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Abstract
We investigate a toy model for phase transitions in mixtures of incompressible droplets.
The model consists of non-overlapping hypercubes in Z

d of sidelengths 2 j , j ∈ N0. Cubes
belong to an admissible set B such that if two cubes overlap, then one is contained in the
other. Cubes of sidelength 2 j have activity z j and density ρ j . We prove explicit formulas
for the pressure and entropy, prove a van-der-Waals type equation of state, and invert the
density-activity relations. In addition we explore phase transitions for parameter-dependent
activities z j (μ) = exp(2d jμ − E j ). We prove a sufficient criterion for absence of phase
transition, show that constant energies E j ≡ λ lead to a continuous phase transition, and
prove a necessary and sufficient condition for the existence of a first-order phase transition.

Keywords Incompressible droplets · Condensation · Excluded volume · Polymer partition
function · Hierarchical model

Mathematics Subject Classification 82B20 · 82B26

1 Introduction

Droplet models offer helpful guidance for understanding nucleation and condensation phe-
nomena in classical statistical physics. They are known under the header of Fisher droplet
models or Frenkel-Band theory of association equilibrium, see [1–3] and the references
therein. They treat a gas of molecules as an ideal mixture of droplets of different sizes, com-
ing each with a partition function over internal degrees of freedom, or some approximate
formula for such internal partition functions. Condensation is understood as the formation
of a large droplet of macroscopic size, and explicit computations are possible under the
simplifying assumption that the mixture is ideal.
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Rigorous results for droplet models that take into account excluded volume effects are
sparse. Fisher proved that the phase transition for ideal droplet models subsists for a class
of one-dimensional models [1,4]; the one-dimensional model serves as a counter-example to
the strict convexity of the pressure as a function of interaction potentials when the class of
potentials is chosen too large [5], compare [6, Chapter V.2]. For particles inR

d with attractive
interactions, errors in the ideal mixture approximation are bounded in [7,8], however the
bounds do not allow for a proof of phase transitions.

The present article proposes a toy model for which excluded volume effects and phase
transitions can be understood rigorously, and that might pave the way for an application of
renormalization techniques. Tomotivate themodel it is helpful to describe first anothermodel
that we are not yet able to treat and that connects to a joint program started in [9] and pursued
in [10,11]. Consider a mixture of hard spheres in R

3. Spheres are assumed to have integer
volume k ∈ N0 and are thought of as droplets made up of k particles. Distinct spheres cannot
overlap, and a sphere of volume k comes with an energy Ek that satisfies Ek = ke∞ + o(k)
as k → ∞ with finite bulk energy e∞. In order to control the distribution of sphere types it
is natural to work in a multi-canonical ensemble, fixing the number Nk of k-spheres as well
as the total area

∑
k kNk covered by spheres (a substitute for the total number of particles).

In the thermodynamic limit Nk/V → ρk ,
∑

k kNk/V → ρ, this results in an associated
Helmholtz free energy per unit volume, which at low density should be of the form

f
(
β, (ρ j ) j∈N, ρ

) =
∞∑

j=1

ρ j E j + ρ∞e∞ + β−1
∞∑

j=1

ρ j (log ρ j − 1) + correction terms

where ρ∞ := ρ −∑∞
k=0 kρk accounts for the possible loss of mass to very large spheres. The

correction terms should capture excluded volume effects and onemight hope for a convergent
power series expansion in the variables ρ j and ρ∞. The question arises if the free energy of
a given packing fraction, defined by minimizing over all compatible distributions on sphere
sizes

f (β, ρ) := min

{

f
(
β, (ρ j ) j∈N, ρ

)
∣
∣
∣
∣

∞∑

j=1

jρ j ≤ ρ

}

,

is strictly convex or has affine pieces. For the ideal mixture the question is easily answered:
If

pidealc (β) :=
∞∑

j=1

exp(−β[E j − je∞]), ρideal
c (β) :=

∞∑

j=1

j exp(−β[E j − je∞])

are both finite, then the free energy is strictly convex in ρ < ρideal
c (β) and affinewith slope e∞

in ρ > ρsat, moreover in the latter domain the unique minimizer in the variational formula
is ρ j = exp(−β[E j − je∞]) =: ρideal

j (β) and it satisfies ρ∞ = ρ − ∑∞
j=1 jρ j > 0.

At low temperature, because of ρideal
c (β) → 0 as β → ∞, one may hope that the excluded

volume effects do not destroy the existence of a first-order phase transition and that correction
terms might be expressed in terms of convergent power series in the sphere size distributions
ρideal
j (β), compare Sect. 6.
Unfortunately, currently available convergence criteria for multi-species virial expansions

[9,11] impose exponential decay ρ j ≤ exp(− const j), which excludes the ideal equilibrium
densities exp(−β[E j − je∞]). Therefore the naive argument sketched above stays somewhat
speculative. The purpose of the present article is to provide an example where the argument
nonetheless does work. The price we pay is a drastic simplification of the mixture of hard
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spheres. It is our impression, however, that the model is a valuable addition to rigorous results
in dimension one [1,12], moreover the simplification is a very natural starting point in the
context of renormalization group theory [13,14].

In fact the present work was motivated by the study of a two-scale mixture of hard spheres
in R

d [10]. Integrating out the small spheres gives rise to an effective model for large spheres
with new effective multi-body interactions and an effective activity, which leads to improved
domains of convergence in Mayer expansions. The results from [10] leave open whether
similar improvements can be reached in multi-scale systems, integrating out objects one by
one. The present article should serve as a useful companion when trying to implement such
a program.

Our model consists of non-overlapping hypercubes in Z
d belonging to some admissible

set B. The model is a special case of a polymer system [15]. The set B of admissible cubes is
such that if two cubes overlap, then necessarily one cube is contained in the other. Concretely,
B = ∪∞

j=0B j where the setB j of j-blocks contains the representative cube Bj = {1, . . . , 2 j }d
and all its shifts by vectors 2 j k, k ∈ Z

d . Such geometries are often called hierarchical in
the context of renormalization group theory [13,14]. We consider both the grand-canonical
ensemble and the multi-canonical ensemble. In the grand-canonical ensemble, described in
detail in Sect. 2, j-blocks have activity z j . In the multi-canonical ensemble we work with
density variables ρ j and the overall packing fraction σ , see Sect. 4.

In Sect. 3 we work in the grand-canonical ensemble and prove explicit formulas for the
pressure and block densities as functions of the activities z j (Theorems 3.1 and 3.2 ). The
formulas are similar to formulas for an ideal mixture, the only difference is that the activity
z j is replaced with an effective activity ẑ j . The effective activity ẑ j takes into account the
volume excluded for blocks of type k ≤ j in the presence of a j-block; it is exponentially
smaller than the original activity, ẑ j ≤ z j exp(−const|Bj |). This feature is shared by two-
scale binary mixtures or colloids [10]. In addition, we prove an explicit inversion formula for
the activities as functions of the densities and prove an equation of state for the pressure that
is a variant of the van der Waals equation of state (Theorem 3.3). The equations are similar
to equations for discrete systems of non-overlapping rods on a line [12].

In Sect. 4 we work in the multi-canonical ensemble and prove an explicit formula for the
entropy as a function of block densities ρ j and the overall packing fraction (Theorem 4.1).
The entropy is the sum of the entropy of an ideal mixture plus a power series correction. The
power series is absolutely convergent whenever the packing fraction is strictly smaller than 1
(Proposition 4.2)—there is no need for exponential decay ρ j ≤ exp(−const|Bj |). We check
that the pressure is a Legendre transform of the entropy and compute the maximizers in the
resulting variational formula for the pressure (Proposition 4.3).

In Section 5 we investigate a parameter-dependent model with activities z j (μ) =
exp(μ|Bj | − E j ) for some given sequence of energies (E j ) j∈N0 and chemical potential
μ ∈ R, and we investigate possible phase transitions as μ is varied. We prove a sufficient
condition for the absence of phase transitions (Theorem 5.3). For constant energies E j ≡ λ

with λ sufficiently large, the mixture of cubes has a continuous phase transition (Theo-
rem 5.5). The proof uses a parameter-dependent fixed point iteration, and we sketch some
possible connections with Mandelbrot’s fractal percolation model [16,17]. A necessary and
sufficient condition for the existence of first-order phase transitions is given in Theorem 5.6.
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2 TheModel

2.1 Lattice Animals: Polymer Partition Function

Fix d ∈ N and let X the collection of finite non-empty subsets of Z
d . Elements X of X are

called lattice animals or polymers. For � ⊂ Z
d a bounded non-empty set, let

X� = {X ∈ X | X ⊂ �}.
We are interested in probability measures on finite collections of lattice animals in � and
define

�� :=
{
ω = {X1, . . . , Xr }

∣
∣
∣ r ∈ N0, X1, . . . , Xr ⊂ �, ∀i 
= j : Xi 
= X j

}
.

The empty configuration is explicitly allowed, i.e., ∅ ∈ ��. Note the one-to-one correspon-
dence

�� → {0, 1}X�, ω �→ (
nX (ω)

)
X∈X�

given by

nX (ω) :=
{
1, X ∈ ω,

0, X /∈ ω.

Assume we are given a map z : X → R+, called activity. For � ⊂ Z
d a bounded non-empty

set, define the polymer partition function

	� := 1 +
∞∑

r=1

1

r !
∑

(X1,...,Xr )∈X
r
�

( r∏

i=1

z(Xi )

)

1{∀i 
= j : Xi∩X j=∅}

and the grand-canonical Gibbs measure, a probability measure P� on �� given by

P�

(
ω = {X1, . . . , Xr }

)
:= 1

	�

1{∀i 
= j : Xi∩X j=∅}
r∏

i=1

z(Xi ), P�

(
ω = ∅

) := 1

	�

.

The probabilistically minded reader may think of P� as independent Bernoulli variables
nX (ω) with parameters z(X)/(1 + z(X)) conditioned on non-overlap of the polymers X .

In order to pass to the limit � ↗ Z
d we impose conditions on the activity.

Definition 2.1 For z : X → R+ and θ ∈ R, let

||z||θ := sup
x∈Zd

∑

X�x

1

|X | z(X) e−θ |X |.

The activity z(·) is stable if ||z||θ < ∞ for some θ ∈ R.

The definition is adapted from Gruber and Kunz [15, Eq. (23)] who call the activity stable
if instead ||z||0 < ∞ but also observe some scaling invariance of the model [15, Eq. (22)]
see the proof of Lemma 2.2 below. Our definition incorporates possible rescalings into the
definition of stability and allows for θ > 0 and activities that are exponentially large in the
polymer size |X |. Stability ensures a uniform bound on the finite-volume pressure.
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Lemma 2.2 Suppose that the activity z(·) is stable. Then for all θ ∈ R with ||z||θ < ∞ and
for all � ⊂ Z

d , we have

1

|�| log	� ≤ θ + e−θ + ||z||θ < ∞

Proof. We follow [15, Lemma 1]. Define �θ(X) = z(X) exp(−θ |X |) if |X | ≥ 2 and
�θ({x}) = (1 + z({x})) exp(−θ). Then 	� is a sum over set partitions {X1, . . . , Xr } of
�. For example, if d = 1 and � = {0, 1} = B1, then

	{0,1} = 1 + z({0}) + z({1}) + z({0})z({1}) + z({0, 1})
= (

1 + z({0}))(1 + z({1})) + z({0, 1})
= �0({0})�0({1}) + �0({0, 1}).

More generally,

	� =
∑

{X1,...,Xr }
�0(X1) · · · �0(Xr ) = e|�|θ ∑

{X1,...,Xr }
�θ(X1) · · · �θ(Xr )

= e|�|θ ∑

{X1,...,Xr }

r∏

i=1

( ∑

xi∈Xi

�θ(Xi )

|Xi |
)

≤ e|�|θ
(

1 +
∞∑

r=1

1

r !
∑

(x1,...,xr )∈�r

r∏

i=1

( ∑

Xi�xi

�θ(Xi )

|Xi |
))

= e|�|θ exp
(∑

x∈�

∑

X�x

�θ(X)

|X |
)

.

It follows that

1

|�| log	� ≤ (θ + e−θ ) + 1

|�|
∑

x∈�

∑

X∈X�:
x∈X

1

|X | z(X)e−θ |X | ≤ θ + e−θ + ||z||θ < ∞.

2.2 Hierarchical Cubes

Now we specialize to activity maps z(·) supported on a collection B ⊂ X of cubes with
the property that if A, B ∈ B have non-empty intersection, then necessarily A ⊂ B. A set
B ⊂ Z

d is called a j -block if

B = {k12 j + 1, . . . , (k1 + 1)2 j } × · · · × {kd2 j + 1, . . . , (kd + 1)2 j }
for some k = (k1, . . . , kd) ∈ Z

d . Let B j be the set of j-blocks. The blocks B ∈ B j form a
tiling of Z

d consisting of the tile

Bj := {1, . . . , 2 j }d

and non-overlapping shifts of Bj . Let (z j ) j∈N0 be a sequence of non-negative numbers. We
are interested in activity maps of the form

z(X) =
{
z j , if X = B ∈ B j ,

0, if X ∈ X \ ⋃∞
j=0 B j .

(2.1)
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Thus z0 is the activity of a monomer {x} and z1 the activity of a cube with sidelength 2.
Define

θ∗ := lim sup
j→∞

1

|Bj | log z j .

Lemma 2.3 The activity (2.1) is stable if and only if θ∗ < ∞.

Proof For every given block type j ∈ N0, every point x ∈ Z
d belongs to exactly one j-block,

therefore

||z||θ =
∞∑

j=0

1

|Bj | z je
−θ |Bj |.

If ||z||θ < ∞ for some θ ∈ R, then z j ≤ ||z||θ |Bj | exp(θ |Bj |) hence θ∗ ≤ θ < ∞.
Conversely, if θ∗ < ∞, then for every θ > θ∗ we have z j exp(−|Bj |θ) ≤ exp(−|Bj |(θ −
θ∗ + o(1))) which goes to zero exponentially fast as j → ∞, therefore ||z||θ < ∞ and the
activity is stable.

2.3 Ideal Mixture: Bernoulli Variables

To help interpret subsequent formulas we recall the expression of the partition function for
an ideal mixture of cubes, where cubes of different type may overlap. For � ∈ B, set

	Ber
� :=

∑

ω∈��

∏

X∈ω

z(X)

with
∏

X∈∅
z(X) = 1, and letPBer

� be the associated probabilitymeasure on��. It is straight-
forward to check that under P

Ber
� , the occupation numbers nX (ω), X ⊂ �, are independent

Bernoulli variables with

P
Ber
�

(
nX (ω) = 1

) = P
Ber
� (ω � X) = z(X)

1 + z(X)
.

For the activities (2.1) and � = �n ∈ Bn , the finite-volume pressure of the ideal mixture is

1

|�| log	Ber
� = 1

|�|
∑

B∈B:
B⊂�

log(1 + z(B)) =
n∑

j=0

1

|Bj | log(1 + z j ).

The infinite-volume pressure for the ideal mixture is therefore

pBer := lim
�↗Zd

1

|�| log	Ber
� =

∞∑

j=0

1

|Bj | log(1 + z j ). (2.2)

The factor 1/|Bj | reflects the lack of full translational invariance of the model: only translates
by multiples of 2 j map a j-block to another admissible j-block. The factor 1/|Bj | also
appears in the relation between the expected number of j-blocks and the probability that a
given j-block is present: if Bj ⊂ � then

E
Ber
�

[
number of j-blocks in ω

] =
∑

B∈B j :
B⊂�

E
Ber
�

[
nB(ω)

] = |�|
|Bj | P

Ber
�

(
nBj (ω) = 1

)
.
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Remark 2.4 (Ideal gas and Poisson variables) The word “ideal mixture” often refers to a
model where not only the hard-core interaction between different types of blocks is dropped,
but also the self-interaction of j-blocks is discarded—i.e., not only is the mixture ideal but in
addition each component on its own is an ideal gas. The configuration space of such a system
is N

B

0 and the occupation numbers become Poisson variables with parameters z j instead
of Bernoulli variables. We have chosen the superscript “Ber” in order to avoid ambiguities
associated with the word “ideal.”

3 Pressure: Grand-Canonical Ensemble

In the following (�n)n∈N0 represents a a growing sequence of cubes�n ∈ Bn with�n ↗ Z
d .

The pressure in finite volume and infinite volume is

pn := 1

|�n | log	�n , p := lim
n→∞ pn .

We assume throughout the article that the activity is stable, i.e., θ∗ = lim sup j→∞ 1
|Bj | log z j

< ∞.

Theorem 3.1 The limit defining the pressure exists and satisfies θ∗ ≤ p < ∞. It is expressed
in terms of the effective activities

ẑ0 := z0, ẑ j := z je
−|Bj |p j−1 ( j ≥ 1)

as

p =
∞∑

j=0

1

|Bj | log(1 + ẑ j ).

Consequently the pressure for a system of non-overlapping cubes is given by a formula
similar to the pressure (2.2) for the ideal mixture, the only difference is that the activities z j
are replaced by the effective activities ẑ j . The effective activity is similar to the renormalized
activity for binary mixtures from [10].

Proof It is straightforward to check the recurrence relation

	�n = zn + (
	�n−1

)2d
(n ≥ 1). (3.1)

By definition of ẑ j and p j the recurrence relation can be rewritten as

	�n = (1 + ẑn)
(
	�n−1

)2d

which gives pn = pn−1 + 1
|�n | log(1+ ẑn). Combining with p0 = log(1+ z0) = log(1+ ẑ0)

we find

pn =
n∑

j=0

1

|Bj | log(1 + ẑ j ) (3.2)

and the existence in R+ ∪ {∞} of the limit defining p, and its representation as an infinite
series, follow. The stability of the activity guarantees that the pressure is finite, seeLemma2.3.
The inequality p ≥ θ∗ follows from 	�n ≥ zn .
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Next we investigate the density of j-blocks and the packing fraction. The probability that a
cube B ⊂ � belongs to ω is

ρ�(B) := P�(ω � B) = E�

[
nB

]
.

It depends on the type of the block only, accordingly we write ρ�(B) = ρ j,� if B ∈ B j . The
expected number of j-blocks per unit volume is

ν j,� := 1

|�|
∑

B∈B j :
B⊂�

ρ�(B) = ρ j,�

|Bj | . (3.3)

To simplify language we refer to both ν j,� and ρ j,� as the density of j-cubes, though they
are strictly speaking two different objects. The packing fraction is the fraction of area covered
by cubes

σ� := 1

|�| E�

[∣
∣
∣
∣

⋃

B∈ω

B

∣
∣
∣
∣

]

=
∑

j

|Bj |ν j,� =
∑

j

ρ j,�.

Below we show that the limits

ρ j := lim
n→∞ ρ j,�n , σ := lim

n→∞ σ�n (3.4)

exist. Notice σ ≤ 1 and
∑∞

j=0 ρ j ≤ σ .

Theorem 3.2 The limits (3.4) exist and satisfy the following.

(a) If
∑∞

j=0 ẑ j < ∞ , then

ρ j = ẑ j
1 + ẑ j

∞∏

k= j+1

1

1 + ẑk
> 0, σ =

∞∑

j=0

ρ j = 1 −
∞∏

k=0

1

1 + ẑk
< 1.

(b) If
∑∞

j=0 ẑ j = ∞, then ρ j = 0 for all j ∈ N0 and σ = 1, moreover p = θ∗.

Case (b) corresponds to a close-packing regime where the box �n is filled with large blocks.
Case (a) corresponds to a gas of small cubes that fill only a fraction of the volume. See Sect. 5
for examples.

Proof We show first that for all n ∈ N0 and j = 0, . . . , n, we have

ρ j,�n = ẑ j
1 + ẑ j

1

1 + ẑ j+1
· · · 1

1 + ẑn
, σ�n = 1 −

n∏

j=0

1

1 + ẑ j
. (3.5)

The proof of the first part of (3.5) is by induction over n ≥ j at fixed j ∈ N0. If n = j , then

ρ j,� j = P� j (ω = {Bj }) = z j
	� j

= z j

(1 + ẑ j )	2d
� j−1

= ẑ j
1 + ẑ j

.

For the induction step, write �n as a disjoint union of 2d cubes �
(k)
n−1 ∈ Bn−1. Let

ωk := {
B ∈ ω | B ⊂ �

(k)
n−1

}

so thatω = ω1∪· · ·∪ω2d , unlessω = {�n} contains an n-block. Conditional on�n /∈ ω, the
projections ω1, . . . , ω2d are independent, their distribution is given by the Gibbs measures
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P
�

(k)
n−1

, k = 1, . . . , 2d . Thus fixing a j-block B ⊂ �n , and assumingwithout loss of generality

B ⊂ �
(1)
n−1, we get

P�n (B ∈ ω) = P�n (B ∈ ω�n−1 | �n /∈ ω) × P�n (�n /∈ ω)

= P
�

(1)
n−1

(B ∈ ω1) × 1

1 + ẑn
=

(
ẑ j

1 + ẑ j

n−1∏

k= j+1

1

1 + ẑk

)
1

1 + ẑn

which is precisely the first part of (3.5). Thus the induction step is complete. For the second
part of (3.5), set x j = ẑ j/(1 + ẑ j ) and y j = 1 − x j . Then

1 =
n∏

j=0

(x j + y j ) = xn + yn

n−1∏

j=0

(x j + y j ) = xn + ynxn−1 + · · · + yn · · · y1x0 + yn · · · y0

hence

1 −
n∏

j=0

y j =
n∑

j=0

x j y j+1 · · · yn

which is the second part of (3.5).
If

∑∞
j=0 ẑ j < ∞, then the infinite product

∏∞
j=0(1 + ẑ j )−1 is strictly smaller than 1

(because the logarithm is finite). We pass to the limit in (3.5) and obtain part (a) of the
theorem.

If
∑∞

j=0 ẑ j = ∞, then
∑∞

j=0 log(1 + ẑ j ) = ∞ and limn→∞
∏n

j=0(1 + ẑ j )−1 = 1.
Passing to the limit in (3.5) we see that ρ j = 0 for all j ∈ N0 and σ = 1. It remains to check
that p = θ∗. We already know by Theorem 3.1 that p ≥ θ∗. Suppose by contradiction that
p > θ∗. In view of p = ∑

j
1

|Bj | log(1 + ẑ j ) < ∞ we have ẑ j ≤ exp(|Bj |p). If p > θ∗,
then we would deduce that

∞∑

j=0

ẑ j =
∞∑

j=0

z je
−|Bj |(p+o(1)) ≤

∞∑

j=0

e−|Bj |(p−θ∗+o(1)) < ∞,

contradicting the assumption
∑

ẑ j = ∞. Thus p ≤ θ∗ and p = θ∗.

Next we turn to the equation of state and the inversion of the density-activity relation in the
gas phase.

Theorem 3.3 Assume
∑∞

j=0 ẑ j < ∞. Then

p =
∞∑

j=0

1

|Bj | log
(

1 + ρ j

1 − ∑∞
k= j ρk

)

(3.6)

and for all j ∈ N0

z j = ρ j exp(|Bj |p j−1)

1 − ∑∞
k= j ρk

, p j−1 =
j−1∑

k=0

1

|Bk | log
(

1 + ρk

1 − ∑∞

=k ρ


)

.

with the convention p−1 = 0.

The equations are strikingly similar to the formulas for a one-dimensional system of non-
overlapping rods [12, Theorem 2.12]. The equation of state (3.6) is a variant of the van-der-
Waals equation of state.
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Proof We show first that for all n ∈ N and j ∈ {0, . . . , n},

ẑ j = ρ j,�n

1 − ∑n
k= j ρk,�n

, α j,�n :=
n∏

k= j

1

1 + ẑ j
= 1 −

n∑

k= j

ρk,�n . (3.7)

The proof is over a finite backward induction over j ≤ n at fixed n. For j = n, we have
ρn,�n = ẑn/(1 + ẑn) by (3.5) hence ẑn = ρn,�n/(1 − ρn,�n ). Furthermore, (1 + ẑn)−1 =
1 − ρn,�n . For the induction step, note

ρ j,�n = ẑ j
1 + ẑ j

n∏

k= j+1

1

1 + ẑk
= ẑ j

1 + ẑ j
α j+1,�n .

It follows that

ẑ j = ρ j,�n

α j+1,�n − ρ j,�n

= ρ j,�n

1 − ∑n
k= j ρ j,�n

and

α j,�n = 1

1 + ẑ j
α j+1,�n =

(
1 − ρ j,�n

α j+1,�n

)
α j+1,�n = 1 −

n∑

k= j

ρk,�n .

The induction step is complete.
If

∑∞
j=1 ẑ j < ∞, then we may pass to the limit n → ∞ in (3.7) with the help of

Theorem 3.2(a) and find

ẑ j = ρ j

1 − ∑∞
k= j ρk

.

Theorem 3.1 and Eq. (3.2) in the proof of the theorem yield the formulas for p and pn , the
expression for z j follows as well.

4 Entropy: Multi-Canonical Ensemble

4.1 Explicit Formula: Effective Densities

Here we compute the entropy in a multi-canonical ensemble, fixing the number of j-blocks
for each j . For ω ∈ �, let N j (ω) be the number of j-blocks in ω. For n ∈ N, �n ∈ Bn , and

N (n)
0 , . . . , N (n)

n ∈ N0, let

S�n

(
N (n)
0 , . . . , N (n)

n

) = log

∣
∣
∣
∣
{
ω ∈ �� | ∀ j : N j (ω) = N (n)

j

}
∣
∣
∣
∣.

Set

s
(
(ρ j ) j∈N0 , σ

) := lim
n→∞

1

|�n | log S�n

(
N (n)
0 , . . . , N (n)

n

)
(4.1)

where the limit is taken along sequences such that
∑n

j=0 |Bj | N (n)
j ≤ |�n | and

1

|�n |
n∑

j=0

|Bj | N (n)
j → σ, ∀ j ∈ N0 : N (n)

j

|�n | → ρ j

|Bj | . (4.2)
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Notice that if (4.2) holds true, then necessarily

∞∑

j=0

ρ j =
∞∑

j=0

lim
n→∞

|Bj | N (n)
j

|�n | ≤ lim
n→∞

∞∑

j=0

|Bj | N (n)
j

|�n | = σ.

In the sequel it is convenient to introduce, given (ρ j ) j∈N0 and σ ≥ ∑∞
k=0 ρ j , the variables

σ∞ := σ −
∞∑

k=0

ρk, σ j := σ −
j−1∑

k=0

ρk = σ∞ +
∞∑

k= j

ρ j . (4.3)

The variable σ∞ represents, roughly, the fraction of volume covered by blocks that grow
with n, while σ j is the fraction of volume covered by blocks of type k ≥ j . Note that if
σ = σ∞ + ∑∞

j=0 ρ j ≤ 1, then ρ j ≤ 1 − σ j+1 for all j ∈ N0.

Theorem 4.1 Let ρ ∈ R
N0+ and σ ≥ 0 with

∑∞
j=0 ρ j ≤ σ ≤ 1. Then the limit (4.1) exists

and is given by

s
(
(ρ j ) j∈N0 , σ

) = −
∞∑

j=0

1

|Bj |
(
ρ j log

ρ j

1 − σ j+1
+ (1 − σ j ) log

1 − σ j

1 − σ j+1

)

with the convention 0 log 0
0 = 0. Moreover

0 ≤ s(ρ, σ ) ≤
∞∑

j=0

1 − σ j+1

|Bj | log 2 < ∞.

An equivalent expression in terms of effective activities ρ̂ j is given in Eq. (4.4) below. Notice
that the entropy vanishes if ρ j = 0 for all j ∈ N0—only small blocks (i.e., blocks whose
size does not scale with the volume) contribute to the entropy.

Proof Configurations can be constructed by placing first the biggest block (if present), i.e.,
n-blocks, then blocks of type n − 1, etc. The entropy equals

S�n

(
N (n)
0 , . . . , N (n)

n

) =
n∑

j=0

log

(
(|�n | − ∑n

k= j+1 |Bk | N (n)
k )/|Bj |

N (n)
j

)

.

Indeed, having chosen the blocks of ω of type k ≥ j + 1, there are (|�n | − N (n)
n |Bn | − · · · −

N (n)
j+1|Bj |)/|Bj | available j-blocks to choose from for the placement of the next N (n)

j blocks
of type j .

Set ρ(n)
j := N (n)

j |Bj |/|�n | and σ
(n)
j := ∑n

k= j ρ
(n)
k . Clearly ρ

(n)
j → ρ j and σ

(n)
j → σ for

all j ∈ N0. Stirling’s formula and the resulting approximation log
(m
k

) = −k log k
m − (m −

k) log(1 − k
m ) + O(log k) + O(log(m − k)) + O(logm) yield

1

|�n | S�n

(
N (n)
1 , . . . , N (n)

n

) = −
n∑

j=0

1

|Bj |
(

ρ
(n)
j log

ρ
(n)
j

1 − σ
(n)
j+1

+ (1 − σ
(n)
j ) log

1 − σ
(n)
j

1 − σ
(n)
j+1

)

+ o(1).

Summation and limits can be exchanged because each summand is bounded in absolute value
by

1−σ j+1
|Bj | (log 2) [see Eq. (4.4) below] and

∑
j

1
|Bj | < ∞. The proposition follows.
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The proof of Theorem 4.1 suggests to work with effective densities. Set

ρ̂ j := ρ j

1 − σ j+1
= ρ j

1 − ∑∞
k= j+1 ρk − σ∞

with σ j and σ∞ defined in (4.3). Thus ρ̂ j takes into account the volume excluded by cubes
of type k ≥ j + 1. The entropy becomes

s
(
(ρ j ) j∈N0 , σ

) = −
∞∑

j=0

1 − σ j+1

|Bj |
(
ρ̂ j log ρ̂ j + (1 − ρ̂ j ) log(1 − ρ̂ j )

)
. (4.4)

The entropy for the ideal mixture, where cubes may overlap, is instead given by

sBer
(
(ρ j ) j∈N0 , σ

) = −
∞∑

j=0

1

|Bj |
(
ρ j log ρ j + (1 − ρ j ) log(1 − ρ j )

)
. (4.5)

The expressions for the entropy are again very similar to each other, just as for the pressure.
The similarity in equations can be pushed a bit further. In the multi-canonical ensemble we
define the chemical potential of j-blocks by

μ j
(
(ρ j ) j∈N0 , σ∞

) := −|Bj | ∂

∂ρ j
s
(
(ρ j ) j∈N0 , σ∞ +

∞∑

j=0

ρ j

)
. (4.6)

The chemical potential can be thought of as a derivative with respect to ν j = ρ j/|Bj |, which
is the expected number of j-blocks per unit volume [remember (3.3)]. The derivative is taken
at constant σ∞ rather than constant σ . We also define

μ∞
(
(ρ j ) j∈N0 , σ∞

) := − ∂

∂σ∞
s
(
(ρ j ) j∈N0 , σ∞ +

∞∑

j=0

ρ j

)
. (4.7)

Explicit computations yield

μ j = log
ρ̂ j

1 − ρ̂ j
− |Bj |

j−1∑

k=0

1

|Bk | log(1 − ρ̂k), μ∞ = −
∞∑

j=0

1

|Bj | log(1 − ρ̂ j ).

(4.8)

For the Bernoulli mixture, in contrast,

μBer
j = log

ρ j

1 − ρ j
, μBer∞ = 0.

The chemical potentials coincide up to error terms of order O(
∑

j ρ j ) + O(σ∞) = O(σ ).

4.2 Analyticity: Multi-Species Virial Expansion

Before we turn to a variational representation of the pressure, we collect a few analytic
properties of the entropy that are of intrinsic interest. Consider the complex Banach space

1(N0) × C with norm ||(ρ, σ∞)|| = ∑∞

j=0 |ρ j | + |σ∞| and the open unit ball B(0, 1) =
{(ρ, σ∞) : ||(ρ, σ∞)|| < 1}. Define σ j = σ∞ + ∑∞

k= j ρk and

�
(
ρ, σ∞) :=

∞∑

m=2

1

m(m − 1)

∞∑

j=0

1

|Bj |
(
σm
j − σm

j+1

)
. (4.9)
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Proposition 4.2 (a) The map � is holomorphic in the open unit ball and the Taylor
series (4.9) converges uniformly in every open ball B(0, r) of radius r < 1.

(b) The entropy satisfies

s(ρ, σ∞) = −
∞∑

j=0

1

|Bj |ρ j (log ρ j − 1) − �(ρ, σ∞)

for all (ρ, σ∞) ∈ R
N0+ × R+ with

∑∞
j=0 ρ j + σ∞ < 1.

Ashort overviewand list of references on holomorphic functions inBanach spaces is provided
in [11, Appendix B].

Proof We compute, using σ j = ρ j + σ j+1,

ρ j log
ρ j

1 − σ j+1
+ (1 − σ j ) log

1 − σ j

1 − σ j+1

= ρ j log ρ j + (1 − σ j ) log(1 − σ j ) − (1 − σ j+1) log(1 − σ j+1)

= ρ j
(
log ρ j − 1

) + (1 − σ j )
(
log(1 − σ j ) − 1

)
− (1 − σ j+1)

(
log(1 − σ j+1) − 1

)
.

Because of

(1 − x)
(
log(1 − x) − 1

)
= −1 −

∫ x

0
log(1 − y)dy = −1 +

∞∑

m=2

xm

m(m − 1)
(|x | < 1),

we deduce that the j-th summand in the formula for the entropy from Theorem 4.1 is given
by

− 1

|Bj |ρ j (log ρ j − 1) − 1

|Bj |
∞∑

m=2

1

m(m − 1)
(σm

j − σm
j+1). (4.10)

In order to split the series over j into two contributions corresponding to the two terms in the
preceding sum, we need to check that the two sums are absolutely convergent. For the first
term, we note that supx∈[0,1] |x(log x − 1)| = 1 hence

∞∑

j=0

1

|Bj |
∣
∣ρ j (log ρ j − 1)

∣
∣ ≤

∞∑

j=0

1

|Bj | < ∞.

For the convergence of �, corresponding to the second term in (4.10) set

Pm(ρ, σ∞) := 1

m(m − 1)

∞∑

j=0

1

|Bj |
(
σm
j − σm

j+1

)
.

Because of

∣
∣σm

j − σm
j+1

∣
∣ =

∣
∣
∣
∣ρ j

m−1∑

k=0

σ k
j σ

m−1−k
j+1

∣
∣
∣
∣ ≤ m|ρ j | ||(ρ, σ )||m−1

and |Bj | ≥ 1, we have

∣
∣Pm(ρ, σ∞)

∣
∣ ≤ 1

m − 1

( ∞∑

j=0

1

|Bj | |ρ j |
)
||(ρ, σ∞)||m−1 ≤ ||(ρ, σ∞)||m < ∞.
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It follows that Pm is absolutely convergent in B(0, 1) and defines a continuous m-
homogeneous polynomial with norm

||Pm || = sup
||(ρ,σ∞)||≤1

|Pm(ρ, σ∞)| ≤ 1,

moreover �(ρ, σ∞) = ∑∞
m=2 Pm(ρ, σ∞) converges uniformly in ||(ρ, σ∞)|| ≤ r , for every

r ∈ (0, 1). This proves the analyticity in the open unit ball. The formula for the entropy
follows from (4.10).

4.3 Variational Representation for the Pressure

Proposition 4.3 Assume that lim j→∞ 1
|Bj | log z j = θ∗. Then the pressure has the variational

representation

p
(
(z j ) j∈N0

) = sup

{ ∞∑

j=0

ρ j

|Bj | log z j +
(
σ −

∞∑

j=0

ρ j

)
θ∗ + s

(
(ρ j ) j∈N0 , σ )

∣
∣
∣

∞∑

j=0

ρ j ≤ σ ≤ 1

}

.

In addition:

(a) If
∑∞

j=0 ẑ j < ∞ and p((z j ) j∈N0) > θ∗, then the tuple (ρ(z), σ (z)) given in Theo-
rem 3.2(a) is the unique maximizer. It satisfies σ∞ = 0 and σ < 1.

(b) If
∑∞

j=0 ẑ j < ∞ and p((z j ) j∈N0) = θ∗, then the set of maximizers is given by the
convex combinations of (ρ(z), σ (z)) from Theorem 3.2(a) and (0, 1).

(c) If
∑∞

j=0 ẑ j = ∞, then p((z j ) j∈N0) = θ∗ and the unique maximizer is the tuple (0, 1).

We leave as an open problem whether the proposition extends to activities with
lim inf j→∞ 1

|Bj | log z j < lim sup j→∞ 1
|Bj | log z j = θ∗. The cases (a), (b), and (c) corre-

spond to a gas phase, coexistence region, and condensed phase, respectively.

Proof of the variational formula in Proposition 4.3 Let (ρ j ) j∈N0 ∈ R
N0+ and σ ∈ [0, 1] with

∑∞
j=0 ρ j ≤ σ . Then there exist sequences N (n)

j of integers satisfying (4.2). Clearly

log	�n ≥
n∑

j=0

N (n)
j log z j + S�n

(

N (n)
1 , . . . , N (n)

n

)

. (4.11)

The second term, divided by |�n |, converges to s((ρ j ) j∈N0 , σ ) by Theorem 4.1. For the first
term, we set z′j := z j exp(−|Bj |θ∗) and we write for n ≥ k

∣
∣
∣
∣

n∑

j=0

N (n)
j

|�n | log z j −
∞∑

j=0

ρ j

|Bj | log z j −
(

σ −
∞∑

j=0

ρ j

)

θ∗
∣
∣
∣
∣

≤
∣
∣
∣
∣

n∑

j=0

N (n)
j

|�n | log z
′
j −

∞∑

j=0

ρ j

|Bj | log z
′
j −

(

σ −
n∑

j=0

N (n)
j |Bj |
|�n |

)

θ∗
∣
∣
∣
∣

≤
k∑

j=0

∣
∣
∣
N (n)

j

|�n | − ρ j

|Bj |
∣
∣
∣| log z′j | + 2 max

j≥k+1

∣
∣
∣

1

|Bj | log z
′
j

∣
∣
∣ + |θ∗|

∣
∣
∣
∣σ −

n∑

j=0

N (n)
j |Bj |
|�n |

∣
∣
∣
∣.
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Taking first the limit n → ∞ and then k → ∞, we see that overall the expression goes to
zero. Turning back to (4.11) we get

lim inf
n→∞ p�n ≥

∞∑

j=0

ρ j

|Bj | log z j +
(
σ −

∞∑

j=0

ρ j

)
θ∗ + s

(
(ρ j ) j∈N0 , σ ).

This holds true for all (ρ j ) j∈N0 and σ ∈ [0, 1] with ∑∞
j=0 ρ j ≤ σ , accordingly the limit

inferior of the pressure is bounded from below by a supremum.
For the upper bound, let In ⊂ N

n
0 be the set of vectors

(
N (n)
1 , . . . , N (n)

n
)
with

∑n
j=0 |Bj | N (n)

j ≤ |�n |. Every such vector is uniquely identified with an integer partition of
|�n |, therefore by the Hardy-Ramanujan formula

|In | ≤ exp
(
o
(|�n |

))
. (4.12)

Clearly

	�n ≤ |In | max
(N (n)

1 ,...,N (n)
n )∈In

exp

( n∑

j=0

N (n)
j log z j + S�n

(
N (n)
1 , . . . , N (n)

n

)
)

. (4.13)

Consider the sequence of maximizers of the right-hand side. By compactness, every subse-
quence admits in turn a subsequence that satisfies (4.2) for some (ρ j ) j∈N0 and σ ∈ [0, 1]
with

∑∞
j=0 ρ j ≤ σ . The proof of the upper bound for the limit superior of the pressure is

easily completed by combining Eqs. (4.12), (4.13), and arguments similar to the proof of the
lower bound. This proves the variational representation of the pressure.

The proof of items (a) and (b) in Proposition 4.3 builds on several lemmas. First we show
that for σ∞ = 0, the expression to be maximized is a combination of relative entropies of
measures on {0, 1}, corresponding to absence or presence of a cube.

Lemma 4.4 For every (ρ j ) j∈N0 ∈ R
N0+ and σ ∈ [0, 1] with ∑∞

j=0 ρ j = σ (equivalently,
σ∞ = 0), we have

p
(
(z j ) j∈N0

) −
( ∞∑

j=0

ρ j

|Bj | log z j + s
(
(ρ j ) j∈N0 , σ )

)

= −
∞∑

j=0

1 − σ j+1

|Bj |
(

ρ̂ j log
ρ̂ j

ẑ j/(1 + ẑ j )
+ (1 − ρ̂ j ) log

1 − ρ̂ j

1/(1 + ẑ j )

)

. (4.14)

Proof We compute

∞∑

j=0

ρ j

|Bj | log z j =
∞∑

j=0

ρ j

|Bj |
(
log ẑ j + |Bj |

j−1∑

k=0

1

|Bk | log(1 + ẑk)
)

=
∞∑

j=0

ρ j

|Bj | log ẑ j +
∞∑

k=0

1

|Bk | log(1 + ẑk)
∞∑

j=k+1

ρ j

=
∞∑

j=0

1 − σ j+1

|Bj | ρ̂ j log ẑ j +
∞∑

k=0

σk+1

|Bk | log(1 + ẑk).
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In going from the second to the third line we have used the equality
∑∞

j=k+1 ρk = σk+1,
which is valid because of σ∞ = 0. It follows that

p
(
(z j ) j∈N0

) −
∞∑

j=0

ρ j

|Bj | log z j =
∞∑

j=0

1 − σ j+1

|Bj |
(
log(1 + ẑ j ) − ρ̂ j log ẑ j

)
.

We combine with the formula for the entropy from Theorem 4.1 and obtain (4.14).

The term in parentheses on the right-hand side of (4.14), together with the minus sign, is
nothing else but the relative entropy of the Bernoulli measure with parameter ρ̂ j with respect
to the Bernoulli measure with parameter ẑ j/(1 + ẑ j ). It is non-negative and vanishes if and
only if ρ̂ j = ẑ j/(1 + ẑ j ). The next lemma relates this identity to Theorem 3.2.

Lemma 4.5 Let (ρ j ) j∈N0 ∈ R
N0+ and σ := ∑∞

j=0 ρ j . Pick m ∈ N0 and assume σm+1 =
∑∞

j=m+1 ρ j < 1. Then the following two statements are equivalent:

(i) ρ̂ j = ẑ j/(1 + ẑ j ) for all j ≥ m.
(ii) ρ j = ẑ j

∏∞
k= j (1 + ẑk)−1 for all j ≥ m.

Let us stress that the lemma works both for
∑

j ẑ j < ∞ and
∑

j ẑ j = ∞. In the latter case
the infinite products vanish and we find ρ j = 0 for all j ≥ m.

Proof We note

1 − σ j = 1 − σ j+1 − ρ j = (1 − σ j+1)(1 − ρ̂ j )

hence 1 − σ j = (1 − σ
)
∏
−1

k= j (1 − ρ̂ j ) for all 
 ≥ j ≥ m. Because of
∑∞

j=0 ρ j = σ we
have σ∞ = 0 and lim
→∞ σ
 = 0, hence

1 − σ j =
∞∏

k= j

(1 − ρ̂ j ).

If (i) holds true, then for all j ≥ m

ρ j = (1 − σ j+1) − (1 − σ j ) = ρ̂ j

∞∏

k= j+1

(1 − ρ̂k).

The implication (i) ⇒ (ii) follows. Conversely, if (ii) holds, let Y j be independent Bernoulli
variables with P(Y j = 0) = 1/(1 + ẑ j ). Then

ρ j = P(Y j = 1, ∀k ≥ j + 1 : Yk = 0)

and

1 − σr = 1 − P(∃ j ≥ r : Y j = 1) = P(∀ j ≥ r : Y j = 0) =
∞∏

j=r

1

1 + ẑ j

and (i) follows.

The previous two lemmas deal with the gas phase (σ∞ = 0) only. The next lemma allows for
σ∞ ≥ 0 and is particularly relevant for the coexistence region. Let us briefly motivate a new
set of variables. Suppose that σ∞ ∈ (0, 1). Then we may think of the system as a mixture
of a condensed phase, occupying the volume fraction σ∞, and a gas phase in the remaining
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volume fraction 1 − σ∞. The natural density variables for the gas phase should be defined
relatively to the volume occupied by the gas and not the total volume. Therefore we introduce
the new variables

ρ′
j := ρ j

1 − σ∞
, σ ′ :=

∞∑

j=0

ρ′
j , σ ′

j :=
∞∑

k= j

ρ′
j . (4.15)

Lemma 4.6 Let ((ρ j ) j∈N0 , σ ) ∈ R
N0+ × [0, 1] with ∑∞

j=0 ρ j ≤ σ and σ∞ ∈ (0, 1). Then

∞∑

j=0

ρ j

|Bj | log z j +
(

σ −
∞∑

j=0

ρ j

)

θ∗ + s
(
(ρ j ) j∈N0 , σ )

= (1 − σ∞)

( ∞∑

j=0

ρ′
j

|Bj | log z j + s
(
(ρ′

j ) j∈N0 , σ
′)
)

+ σ∞θ∗.

Put differently, the grand potential in the coexistence region is a convex combination of the
grand potential θ∗ in the condensed phase and the grand potential of the gas phase.

Proof. The lemma follows from Theorem 4.1 and explicit computations. Clearly

∞∑

j=0

ρ j

|Bj | log z j +
(
σ −

∞∑

j=0

ρ j

)
θ∗ = (1 − σ∞)

∞∑

j=0

ρ′
j

|Bj | log z j + σ∞θ∗,

so it remains to check that

s
(
(ρ j ) j∈N0 , σ

) = (1 − σ∞)s
(
(ρ′

j ) j∈N0 , σ
′). (4.16)

As a preliminary observation we note σ ′ = (σ − σ∞)/(1 − σ∞) ≤ 1. In view of

1 − σ j+1 = 1 −
∞∑

k= j+1

ρ j − σ∞ = (1 − σ∞)(1 − σ ′
j+1),

we also have ρ′
j ≤ 1 − σ ′

j+1, moreover

s
(
(ρ j ) j∈N0 , σ

) = −(1 − σ∞)

∞∑

j=0

1

|Bj |
(

ρ′
j log

ρ′
j

1 − σ ′
j+1

+ (1 − σ ′
j ) log

1 − σ ′
j

1 − σ ′
j+1

)

= (1 − σ∞)s
(
(ρ′

j ) j∈N0 , σ
′).

Proof of Proposition 4.3(a)–(c) Assume
∑∞

j=0 ẑ j < ∞ and p((z j ) j∈N0) > θ∗. To prove part
(a), we proceed in two steps: First we show that a tuple ((ρ j ) j∈N0 , σ ) with σ∞ = 0, i.e.,∑∞

j=0 ρ j = σ , is amaximizer if and only if it is given by the expressions fromTheorem3.2(a).
Second, we show that every maximizer necessarily satisfies σ∞ = 0.

For Step 1, we use Lemma 4.4. A tuple with σ∞ = 0 is a maximizer if and only if the right-
hand side of (4.14) vanishes. But on the right-hand side of (4.14), the term in parentheses,
togetherwith theminus sign, is nothing else but the relative entropy of twoBernoullimeasures
with parameters ρ̂ j and ẑ j/(1 + ẑ j ). As a consequence the overall sum vanishes—i.e., the
tuple (ρ j ) j∈N0 , σ = ∑∞

j=0 ρ j is a maximizer—if and only if, for every j ∈ N0, we have
σ j+1 = 1 or ρ̂ j = ẑ j/(1 + ẑ j ).

Suppose by contradiction that there is a maximizer with σr+1 = 1 for some r ∈ N0, and
σ = ∑∞

j=0 ρ j . The sequence (σ j ) is monotone decreasing, therefore if the set of such r ’s is
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unbounded, then σ j = 1 for all j ∈ N0. It follows that ρ j = σ j − σ j+1 = 0 for all j and
σ j+1 = ∑∞

k=r+1 ρ j = 0, contradiction. Thus the set of r ’s with σr+1 = 1 is bounded, let
m be its maximal element. Then σm+1 = ∑∞

k=m+1 ρk = 1 hence ρ0 = · · · = ρm = 0. In
addition, σ j+1 < 1 and ρ̂ j = ẑ j/(1+ ẑ j ) for all j ≥ m+1. It follows that for all j ≥ m+1,
the density ρ j is given by the formula from Theorem 3.2(a), see Lemma 4.5. In particular,
σm+1 = ∑∞

j=m+1 ρ j is bounded by the packing fraction from Theorem 3.2(a), which is
strictly smaller than 1. Thus σ < 1, in contradiction with σ = σm+1 = 1.

Consequently σ j+1 < 1 and ρ̂ j = ẑ j/(1 + ẑ j ) for all j ∈ N0. Lemma 4.5 shows that the
maximizer is given by the formulas from Theorem 3.2(a). In particular, σ < 1 and σ∞ = 0.

For Step 2, we use Lemma 4.6. Let ((ρ j ) j∈N0 , σ ) be such that σ∞ > 0. By Lemma 4.6
and the preceding considerations applied to ((ρ′

j ) j∈N0 , σ
′), we can bound

∞∑

j=0

ρ j

|Bj | log z j +
(
σ −

∞∑

j=0

ρ j

)
θ∗ + s

(
(ρ j ) j∈N0 , σ ) ≤ (1 − σ∞)p

(
(z j ) j∈N0

) + σ∞θ∗

(4.17)

which is strictly smaller than p
(
(z j ) j∈N0

)
because of the assumption θ∗ < p

(
(z j ) j∈N0

)
.

Therefore the tuple is not a maximizer. This concludes Step 2 and the proof of part (a) of the
proposition.
For (b) and (c), assume p((z j ) j∈N0) = θ∗. Then (ρ, σ ) = (0, 1) is a maximizer. Suppose that
there exists another maximizer (ρ, σ ). Then necessarily σ∞ < 1 and we may define primed
variables (ρ′, σ ′) and σ ′

j as in Eq. (4.15). The variational representation for the pressure, the
equality p((z j ) j∈N0) = θ∗, and Lemma 4.6 yields

0 = θ∗ −
( ∞∑

j=0

ρ j

|Bj | log z j +
(
σ −

∞∑

j=0

ρ j

)
θ∗ + s

(
(ρ j ) j∈N0 , σ )

)

= (1 − σ∞)

{

θ∗ −
( ∞∑

j=0

ρ′
j

|Bj | log z j + s
(
(ρ′

j ) j∈N0 , σ
′)
)}

≥ 0

hence

θ∗ −
( ∞∑

j=0

ρ′
j

|Bj | log z j + s
(
(ρ′

j ) j∈N0 , σ
′)
)

= 0. (4.18)

Since p((z j ) j∈N0) = θ∗, the left-hand side can be expressed as a combination of relative
entropies of Bernoulli variables as in Lemma 4.4.

Assume first
∑∞

j=0 ẑ j < ∞. Adapting the arguments of the proof of part (a) we deduce

ρ′
j = ρ j (z) = ẑ j

1 + ẑ j

∞∏

k= j+1

1

1 + ẑk
( j ∈ N0).

Then ρ j = (1 − σ∞)ρ′
j and

σ =
∞∑

j=0

ρ j + σ∞ = (1 − σ∞)σ ′ + σ∞

by definition of ρ′
j and σ ′. It follows that the additional maximizer (ρ, σ ) is a convex com-

bination of (ρ(z), σ (z)) and (0, 1). Conversely, every such convex combination is indeed a
maximizer. This proves part (b) of Proposition 4.3.
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If on the other hand
∑∞

j=0 ẑ j = ∞, then we check that ρ′
j = 0 hence ρ j = 0 for all j . To

that aim we revisit the arguments from the proof of part (a). We start from (4.18) and deduce
as in part (a) that σ ′

j+1 = 1 or ρ̂′
j = ẑ j/(1+ ẑ j ) for all j ∈ N0. We distinguish several cases.

If σ ′
j+1 = 1 for all j ∈ N0, then ρ′

j = 0 for all j ∈ N0 and σ ′ = 0, contradicting
σ ′
j+1 = 1.
If σ ′

j+1 
= 1 for some j , then the set {r ∈ N0 | σ ′
r+1 = 1} is bounded. Suppose by

contradiction that it is non-empty and let m be its maximum. Then σ ′
m+1 = ∑∞

k=m+1 ρ′
k = 1

hence ρ′
0 = · · · = ρ′

m = 0. In addition, σ ′
j+1 < 1 and ρ̂′

j = ẑ j/(1 + ẑ j ) for all j ≥ m + 1.
Lemma 4.5 yields ρ′

j = 0 for all j ≥ m + 1. It follows that σ ′
m+1 = 0, in contradiction with

the identity σ ′
m+1 = 1 that holds true by definition of m.

The only case left is σ ′
j+1 < 1 for all j ∈ N0. In this case Lemma 4.5 again yields ρ′

j = 0
for all j ∈ N0 hence σ ′ = 0.

Consequently ρ j = (1 − σ∞)ρ j = 0 for all j ∈ N0 and σ = σ∞. The grand-potential of
such a configuration is σ∞θ∗, which is equal to θ∗ if and only if σ∞ = 1. As a consequence,
(0, 1) is the unique maximizer of the grand potential. This proves part (c).

5 Phase Transition

5.1 Generalities: Parameter-Dependent Activity

Let (E j ) j∈N0 be a sequence in R ∪ {∞} such that E j/|Bj | has a limit in R ∪ {∞}, i.e.,

e∞ := lim
j→∞

E j

|Bj | > −∞,

and E j < ∞ for at least one j ∈ N0. Think of E j as the energy of a block, which could be a
bulk contribution plus a boundary term, e.g., E j = e∞|Bj | + const|∂Bj |. For later purpose
we also define

E(B) = E j (B ∈ B j ).

We specialize to parameter-dependent activities of the form

z j (μ) = exp
(|Bj |μ − E j

)
(μ ∈ R).

The activity is stable with

θ∗(μ) = lim
j→∞

1

|Bj | log z j (μ) = μ − e∞. (5.1)

We write p(μ), ẑ j (μ), ρ j (μ) for the pressure, effective activities, and density variables of

the μ-dependent model. For (ρ j ) j∈N0 ∈ R
N0+ and σ∞ ≥ 0 with

∑∞
j=0 ρ j + σ∞ ≤ 1, define

the free energy of a block size distribution

f
(
(ρ j ) j∈N0 , σ∞

) :=
∞∑

j=0

ρ j

|Bj | E j + σ∞e∞ − s
(
(ρ j ) j∈N0 , σ∞ +

∞∑

j=0

ρ j

)
. (5.2)

and the free energy at given packing fraction σ ∈ [0, 1]

ϕ(σ) = inf

{

f
(
(ρ j ) j∈N0 , σ∞

) ∣
∣
∣

∞∑

j=0

ρ j + σ∞ = σ

}

.
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The maps p(μ), ϕ(σ), and f
(
(ρ j ) j∈N0 , σ∞

)
are convex, moreover by Proposition 4.3,

p(μ) = sup
σ∈[0,1]

(
μσ − ϕ(σ)

)

= sup

{ ∞∑

j=0

μρ j + μσ∞ − f
(
(ρ j ) j∈N0 , σ∞

) ∣
∣
∣

∞∑

j=0

ρ j + σ∞ ≤ 1

}

. (5.3)

The test configuration ρ j ≡ 0 and σ∞ = 1 yields p(μ) ≥ μ−e∞ for allμ ∈ R, in agreement
with the already known bound p(μ) ≥ θ∗(μ) = μ − e∞. Define

μc := inf
{
μ ∈ R | p(μ) = μ − e∞

}
, σc := lim

μ↗μc

dp

dμ
(μ).

By convexity, the pressure p is differentiable almost everywhere with increasing derivative,
therefore σc is well-defined.

Noticeμc ≤ ∞ and σc ≤ 1.We say that themixture of cubes undergoes a phase transition
if μc < ∞. The phase transition is continuous if σc = 1 and it is of first order if σc < 1, see
Proposition 5.2 below.

Lemma 5.1 The following holds true:

(a) For each j ∈ N0, the map μ �→ ẑ j (μ) is monotone increasing.
(b) The system undergoes a phase transition if and only if

∑∞
j=0 ẑ j (μ) = ∞ for some

μ ∈ R, and we have

μc = inf
{
μ ∈ R

∣
∣
∣

∑

j∈N0

ẑ j (μ) = ∞
}

> e∞.

(c) If μc < ∞, the phase transition is of first order if and only if
∑

j ẑ j (μc) < ∞, with

σc = 1 −
∞∏

j=0

1

1 + ẑ j (μc)
.

Proof (a) The rescaling from the proof of Lemma 2.2 allows us to shove the μ-dependence
away from the activities z j and into the vacuum activity, which becomes e−μ instead of 1.
Precisely, remembering E(B) = E j for B ∈ B j , we get

	�(μ) =
∑

{X1,...,Xn}

n∏

i=0

e|Xi |μ−E(Xi ) =
∑

{X1,...,Xn}
eμ|∪i Xi |−∑

i E(Xi )

= eμ|�| ∑

{X1,...,Xn}
e−μ|�\∪i Xi |e−∑

i E(Xi )

where the sum runs over collections of pairwise disjoint cubes. Notice that e−μ appears to
the power |� \ ∪i Xi | which is the number of vacant lattice sites. We apply the equality to
� = Bn−1 and find

ẑn(μ) = zn(μ)

	Bn−1(μ)2
d = e−E(Bn) ×

( ∑

{X1,...,Xn}
e−μ|�\∪i Xi |e−∑

i E(Xi )

)−2d

(5.4)

because exp(μ|Bn |) = exp(2dμ|Bn−1|) cancels in the ratio defining ẑn(μ). Themonotonicity
in μ follows.
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(b) Suppose that the set I := {μ ∈ R | ∑∞
j=0 ẑ j (μ) = ∞} is non-empty. Then because of

the monotonicity proven in (a), the set I is an open or half-open interval (μ∗,∞) or [μ∗,∞)

with μ∗ ∈ R ∪ {−∞}. For μ ∈ I we have p(μ) = θ∗(μ) = μ − e∞ by Theorem 3.1
and (5.1), therefore μc ≤ μ∗ < ∞ and the system undergoes a phase transition.

It remains to check μc = μ∗ or equivalently, p(μ) > μ − e∞ for all μ < μ∗. First we
show that μ∗ > e∞, which proves in particular μ∗ > −∞. As noted above, p(μ) = μ− e∞
for all μ > μc. But p(·) is continuous because it is convex and finite, therefore the equality
p(μ) = μ − e∞ extends to all μ ≥ μ∗. On the other hand, the non-degeneracy condition
inf j E j < ∞ is enough to guarantee p(μ) > 0 for allμ ∈ R. Thereforeμ∗−e∞ = p(μ∗) >

0 and μ∗ > e∞.
Nextwe show that p(μ) is continuously differentiable in (−∞, μ∗)with derivativeσ(μ) ∈

(0, 1), where

σ(μ) = 1 −
∞∏

j=0

1

1 + ẑ j (μ)
, (5.5)

see Theorem 3.2(a). First we check that σ(μ) is continuous in (−∞, μ∗). Every effec-
tive activity ẑ j (μ) is a rational function of e−μ hence continuous, see (5.4). To deduce the
continuity of σ(μ) we invoke dominated convergence for the series

∑
j log(1 + ẑ j (μ)).

Fix μ′ < μ∗. The monotonicity of ẑ j (μ) and the definition of μ∗ yield ẑ j (μ) ≤ ẑ j (μ′)
for (−∞, μ′) with

∑∞
j=0 log(1 + ẑ j (μ′)) < ∞. Therefore dominated convergence shows

limε→0 σ(μ + ε) = σ(μ), for all μ < μ′ < μ∗. Thus σ(μ) is continuous.
The differentiability of p(μ) follows from standard arguments. We have p(μ) =

limn→∞ p�n (μ) and p′
�n

(μ) = σ�n (μ) → σ(μ) ∈ (0, 1) by Theorem 3.2(a). For
μ ∈ (−∞, μ∗) and h ∈ R small enough so that μ ± h < μ∗, we may pass to the limit
n → ∞ in

p�n (μ + h) − p�n (μ) =
∫ μ+h

μ

σ�n (t)dt

and find

p(μ + h) − p(μ) =
∫ μ+h

μ

σ(t)dt

hence p′(μ) = σ(μ).
The differentiability together with the inequality σ(μ) ∈ (0, 1) allow us to conclude the

proof of (b): write

p(μ∗) − p(μ) =
∫ μ∗

μ

σ(u)du < μ∗ − μ

and

p(μ) > p(μ∗) − μ∗ + μ = −e∞ + μ.

This holds true for all μ < μ∗, therefore μc ≥ μ∗ and altogether μc = μ∗ > e∞.
(c) As noted above, we have p′(μ) = σ(μ) for all μ ∈ (−∞, μ∗) = (−∞, μc). Pro-

ceeding as in (b) but using monotone convergence for the series
∑

j log(1 + ẑ j (μ)) instead
of dominated convergence, we obtain

σc = lim
μ↗μc

p′(μ) = lim
μ↗μc

σ(μ) = σ(μc).
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In particular, σc < 1 if and only if σ(μc) < 1, which in turn is equivalent to
∑∞

j=0 ẑ j (μc)

< ∞.

In the proof of Lemma 5.1 we have proven a number of statements that can be formulated
without any reference to the effective activities.

Proposition 5.2 The critical chemical potential satisfies μc > e∞ > −∞. In addition:

(a) In (−∞, μc) the pressure p(μ) is strictly convex and continuously differentiable with
packing fraction p′(μ) = σ(μ) ∈ (0, σc) and it satisfies p(μ) > μ − e∞.

(b) If μc < ∞, then p(μ) = μ − e∞ for all μ ≥ μc and the packing fraction is σ(μ) = 1.

Proof All statements except the strict convexity in (−∞, μc) have been shown in the proof
of Lemma 5.1. The strict convexity follows from the strict monotonicity of σ(μ): Let μ1 <

μ2 < μc. Then

∞∑

j=0

log(1 + ẑ j (μ1)) ≤
∞∑

j=0

log(1 + ẑ j (μ2)) < ∞

and, because of the monotonicity from Lemma 5.1(a),

∞∑

j=0

(
log(1 + ẑ j (μ2)) − log(1 + ẑ j (μ1))

)
≥ log(1 + ẑk(μ2)) − log(1 + ẑk(μ1))

(5.6)

for all k ∈ N0. Eq. (5.4) shows that if Ek < ∞—which is the case for at least one k ∈ N0—
then ẑk(μ) is strictly increasing in μ. Therefore the difference (5.6) is strictly positive and
Eq. (5.5) yields σ(μ1) < σ(μ2).

5.2 Fixed Point Iteration: Absence of Phase Transition

The recurrence relation 	�n+1 = zn+1 + (	�n )
2d encountered in the proof of Theorem 3.1

leads to a recurrence relation for the inverse probability of finding one large block. Indeed,

	�n

zn
= 1 + z2

d

n−1

zn

(	�n−1

zn−1

)2d
.

Thus if we set

vn(μ) := 	�n (μ)

zn(μ)
= 1

P
μ
�n

(ω = {�n})
and

εn := (zn−1(μ))2
d

zn(μ)
= exp(En − 2d En−1) (n ∈ N), (5.7)

then

vn(μ) = 1 + εn
(
vn−1(μ)

)2d
(n ∈ N) (5.8)

and

v0(μ) = 1 + 1

z0(μ)
= 1 + e−μeβE0 .
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Notice that the μ-dependence drops out from the ratio zn−1(μ)2
d
/zn(μ) so that εn in (5.8)

does not depend on μ. Thus the sequence (vn(μ))n∈N0 is computed recursively and the only
explicit μ-dependence is through the initial condition v0(μ).

For energies (En)n∈N leading to constant ratios εn ≡ ε, the iteration defining vn(μ) is a
fixed point iteration that is straightforward to analyze. Set

fε(x) := 1 + εx2
d
, cd := sup

x≥1

x − 1

x2d
. (5.9)

Notice cd ∈ (0, 1). The following case distinction is relevant for this section and the follow-
ing:

(1) If ε > cd , then fε(x) > x for all x ≥ 0.
(2) If ε < cd , then the equation x = fε(x) has exactly two solutions x− < x+ in (0,∞).

They satisfy 1 ≤ x− < x+. The smaller fixed point is attractive ( f ′
ε(x−) ∈ (0, 1)), the

larger fixed point is repulsive ( f ′
ε(x+) > 1).

(3) If ε = cd , then fε has exactly one fixed point. The fixed point satisfies f ′
ε(x) = 1.

Theorem 5.3 Suppose

lim inf
j→∞ ε j = lim inf

j→∞ exp(E j − 2d E j−1) > cd .

Then μc = ∞.

Because of cd < 1, the theorem applies in particular to the reference measure for which
E j ≡ 0 and we find that there are no entropy-driven phase transitions.

Corollary 5.4 If E j ≡ 0, then μc = ∞.

Proof of Theorem 5.3 Fix μ ∈ R and suppress the μ-dependence from the notation. By the
assumption of the theorem there exists n0 ∈ N and ε > cd such that εn > ε for all n ≥ n0.
Then vn0+k ≥ f kε (vn0) for all k ∈ N0. A close look at the fixed point iteration xk+1 = fε(xk),
based on the case distinction sketched above, shows that f kε (x0) goes to infinity for all x0 ≥ 0.
Consequently vn → ∞ as n → ∞. We check that the divergence is in fact exponentially
fast. For n ≥ n0 we have vn = 1 + εnv

2d
n−1 ≥ εv2

d

n−1 hence for all δ > 0,

δvn ≥ δ1−2d ε × (δvn−1)
2d .

Let δ > 0 be the solution of δ1−2d ε = 1, then

1

|Bn | log(δvn) ≥ 1

|Bn−1| log(δvn−1)

for all n ≥ n0. Pick k ≥ n0 with δvk > 1, which exists because of vn → ∞. Then for all
n ≥ k we have

δvn ≥ (δvk)
|Bn |/|Bk |.

In particular vn → ∞ exponentially fast. To conclude, we turn back to the pressure, bring
the μ-dependence back into the notation, and note

p(μ) − (μ − e∞) = lim inf
n→∞

1

|Bn | log
	�n (μ)

zn(μ)
= lim inf

n→∞
1

|Bn | log vn(μ) > 0.

Thus p(μ) > μ − e∞. This holds true for every μ ∈ R, therefore μc = ∞.
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5.3 Continuous Phase Transition: Scaling Limit

Here we consider a model where each block has the same energy. Thus we assume that for
some λ ∈ R,

∀ j ∈ N0 : E j = λ.

The total energy
∑

B∈ω E(B) is then simply λ times the number of blocks in a configuration,
theBoltzmann factor is given by e−λ to the power of the number of blocks, a feature somewhat
reminiscent of random cluster models [18, Chapter 6].

The constant sequence E j ≡ λ has e∞ = lim j→∞ E j/|Bj | = 0. The ratio εn
from Eq. (5.7) is constant and equal to

ε(λ) := e−(2d−1)λ.

We can therefore analyze the system with the fixed point iteration from the previous section.
Set

λd := − log cd
2d − 1

and notice λd > 0. If ε(λ) > cd i.e. λ < λd , then Theorem 5.3 tells us that μc = ∞ and the
system has no phase transition.

If ε(λ) < cd i.e. λ > −(2d − 1)−1 log cd , then by case (2) below (5.9), the function
fε(λ)(x) has two fixed points 0 < x−(λ) < x+(λ).

Theorem 5.5 Assume λ > λd = −(2d −1)−1 log cd and let x+(λ) > 1 be the repulsive fixed
point of the map R+ � x �→ 1 + ε(λ)x2

d
. Then the system undergoes a phase transition at

μc(λ) = λ − log
(
x+(λ) − 1

)

and the phase transition is continuous.

Proof To lighten notation we suppress the λ-dependence. Set μ∗ := λ − log(x+ − 1) and
note

v0(μ
∗) = 1 + exp(−μ∗ + λ) = x+(λ).

Our task is to show μc = μ∗. To that aim we return to the fixed point iteration for the inverse
probability of finding a large block and the case distinction below (5.9):

(1) If μ > μ∗, then v0(μ) < x+(λ) and v0(μ) belongs to the domain of attraction of the
fixed point x−(λ) and vn(μ) → x−(λ) as n → ∞.

(2) If μ = μ∗, then v0(μ) = x+(λ) and vn(μ) = x+(λ) for all n ∈ N0.
(3) If μ < μ∗, then v0(μ) > x+(λ) and vn(μ) → ∞.

In the cases (1) and (2) we have

p(μ) − μ = lim
n→∞

1

|Bn | log
	�n (μ)

zn(μ)
= lim

n→∞
1

|Bn | log vn(μ) = 0.

Thus p(μ) = μ for all μ ≥ μ∗. Proceeding as in the proof of Theorem 5.3, one shows that
the divergence in case (3) is exponentially fast and concludes p(μ) > μ. Thus p(μ) = μ

if and only if μ ≥ μ∗, consequently μc = μ∗ < ∞. In particular, the system undergoes a
phase transition.
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The effective activity at μ = μc is given by

ẑ j (μc) = exp
(
−λ + |Bj |

(
μc − p j−1(μc)

))
.

Because ofμc = p(μc) ≥ p j−1(μc), it follows that ẑ j (μc) ≥ exp(−λ) and
∑∞

j=0 ẑ j (μc) =
∞. We deduce from Lemma 5.1(c) that the phase transition is continuous.

The mixture of hierarchical cubes is closely related to Mandelbrot’s percolation pro-
cess [16,17]. Let us define a sequence of random subsets of the unit cube by rescaling
�n = {1, . . . , 2n}d . Let K be the collection of compact subsets of [0, 1]d , equipped with the
Hausdorff distance and Borel σ -algebra BK. Let us first map a block B ⊂ B ⊂ Z

d to its
continuum counterpart B ′ ⊂ R

d given by

B ′ =
⋃

k∈B

[
k1 − 1, k1] × · · · × [

kd − 1, kd ].

Thus B ′ is the cube in R
d obtained as the union of unit cubes with upper right corners

k ∈ B ⊂ Z
d . If B ⊂ �n then B ′ ⊂ [0, 2n]d . For n ∈ N0, define the random variable

Kn : (��n ,P(��n ), P�n ) → (K,BK) by

Kn(ω) :=
⋃

B∈ω

1

2n
B ′.

Further let Fn(ω) be the closure of [0, 1]d \ Kn(ω). The random set Kn(ω) is constructed as
a union of cubes of sidelengths 1, 1

2 , . . . ,
1
2n , roughly as follows.

• With probability 1/vn(μ) the randomset is equal to thewhole unit cube, Kn(ω) = [0, 1]d .
• With probability 1 − 1/vn(μ), the random set is strictly smaller than the whole unit

cube. In that case we decide independently for each of the 2d subcubes ([0, 1
2 ]d and its

translates) whether to add or not add it to Kn(ω); a subcube is added with probability
1/vn−1(μ). This results in a set An,1(ω) that is a union of cubes of sidelength 1/2. Then,
for each subcube that has not been added, we repeat the construction for each of the 2d

subsubcubes, to be added with probability 1/vn−2(μ). We iterate until we have reached
the smallest cubes of sidelength 2−n , associated with the probability 1/v0(μ).

If the sequence vn(μ) is n-independent, let us write q ≡ 1/vn(μ), p = 1 − q , and suppress
the μ-dependence. Then we may think of Kn as a growing family of subsets of [0, 1]d
and accordingly of Fn(ω) as a decreasing family, and set F(ω) = ∩n∈N0Fn(ω); we owe
to S. Winter the remark that F(ω) should correspond to a special instance of Mandelbrot’s
percolation process [16,17].

Revisiting the case distinctions on the asymptotic behavior of (vn(μ))n∈N0 we may
expect the following behavior, under the assumption λ > λd and after restoration of the
μ-dependence in the notation:

(1) If μ = μc(λ) then as n → ∞ the distribution of Kμ
n should converge in some suitable

sense to a process where at each scale, a block is added with probability 1/x−(λ), with
x−(λ) the repulsive fixed point of x �→ 1 + ε(λ)x2

d
.

(2) Ifμ > μc(λ) the distribution of Kμ
n should converge in some suitable sense to a process

where at each scale, a block is added with probability 1/x+(λ), with x+(λ) the attractive
fixed point of x �→ 1 + ε(λ)x2

d
.

A rigorous statement and proof (or disproof) of these statements are beyond the scope of this
article.

123



    0 Page 26 of 32 S. Jansen

5.4 First-Order Phase Transition

Finally we provide necessary and sufficient conditions for the existence of a first-order phase
transitions. Themathematical proofs carried out in this section are complemented by a heuris-
tic discussion in Sect. 6.

Theorem 5.6 Set u j := exp(|Bj |e∞ − E j ). The following two conditions are equivalent:

(i) There exists a family of non-negative weights (ak)k∈N0 such that
∑∞

j=0 u j exp(a j ) < ∞
and

∞∑

k= j

|Bj |
|Bk | log

(
1 + uk e

ak
) ≤ a j (5.10)

for all j ∈ N0.
(ii) The mixture of cubes has a first-order phase transition.

Corollary 5.7 (a) If there is a first-order phase transition, then necessarily E j ≥ |Bj |e∞
(i.e., u j ≤ 1) for all j ∈ N0 and

∑∞
j=0 u j < ∞.

(b) The condition
∑∞

j=0 u j ≤ 1/e is sufficient for the existence of a first-order phase tran-
sition.

Example 5.8 Let E j = J (−|Bj | + |∂Bj |) with J > 0 some coupling constant and |∂Bj | =
2d 2 j(d−1) the area of the boundary of a cube of sidelength 2 j in R

d . Then if d ≥ 2 and J is
sufficiently large, the mixture of cubes has a first-order phase transition.

Proof of Corollary 5.7 (a) If there is a first-order phase transition, then by condition (i) in The-
orem5.6wemust have

∑∞
j=0 u j ≤ ∑∞

j=0 u j exp(a j ) < ∞, moreover log(1+u j exp(a j )) ≤
a j hence u j ≤ 1 − exp(−a j ) ≤ 1.

(b) Choose ak ≡ 1. Because of log(1+ x) ≤ x and |Bj | ≤ |Bk | whenever j ≤ k we have

∞∑

k= j

|Bj |
|Bk | log

(
1 + uke

ak
)

≤
∞∑

k=0

uke
ak =

( ∞∑

k=0

uk
)
e ≤ 1 = a j .

Thus condition (i) in Theorem5.6 is satisfied and themixture has a first-order phase transition.

Proof of the implication (i i) ⇒ (i) in Theorem 5.6
Suppose that the mixture of cubes has a first-order phase transition. Then

μc − e∞ = p(μc) =
∞∑

j=0

1

|Bj | log(1 + ẑ j (μc))

hence

ẑ j (μc) = exp

(

|Bj |μc − E j

)

exp

(

p(μc) − |Bj | p j−1(μc)

)

= exp

(

|Bj |e∞ − E j

)

exp

(

|Bj |
∞∑

k= j

1

|Bk | log(1 + ẑk(μc))

)
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for all j ∈ N0. Equivalently, ζ j := ẑ j (μc) and u j := exp(|Bj |e∞ − E j ), satisfy

ζ j = u j exp

(

|Bj |
∞∑

k= j

1

|Bk | log(1 + ζk)

)

( j ∈ N0). (5.11)

Define a j := log(ζ j/u j ), then a j ≥ 0 and the inequality (5.10) holds true and is actually an
equality. Moreover

∞∑

j=0

u je
a j =

∞∑

j=0

ζ j =
∞∑

j=0

ẑ j (μc) < ∞

because the phase transition is of first order, see Lemma 5.1(b).
The strategy for the proof of the implication (i) ⇒ (i i) in Theorem 5.6 is as follows. First
we show that if condition (i) holds true, then the fixed point equation (5.11) has at least one
solution (ζ j ), see Lemma 5.9. Then we turn to the computation of the free energy ϕ(σ),
which is given by a constrained minimization; we show that every solution of the fixed point
problem (5.11) is associated with a critical point of the Lagrange functional L(ρ, σ∞, μ) and
deduce that the free energy is affine on some interval [σ ∗, 1].

Lemma 5.9 If the inequality (5.10) holds true for some family of non-negative weights
(ak)k∈N0 , then the fixed point problem (5.11) has at least one solution ζ ∈ R

N+ that sat-
isfies ζ j ≤ u j exp(a j ) for all j ∈ N0.

Proof We adapt the treatment of tree fixed points by Faris [19, Section 3.1] and reformulate
our problem as a fixed point problem in a partially ordered set for a monotone increasing
map. LetL be the space of bounded non-negative sequences z = (ζ j ) j∈N0 . For ζ ∈ L, define

Fj (ζ ) := u j exp

( ∞∑

k= j

|Bj |
|Bk | log

(
1 + ζk

)
)

( j ∈ N0).

Further set F(ζ ) := (Fj (ζ )) j∈N0 . If (u j ) j∈N0 is bounded, then F(ζ ) is bounded as well;
thus F maps L to L. We equip L with the partial order of pointwise inequality, i.e., x ≤ y if
and only if x j ≤ y j for all j ∈ N0, and note that F is increasing with respect to that partial
order.

The vector w defined by wk := uk exp(ak) satisfies Fk(w) ≤ wk for all k ∈ N0. Define a
sequence (ζ (n))n∈N0 iteratively by ζ

(0)
j ≡ 0 and ζ

(n+1)
j = Fj (ζ

(n)). Notice ζ
(1)
j = u j .

We check by induction over n that ζ (n)
j ≤ ζ

(n+1)
j ≤ u j exp(a j ) = w j for all j ∈ N0 and

n ∈ N0. For n = 0, the inequality reads 0 ≤ u j ≤ w j which is clearly true. The induction
step works because of the monotonicity of F and because of F(w) ≤ w.

It follows that the limit ζ j := limn→∞ ζ
(n)
j exists for all j ∈ N0 and satisfies ζ j ≤ w j ,

moreover ζ = F(ζ ) because Fj (ζ
(n)) → Fj (ζ ) by monotone convergence.

The solution of Lemma 5.9 is in fact a critical point of the Lagrange function for the compu-
tation of the free energy ϕ(σ). Let

Lσ (ρ, σ∞;μ) := f
(
ρ, σ∞

) − μ

( ∞∑

j=0

ρ j + σ∞ − σ

)

. (5.12)
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Given (ζ j ) j∈N0 ∈ R
N0+ a summable sequence, set

μ∗ := e∞ +
∞∑

k=0

1

|Bk | log(1 + ζk), ρ∗
j = ζ j

1 + ζ j

∞∏

k= j+1

1

1 + ζk
, σ ∗ := 1 −

∞∏

j=0

1

1 + ζ j
.

(5.13)

Note σ ∗ = ∑∞
j=0 ρ∗

j ∈ (0, 1). Fix σ ∈ [σ ∗, 1) and define

σ∞ := σ − σ ∗

1 − σ ∗ , ρ j := (1 − σ∞)ρ∗
j . (5.14)

Thus (ρ, σ∞) is a convex combination

(ρ, σ∞) = (1 − σ∞) (ρ∗, 0) + σ∞(0, 1) (5.15)

and the packing fraction σ enters only via the weight σ∞ in the convex combination.

Lemma 5.10 Suppose that the system (5.11) admits a solution ζ ∈ R
N0+ that satisfies∑∞

j=0 ζ j < ∞ and define μ∗, σ ∗, ρ∗ as in (5.13). Assume σ ∈ [σ ∗, 1) and define (ρ, σ∞)

by (5.14). Then all partial derivatives of L at (ρ, σ∞, μ∗) exist and are equal to zero, and
(ρ, σ∞, μ∗) is a minimizer of the Lagrange functional L.

Proof Remember

ρ̂ j = ρ j

1 − ∑
k≥ j+1 ρk − σ∞

= ρ′
j

1 − ∑
k≥ j+1 ρ′

k
, ρ′

j = ρ j

1 − σ∞
.

Lemma 4.5 applied to m = 0 and (ρ′
j ) and (ζ j ) yields

ρ̂ j = ζ j

1 + ζ j
< 1 ( j ∈ N0). (5.16)

The convergence of the series
∑

j ζ j implies ζ j → 0 as j → ∞. The free energy is given by
a linear termminus the entropy, and the partial derivatives of the entropy have been computed
in Eqs. (4.6) and (4.7). The existence of the partial derivatives follows from Proposition 4.2
and ρ j > 0 for all j . We obtain

∂Lσ

∂ρ j
(ρ, σ∞, μ∗) = 1

|Bj |
(

E j + log
ρ̂ j

1 − ρ̂ j
−

j−1∑

k=0

|Bj |
|Bk | log(1 − ρ̂k) − μ∗|Bj |

)

(5.17)

∂Lσ

∂σ∞
(ρ, σ∞, μ∗) = e∞ −

∞∑

j=0

1

|Bj | log(1 − ρ̂ j ) − μ∗. (5.18)

Eq. (5.16) yields log(1 + ζ j ) = − log(1 − ρ̂ j ). Eq. (5.18) then follows from the definition
of μ∗ in (5.14) and Eq. (5.17) follows from (5.14) and (5.18). Finally we note

∂Lσ

∂μ∗ (ρ, σ∞, μ∗) = (1 − σ∞)σ ∗ + σ∞ = σ

by definition of σ∞.
By convexity, the critical point is a minimizer in every finite-dimensional affine subspace

obtained by changing only finitely many components of (ρ, σ ∗∞, μ∗). The union of these
subspaces in dense, and the Lagrange functional is continuous in the domain ||(ρ, σ∞)|| ≤ 1;
the lemma follows.
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Lemma 5.11 For σ ∈ [σ ∗, 1) the vector (ρ, σ∞, μ∗) defined in (5.14) is a minimizer of the
free energy f (ρ, σ ) under the constraint

∑∞
j=0 ρ j + σ∞ = σ , and the minimum ϕ(σ) is an

affine function of σ with slope μ∗,

ϕ(σ) = ϕ(σ ∗) + μ∗(σ − σ ∗) (σ ∗ ≤ σ < 1).

Proof. The vector (ρ, σ∞) is a minimizer because of Lemma 5.10. By (5.15) and Lemma 4.6,
the free energy is

ϕ(σ) = f (ρ, σ∞) = (1 − σ∞) f (ρ∗, 0) + σ∞ f (0, 1) = (1 − σ∞)ϕ(σ ∗) + σ∞e∞.

Since σ∞ is an affine function of σ by (5.14) it follows that ϕ(σ) is an affine function of σ

as well. Lemma 5.10 yields

∂ f

∂ρ j
(ρ∗, 0) = ∂ f

∂σ∞
(ρ∗, 0) = μ∗.

Therefore

ϕ′(σ ) =
∞∑

j=0

∂ f

∂ρ j
(ρ∗, 0)

∂ρ j

∂σ
+ ∂ f

∂σ∞
(ρ∗, 0)

∂σ∞
∂σ

=
∞∑

j=0

μ∗(− ρ∗

1 − σ ∗
)

+ μ∗

1 − σ ∗ = μ∗.

Lemma 5.12 We have μ∗ = μc, σ ∗ = σc, and ζ j = ẑ j (μc) for all j ∈ N0.

Remark 5.13 It follows that the solution ζ of the fixed point problem (5.11) is in fact unique.

Proof It follows from Lemma 5.11 and elementary considerations on Legendre transforms
that p(μ) = supσ∈[0,1](μσ − ϕ(σ)) = μ − e∞ for μ ≥ μ∗, which yields μc ≤ μ∗.

Moreover, for μ > μ∗ the unique maximizer of σ �→ μσ − ϕ(σ) is σ = 1 while for
μ = μ∗ every σ ∈ [σ ∗, 1] is a maximizer. In particular, p(μ∗) = σ ∗μ∗ − ϕ(σ ∗) and the
constrained minimizer (ρ∗, 0) of f (ρ, σ∞) is a maximizer at μ = μ∗ in the variational
formula (5.3) for the pressure. It follows from Proposition 4.3 that

∑∞
j=0 ẑ j (μ

∗) < ∞—
otherwise, the unique maximizer would be (0, 1), in contradiction with (ρ∗, 0) be a
maximizer—hence by Lemma 5.1, we must have μ∗ ≤ μc.

Thus we have shown μc = μ∗ < ∞. Proposition 4.3 and the previous considerations on
the variational formula for the pressure p(μ∗) = p(μc) also yield

ρ̂∗
j = ẑ j (μc)

1 + ẑ j (μc)
= ζ j

1 + ζ j

hence ζ j = ẑ j (μc) for all j ∈ N0. Finally σc = ∑∞
j=0 ρ∗

j = σ ∗.

Proof of the implication (i) ⇒ (i i) in Theorem 5.6
Suppose that condition (i) is satisfied. Then by Lemma 5.9 the fixed point equation (5.11) has
a solution and we may define μ∗ ∈ R, σ ∗ ∈ (0, 1), and ρ∗

j as in (5.13). Lemma 5.12 shows
that the system has a phase transition at μc = μ∗ with σc = σ ∗ < 1, hence the transition is
of first order.
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6 Discussion

A concluding heuristic discussion of the parameter-dependent model from Sect. 5 makes the
connection to themotivating considerations on themixture of hard spheres in the introduction
more apparent. By Proposition 4.2, the free energy (5.2) of the parameter-dependent model
is

f (ρ, σ∞) =
∞∑

j=0

ρ j
E j

|Bj | + σ∞e∞ +
∞∑

j=0

ρ j
(
log ρ j − 1

) + �(ρ, σ∞)

with �(ρ, σ∞) the absolutely convergent power series from Eq. (4.9). The leading order in
the power series is quadratic,

�(ρ, σ∞) = 1

2

∞∑

j=0

ρ j

|Bj |
(
ρ j + 2

∞∑

k= j+1

ρk + 2σ∞
)

+ higher order terms

and the power series vanishes when ρ j ≡ 0. Every configuration is a convex combination of
a gas configuration and a condensed configuration

(ρ, σ∞) = (1 − σ∞) (ρ′, 0) + σ∞ (0, 1)

and by Lemma 4.6 the free energy is

f (ρ, σ∞) = (1 − σ∞) f (ρ′, 0) + σ∞e∞,

which implies

�(ρ, σ∞) = −
∞∑

j=0

ρ j

|Bj | log(1 − σ∞) + (1 − σ∞)�(ρ′, 0). (6.1)

When minimizing the free energy at prescribed packing fraction σ∞ + ∑∞
j=0 ρ j = σ two

scenarios are possible: In the gas phase the minimizer has σ∞ = 0 while in the coexistence
region the minimizer has σ∞ ∈ (0, 1). Accordingly in the gas phase the minimizer solves

E j

|Bj | + 1

|Bj | log ρ j + ∂�

∂ρ j
(ρ, 0) = μ ( j ∈ N0)

with μ ∈ R some Lagrange parameter determined by

∞∑

j=0

ρ j =
∞∑

j=0

exp
(
μ|Bj | − E j − |Bj | ∂�

∂ρ j
(ρ, 0)

)
= σ.

In the coexistence region the equations are instead

E j

|Bj | + 1

|Bj | log ρ j + ∂�

∂ρ j
(ρ, σ∞) = μ ( j ∈ N0),

e∞ + ∂�

∂σ∞
(ρ, σ∞) = μ,

σ∞ +
∞∑

j=0

ρ j = σ.
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The second equation allows us to eliminate the Lagrange multiplierμ from the first equation,
we obtain

ρ j exp

(

|Bj |
( ∂�

∂σ∞
(ρ, σ∞) − ∂�

∂ρ j
(ρ, σ∞)

))

= exp
(|Bj |e∞ − E j

)
( j ∈ N0).

(6.2)

Equation (6.1) allows us to formulate instead equations in terms of primed variables ρ′
j =

ρ j/(1 − σ∞). Indeed,

∂�

∂ρ j
(ρ, σ∞) = − 1

|Bj | log(1 − σ∞) + ∂�

∂ρ j
(ρ′, 0)

∂�

∂σ∞
(ρ, σ∞) = −

∞∑

j=0

ρ′
j

|Bj | − �(ρ′, 0) +
∞∑

j=0

ρ′
j
∂�

∂ρ j
(ρ′, 0)

and (6.2) is of the form

ρ′
j exp

(
Fj (ρ

′)
) = u j ( j ∈ N0) (6.3)

with u j = exp(|Bj |e∞ − E j ) and Fj (ρ
′) a power series that is absolutely convergent in

||ρ′|| = ∑∞
j=0 |ρ′

j | < 1 and satisfies Fj (ρ
′) = O(||ρ′||). The fixed point equation (6.3) is

similar to (5.11). In the absence of the correction term Fj the solution would be ρ′
j = u j .

For sufficiently small values of u j the solution should be a power series in the variables u j .
Rigorous statements can be derived with the inversion theorems from [9,11], complementing
Lemma 5.9 on the solvability of Eq. (5.11).
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