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Abstract
Hidden Markov chains are widely applied statistical models of stochastic processes, from
fundamental physics and chemistry to finance, health, and artificial intelligence. The hidden
Markov processes they generate are notoriously complicated, however, even if the chain
is finite state: no finite expression for their Shannon entropy rate exists, as the set of their
predictive features is generically infinite. As such, to date one cannotmake general statements
about how random they are nor how structured.Here, we address the first part of this challenge
by showing how to efficiently and accurately calculate their entropy rates. We also show how
this method gives the minimal set of infinite predictive features. A sequel addresses the
challenge’s second part on structure.

Keywords Markov process · Shannon entropy · Iterated function system · Mixed state ·
Predictive feature · Optimal prediction · Blackwell measure

1 Introduction

Randomness is as necessary to physics as determinism. Indeed, since Henri Poincaré’s failed
attempt to establish the orderliness of planetary motion, it has been understood that both
determinism and randomness are essential and unavoidable in the study of physical systems
[1–4]. In the 1960s and 1970s, the rise of dynamical systems theory and the exploration of
statistical physics of critical phenomena offered up new perspectives on this duality. The
lesson was that intricate structures in a system’s state space amplify uncertainty, guiding it
and eventually installing it—paradoxically—in complex spatiotemporal patterns. Accepting
this state of affairs prompts basic, but as-yet unanswered questions. How is this emergence
monitored? How do we measure a system’s randomness or quantify its patterns and their
organization?
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The tools needed to address these questions arose over recent decades during the
integration of Turing’s computation theory [5–7], Shannon’s information theory [8], and
Kolmogorov’s dynamical systems theory [9–13]. This established the vital role that informa-
tion plays in physical theories of complex systems. In particular, the application of hidden
Markov chains to model and analyze the randomness and structure of physical systems has
seen considerable success, not only in complex systems [14], but also in coding theory [15],
stochastic processes [16], stochastic thermodynamics [17], speech recognition [18], compu-
tational biology [19,20], epidemiology [21], and finance [22], to offer a nonexhaustive list
of examples.

Shannon showed that given a finite-state predictive hiddenMarkov chain (HMC), onemay
directly and accurately calculate the generated process’ irreducible randomness [8]—now
called the Shannon entropy rate. Furthermore, for such a process, there is a unique, minimal,
and finite set of maximally predictive features, known as the causal states. The features may
be used to construct an optimally predictive, finite-state HMC that generates the process [23],
known as the ε−machine. The ε−machine’s mathematical description gives a constructive
definition of a process’ structural complexity as the amount of memory required to generate
the process.

Loosening the predictive constraint to consider a wider class of generated processes,
however, leads to major roadblocks. In fact, predicting a process generated by an arbitrary
nonpredictive finite-state HMC requires an infinite set of causal states [24]. That is, though
“finitely” generated, the process cannot be predicted by any finite HMC. Practically, this
precludes determining the process’ entropy rate using Shannon’s result and stymies charac-
terization of its structural complexity. To date, working with infinite causal states required
coarse-graining to produce a finite set of suboptimally-predictive features. Fortunately, the
tradeoffs between resource constraints and predictive power induced by such coarse graining
can be systematically laid out [25–27]. Although the problem of HMC entropy rate is well
studied [15,28–33], fully quantifying HMC-generated process randomness and structure in
general is an open problem.

The following introduces a direct approach to working with this class of processes. First,
causal states of an arbitrary nonpredictive HMC are shown to be equivalent (with mild
constraints) to the mixed states, a construction formally introduced by Blackwell over a
half century ago [29]. Second, the generation of uncountably infinite sets of mixed states is
identified as a chaotic dynamical system—specifically, a (place dependent) iterated function
system (IFS). This obviates analyzing the process via coarse graining. Rather, the complex
dynamics of the chaotic system directly captures the information-theoretic properties of the
generated process. Specifically, this allows exactly calculating the entropy rate of the process
generated by the original HMC. Additionally, the dynamical systems perspective provides
new insight into the causal-state structure and complexity of infinite causal-state processes.
This has direct application to the study of randomness and structure in a wide range of
physical systems.

In point of fact, the following and its sequel [34] were proceeded by two companions
that applied the theoretical results here to two, rather different, physical domains. The
first analyzed the origin of randomness and structural complexity engendered by quantum
measurement [35]. The second solved a longstanding problem on exactly determining the
thermodynamic functioning of Maxwellian demons, aka information engines [36]. That is,
the following and its sequel lay out the mathematical and algorithmic tools required to suc-
cessfully analyze these applied problems. We believe the new approach is destined to find
even wider applications.
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Fig. 1 A hidden Markov chain
(HMC) with two states, {σ1, σ2}
and two symbols {�,�}. It is
unifilar

Section 2 recalls the necessary background in stochastic processes, hiddenMarkov chains,
and information theory. Section 3 reviews the needed results on iterated function systems;
while Sect. 4 develops mixed states and their dynamic—the mixed-state presentation. The
main result connecting these then follows in Sect. 5, showing that themixed-state presentation
is an IFSand that it produces an ergodic process. Section6 recallsBlackwell’s theory, updating
it for our present purpose of determining the entropy rate of any HMC. The Supplementary
Materials provide background on the asymptotic equipartition property and minimality of
the mixed states. They also constructively work through the results for several example
nonunifilar HMCs. They close with the statistical error analysis underlying entropy-rate
estimation.

2 HiddenMarkov Processes

A stochastic process P is a probability measure over a bi-infinite chain . . . Xt−2 Xt−1

Xt Xt+1 Xt+2 . . . of random variables, each denoted by a capital letter. A particular real-
ization . . . xt−2 xt−1 xt xt+1 xt+2 . . . is denoted via lowercase letters. We assume values xt
belong to a discrete alphabetA. We work with blocks Xt :t ′ , where the first index is inclusive
and the second exclusive: Xt :t ′ = Xt . . . Xt ′−1. P’s measure is defined via the collection of
distributions over blocks: {Pr(Xt :t ′) : t < t ′, t, t ′ ∈ Z}.

To simplify the development, we restrict to stationary, ergodic processes: those for which
Pr(Xt :t+�) = Pr(X0:�) for all t ∈ Z, � ∈ Z

+, and individual infinite realizations capture those
statistics. In such cases, we only need to consider a process’s length-� word distributions
Pr(X0:�).

A Markov process is one for which Pr(Xt |X−∞:t ) = Pr(Xt |Xt−1). A hidden Markov
process is the output of a memoryless channel [37] whose input is a Markov process [16].

2.1 HiddenMarkov Chains

Working with processes directly is cumbersome, so we turn to consider finitely-specified
mechanistic models that generate them.

Definition 1 A finite-state edge-labeled hidden Markov chain (HMC) consists of:

1. a finite set of states S = {σ1, ..., σN },
2. a finite alphabet A of k symbols x ∈ A, and
3. a set of N by N symbol-labeled transition matrices T (x), x ∈ A: T (x)

i j = Pr(σ j , x |σi ).
The corresponding overall state-to-state transitions are described by the row-stochastic
matrix T = ∑

x∈A T (x).

Any given stochastic process can be generated by any number of HMCs. These are called
a process’ presentations.

We now introduce a structural property of HMCs that has important consequences in
characterizing process randomness and internal state structure.
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Definition 2 A unifilar HMC (uHMC) is an HMC such that for each state σi ∈ S and each
symbol x ∈ A there is at most one outgoing edge from state σi labeled with symbol x .

One consequence is that a uHMC’s states are predictive in the sense that each is a function
of the prior emitted sequence—the past x−∞:t = . . . xt−2xt−1xt . Consider an infinitely-
long past that, in the present, has arrived at state σt . For uHMCs, it is not required that this
infinitely-long past arrive at a unique state, but it is the case that any state arrived at by this
past must have the same past-conditioned distribution of future sequences Pr(X∞:t |x−∞:t ).
We call this deterministic relationship between the past and the future a prediction.

In comparison, a nonpredictive generative (nonunifilar) HMC may return a set of states
with varying conditional future distributions upon seeing this infinite past. All that is required
for accurate generation is that, if this were to be repeated many times, averaging over
these conditional future distributions returns the the unique conditional future distribution
Pr(X∞:t |x−∞:t ) given by the predictive uHMC state.

Although there are many generative and predictive presentations for a process P , there is
a canonical presentation that is unique: a process’ ε − machine.

Definition 3 An ε −machine is a uHMCwith probabilistically distinct states: For each pair
of distinct states σi , σ j ∈ S there exists a finite word w = x0:�−1 such that:

Pr(X0:� = w|S0 = σk) �= Pr(X0:� = w|S0 = σ j ) .

A process’ ε −machine is its optimal, minimal presentation, in the sense that the set S of
predictive (or causal) states is minimal compared to all its other unifilar presentations [38].

2.2 Entropy Rate of HMCs

A process’ intrinsic randomness is the information in the present measurement, discounted
by having observed the information in an infinitely long history. It is measured by Shannon’s
source entropy rate [8].

Definition 4 A process’ entropy rate hμ is the asymptotic average entropy per symbol [39]:

hμ = lim
�→∞

H[X0:�]
�

, (1)

where H [X0:�] is the Shannon entropy of block X0:�:

H [X0:�] = −
∑

x0:�∈A�

Pr(x0:�) log2 Pr(x0:�) . (2)

An equivalent, butmore rapidly converging version is found using the conditional entropy:

hμ = lim
�→∞H[X0|X−�:0] . (3)

Given a finite-state unifilar presentation Mu of a process P , we may directly calculate the
entropy rate from the transition matrices of the uHMC [8]:

hμ(P) = hμ(Mu)

= −
∑

σ∈S
Pr(σ )

∑

x∈A
T (x)

σσ ′ log2 T
(x)
σσ ′ . (4)
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Here, Pr(σ ) is the internal Markov chain’s stationary state distribution, denoted π and deter-
mined by T ’s left eigenvector normalized in probability: π = πT .

Blackwell showed, though, that in general for processes generated by HMCs there is no
closed-form expression for the entropy rate [29]. For a process generated by an nonunifilar
HMC M , applying Eq. (4) to M typically overestimates the true entropy rate of the process
hμ(P):

hμ(M) ≥ hμ(P) .

Overcoming this limitation is one of our central results. We now embark on introducing the
necessary tools for this.

3 Iterated Function Systems

To get there, we must take a short detour to review iterated function systems (IFSs) [40],
as they play a critical role in analyzing HMCs. Speaking simply, we show that HMCs are
stochastic dynamical systems—namely, IFSs.

Let (�N , d) be a compact metric space with d(·, ·) a distance. This notation anticipates
our later application, in which �N is N -simplex of discrete-event probability distributions
(see Sect. 4.1). However, the results here are general.

Let f (x) : �N → �N for x = 1, . . . , k be a set of Lipschitz functions with:

d
(
f (x)(η), f (x)(ζ )

)
≤ τ (x)d(η, ζ ) ,

for all η, ζ ∈ �N and where τ (x) is a constant. This notation is chosen to draw an explicit
parallel to the stochastic processes discussed in Sect. 2 and to avoid confusion with the
lowercase Latin characters used for realizations of stochastic processes. In particular, note
that the superscript (x)here and elsewhere parallels that of theHMCsymbol-labeled transition
matrices T (x). The reasons for this will soon become clear.

The Lipschitz constant τ (x) is the contractivity of map f (x). Let p(x) : �N → [0, 1]
be continuous, with p(x)(η) ≥ 0 and

∑k
x=1 p

(x)(η) = 1 for all η in M . The triplet
{�N , {p(x)}, { f (x)} : x ∈ A} defines a place-dependent IFS.

A place-dependent IFS generates a stochastic process over η ∈ �N as follows. Given an
initial position η0 ∈ �N , the probability distribution {p(x)(η0) : x = 1, . . . , k} is sampled.
According to the sample x , apply f (x) tomap η0 to the next position η1 = f (x)(η0). Resample
x from the distribution p(x)(η1) and continue, generating η0, η1, η2, . . ..

If each map f (x) is a contraction—i.e., τ (x) < 1 for all η, ζ ∈ �N—it is well known that
there exists a unique nonempty compact set 
 ⊂ �N that is invariant under the IFS’s action:


 =
k⋂

x=1

f (x)(
) .


 is the IFS’s attractor.
Consider the operator V : M(�N ) → M(�N ) on the space of Borel measures on the

N -simplex:

Vμ(B) =
k∑

x=1

∫

( f (x))
−1

(B)

p(x)(η)dμ(η) . (5)
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ABorel probability measureμ is said to be invariant or stationary if Vμ = μ. It is attractive
if for any probability measure ν in M(�N ):

∫

gd(V nν) →
∫

gμ ,

for all g in the space of bounded continuous functions on �N .
Let’s recall here a key result concerning the existence of attractive, invariant measures for

place-dependent IFSs.

Theorem 1 [41, Thm. 2.1] Suppose there exists r < 1 and q > 0 such that:

∑

x∈A
p(x)(η)dq

(
f (x)(η), f (x)(ζ )

)
≤ rqdq (η, ζ ) ,

for all η, ζ ∈ �N . Assume that the modulus of uniform continuity of each p(x) satisfies Dini’s
condition and that there exists a δ > 0 such that:

∑

x :d( f (x)(η), f (x)(ζ ))≤rd(η,ζ )

p(x)(η)p(x)(ζ ) ≤ δ2 , (6)

for all η, ζ ∈ �N . Then there is an attractive, unique, invariant probability measure for the
Markov process generated by the place-dependent IFS.

In addition, under these same conditions Ref. [42] established an ergodic theorem for IFS
orbits. That is, for any η ∈ �N and g : �N → �N :

1

n + 1

n∑

k=0

g(wxk ◦ · · · ◦ wx1η) →
∫

gdμ . (7)

4 Mixed-State Presentation

Wenowreturn to stochastic processes and theirHMCpresentations.Whencalculating entropy
rates from various presentations, we noted that nonunifilar HMC presentations led to difficul-
ties: (i) the internalMarkov-chain {S, T } entropy-rate overestimates the process’ entropy rate
and (ii) there is no closed-form entropy-rate expression. Furthermore, the states of nonunifi-
lar HMCs are nonpredictive, there is no (known) unique minimal nonunifilar presentation
of a given process. This precludes characterizing, in a unique and minimal way, a process’
structural complexity directly from a nonunifilar presentation.

To develop the tools needed to resolve these problems, we introduce HMC mixed states
and their dynamic. To motivate our development, consider the problem of observer-process
synchronization.

Assume that an observer has knowledge of a finite HMC M generating a process P .
The observer cannot directly observe M’s internal states, but wishes to know which inter-
nal state M is in at any given time—to synchronize to the machine. Since the observer
does have knowledge of M’s transition dynamic, they can improve on their initial guess
(Pr(σ1),Pr(σ2), . . . ,Pr(σN )) by monitoring the output data x0 x1 x2 . . . that M generates.
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4.1 Mixed States

For a length-� word w generated by M let η(w) = Pr(S|w) be the observer’s guess as to the
process’ current state after observing w:

η(w) ≡ Pr(S�|X0:� = w,S0 ∼ π) , (8)

where the initial guess Pr(S0|·) is π , M’s stationary state distribution. When observing a
N -state machine, the vector 〈η(w)| lives in the (N-1)-simplex �N−1, the set such that:

{η ∈ R
N : 〈η |1〉 = 1, 〈η |δi 〉 ≥ 0, i = 1, . . . , N } ,

where 〈δi | = (
0 0 . . . 1 . . . 0

)
and |1〉 = (

1 1 . . . 1
)
. We use this notation to indicate

components of the belief distribution vector η in order to avoid confusion with temporal
indexing. When a mixed state appears in probability expressions, the notation refers to the
random variable η, not the row vector |η〉, and we drop the bra-ket notation. Bra-ket notation
is used in vector-matrix expressions.

The 0-simplex�0 is the single point |η〉 = (1), the 1-simplex�1 is the line segment [0, 1]
from |η〉 = (0, 1) to |η〉 = (1, 0), and so on.

The set of belief distributions η(w) that an HMC can visit defines its set R of mixed
states:

R = {η(w) : w ∈ A+,Pr(w) > 0} .

Generically, the mixed-state set R for an N -state HMC is infinite, even for finite N [29].

4.2 Mixed-State Dynamic

The probability of transitioning from 〈η(w)| to 〈η(wx)| on observing symbol x follows from
Eq. (8) immediately:

Pr(η(wx)|η(w)) = Pr(x |S� ∼ η(w)) .

This defines the mixed-state transition dynamic W . Together the mixed states and their
dynamic define an HMC that is unifilar by construction. This is a process’ mixed-state pre-
sentation (MSP) U(P) = {R,W}.

We defined a process’ U abstractly. The U typically has an uncountably infinite set of
mixed states, making it challenging to work with in the form laid out in Sect. 4.1. Usefully,
however, given any HMC M that generates the process, we can explicitly write down the
dynamic W . Assume we have an N + 1-state HMC presentation M with k symbols x ∈ A.
The initial condition is the invariant probability π over the states of M , so that 〈η0| = 〈π |.
In the context of the mixed-state dynamic, mixed-state subscripts denote time.

The probability of generating symbol x when in mixed state η is:

Pr(x |η) = 〈η| T (x) |1〉 , (9)

where T (x) is M’s symbol-labeled transition matrix associated with the symbol x .
From η0, we calculate the probability

〈
η1,x

∣
∣ of seeing each x ∈ A. Upon seeing symbol

x , the current mixed state 〈ηt | is updated according to:
〈
ηt+1,x

∣
∣ = 〈ηt | T (x)

〈ηt | T (x) |1〉 . (10)
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Fig. 2 Determining the
mixed-state presentation (MSP)
of the 2-state unifilar HMC
shown in (a): The invariant state
distribution π = (2/3, 1/3). It
becomes the first mixed state η0
used in (b) to calculate the next
set of mixed states. c The full set
of mixed states seen from all
allowed words. In this case, we
recover the unifilar HMC shown
in (a) as the MSP’s recurrent
states

(a)

(b)

(c)

Thus, given an HMC presentation we can restate Eq. (8) as:

〈η(w)| = 〈η0| T (w)

〈η0| T (w) |1〉
= 〈π | T (w)

〈π | T (w) |1〉 .

Equation (10) tells us that, by construction, the MSP is unifilar, since each possible output
symbol uniquely determines the next (mixed) state. Taken together, Eqs. (9) and (10) define
the mixed-state transition dynamic W as:

Pr(ηt+1, x |ηt ) = Pr(x |ηt )
= 〈ηt | T (x) |1〉 ,

for all η ∈ R, x ∈ A.
To find the MSP U = {R,W} for a given HMC M we apply mixed-state construction:

1. Set U = {R = ∅,W = ∅}.
2. Calculate M’s invariant state distribution: π = πT .
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(a)

(b)

(c)

Fig. 3 Determining the mixed-state presentation of the 2-state nonunifilar HMC shown in (a). The invariant
distribution π = (1/2, 1/2). It is the first mixed state η0 used in (b) to calculate the next set of mixed states. b
plots the mixed states along the 1-simplex �1 = [0, 1]. In (c), we translated the points on the simplex to the
states of an infinite-state, unifilar HMC

3. Take η0 to be 〈δπ | and add it to R.
4. For each current mixed state ηt ∈ R, use Eq. (9) to calculate Pr(x |ηt ) for each x ∈ A.
5. For ηt ∈ R, use Eq. (10) to find the updated mixed state ηt+1,x for each x ∈ A.
6. Add ηt ’s transitions to W and each ηt+1,x to R, merging duplicate states.
7. For each new ηt+1, repeat steps 4-6 until no new mixed states are produced.

Let us walk through these steps with a simple finite-state example. In Fig. 2a we have a
unifilar HMC, which happens to be an ε − machine. The invariant state distribution of the
machine is π = (2/3, 1/3), so in Fig. 2b this becomes our initial mixed state η0. Following
steps 4 and 5 in the mixed-state construction, we calculate the probabilities of transition for
each symbol in the alphabet {�,�} and their resultant mixed states

{
η0,�, η0,�

}
. We then

relabel these new mixed states {η1, η2} and repeat. This process eventually results in Fig. 2c,
in which all possible transitions and mixed states have been found.

In Fig. 2c the recurrent states of the MSP, {η2, η3}, match exactly with the states of
the original machine {σ0, σ1}. Therefore, the recurrent part of the U(M) is exactly the ε −
machine. When starting with the ε − machine, trimming the transient states from the
U(ε −machine) in this way always returns the recurrent-state ε −machine, as in the above

123



32 Page 10 of 18 A. M. Jurgens, J. P. Crutchfield

Fig. 4 Figures a–c each plot 105 mixed states of the uncountably-infinite state MSP generated by the
parametrized 3-state HMC defined in Eq. (S1) at various values of x and α. This HMC is capable of gener-
ating MSPs with a variety of structures, depending on x and α. However, due to rotational symmetry in the
symbol-labeled transition matrices, the attractor is always radially symmetric around the simplex center

case. In general, if U(M) is finite, we find the ε−machine byminimizing U(M) via merging
duplicate states: repeatmixed-state construction onU(M) and trim transient states oncemore.

Is the MSP always the same as the ε − machine? When beginning with a finite, unifilar
HMC M generating a processP , theMSP U(M) is a finite, optimally-predictive rival presen-
tation toP’s ε−machine. Trimming the transient states will always return the recurrent-state
ε − machine, as in the above case. The MSPs of unifilar presentations are interesting and
contain additional information beyond the unifilar presentations. For example, containing
transient causal states, they are employed in calculating many complexity measures that
track convergence statistics [43].

However, here we focus on the mixed-state presentations of nonunifilar HMCs, which
typically have an infinite mixed-state set R. Figure 3 illustrates applying mixed-state con-
struction to a finite, nonunifilar HMC. This produces an infinite sequence of states mixed on
the 1-simplex, as depicted in Fig. 3b. In this particular example, theMSP is clearly structured
andR is countably infinite, allowing us to better understand the underlying process P; com-
pared, say, to the 2-state nonunifilar HMC in Fig. 3a. This is, indeed, the ε −machine, as is
clear from the fact ηn are probabilistically distinct and predictive. From the causal states, the
process’ structure—a discrete-time renewal process—becomes manifest and the entropy rate
may be directly calculated, adapting Eq. (4), as an infinite sum over the states ηn as n → ∞.

That said, MSPs of nonunifilar HMCs typically have an uncountably-infinite mixed-state
set R: Fig. 4 shows three attractors from the same parameterized 3-state HMC (defined in
Eq. (S1)) at different points in its parameter space. Our goal then is a set of constructive
results for this class of Us: for a given nonunifilar finite-state HMC, determine whether we
are guaranteed to have (i) a well-defined, unique, mixed-state setR, (ii) an invariant measure
over μ(R), (iii) an ergodic theorem, and (iv) a notion of minimality. With these established,
we can use U as a candidate for a process’ ε − machine.

5 MSP as an IFS

With the mixed-state presentation introduced and the goals outlined, our intentions in
reviewing iterated function systems (IFSs) become explicit. The MSP exactly defines a
place-dependent IFS, where the mapping functions are the set of symbol-labeled mixed-
state update functions of Eq. (10) and the set of place-dependent probability functions are
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given by Eq. (9). We then have a mapping function and associated probability function for
each symbol x ∈ A that can be derived from the symbol-labeled transition matrix T (x).

If these probability and mapping functions meet the conditions of Theorem 1, we identify
the attractor 
 as the set of mixed states R and the invariant measure μ as the invariant
distribution π of the potentially infinite-state U—the original HMC’s Blackwell measure.
Since all Lipschitz continuous functions are Dini continuous, the probability functions meet
the conditions by inspection.

We now establish that the maps are contractions. For maps defined by nonnegative, ape-
riodic, and irreducible matrices, we appeal to Birkhoff’s 1957 proof that a positive linear
map preserving a convex cone is a contraction under the Hilbert projection metric [44]. This
result, which may be extended to any nonnegative T (x) if there is an N ∈ N

+ such that
(
T (x)

)N
is a positive matrix, is summarized in Appendix C.

Although this covers a broad class of nonunifilar HMCs, we are not guaranteed irre-
ducibility and aperiodicity for symbol-labeled transition matrices. Indeed, several of the
more interesting examples encountered do not meet this standard. For example, consider the
Simple Nonunifilar Source (SNS), depicted in Fig. 3, defined by the symbol-labeled transition
matrices:

T (�) =
(
1 − p p
0 1 − q

)

and T (�) =
(
0 0
q 0

)

. (11)

In this case both T (�) and T (�) are reducible. (A quick check for this property is to examine
Fig. 3a and ask if there is a length-n sequence consisting of only a single symbol that reaches
every state from every other state.) Nonetheless, the HMC has a countable set of mixed states
R and an invariant measure μ.

We can show this with the mapping functions:

f (�)(η) =
[ 〈η |δ1〉 (1 − p)

1 − (1 − 〈η |δ1〉)q ,
〈η |δ1〉 p + (1 − 〈η |δ1〉)(1 − q)

1 + (1 − 〈η |δ1〉)q
]

and

f (�)(η) = [1, 0] . (12)

Recall here that 〈η |δ1〉 is simply the first component of η. From any initial state η0, other than
η0 = σ0 = [1, 0], the probability of seeing a� is positive.Once a� is emitted, themixed state
is guaranteed to be η = σ0 = [1, 0]. When the mapping function is constant in this way and
the contractivity is−∞, we call the symbol a synchronizing symbol. Fromσ0, the set ofmixed

states is generated by repeated emissions of�s, so thatR =
{(

f (�)
)n

(σ0) : n = 0, . . . ,∞
}
.

This is visually depicted in Fig. 3 for the specific case of p = q = 1/2. For all p and q , the
measure can be determined analytically; see Ref. [45]. This analyticity is due to the HMC’s
countable-state structure, a consequence of the synchronizing symbol.

This example, including the uniqueness of the IFS attractor 
, helps establish which
HMC class generates ergodic processes: those whose total transition matrix T = ∑

x T
(x) is

nonnegative, irreducible, and aperiodic. Consider an HMC in this class. Define for any word
w = x1 . . . x� ∈ A+ the associated mapping function T (w) = T (x1) ◦ · · · ◦ T (x�). Consider
wordw in a process’ typical set of realizations (see Appendix A), which approaches measure
one as |w| → ∞. Due to ergodicity, it must be the case that f (w) is either (i) a constant
mapping—and, therefore, infinitely contracting—or (ii) T (w) is irreducible.

As an example of case (i), any composition of the SNS functions Eq. (12) is always a
constant function, so long as there is at least one � in the word, the probability of which
approaches one as the word grows in length.
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As an example of case (ii), imagine adding to the SNS in Fig. 3a a transition on� from σ0
to σ1. For this new machine, both symbol-labeled transition matrices are still reducible, but
the composite transition matrices for any word including both symbols will be irreducible.
By Birkhoff’s argument, the map associated with that word is contracting. There are only two
sequences for which this does not occur: w = �N and w′ = �N . However, these sequences
are measure zero as N → ∞. Appendix A discusses this argument further.

In short, we extend the result of Theorem 1 to any HMC with nonnegative substochastic
transition matrices, as long as T = ∑

x T
(x) is nonnegative, irreducible, and aperiodic,

regardless of the properties of the individual maps.
Before moving on, let us highlight the implications of this result. For any process P that

may be generated by a finite-state HMC, we now have a guarantee of a unique, attracting set
of mixed states R, with an invariant, attracting measure μ(R). Furthermore, we appeal to
established IFS results for an ergodic theorem over long words [42]. Then, by introducing a
check for minimality (discussed in Appendix B), we identify the MSP U(M) as the infinite-
state ε − machine for the process P generated by M .

This gives a constructive way to generate the causal states of a broad class of processes
and determine their intrinsic randomness and complexity. As Fig. 4 makes clear, Us pro-
duce highly structured, fractal-like causal-states sets. The following restricts to these sets to
calculate the entropy rate hμ, but the sequels [34,46] extend our ability to characterize the
structure of these complex systems with tools from dynamical systems, dimension theory,
and information theory.

6 Entropy of General HMCs

Blackwell analyzed the entropy of functions of finite-state Markov chains [29]. With a shift
in notation, functions of Markov chains can be identified as general hidden Markov chains.
This is to say, both presentation classes generate the same class of stochastic processes. As
noted above, the entropy rate problem for finite unifilar hidden Markov chains was solved
with Shannon’s entropy rate expression Eq. (4). However, as Blackwell noted, there is no
analogous closed-form expression for the entropy rate of a finite nonunifilar HMC.

6.1 Blackwell Entropy Rate

That said, Blackwell gave an expression for the entropy rate of general HMCs, by introducing
mixed states over stationary, ergodic, finite-state chains. (Although he does not refer to them
as such.) His main result, retaining his original notation, is transcribed here and adapted by
us to constructively solve the HMC entropy-rate problem.

Theorem 2 ([29, Thm. 1].) Let {xn,−∞ < n < ∞} be a stationary ergodic Markov process
with states i = 1, . . . , I and transition matrix M = ‖m(i, j)‖. Let � be a function defined
on 1, . . . , I with values a = 1, . . . , A and let yn = �(xn). The entropy of the {yn} process
is given by:

H = −
∫ ∑

a

ra(w) log ra(w)dQ(w) , (13)

where Q is a probability distribution on the Borel sets of the set W of vectors w =
(w1, . . . , wI ) with wi ≥ 0,

∑
i wi = 1, and ra(w) = ∑I

i=1
∑

j��( j)=a wim(i, j). The
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Fig. 5 Entropy rate for 250, 000 parametrized HMCs generated according to the definition in Eq. (S1), over
x ∈ [0.0, 0.5] and α ∈ [0.0, 1.0]. Examples of the MSPs produced are plotted in Fig. 4. The entropy rate of
each, as estimated by Eq. (16), is plotted, showing the gradual change in entropy rate across the parameter
space

distribution Q is concentrated on the sets W1, . . . ,WA, where Wa consists of all w ∈ W
with wi = 0 for �(i) �= a and satisfies:

Q(E) =
∑

a

∫

f −1
a E

ra(w)dQ(w) , (14)

where fa maps W into Wa, with the j th coordinate of fa(w) given by
∑

i wim(i, j)/ra(w)

for �( j) = a.

We can identify the w vectors in Theorem 2 as exactly the mixed states of Sect. 4. Fur-
thermore, it is clear by inspection that ra(w) and fa(w) are the probability and mapping
functions of Eqs. (9) and (10), respectively, with a playing the role of our observed symbol
x .

Therefore, Blackwell’s expression Eq. (13) for the HMC entropy rate, in effect, replaces
the average over a finite setS of unifilar states in Shannon’s entropy rate formula Eq. (4) with
(i) the mixed statesR and (ii) an integral over the Blackwell measure μ. In our notation, we
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write Blackwell’s entropy formula as:

hB
μ = −

∫

R
dμ(η)

∑

x∈A
p(x)(η) log2 p

(x)(η) . (15)

Thus, as with Shannon’s original expression, this too uses unifilar states—now, though,
states from the mixed-state presentation U . This, in turn, maintains the finite-to-one internal
(mixed-) state sequence to observed-sequence mapping. Therefore, one can identify the
mixed-state entropy rate itself as the process’ entropy rate.

6.2 Calculating the Blackwell HMC Entropy

Appealing to Ref. [42], we have that contractivity of our substochastic transition matrix
mappings guarantees ergodicity over the words generated by the mixed-state presentation.
And so, we can replace Eq. (15)’s integral over R with a time average over a mixed-state
trajectory η0, η1, . . . determined by a long allowed word, using Eqs. (9) and (10). This gives
a new limit expression for the HMC entropy rate:

ĥμ
B = − lim

�→∞
1

�

�∑

t=0

∑

x∈A
Pr(x |η�) log2 Pr(x |η�) , (16)

where η� = η(w0:�) and w0:� is the first � symbols of an arbitrarily long sequence w0:∞
generated by the process. Note that w0:� will be a typical trajectory, if � is sufficiently long.
To remove convergence-slowing contributions from transient mixed states, one can ignore
some number of the initial mixed states. The exact number of transient states that should
be ignored is unknown in general and discussed in Appendix E. We can say that it depends
on the initial mixed state η0, which is generally taken to be 〈δπ |, and the diameter of the
attractor.

Figure 5 plots the entropy rate for 250, 000 HMCs. The HMC definition is given in
Eq. (S1) and parametrized by two variables, x and α. Three examples of the MSPs from this
parameter space displayed in Fig. 4. Despite the visual distinction of the MSPs, the entropy
rate smoothly varies across parameters and is often close to log2(3). This is partially due to
the radial symmetry of the mixed-state attractors. The connection between theMSP structure
and information measures will be more fully addressed in the sequel.

6.3 Computational Advantages and Disadvantages

This completes our development of the procedure to determine the HMC entropy rate. We
now consider the computational advantages and disadvantages of using theMSP and Eq. (16)
to find the entropy rate, in comparison to existing methods, as well as the practical issues of
the resources needed for accurate estimation.

One impetus driving our development is a recurring need for an entropy estimationmethod
that is both fast and general—one that applies to extensive surveys of HMCs that may have
varying structural elements and transition probabilities. This challenge is broadly encoun-
tered. In point of fact, these structural tools and the entropy-rate method introduced here have
already been put to practical use in two prior works. One diagnosed the origin of randomness
and structural complexity in quantum measurement [35]. The other exactly determined the
thermodynamic functioning ofMaxwellian information engines [36], when there had been no
previousmethod for this. Both applications relied critically on analyzing parametrizedHMCs
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and required reliable and fast calculation of entropy rates and other information measures
across a variety of HMC topologies.

HMC Shannon entropy rate has been studied in terms of upper and lower bounds [37,47],
with exact expressions [8,48,49], and as the solution to an integral equation [29]. Naturally,
exact expressions are preferable where applicable and needed. Unfortunately, though, they
are available only for restricted subsets of HMC topologies, such as unifilar or countable
HMCs.

Awell-known result is that the upper and lower finite-length conditional entropy estimates
[37]:

H(X0|X1, . . . , X�, σ�+1) ≤ hμ ≤ H(X0|X1, . . . , X�)

converge exponentially in word length � to the entropy rate for path mergeable HMCs, a
property that is straightforwardly checked [47]. This being said, while testing for the path
mergeability condition is feasible, the algorithm to do so runs in polynomial time in the
number of states and symbols, making testing impractical for a large-scale survey of HMCs
with many states and/or symbols. Furthermore, while the conditional entropy estimates of
hμ converge in exponentially in �, calculating conditional entropies is nontrivial. This is
particularly so when the exponential convergence rate α is arbitrarily close to 0. Thus, for
accuracy within a desired bound the required � may become arbitrarily large. Finally, while
H(X�|X1, . . . , X�−1) may be calculated exactly for all �, given knowledge of the HMC, at
large � this requires calculation of the full distribution over |A|� �-length words. Needless to
say, for applications involving many states, large alphabets, and/or many HMCs, bounding
the entropy rate in this way becomes computationally impractical.

The new method largely obviates these problems. When mixed-state construction returns
a countable-state HMC, we directly apply Shannon’s entropy rate formula Eq. (2) and find
the entropy rate exactly. When the MSP is uncountable we apply Eq. (16). It runs in O(N )

where N is the number of mixed states generated, with no direct dependence on number of
HMC states or alphabet size. Appendices E and F give a full discussion of the data-length
requirements and error of the mixed-state method, respectively.

The net result is that, being cognizant of the data requirements, entropy rate estimation
is well behaved, convergent, and accurate. One concludes that the most effective manner of
calculating of entropy rate for large-scale surveys will likely employ a combination of our
methodology and the other techniques just mentioned, with deployment of exact expressions
where possible. Furthermore, we note that the development of the MSP as the ε −machine,
and the constructive method of producing the causal state set R, may be of interest beyond
computational advantages in characterizing the complexity of the underlying system beyond
the entropy rate.

7 Conclusion

We opened considering the role that determinism and randomness play in the behavior of
complex physical systems. A central challenge in this has been quantifying randomness,
patterns, and structure and doing so in a mathematically-consistent but calculable manner.
For well over a half a century Shannon entropy rate has stood as the standard by which
to quantify randomness in a time series. Until now, however, calculating it for processes
generated by nonunifilar HMCs has been difficult and inaccurate, at best.
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We began our analysis of this problem by recalling that, in general, hiddenMarkov chains
that are not unifilar have no closed-form expression for the Shannon entropy rate of the
processes they generate. Despite this, these HMCs can be unifilarized by calculating the
mixed states. The resulting mixed-state presentations are themselves HMCs that generate the
process. However, adopting a unifilar presentation comes at a heavy cost: Generically, they
are uncountably-infinite state and so Shannon’s expression cannot be used. Nonetheless, we
showed how to work constructively with these mixed-state presentations.

In particular, we showed that they fall into a common class of dynamical system known
as place-dependent iterated function systems. Analyzing the IFS dynamics associated with
a finite-state nonunfilar HMC allows one to extract useful properties of the original process.
For instance, we can easily find the entropy rate of the generated process from long orbits of
the IFS. That is, one may select any arbitrary starting point in the mixed-state simplex and
calculate the entropy over the IFS’s place-dependent probability distribution. We evolve the
mixed state according to the IFS and sequentially sample the entropy of the place-dependent
probability distribution at each step. Using an arbitrarily long word and taking the mean of
these entropies, the method converges on the process’ entropy rate.

Although the IFS-HMC connection has been considered previously [50,51], our devel-
opment complements this by expanding it to address the role of mixed-state presentations
in calculating the entropy rate and to connect it to existing approaches to randomness and
structure in complex processes. In particular, while our results focused on quantifying and
calculating a process’ randomness, we left open questions of pattern and structure. Towards
this, we showed how the attractor of the IFS defined by an HMC is, assuming uniqueness
of the mixed states as discussed in Appendix B, the set of causal states R of the process
generated by that HMC. Practically, this gives a method to construct the causal states of a
process P , so long as it can be finitely generated. For instance, Fig. 3 demonstrated how
the highly structured nature of the Simple Nonunifilar Source is made topologically explicit
through calculating its mixed-state presentation—which is also its ε − machine.

In point of fact, many information-theoretic properties of the underlying process may be
directly extracted from its mixed-state presentation. These sets are often fractal in nature
and quite visually striking. See Fig. 4 for several examples. The sequel [34] establishes
that the information dimension of the mixed-state attractor is exactly the divergence rate of
the statistical complexity—a measure of a process’ structural complexity that tracks mem-
ory. Furthermore, the sequel introduces a method to calculate the information dimension of
the mixed-state attractor from the mixed-state IFS’s spectrum of the Lyapunov characteris-
tic exponents. In this way, it demonstrates that coarse-graining the simplex—the previous
approach to study the structure of infinite-state processes [45]—may be avoided altogether.
At this point, however, wemust leave to the sequel the full explication of these techniques and
further analysis on how mixed states reveal the underlying structure of processes generated
by hidden Markov chains.
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