − 300810240 β8

+603832320 β7 − 747242496β6 + 560431872 β5 − 240185088β4

+51963120 β3 − 4330260 β2 + 59049β (119)
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use it. With this package you can, for example, create high-resolution plots of the functions involved in the
computation of the lines BU, TPE and ACE, or generate bifurcation set slices and Maxwell set slices.
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