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Abstract
We prove a mean field limit, a law of large numbers and a central limit theorem for a system
of point vortices on the 2D torus at equilibrium with positive temperature. The point vortices
are formal solutions of a class of equations generalising the Euler equations, and are also
known in the literature as generalised inviscid SQG. The mean-field limit is a steady solution
of the equations, the CLT limit is a stationary distribution of the equations.

Keywords Point vortices · Generalized SQG · Mean field limit · Law of large numbers ·
Central limit theorem

1 Introduction

The paper analyses the mean-field limit and the corresponding fluctuations for the point
vortex dynamics, at equilibrium with positive temperature, arising from a class of equations
generalising the Euler equations. Consider the family of models

∂tθ + u · ∇θ = 0,

on the two dimensional torus T2 with periodic boundary conditions and zero spatial average.
Here u = ∇⊥(−�)−m

2 θ is the velocity, and m is a parameter. When m = 2, the model
corresponds to the Euler equations, and when m = 1 it corresponds to the inviscid surface
quasi-geostrophic (SQG) equation.
One route to understand the behaviour of a turbulent flow is to study invariant measures for
the above equations. Onsager [43] proposed to do this via a finite dimensional system, called
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vortex model. In this model, we consider a vorticity field which is a linear combination of
δ-functions concentrated in points in physical space, in formula

N∑

j=1

γ jδX j (t),

where X1, X2, . . . , XN are vortex positions and γ1, γ2, . . . , γN are vortex intensities. Posi-
tions evolve according to

Ẋ j =
∑

k �= j

γk∇⊥Gm(X j , Xk),

where Gm is the Green function for the fractional Laplacian, and intensities are constant by
a generalized version of Kelvin’s theorem. This evolution is Hamiltonian, with Hamiltonian

HN = 1

2

∑

j �=k

γ jγkGm(X j , Xk),

and has a family of Gibbsian invariant distributions indexed by a parameter β, which reads

1

ZN
β

e−βHN .

The Gibbs measures associated to such a system can be considered as invariant measures for
the flow.
The investigation of the limit as N → ∞ of the point vortex model was initiated by Onsager,
as described in the review of Eyink and Srinivasan [15], and developed by many scholars. In
order not to overburden this introduction with notation, we postpone the account of existing
results and challenges to Sects. 2.3.1 and 2.4, where we describe also our own contribution.
In this work we investigate the mean-field limit and characterize its (Gaussian) fluctuations
around the limit measure in the case m < 2 and random vortex intensities. The investigation
of such fluctuations dates back to Messer and Spohn [39] for bounded interactions and Ben
Arous and Brunaud [2] for smooth interaction and positive intensities. Central limit theorems
are also contained in thework ofBodineau andGuionnet [3] onEuler vortices (the casem = 2
in the language of the present paper), or the recent series of results with Coulomb potential
and constant charges, see Serfaty and coauthors [33–35,49] and references therein.
In the case m < 2 and intensities of arbitrary sign, the situation is more complex than in the
case m = 2: the invariant distributions do not make sense since the Green function Gm of
the fractional Laplacian (−�)

m
2 has a singularity which is non-integrable.

We therefore introduce in Sect. 2.3 a regularization of the Green function with a regular-
ization parameter ε that goes to 0 as the number of vortices N increases to∞. In this way we
recover the original problem, as well as the intrinsic singularity of the potential, in the limit
of infinite vortices. The regularization parameter ε is a ultraviolet cutoff in the potential that
controls when vortices are too close to each other, and inhibits an uncontrolled growth of the
energy of the system.
Our problem is fundamentally different from the case of a smooth potential: We prove in
section Sect. 4.1 a uniform (in ε) control of the main quantities of the problem, such as the
partition function, which is slowly relaxed as the number of vortices increase. To ensure the
validity of our result, the speed of convergence of ε = ε(N ) must be at least logarithmically
slow in terms of N .
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Under the conditions β ≥ 0 andm < 2, and when ε(N ) ↓ 0, we prove propagation of chaos,
namely vortices decorrelate and are independent in the limit, via a variational principle
associated to the energy-entropy functional. Notice that in the mean field limit of both the
regularized systems and the singular system the overall distribution of pseudo-vorticity θ is
uniform, due to the fact that on the torus the total pseudo-vorticity is zero (see Remark 3.7 for
comments). But this by itself does not provide a meaningful conclusion. Our proof rigorously
links the particle systems to the variational problem and proves convergence of free energies.
The mean field limit result on the singular system is then a by-product.

We prove a law of large numbers and, in terms of θ , that the limit is a stationary solution
of the original equation. In Sect. 3.2 we prove a central limit theorem. The limit Gaussian
distribution for the θ variable turns out to be a statistically stationary solution of the equations.
The fluctuations result holds due to a higher order expansion analysis of the partition function,
similar to [21], where the same statement for Euler vortices has been recently proved.

Possible Extensions and FutureWork

This paper covers the basic case of uniform distribution of total pseudo-vorticity on the
simplest geometry.Our results should hold aswell on every compactRiemann surfacewithout
boundary and zeromean pseudo-vorticity, althoughwedo not dwell upon this line. Extensions
to bounded domains with boundary and to non–uniform limit distributions of total pseudo-
vorticity are on-going works, see Remark 3.7 for further details.

The case of negative temperature, which is considered the most interesting, is far from
being understood. While Kiessling [27] has proved, for the Euler case m = 2, that there is
only one minimiser of the free energy for small negative values of β, the energy profile for
β < 0 and m < 2 is much more involved. Indeed, we prove that in this case the free energy
functional is unbounded from below. New and deep ideas are needed to consider this case.
We have included a short discussion in Sect. 2.4.

Structure of the Paper

The paper is organized as follows: in Sect. 2 we introduce the model with full details, we give
some preliminary results and we prepare the framework to state the main results. Section 3
contains the main results, as well as some consequences and additional remarks. Finally,
Sect. 4 is devoted to the proof of the main results.

2 TheModel

General Notation

We denote by T2 the two dimensional torus, and by 	 the normalized Lebesgue measure on
T2. Given ametric space E , we shall denote byC(E) the space of continuous functions on E ,
and by P(E) the set of probability measures on E . If x ∈ E , then δx is the Dirac measure on
x . Given a measure μ on E , we will denote by μ(F) = 〈F, μ〉 = ∫

F(x) μ(dx) the integral
of a function F with respect to μ. Sometimes we will also use the notation Eμ[F]. We will
use the operator ⊗ to denote the product between measures. We shall denote by λ1, λ2, . . .

the eigenvalues in non-decreasing order, and by e1, e2, . . . the corresponding orthonormal
basis of eigenvectors of −�, where � is the Laplace operator on T2 with periodic boundary
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conditions and zero spatial average.With these positions, if φ = ∑
k φkek , then the fractional

Laplacian is defined as

(−�)
m
2 φ =

∞∑

k=1

λ
m
2
k φkek .

General Setup

Consider the family of models,

∂tθ + u · ∇θ = 0, (2.1)

on the torus with periodic boundary conditions and zero spatial average, where the velocity
u = ∇⊥ψ , and the stream function ψ is solution to the following problem,

(−�)
m
2 ψ = θ,

with periodic boundary conditions and zero spatial average. As above, m ∈ (0, 2] denotes
the order of the fractional Laplacian. The case m = 2 corresponds to the Euler equation
in vorticity formulation, m = 1 is the inviscid surface quasi-geostrophic equation (briefly,
SQG), and for a general value is sometimes known in the literature as the inviscid generalized
surface quasi-geostrophic equation. Here we will consider values m < 2 of the parameter.

2.1 Generalities on theModel

We start by giving a short introduction to the main features of the model (2.1).

2.1.1 Existence and Uniqueness of Solution

The inviscid SQG has been derived in meteorology to model frontogenesis, namely the
production of fronts due to tightening of temperature gradients. It has become an active
subject of research since the first mathematical and geophysical studies about strong fronts
[13,23,24], see also [8,45]. The generalized version of the equations bridges the cases of
Euler and SQG and it is studied to understand the mathematical differences between the two
cases.

Regarding the existence, uniqueness and regularity of solutions to (generalized) SQG
equations, a local existence result is known, namely data with sufficient smoothness give
local in time unique solutions with the same regularity of the initial condition, see for instance
[5]. Unlike the Euler equation, it is not known if the inviscid SQG (as well as its generalized
version) has a global solution. There is numerical evidence [7] of emergence of singularities
in the generalized SQG, for m ∈ [1, 2). On the other hand see [10] for classes of global
solutions. Finally, [6] presents a regularity criterion for classical solutions.

The picture for weak solutions is different: existence of weak solutions is known since
[44], see also [36]. For existence of weak solution for the generalized SQGmodel one can see
[5]. Global flows of weak solution with a invariant measure (corresponding to the measure
in (2.2) with β = 0) as initial condition has been provided in [42].
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2.1.2 Invariant Quantities

As in the case of Euler equations, equation (2.1) can be solved by means of characteristics,
in the sense that if θ is solution of (2.1) and u = ∇⊥θ ,

{
Ẋ = u(t, Xt ),

X(0) = x,

then, at least formally,

d

dt
θ(t, Xt ) = ∂tθ(t, Xt ) + Ẋt · ∇θ(t, Xt ) = (∂tθ + u · ∇θ)(t, Xt ) = 0,

therefore θ(t, Xt ) = θ(0, x). This formally ensures conservation of the sign and of the
magnitude (L∞ norm) of θ .

Equation (2.1) admits an infinite number of conserved quantities, for instance of L p norms
of θ . We are especially interested in the quantity

‖θ(t)‖2L2 =
∫

T2

|θ(t, x)|2 	(dx),

which is, for m = 2, the enstrophy. Another important conserved quantity is
∫

T2

θ(t, x)ψ(t, x) 	(dx) = ‖(−�)−
m
4 θ‖2L2(	)

.

which is, however, unlike the case m = 2, not the kinetic energy. Formally, corresponding
to these conserved quantities, in analogy with the invariant measures of the Euler equations
[1], one can consider the invariant measures

μβ,α(dθ) = 1

Zβ,α

e−β‖(−�)
− m

4 θ‖2−α‖θ(t)‖2
L2 dθ, (2.2)

withα > 0 a consant connected to the variance of the intensities. The invariantmeasures (2.2)
are classically interpreted as Gaussian measures with suitable covariance (see Remark 3.5).

2.2 The Point Vortex Motion

The central topic of this paper is to give results about the mean-field limit of a system of
point vortices governed by (2.1). Mathematical results about the general dynamics of point
vortices [38] and about the connection with the Euler equations [48] are classical, we refer
to the general survey on point vortices [19] for an overview.
Consider now a configuration of N point vortices located at x1, x2, . . . , xN , with respective
intensities γ1, γ2, . . . , γN , that is the measure

θ(0) =
N∑

j=1

γ jδX j

as the initial condition of (2.1), one can check that, at least in the sense given in Remark 2.1,
the solution evolves as ameasure of the same kind, where the “intensities” γ j remain constant
(a generalized version of Kelvin’s theorem about the conservation of circulation), and where
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the vortex positions evolve according to the system of equations
{
Ẋ j = ∑

k �= j γk∇⊥Gm(X j , Xk),

X j (0) = x j ,
j = 1, 2, . . . , N , (2.3)

where Gm is the Green function of the operator (−�)
m
2 on the torus with periodic boundary

conditions and zero spatial average. The effective connection between the equations and the
point vortex dynamics has been discussed in [20,46], see also [9,17,18]. In particular, when
m > 1, there are no collisions, and the solution of (2.3) is global outside of a set of initial
conditions of Lebesgue measure zero, see [19,46] for a proof on the plane, and [17] for a
proof on the torus.

Remark 2.1 (Notion of solution) We wish to explain in which sense a combination of point
vortices

∑
j γ jδX j can be understood as a solution of (2.1), at least whenm > 1. In principle

the weak formulation of (2.1) for a combination of point vortices θ ,

d

dt

∫

T2

φ(x) θt (dx) =
∫

T2

u(t, x) · ∇φ(x) θt (dx),

is not well defined, due to the self-interaction term appearing on the right hand side. Indeed,
if θt = ∑

j γ jδX j (t), then u(t, x) = ∑
j γ j∇⊥Gm(x, X j (t)), and

∫

T2

u(t, x) · ∇φ(x) θt (dx),=
∑

j,k

γ jγk∇⊥Gm(X j , Xk) · ∇φ(X j ),

which is singular when j = k.
If on the other hand we define Km(x, y) = ∇⊥Gm(x, y) when x �= y, and 0 on the

diagonal, and define the dynamics (2.3) as

Ẋ j =
N∑

k=1

γk Km(X j , Xk), j = 1, 2, . . . , N ,

by the non-collisions results in [17,19] it follows that outside a set of initial conditions of
Lebesgue measure zero, the dynamics defined through Km and the one defined in (2.3) are
the same. If then we neglect the self-interaction term in the transport velocity u, in other
terms if we set

u(t, x) =
N∑

j=1

γ j Km(x, X j (t)),

then the weak formulation above is well defined and a superposition of point vortices is a
solution of equation (2.1).

The motion of vortices is described by the Hamiltonian

HN (γ N , XN ) = 1

2

∑

j �=k

γ jγkGm(X j , Xk), (2.4)

where XN = (X1, X2, . . . , XN ) and γ N = (γ1, γ2, . . . , γN ).
A natural invariant distribution for the Hamiltonian dynamics (2.3) should be the measure

μN
β (dXN ) = 1

ZN
β

e−βHN (XN ,γ N ) 	⊗N (dXN ), (2.5)
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where here and throughout the paper we denote by 	 the normalized Lebesgue measure
on T2. Due to the singularity of the Green function on the diagonal, which diverges like
Gm(x, y) ∼ |x − y|m−2, the density above is not integrable and thus the measure μN

β does
not make sense (unless intensities are all positive).

To overcome this difficulty, we consider a regularization of the Green function, which we
will introduce in detail in the forthcoming Sect. 2.3, which gives us a regularizedHamiltonian
dynamics (2.7). Before explaining the details, we finish the setup of our model: In terms of
invariant distributions, we want to consider a problem slightly more general and consider
vortices with random intensities.1

For this, let ν be a probability measure on the real line with support on a compact set
Kν ⊂ R. The measure ν will be the prior distribution on vortex intensities. A natural
invariant distribution for the regularized Hamiltonian dynamics (2.7) with random intensities
is

μN
β,ε(dγ N , dXN ) = 1

ZN
β,ε

e− β
N H ε

N (γ N ,XN ) 	⊗N (dXN ) ν⊗N (dγ N ), (2.6)

where 	 is the normalized Lebesgue measure on T2 and ZN
β,ε is the normalization factor.

Note that in the above formula for the measure we have scaled the parameter β by N−1,
which corresponds to the mean-field limit scaling. There are several different scaling limits
for the N point vortex model, and their respective limits as N −→ ∞ give insight into
different phenomena:

In his pioneering work [43] , Onsager studied the microcanonical ensemble and predicted
the occurrence of negative temperature states when the energy of the system exceeds a
critical value, which was further investigated by Joyce and Montgomery [37]. Their claim
that negative temperatures would exist in the usual thermodynamic limit was invalidated by
Fröhlich and Ruelle [16] in the case of a neutral point vortex Hamiltonian.

The study and comparison of different scaling limits continued, in special cases, with
contributions of Lundgren and Pointin [31,32] and many others, see e.g. the survey [19].
Specifically for the Euler case m = 2, the inhomogeneous mean-field thermodynamical
limit was investigated by Lions and coauthors [11,12,30] and by Kiessling and coauthors
[26,28]. Their results build upon the work of Messer and Spohn [39] on Lipschitz continuous
interactions, which was extended by Eyink-Spohn [14] to the (quasi)-microcanonical setting,
working with a regularized Dirac measure on configuration space.

Mean-field limit results of point vortices with random intensities can be found in [29,40,
41]. The analysis of fluctuations can be found in [3,4] and in the recent [21].

2.3 The Regularized System

As pointed out, a difficulty for mean-field limit results is posed by the singular interaction
among vortices. In fact, the techniques developed in [39] for bounded interaction fail to
control the partition of the invariant distributions as N −→ ∞. To overcome this difficulty,
we consider a regularization of the Green function. To define it, notice that we can represent
the Green function for the fractional Laplacian through the eigenvectors,

Gm(x, y) =
∞∑

k=1

λ
−m

2
k ek(x)ek(y).

1 The quenched case, namely the case with fixed intensities, will follow as a by-product, see Remark 3.6.
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Given ε > 0, consider the following regularization of the Green function,

Gm,ε(x, y) =
∞∑

k=1

λ
−m

2
k e−ελk ek(x)ek(y).

Here, we have regularized the fractional Laplacian so that the new operator Dm,ε reads
Dm,ε = (−�)m/2 e−ε� and the eigenvalues change from λm/2 to λm/2 eελ. We remark that,
as long as Gm,ε is translation invariant and non-singular on the diagonal, the exact form of
the regularization is not essential for our main results.

If we replace Gm by Gm,ε in (2.3), the motion is still Hamiltonian with Hamiltonian H ε
N

given by (2.4), with Gm replaced by Gm,ε , namely

H ε
N (γ N , XN ) = 1

2

∑

j �=k

γ jγkG
ε
m(X j , Xk). (2.7)

2.3.1 Mean-Field Limit of the Regularized System

At fixed ε, the interaction among particles is bounded, and it has been shown already by
Messer and Spohn [39] that (μN

β,ε)N≥1 has limit points. To characterize the limit, consider

the free energy functional on measures on (Kν × T2)
N ,

Fε
N (μ) = E(μ|ν⊗N ⊗ 	⊗N ) + β

N
Kε

N (μ), (2.8)

where E is the relative entropy and

Kε
N (μ) =

∫∫
. . .

∫∫
H ε
N μ(dγ1, . . . , dγN , dx1, . . . , dxN ). (2.9)

is the potential energy. One can see that μN
β,ε is the unique minimiser of the free energy, and

this can be carried to the limit.
Given an exchangeable measure μ on (Kν × T2)

N� with absolutely continuous (with
respect to powers of ν⊗	) marginals andwith corresponding bounded densities, by convexity
and subadditivity we can define the entropy E∞ and thus the limit free energy functional,

Fε∞(μ) = E∞(μ) + 1

2
β

∫∫
H ε
2 (γ1, γ2, x1, x2) π2μ(dγ1, dγ2, dx1, dx2), (2.10)

where π2μ is the two dimensional marginal of μ.
As in [40, Theorem 11], all limit points of (μN

β,ε)N≥1 are minima of Fε∞, and if Fε∞ has
a unique minimum, then the limit is a product measure.
The mean-field equation, or, in other words, the Euler-Lagrange equation for Fε∞, reads

ρ(γ, x) = 1

Z
e−βγψρ(x), (2.11)

where Z is the normalization constant, andψρ is the averaged stream function, that isψρ(x) =∫
γGm,ε(x, y)ρ(γ, y) ν(dγ ) 	(dx). Moreover, the function ρ0 = 1 is a solution, with stream

function ψρ0 = 0. If μ0 = (ρ0ν ⊗ 	)N is the product measure corresponding to ρ0, it follows
that Fε∞(μ0) = 0. If β ≥ 0, i.e. the inverse temperature is positive, then limit free energy
Fε∞ is non-negative, and μ0 is the unique minimum.
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2.4 Negative Temperatures

In the case m = 2 (Euler’s equation), Kiessling [27] has proved that there is only one
minimiser for small negative values of β, and thus propagation of chaos also holds.

Here the energy profile when β < 0 is much more involved. Indeed, when β < 0 and
m < 2, the relative entropy fails to control the potential energy term (as in the case m = 2)
and the free energy functional is unbounded from below. Moreover, the infimum of the
regularized functionals converges (consistently) to −∞. If we turn to our solution ν ⊗ 	 for
negative β, we can see that, at least when β is sufficiently negative, this is not even a local
minimum.

To be more precise, consider the functional

F̃ε∞(μ) = E(μ|ν ⊗ 	)

+ 1

2
β

∫∫ ∫∫
H ε
2 (γ 2, x2)ρ(γ1, x1)ρ(γ2, x2) ν⊗2(dγ1dγ2) 	⊗2(dx1dx2),

where μ is a probability measure on Kν × T2, and E is the relative entropy. Define F̃0∞
similarly, with the original Hamiltonian (2.4) that replaces the regularized Hamiltonian. The
variational principle for Fε∞ can be read on product measures as a variational principle for
the “one point vortex” marginal ρ with respect to the above defined functional F̃ε∞, for ε > 0.
The functional F̃0∞ plays a similar role for the unregularized problem.

Proposition 2.2 If m < 2 and β < 0,

inf F̃0∞(μ) = −∞.

Moreover, inf F̃ε∞(μ) ↓ −∞.

Proof The idea is to construct a measure μ = ω(x)ν ⊗ 	(dγ dx), with ω a non-negative
function, with mass one, such that ω ∈ L p(T2) for some p > 1, and ω /∈ H−m/2(T2). The
condition ω ∈ L p(T2) ensures that the relative entropy E(μ|ν ⊗ 	) is finite, while,

∫∫ ∫∫
γ1γ2Gm(x1, x2) μ(dγ1x1)μ(dγ2x2) =

( ∫
γ ν(dγ )

)2

‖ω‖2
H− m

2
= +∞.

This proves that inf F̃0∞(μ) = −∞. If
∫

γ ν(dγ ) = 0, it is sufficient to modify μ =
�(γ )ω(x)ν ⊗	(dγ dx)with a density on the γ component so that

∫
γ �(γ ) ν(dγ ) �= 0. If the

infimum is taken only over smooth (in the x component) densities, it is sufficient to consider
a sequence μn = ωn(x)ν ⊗ 	(dγ dx), with ωn smooth and convergent to ω in L p . Finally,
by monotone convergence, F̃ε∞(μ) ↓ F̃0∞(μ).

It remains to construct a suitable function ω. For m < 2, by Sobolev’s embeddings we
know that L p(T2) is not embedded in H−m/2(T2) for all p ∈ [1, 4

m+2 ). Indeed, there exists

infinitely many non-zero u ∈ L p \H−m/2, with p ∈ (1, 4
m+2 ). Consider one such function u.

If u ≥ 0, then we take u (normalized to have mass 1) as ω. Otherwise, consider the positive
and negative part u+, u− of u. Both are in L p , and at least one, say u+, cannot be in H−m/2.
We take u+ (normalized to have mass one) as ω. ��

We then prove that, at least for β negative enough, the measure ν ⊗ 	 is not even a local
minimum. Notice that we still have F̃ε∞(ν ⊗ 	) = 0 for all ε ≥ 0. The computation below is
similar to [30, section 5.3].
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Lemma 2.3 Let ε ≥ 0 and β < 0. Then μ0 = ν ⊗ 	 is not a local minimum of F̃ε∞ (as well
as of (2.10)) for β < β0, where

β0 := −λ
m
2
1 eελ1

( ∫
γ 2 ν(dγ )

)−1

.

Proof Let ϕ be bounded and with zero average with respect to ν ⊗ 	, and set ρt = 1 + tϕ,
so that ρtν ⊗ 	 is a perturbation of μ0 for t small. We have

F̃ε∞(ρt ) =
∫

ρt log ρt ν(dγ ) 	(dx) + 1

2
βt2‖(−�)−

m
4 e

1
2 ε� ϕ̄‖2L2(	)

,

where ϕ̄(x) = ∫
γ ϕ(γ, x) ν(dγ ). Expand the entropy around t = 0 and choose ϕ = γ e1, to

get

F̃ε∞(ρt ) = F̃ε∞(ρ0) + 1

2
t2

(
1 + β/β0

)
+ o(t2).

Thus μ0 cannot be a local minimum. ��

Remark 2.4 As a final remark of this section, we wish to emphasize that the result of Propo-
sition 2.2 shows that two different divergences characterize the problem under consideration
in the paper. The first is the divergence of the configurational canonical partition function
(and in turn of the problem in the definition of (2.5)). This is induced both by the power
law singularity of the Green function, and the fact that vortex intensities can have differ-
ent signs. Nevertheless, when β > 0, the free energy functional is bounded from below
and our approach allows to capture the mean equilibrium of vortices through a vanishing
regularization of the interaction.

The second divergence, the one of Proposition 2.2 of the free energy functional, emerges
when β < 0 and basically originates again from the power law singularity of the Green
function (but not from the choice of signs in the intensities). Indeed the construction of
Proposition 2.2 shows that, when m < 2, entropy fails to control potential energy, unlike
what happens in the borderline case m = 2.

3 Main Results

In this section we illustrate our main results, that is convergence of distributions of a finite
number of vortices and propagation of chaos, and a central limit theorem for the point vortex
system under the assumption of positive temperature β > 0. Our results are asymptotic
both in the number of vortices and the regularization parameter ε, and thus they capture the
behaviour of the original system (2.1). The results hold, though, only if the regularization
parameter is allowed to go to zero with a speed, with respect to the number of vortices, which
is at least logarithmically slow.

3.1 Propagation of Chaos

Weknow fromSect. 2.3.1 that, at finite ε, propagation of chaos holds and the limit distribution
of a pair (position, intensity) is the measure ν ⊗ 	. This is also the candidate limit when ε, N
converge jointly to 0 and ∞.
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Our first main result is convergence of distributions of position and intensities of vortices
in the mean-field limit. The proof is based on identification and minimization of the limiting
energy.

Before stating the main result of the section, we start with the definition of some relevant
quantities. Set

DN = {ρ ∈ L1((Kν × T2)
N ) : ρ log ρ ∈ L1((Kν × T2)

N )}.
Clearly μN

β,ε , as a density, is in DN . Define also the (relative) entropy EN on DN as

EN (ρ) =
∫∫

. . .

∫∫
ρ(γ N , xN ) log ρ(γ N , xN ) ν⊗N (dγ N ) 	⊗N (dxN ),

where we recall that γ N = (γ1, . . . , γN ) and xN = (x1, . . . , xN ).
If N ≥ 2 and μ ∈ P((Kν × D)N ), define the potential energy for the non-regularized

system (compare with (2.9)) as

KN (μ) =
∫∫

. . .

∫∫
HN (γ N , xN ) μ(dγ N , dxN ).

where HN has been given in (2.4). Set finally for ρ ∈ DN , in analogy with (2.8),

FN (ρ) = EN (ρ) + β

N
KN (ρ).

Notice that Fε
N , FN are convex, since EN is convex and the potential energies are linear. We

readily verify that Fε
N is lower semi-continuous for the weak topology of L1, therefore μN

β,ε

is the unique minimizer of the problem

min

{
Fε
N (ρ) : ρ ∈ DN ,

∫
ρ(γ N , xN ) ν⊗N (dγ N ) 	⊗N (dxN ) = 1

}
.

Let us define the following sets,

E∞ = {μ ∈ P((Kν × T2)
N� ) : μ exchangeable},

D∞ = {μ ∈ E∞ : πNμ absolutely continuous wrt (ν ⊗ 	)⊗N for all N ≥ 1},
where N� is the set of positive integers. Set moreover, for μ ∈ D∞,

E∞(μ) = lim
N→∞

1

N
EN (πNμ),

where πN is the projection onto the first N components (or any N different components, by
exchangeability). The limit, possibly infinite but non-negative by the Gibbs inequality, exists
by a standard super-additivity argument.

Define for μ ∈ E∞,

Kε∞(μ) := 1

2

∫∫ ∫∫
γ1γ2Gm,ε(x1, x2)π2μ(dγ1, dx1, dγ2, dx2),

and likewise K∞ in terms of Gm . Finally, set

Fε∞ = E∞ + βKε∞, F∞ = E∞ + βK∞.

Theorem 3.1 Assume m < 2 and β > 0, and fix a sequence ε = ε(N ). Assume there is
C > 0 large enough (depending on ν and β) such that

ε(N ) ↓ 0 as N ↑ ∞, ε(N ) ≥ C(log N )−
2

2−m . (3.1)
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Then (μN
β,εN

)N≥2 converges, in the sense of finite dimensional distributions, to the unique
solution of the following variational problem,

min
R∈D∞

F∞(R) = min
R∈E∞

F∞(R).

The unique solution is (ν ⊗ 	)⊗N� , and propagation of chaos holds.

We remark again that, even though we work on the simple geometry of the torus (thus
with uniform total distribution), the previous result is highly nontrivial because it proves
convergence of the variational problems (and not the trivial convergence of minima).

The proof of convergence of finite dimensional distribution will be given in Sect. 4.2.

Corollary 3.2 Under the same assumptions of the previous theorem, if we are given
(�N

1 , XN
1 , . . . , �N

N , XN
N ) random variables on (R × T2)

N with distribution μN
β,εN

, then

ηN := 1

N

N∑

k=1

δ(�N
K ,XN

k )

converges in probability to ν ⊗ 	, as N ↑ 0.

Proof Let g ∈ C(Kν × T2). The previous theorem and symmetry of vortices ensure that

E[g(�N
k , XN

k )] = E[g(�N
1 , XN

1 )] −→
∫∫

g(γ, x) ν(dγ ) 	(dx),

E[g(�N
h , XN

h )g(�N
k , XN

k )]=E[g(�N
1 , XN

1 )g(�N
2 , XN

2 )]−→
(∫∫

g(γ, x) ν(dγ ) 	(dx)

)2

,

therefore

E

[(
1

N

N∑

k=1

g(�N
K , XN

k ) −
∫∫

g(γ, x) ν(dγ ) 	(dx)

)2]2

= 1

N
E[g(�N

1 , XN
1 )2] + N − 1

N
E[g(�N

1 , XN
1 )g(�N

2 , XN
2 )]

− 2E[g(�N
1 , XN

1 )]
∫∫

g(γ, x) ν(dγ ) 	(dx) +
( ∫∫

g(γ, x) ν(dγ ) 	(dx)

)2

−→ 0,

and in particular convergence in probability holds. ��

Remark 3.3 It is elementary to verify that convergence in the Corollary above implies imme-
diately convergence of the empirical pseudo-vorticity,

θN = 1

N

N∑

j=1

γ N
j δXN

j

to ν(γ )	, with ν(γ ) = ∫
γ ν(dγ ). This yields a law of large numbers for the empirical

pseudo-vorticity.
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3.2 Fluctuations

Finally, we can analyze fluctuations with respect to the limit stated in the previous theorem,
namely the limit of the measures

ζN = √
N (ηN − ν ⊗ 	)

to a Gaussian distribution. To this end define the operators E , G as

Gφ(x) :=
∫

T2

Gm(x, y)φ(y) 	(dy),

E φ(γ, x) := γ

∫

Kν

∫

T2

γ ′Gm(x, y)φ(γ ′, y) ν(dγ ′)	(dy).

The operator G provides the solution to the problem (−�)
m
2 � = φ with periodic boundary

conditions and zero spatial average, and extends naturally to functions depending on both
variables γ , x by acting on the spatial variable only. The proof of the following theorem will
be the subject of Sect. 4.3.

Theorem 3.4 (Central limit theorem) Assume m < 2 and β > 0, and choose ε = ε(N ) as
in (3.1). Then (ζN )N≥1 converges, as N ↑ ∞, to a Gaussian distribution with covariance
I − β(I + β�∞G )−1E , in the sense that for every test function ψ ∈ L2(ν ⊗ 	), 〈ψ, ζN 〉
converges in law to a real centred Gaussian random variable with variance

σ∞(ψ)2 := 〈I − β(I + β�∞G )−1E (ψ − ψ̄), (ψ − ψ̄)〉,
where

�∞ :=
∫

γ 2 ν(dγ ), ψ̄ :=
∫

ψ(γ, x)ν(dγ ) 	(dx). (3.2)

Remark 3.5 As in Remark 3.3, we can derive a central limit theorem for the empirical pseudo-
vorticity θN . Indeed,

√
N (θN − ν(γ )	) converges to a Gaussian distribution with covariance

�∞(I+β�∞G )−1, in the sense that for every test functionψ ∈ L2(	), 〈√N (θN −ν(γ )	), ψ〉
converges in law to a real centred Gaussian random variable with variance

σ̃∞(ψ)2 = �∞〈(I + β�∞G )−1(ψ − ψ̄), (ψ − ψ̄)〉.
The Gaussian measure obtained corresponds to the invariant measure (2.2) of the original
system (2.1), when one takes α = 1/�∞.

Remark 3.6 (Quenched results) The above results hold also in a “quenched” version, namely
if intensities are non-random but given at every N . For instance, consider the result about
convergence of finite dimensional distributions of vortices and propagation of chaos (Theo-
rem 3.1) For every N , fix a family �

q
N := (γ N

j ) j=1,2,...,N and consider the quenched version
of (2.6),

μ
�
q
N ,N

β,ε (dxN ) = 1

Z
�
q
N ,N

β,ε

e− β
N H ε

N (γ N
1 ,...,γ N

N ,xN ) 	⊗N (dxN ).

If there is a measure ν� such that

1

N

N∑

j=1

δγ N
j
⇀ν�, N ↑ ∞, (3.3)
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and, due to our singular setting (in view of Lemma 4.3), if

∣∣∣∣
1

N

N∑

j=1

(γ N
j )2 −

∫
γ 2 ν�(dγ )

∣∣∣∣Gm,εN (0, 0) −→ 0 N ↑ ∞,

then the k-dimensional marginals of μ
�
q
N ,N

β,ε converge to (ν� ⊗ 	)⊗k , for all k ≥ 1. Under the
same assumptions, the law of large numbers also holds. To obtain the central limit theorem,
one needs to assume some concentration condition on the convergence (3.3).

Remark 3.7 (Extensions to non-trivial geometries and distributions)At this stage it is possible
to illustrate the difficulties related to the extension of the resulted presented here to non-trivial
geometries (manifolds with boundary) and to non-trivial limit distributions.

In a general planar domain we expect that the boundary, as in the case of Euler vortices
[38], has an effect on the motion (2.3) of vortices and thus on the Hamiltonian (2.4). Namely
we expect the Hamiltonian acquires an additional term,

H = 1

2

∑

j �=k

γ jγkGm(X j , Xk) + 1

2

∑

j

γ 2
j gm(X j , X j ).

where Gm − gm is the free Green function of the fractional Laplacian on the plane. To carry
over the results given here on the torus, several properties ofGm , gm amdof the corresponding
regularized version are needed and are subject of a work in progress. We believe that this
should be possible under the condition of neutrality of vortices, namely Eν[γ ] = 0, where
ν is the prior on intensities. Without neutrality, again, the cornerstone of our techniques,
Lemma 4.2, becomes ineffective and the control on the partition function will result much
weaker.

4 Proofs of theMain Results

Prior to the proof of our main results we state some preliminary results that will be useful in
the rest of the section.

Lemma 4.1 Let f ∈ L3(T2) with zero average on T2, then
∣∣∣∣
∫

T2

ei f (x) 	(dx) − e− 1
2 ‖ f ‖2

L2

∣∣∣∣ ≤ ‖ f ‖3L3 .

Here the norms ‖ · ‖L2 and ‖ · ‖L3 are computed with respect to the normalized Lebesgue
measure 	 on T2.

Proof Using the well-known inequalities

| eix −(1 + ix − 1
2 x

2)| ≤ |x |3,
| e− 1

2 x
2 −(1 − 1

2 x
2)| ≤ |x |3,

the proof is elementary. ��
In the proof of our limit theorems we will streamline and adapt to our setting an idea from

[4]. The key point is to give a representation of the equilibrium measure density in terms of
a Gaussian random field. Here the condition β > 0 is crucial.
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Lemma 4.2 Let (x1, x2, . . . , xN ) ∈ T2
N be N distinct points, and let γ1, γ2, . . . , γN ∈ Kν .

Then

e− β
N H ε

N (xN ,γ N ) = EUβ,ε

[
e

i√
N

∑N
j=1 γ jUβ,ε (x j )

]
e

1
2N βGm,ε (0,0)

∑N
j=1 γ 2

j ,

where Uβ,ε is the periodic mean zero Gaussian random field on the torus with covariance
βGm,ε , and EUβ,ε denotes expectation with respect to the probability framework on which
Uβ,ε is defined.

Proof The proof is elementary, since by definition of the random field Uβ,ε , the ran-
dom vector (Uβ,ε(x1),Uβ,ε(x2), . . . ,Uβ,ε(xN )) is centred Gaussian with covariance matrix
(βGm,ε(x j , xk)) j,k=1,2,...,N . Notice finally that by translation invariance, Gm,ε(x, x) =
Gm,ε(0, 0). ��
Lemma 4.3 Assume there are a sequence of i. i. d. real random variables (Xk)k≥1 such that
there is M > 0 with 0 ≤ Xk ≤ M for all k, and a sequence of complex random variables
(Yk)k≥1 such that EYk → L, a. s. and |Yk | ≤ M for all k. Set Sn = 1

n

∑n
k=1 Xk, S = E[X1].

If Fn : [−S, M] → R is a sequence of functions such that there is α < 1
4 with

• FN (0) = 1 and |Fn(y)| ≤ ec0n
2α

for all y ∈ [−S, M],
• Bδ := sup|y|≤δ,n≥1 |Fn(n−α y) − 1| −→ 0 as δ → 0,

then

E[Fn(Sn − S)Yn] −→ L,

as n → ∞.

Proof Choose β such that α ≤ β < 1
2 (1 − 2α), fix δ > 0 and set

An := {nβ |Sn − S| ≤ δ}.
By the Bernstein inequality there is c1 > 0 such that

P[Ac
n] ≤ e−c1n1−2β

. (4.1)

In particular, nβ(Sn − S) → 0 a. s.. Now,

E[Fn(Sn − S)Yn] = E[Fn(Sn − S)Yn1An ] + E[Fn(Sn − S)Yn1Ac
n
] =: i + o .

First, using the first assumption on Fn and (4.1),

o ≤ M ec0n
2α
P[Ac

n] ≤ M ec0n
2α−c1n1−2β −→ 0,

by the choice of β. For the other term, let θδ(y) = (y ∧ δ) ∨ (−δ), then (recall that α ≤ β),

i = E[Fn(n−αθδ(n
α(Sn − S)))Yn1An ]

= E

[(
Fn(n

−αθδ(n
α(Sn − S))) − 1

)
Yn1An

]
+ E[Yn1Ac

n
].

By (4.1), E[Yn1Ac
n
] → L , moreover,
∣∣∣∣E

[(
Fn(n

−αθδ(n
α(Sn − S))) − 1

)
Yn1An

]∣∣∣∣ ≤ MBδ,

and Bδ → 0 as δ → 0 by the second assumption. The conclusion follows by first taking the
limit in n, and then the limit in δ. ��
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4.1 Bounds on the Partition Function

We preliminarily prove upper and lower bounds on the partition function.

Lemma 4.4 If β ∈ R and m < 2, then Z N
β,ε ≥ 1.

Proof By the Jensen inequality,

ZN
β,ε ≥ exp

(
− β

2N

∫∫
. . .

∫∫ ∑

i �= j

γiγ j Gm,ε(xi , x j ) ν⊗N (dγ N )	⊗N (dxN )

)
= 1,

since the Green function has zero average. ��
Lemma 4.5 Let β ≥ 0. If m < 2 and if (εN )N≥1 satisfies (3.1), then

sup
N≥2

1

N
log ZN

m,εN
< ∞.

Proof By Lemma 4.2,

ZN
β,ε =

∫
. . .

∫
e
1
2 β�NGm,ε (0) EUβ,ε

[ N∏

i=1

∫

T2

e
i√
N

γ jUβ,ε (x j )
	(dx j )

]
ν⊗N (dγ N )

= e
1
2 β�∞Gm,ε (0) ZN

ε ,

where �∞ has been defined in (3.2),

�N := 1

N

N∑

j=1

γ 2
j , (4.2)

and

ZN
ε =

∫
. . .

∫
e
1
2 β(�N−�∞)Gm,ε (0) EUβ,ε

[ N∏

i=1

∫

T2

e
i√
N

γ jUβ,ε (x j )
	(dx j )

]
ν⊗N (dγ N )

≤
∫

. . .

∫
e
1
2 β(�N−�∞)Gm,ε (0) ν⊗N (dγ N ).

By Lemma 4.3 it follows that the integral on the right hand side in the displayed formula

above converges to 1. Indeed, if we set FN (x) = exp

(
1
2βGm,ε(0)x

)
, in order to meet the

assumptions of Lemma 4.3, it is sufficient to find α ∈ (0, 1
4 ) such that Gm,ε(0)N−α � O(1).

It is elementary to see that

Gm,ε(0, 0) =
∞∑

k=1

gε
k =

∑

k=1

λ
−m

2
k e−ελk ≈ ε− 1

2 (2−m), (4.3)

since λk ∼ k, therefore our assumption ensures that supN≥2 ZN
εN

∈ (0,∞).
To conclude the proof it is sufficient to notice that

1

N
log ZN

m,ε ≤ β

2N
�∞Gm,ε(0) + log sup

N≥2
ZN

εN
� N−αGm,ε(0) + log sup

N≥2
ZN

εN
,

and by the choice of the sequence (εN )N≥1, the right hand side is uniformly bounded in N .
��
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4.2 Proof of Theorem 3.1

This section contains the proof of convergence of finite dimensional distributions of the
equilibriummeasure (2.6). The key point is the following lemma, which unfortunately, being
based on the Sine-Gordon transformation of Lemma 4.2, only holds for β ≥ 0.

Lemma 4.6 If β > 0, under the same assumptions of Theorem 3.1, for every k ≥ 1,
∫∫ ∫∫

γ1γ2ek(x1)ek(x2)π2μ
N
β,εN

(dγ1dγ2dx1dx2) −→ 0,

where π2μ
N
β,εN

is the “two point vortices” marginal of μN
β,εN

. In particular,

1

N
KεN

N (μN
β,εN

) −→ 0, and
1

N
KN (μN

β,εN
) −→ 0.

Proof We prove the statement for KN . The proof of the same statement for KεN
N follows

likewise. We have that

1

N
KN (μN

β,ε) = 1

N 2

∫∫
. . .

∫∫
HN (γ N , xN ) μN

β,ε(dγ N , dxN )

= N − 1

2N

∫∫
. . .

∫∫
γ1γ2Gm(x1, x2) μN

β,ε(dγ N , dxN )

=
∞∑

k=1

λ
−m

2
k

∫∫
. . .

∫∫
γ1γ2ek(x1)ek(x2) μN

β,ε(dγ N , dxN ).

Set

IN
k :=

∫∫
. . .

∫∫
γ1γ2ek(x1)ek(x2) μN

β,ε(dγ N , dxN ),

then, by Lemma 4.2,

ZN
β,εIN

k =
∫∫

. . .

∫∫
γ1γ2ek(x1)ek(x2) e

1
2 β�NGm,ε (0)

E

[ N∏

j=1

e
i√
N

γ jUβ,ε (x j )
]

ν⊗N (dγ N ) 	⊗N (dxN ).

A simple Taylor expansion yields, since ek has zero average,
∫

T2

ek(x1) e
i√
N

γ1Uβ,ε (x1)
	(dx1) = O

(
1√
N

‖Uβ,ε‖L1

)
,

and, since ZN
m,ε ≥ 1 by Lemma 4.4, we have that

|IN
k | ≤ ZN

β,ε |Ik | � 1

N
e
1
2 β�∞Gm,ε (0)

∫
. . .

∫
e
1
2 β(�N−�∞)Gm,ε (0) E[‖Uβ,ε‖2L2 ] ν⊗N (dγ N ).

If ε = εN , by Lemma 4.3 it follows that IN
k → 0.

To prove that the whole energy converges to 0 it is sufficient to prove that there is δ > 0
(small) such that

N∑

k=1

λ
−m

2 +δ

k |IN
k |
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is bounded uniformly in N . To this end, let M be a constant such that |γ | ≤ M , ν–a. s., then
∣∣∣∣
∫

T2

ek(x) e
i√
N

γUβ,ε (x)
	(dx)

∣∣∣∣ =
∣∣∣∣

∞∑

p=0

∫

T2

ek(x)
(iγ )p

p!N p/2Uβ,ε(x)
p 	(dx)

∣∣∣∣

≤
∞∑

p=1

Mp

p!N p/2 |U p
k |,

where U p
k is the Fourier coefficient of U p

β,ε corresponding to ek . Therefore

|IN
k | =

∣∣∣∣
∫∫

. . .

∫∫
γ1γ2ek(x1)ek(x2) e

1
2 β�NGm,ε (0)

E

[ N∏

j=1

e
i√
N

γ jUβ,ε (x j )
]

ν⊗N (dγ N )	⊗N (dxN )

∣∣∣∣

≤ M2 e
1
2 β�∞Gm,ε (0)

E

[( ∞∑

p=1

Mp

p!N p/2 |U p
k |

)2] ∫
. . .

∫
e
1
2 β(�N−�∞)Gm,ε (0) ν⊗N (dγ N ).

The integral in the formula above converges to 1 by Lemma 4.3 and is independent from k.
We can safely ignore it and we will do so for simplicity. The first term (the exponential in the
formula above) diverges and will be controlled by the choice of the sequence εN . We focus
on the relevant term,

∞∑

k=1

λ
δ−m/2
k E

[( ∞∑

p=1

Mp

p!N p/2 |U p
k |

)2]
≤

( ∞∑

p=1

Mp

p!N p/2E[‖U p
β,ε‖2H δ0

] 1
2

)2

,

where δ0 = (δ −m/2)+. Since the fieldUβ,ε is Gaussian, with covariance βGm,ε , we claim
that there is c > 0 such that

E[‖U p
β,ε‖2H δ0

] ≤ c2p p3δ0ε
1
2 (m−2)p−δ0(2p − 1)!!. (4.4)

Set

φ(x) =
∞∑

p=1

p
3
2 δ0

√
(2p − 1)!!

p! x p,

then φ is an entire function over R and

∞∑

k=1

λ
δ−m/2
k |IN

k | � ε− 1
2 δ0 e

1
2 β�∞Gm,ε (0) φ(uN

ε )2,

where uN
ε = cMN− 1

2 ε
1
4 (m−2). By the choice of εN , uN

εN
→ 0 as N ↑ ∞, therefore there is

c′ > 0 (independent from N ) such that |φ(uN
εN

)| ≤ c′|uN
εN

|, and
∞∑

k=1

λ
δ−m/2
k |IN

k | � 1

N
ε

1
2 (m−2−δ0)

N e
1
2 β�∞Gm,εN (0) � O(1),

by our assumption (3.1).

123



Limit Theorems and Fluctuations for Point Vortices of... Page 19 of 27 60

It remains to prove (4.4). It suffices to prove the claim on Hn for non-negative integers n,
and by the Poincaré inequality,

‖U p
β,ε‖2Hn =

∑

|α|=n

‖DαU p
β,ε‖2L2 .

Fix a multi-index α = (α1, α2), then

DαU p
β,ε(x) =

∑

h1+···+h p=α1
k1+···+kp=α2

(
α1

h1 . . . h p

)(
α2

k1 . . . kp

)

(Dh1
x1 D

k1
x2Uβ,ε)(x) . . . (D

hp
x1 D

kp
x2Uβ,ε)(x).

Therefore, since the cardinality of non-negative integers h1, . . . , h p such that h1+· · ·+h p =
α1 is

(
α1+p

p

) ≤ (p + n)α1/α1! (same for the term in α2), by the Hölder inequality,

E[‖DαU p
β,ε‖2L2 ] ≤ (p + n)n

α1!α2!
∑

h1+···+h p=α1
k1+···+kp=α2

(
α1

h1 . . . h p

)2(
α2

k1 . . . kp

)2

E[‖Dh1
x1 D

k1
x2Uβ,ε‖2pL2p ]

1
p . . .E[‖Dhp

x1 D
kp
x2Uβ,ε‖2pL2p ]

1
p

Notice that Dh
x1D

k
x2Uβ,ε is a centred Gaussian random field with covariance βD2h

x1 D
2k
x2Gm,ε ,

therefore,

E[‖Dh1
x1 D

k1
x2Uβ,ε‖2pL2p ] =

∫

T2

E[|Dh1
x1 D

k1
x2Uβ,ε(x)|2p] 	(dx)

= (2p − 1)!!
∫

T2

E[|Dh1
x1 D

k1
x2Uβ,ε(x)|2]p 	(dx)

= (2p − 1)!!
∫

T2

β(D2h
x1 D

2k
x2Gm,ε)(x, x) 	(dx)

≤ cpε
1
2 (m−2)p−(h+k)p(2p − 1)!!

We additionally notice that

∑

h1+···+h p=α1
k1+···+kp=α2

(
α1

h1 . . . h p

)2(
α2

k1 . . . kp

)2

≤ p2n,

and that
∑

|α|=n

(p + n)n

α1!α2! = 2n

n! (p + n)n � pn .

Claim (4.4) now follows by putting all the above inequalities together. ��
If R ∈ E∞, by Hewitt-Savage’s theorem [25], there is a measure π ∈ P(P(Kν ⊗ 	)) such

that

R =
∫

μ⊗N� π(dμ), (4.5)

and if R ∈ D∞, the same representation hold for a probability measure π on the cone of
non-negative, mass one functions in L1(Kν × T2, ν ⊗ 	).
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We notice the following facts:

• If R ∈ D∞, then

Kε
N (πN R) = 1

2N

∑

i �= j

∫∫
γiγ j Gm,ε(xi , x j )π2R(dγi , dγ j , dxi , dx j )

= (N − 1)Kε∞(R),

and likewise for KN in terms of K∞.
• EN is lower semi-continuous for the weak topology of L1(Kν × D).
• If R ∈ E∞, then R ∈ D∞ if and only if E∞(R) < ∞ (see for instance [47]).
• If R ∈ E∞ and εN ↓ 0, then

1

N
KεN

N (πN R) ↑ K∞(R). (4.6)

Proof of Theorem 3.1 Fix a sequence εN ↓ 0 as in the statement of the theorem and set
νN = μN

β,εN
.

Step 1: existence of limit points Existence of limit points is trivial, since Kν × T2 is
compact. For the rest of the proof we consider a limit point ν∞ of (νN )N≥1, and a sequence
(N j ) j≥0 such that νN j ⇀ν∞ in the sense of convergence of finite dimensional distributions

Step 2: convergence of entropy We have that

E∞(ν∞) ≤ lim inf
j→∞

1

N j
EN j (νN j ) (4.7)

Indeed, fix k ≥ 1, then by super-additivity of the entropy, if N j = a j k + b j , with 0 ≤ b j ≤
k − 1, then

a j

N j
Ek(πkνN j ) ≤ a j

N j
Ek(πkνN j ) + 1

N j
Eb j (πb j νN j ) ≤ 1

N j
EN j (νN j ).

since by the Gibbs inequality entropy is non-negative. By first taking the limit j → ∞, we
have that

a j
N → 1

k and, by semi-continuity,

1

k
Ek(πkν∞) ≤ lim inf

j→∞
1

N j
Ek(πkνN j ).

By taking the limit as k → ∞ and the definition of E∞, one gets (4.7).
Step 3: ν∞ ∈ D∞. To this end it is sufficient to prove that E(ν∞) < ∞. Indeed, by (4.7)

and Lemma 4.6,

E∞(ν∞) ≤ lim inf
j→∞

1

N j
EN j (νN j ) = lim inf

j→∞
1

N j
FεN j
N j

(νN j ) < ∞.

Step 4: K∞(ν∞) = 0. By exchangeability, if R ∈ E∞ has the representation (4.5),

K∞(ν∞) = 1

2

∞∑

k=1

λ
−m

2
k

∫∫ ∫∫
γ1γ2ek(x1)ek(x2) π2R(dγ1, dγ2, dx1, dx2)

= 1

2

∞∑

k=1

λ
−m

2
k

∫ ( ∫∫
γ ek(x) μ(dγ, dx)

)2

π(dμ).

(4.8)

By Lemma 4.6,
∫∫ ∫∫

γ1γ2ek(x1)ek(x2) π2ν∞(dγ1, dγ2, dx1, dx2) = 0,
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thus K∞(ν∞) = 0.
Step 5: ν∞ is a minimizer of F∞ in D∞ (as well in E∞). Let R ∈ E∞. If R /∈ D∞, then

by (4.8) K∞(R) ≥ 0, therefore ∞ = E∞(R) ≤ F∞(R) and R cannot minimise. Let then

R ∈ D∞. By steps 4 and 2 and since νN is the unique minimiser of FεN j
N j

,

F∞(ν∞) = E∞(ν∞) ≤ lim inf
j→∞

1

N j
FεN j
N j

(νN j ) ≤ lim inf
j→∞

1

N j
FεN j
N j

(πN j R).

Finally, by the definition of E∞(R) and (4.6), the lim inf on the right hand side in the formula
above is equal to F∞(R). In conclusion F∞(ν∞) ≤ F∞(R).

Step 6: conclusion The functional F∞ is convex, non-negative, and F∞(μ) = 0 only for
μ = ν ⊗ 	. Therefore each limit point ν∞ is equal to ν ⊗ 	. ��

4.3 Central Limit Theorem

We finally turn to the proof of Theorem 3.4 on the fluctuations of point vortices. First of
all we notice that it suffices to prove convergence of the characteristic functions over test
functions ψ , with ψ ∈ C1(Kν × T2), namely to prove that

EμN
β,ε

[ei〈ψ,ζN 〉] −→ e− 1
2 σ∞(ψ)2 .

This is because randommeasures can be interpreted as random distributions (see for instance
[22] for more details on the argument). To this end fix ψ ∈ C1(Kν × T2), set for brevity
	ψ(γ ) := ∫

ψ(γ, x) 	(dx) and φ := ψ − 	ψ . For a function a ∈ C(Kν), define

MN (a) = 1

N

N∑

j=1

a(γ j ).

Let (φk)k≥1 and (Gm,k)k≥1 be the Fourier coefficients of φ and Gm with respect to the basis
of eigenvectors e1, e2, . . . . Straightforward computation yields

σ∞(ψ)2 =
∫

	ψ(γ )2 ν(dγ ) − γ̄ + ‖φ‖2L2(ν⊗	)
− β

∞∑

k=1

Gm,kν(γ φk)
2

1 + β�∞Gm,k
. (4.9)

where γ̄ has been defined in (3.2). By using Lemma 4.2,

EμN
β,ε

[ei〈ψ,ζN 〉] = 1

ZN
β,ε

∫
. . .

∫
ei

√
N (MN (	ψ )−ψ̄) e

1
2 β�NGm,ε (0,0)

· EUN
β,ε

[
e

i√
N

∑N
j=1 φ(γ j ,x j )+γ jUβ,ε (x j )

]
ν⊗N (dγ N ) 	⊗N (dxN ),

where �N has been defined in (4.2). With the positions

AN
ε j (φ) :=

∫

T2

e

i√
N

(
φ(γ j ,x j )+γ jUβε(x j )

)

	(dx j ),

BN
ε j (φ) := e

− 1
2N

∥∥∥∥φ(γ j ,·)+γ jUβε

∥∥∥∥
2

L2(	) ,

DN
ε j (φ) := AN

ε j (φ) − BN
ε j (φ).

123



60 Page 22 of 27 C. Geldhauser, M. Romito

we have the following expansion,

N∏

j=1

AN
ε j (φ) =

N∏

j=1

BN
ε j (φ) +

N∑

k=1

( k−1∏

j=1

AN
ε j (φ)

)
· DN

ε j (φ) ·
( N∏

j=k+1

BN
ε j (φ)

)
.

Set also

EN (ψ) = ei
√
N (MN (	ψ )−ψ̄),

L(ψ) :=
∫

. . .

∫
e
1
2 β(�N−�∞)Gm,ε (0,0) EN (ψ)EUβε

[ N∏

j=1

BN
ε j (φ)

]
ν⊗N (dγ N ),

and

G(ψ) :=
∫

. . .

∫
e
1
2 β(�N−�∞)Gm,ε (0,0) EN (ψ)

· EUβε

[ N∑

k=1

( k−1∏

j=1

AN
ε j (φ)

)
DN

εk(φ)

( N∏

j=k+1

BN
ε j (φ)

)]
ν⊗N (dγ N ),

then we have that

EμN
β,ε

[ei〈ψ,ηN 〉] = 1

ZN
βε

e
1
2 β�∞Gm,ε (0,0)

(
L(ψ) + G(ψ)

)
.

A similar formula can be obtained for ZN
βε , therefore

EμN
β,ε

[ei〈ψ,ηN 〉] = L(ψ) + G(ψ)

L(0) + G(0)
,

and it is sufficient now to prove that

L(ψ)

L(0)
−→ e− 1

2 σ∞(ψ)2 and
G(ψ)

L(0)
−→ 0,

as N ↑ ∞, ε = ε(N ) ↓ 0, for all ψ .
We first prove the convergence of the ratio L(ψ)/L(0). Let (Uβ,ε,k)k≥1 and (φk)k≥1 be

the components of Uβ,ε and φ with respect to the eigenvectors e1, e2, . . . , and set gε
k :=

λ
−m/2
k e−ελk . By Plancherel, independence, and Gaussian integration,

EUβε

[ N∏

j=1

BN
ε j (φ)

]
= EUβε

[
e
− 1

2N

∑N
j=1 ‖φ(γ j ,·)+γ jUβ,ε‖2L2(	)

]

= e
− 1

2 MN (‖φ‖2
L2(	)

)
∞∏

k=1

EUβ,ε

[
e− 1

2 (�NU2
β,ε,k+2MN (γ φk )Uβ,ε,k )

]

= e
− 1

2 MN (‖φ‖2
L2(	)

)
∞∏

k=1

(
1

(1 + β�N gε
k )

1
2

e
βgεk MN (γ φk )2

2(1+β�N gεk )

)
.

Thus we have

L(ψ) =
( ∞∏

k=1

1√
1 + β�∞gε

k

)
L0(ψ), (4.10)
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with

L0(ψ) :=
∫

. . .

∫
FN (�N − �∞)EN (ψ)

· e− 1
2 MN (‖φ‖2

L2(	)
)
e
1
2 β

∑∞
k=1

gεk MN (γ φk )2

1+β�N gεk ν⊗N (dγ N ),

and where FN is defined by

FN (X) = e
1
2 βXGm,ε (0,0)

∞∏

k=1

(
1 + βgε

k

1 + βgε
k�∞

X

)− 1
2

.

At this stage it suffices to prove that L0(ψ) → e− 1
2 σ∞(ψ)2 as N ↑ ∞ and ε = ε(N ) ↓ 0, for

all ψ .
We preliminarily prove that FN meets the assumptions of Lemma 4.3. Indeed, set

ck = βgε
k

1 + βgε
k�∞

,

then, by using the elementary inequality log(1 + x) ≥ x − 1
2 x

2,

2 log FN (x) = βGm,ε(0, 0)x −
∞∑

k=1

log(1 + ckx)

≤
(

βGm,ε(0, 0) −
∞∑

k=1

ck

)
x + 1

2

( ∞∑

k=1

c2k

)
x2

≤
(

βGm,ε(0, 0) −
∞∑

k=1

ck

)
x + 1

2

( ∞∑

k=1

ck

)2

x2.

Since

0 ≤
∑

k

ck < β
∑

k

gε
k = βGm,ε(0, 0),

both assumptions of the lemma hold if there is α < 1
4 such that Gm,ε(0, 0) � Nα . By (4.3),

it is immediate to see that our choice of ε = ε(N ) is sufficient to ensure the assumptions of
Lemma 4.3 for FN .

To conclude the proof of convergence of L0(ψ), it is sufficient to prove convergence in
expectation of the other terms in L0(ψ). First,

e
− 1

2 MN (‖φ‖2
L2(	)

) −→ e
− 1

2 ‖φ‖2
L2(ν⊗	) ,

and

e
1
2 β

∑∞
k=1

gεk MN (γ φk )2

1+β�N gεk −→ e
1
2 β

∑∞
k=1

Gm,k ν(γ φk )2

1+β�∞Gm,k
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converge a. s. and in L1 by the strong law of large numbers. The first term is obviously
bounded, the second is bounded since MN (γ φk)

2 ≤ �N MN (φ2
k ) and

∞∑

k=1

βMN (γ φk)
2gε

k

1 + β�N gε
k

≤
∞∑

k=1

MN (φ2
k ) = MN (‖φ‖2L2(	)

).

Using the smoothness of φ, we can pass to the limit in the sum. Finally, by the Central Limit
Theorem for i. i. d. random variables,

EN (ψ) −→ exp

(
− 1

2

∫
	ψ(γ )2 ν(dγ ) − ψ̄2

)
.

By recalling the explicit form of σ∞(ψ) given in (4.9), we conclude that L0(ψ) converges

to e− 1
2 σ∞(ψ)2 .

We turn to the analysis of G(ψ)/L(0). By Lemma 4.1,

EUβε [|DN
ε j (φ)|] � 1

N 3/2EUβε

[∥∥∥∥φ(γ j , ·) + γ jUβε

∥∥∥∥
3

L3(	)

]

� 1

N 3/2

(
1 + EUβ,ε [‖Uβ,ε‖4L4(	)

]
) 3

4

� 1

N 3/2 (1 + Gm,ε(0, 0)
3
2 ),

since

EUβ,ε [‖Uβ,ε‖4L4(	)
] =

∫

T2

E[Uβ,ε(x)
4] 	(dx)

=
∫

T2

3β2Gm,ε(x, x)
2 	(dx) = 3β2Gm,ε(0, 0)

2.

Therefore,

G(ψ) ≤
∫

. . .

∫
e
1
2 β(�N−�∞)Gm,ε (0,0)

N∑

k=1

EUβε [|DN
εk(b)|] ν⊗N (dγ N )

� 1√
N

(1 + Gm,ε(0, 0)
3
2 )G0,

where we have set for brevity

G0 :=
∫

. . .

∫
e
1
2 β(�N−�∞)Gm,ε (0,0) ν⊗N (dγ N ).

It is easy to see that by Lemma 4.3, G0 → 1. Moreover, since

∞∏

k=1

1

1 + β�∞gε
k

= e− ∑
k log(1+β�∞gε

k ) ≥ e− ∑
k β�∞gε

k = e−β�∞Gm,ε (0,0),

and by (4.10) we finally have that

G(ψ)

L(0)
� 1√

N
(1 + Gm,ε(0, 0)

3
2 ) eβ�∞Gm,ε (0,0) G0

L0(0)
.
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So it is sufficient to choose ε = ε(N ) so that

1√
N

(1 + Gm,ε(0, 0)
3
2 ) eβ�∞Gm,ε (0,0) −→ 0.

Using (4.3), we see immediately that it suffices to choose ε− 1
2 (2−m) ≤ c log N , with c small

enough.
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