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Abstract Over the last 23 years, the U.S. Securities and Exchange Commission has required
over 34,000 companies to file over 165,000 annual reports. These reports, the so-called “Form
10-Ks,” contain a characterization of a company’s financial performance and its risks, includ-
ing the regulatory environment in which a company operates. In this paper, we analyze over
4.5 million references to U.S. Federal Acts and Agencies contained within these reports to
measure the regulatory ecosystem, in which companies are organisms inhabiting a regu-
latory environment. While individuals across the political, economic, and academic world
frequently refer to trends in this regulatory ecosystem, far less attention has been paid to sup-
porting such claims with large-scale, longitudinal data. In this paper, in addition to positing a
model of regulatory ecosystems, we document an increase in the regulatory energy per filing,
i.e., a warming “temperature.” We also find that the diversity of the regulatory ecosystem has
been increasing over the past two decades. These findings support the claim that regulatory
activity and complexity are increasing, and this framework contributes an important step
towards improving academic and policy discussions around legal complexity and regulation.

Keywords Complex systems · Regulation · Law · Model · Ecosystem · Legal complexity

1 Introduction

Economies, like ecosystems, exhibit dynamic, complex behaviors resulting from the inter-
action of “organisms” inhabiting, altering, and being altered by their “environment.” In the
case of economies, organisms can be seen as companies, and environments can be seen, at
least in part, as regulations. Just as changes in the environment like rising temperature can
harm or help organisms, either broadly or for specific regions or organisms, so too can reg-
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ulation harm or help companies. Yet unlike studies of biological ecosystems, studies of the
economy have thus far lacked a longitudinal, empirical measure of fundamental quantities
like “temperature” or “diversity.” In this paper, we attempt to bridge this gap, finding support
for the common claim that regulatory activity and complexity has increased over the last 20
years.

First, we develop a simple theoretical model of regulatory “ecosystems” that allows us to
conceptualize regulatory energy and diversity. We then proceed to measure these quantities
over time through an analysis of filings made by companies registered under the Securities
and Exchange Commission (SEC) in the United States. These filings, the so-called “Form
10-Ks” that are made each year by companies registered under the Securities and Securities
Exchange Acts of 1933 and 1934, provide a broad overview of company performance and
risks. In particular, 10-Ks highlight regulatory risks and uncertainty that companies face,
allowing for the documentation of longitudinal and comprehensive data related to the regu-
latory ecosystem. In total, we analyze more than 20 years, 30,000 companies, and 160,000
10-K reports to identify more than 4.5 million references to U.S. Federal regulatory Acts and
Agencies. Using these references, we generate a reproducible, quantitative, and longitudinal
measurement of the energy, “temperature,” and diversity of the U.S. regulatory “ecosystem.”
We find a clear increase for all of these measures, with double- to triple-digit growth over the
last 20 years. We believe this framework and its ongoing application represent a principled
approach to the quantification of regulatory ecosystems, and we hope that this research can
drive better-grounded discussions of legal complexity and policy design in the modern world.

2 Data

10-K filings have been the focus of many academic studies in finance and accounting [1–4],
law [5,6] and other adjacent fields [7–9]. Many of these studies have focused upon questions
such as whether the reporting requirements are achieving their intended purpose and the
extent to which markets react to the information disclosed in such findings. While these
are certainly worthy questions in their own right, we believe these filings reveal important
patterns that, at scale and over time, providemeaningful insight into a range of other scientific
questions.

Companies that meet the requirements for 10-K reporting expend significant and increas-
ing resources to prepare these documents, typically with the assistance of accounting firms
and lawyers. Indeed, the Annual Audit Fee Survey [10] conducted by the Financial Execu-
tives Research Foundation reveals a mean and median 2015 expense of $1.8M and $522,205,
respectively, across over 6000 filers. As required by law, the figures and statements contained
within these reports are certified and attested to by both a company’s officers and its inde-
pendent auditors, and companies and their officers have strong incentives to faithfully and
comprehensively report. On the contrary, the competition for capital ensures that organiza-
tions do not over-report risks relative to industry peers, as this may frighten away investors.
Therefore, unlike other sources of information, these 10-K annual reports are generally more
likely to convey a comprehensive and balanced description of the environment in which a
company operates.

Form 10-K filings generally contain at least four parts and fifteen schedules, which collec-
tively offer a wealth of useful information about registered companies. These parts include a
characterization of a company’s financial health, legal risks, and other systematic and idiosyn-
cratic factors, such as the nature of the regulatory environment in which it operates. Some of
these factors, such as tax credits, may be positive, but the majority of listed regulatory factors
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are present as risks. While there are a number of specific requirements under the law, firms
and industries are provided with some latitude regarding how to satisfy reporting require-
ments. In addition, as explored in [1] and [5], there have been some important changes in
the reporting rules over time. That said, SEC form templates and accounting firm standards
result in more similarity than difference across firms and across time.

Through this exercise of risk factor disclosure, companies typically describe various
sources of regulatory risk, including the laws and administrative agencies that are most
relevant to their respective businesses. Consider, for example, the 2015 10-K filing of Trans
Energy, Inc., an oil and gas exploration company. Among other statutory and agency refer-
ences, their filing references both the Migratory Bird Treaty Act of 1918 and Endangered
Species Act of 1973:

The Endangered Species Act (“ESA”) was established to protect endangered and
threatened species. Pursuant to that act, if a species is listed as threatened or endangered,
restrictions may be imposed on activities adversely affecting that species’ habitat.
Similar protections are offered to migratory birds under the Migratory Bird Treaty
Act. The Company conducts operations on oil and natural gas leases that have species,
such as raptors, that are listed and species, such as sage grouse, that could be listed as
threatened or endangered under the ESA.

Across the broader set of required company disclosures, 10-K filings are filled with refer-
ences such as these; some, such as citations to Sects. 13 and 15(d) of the Securities Exchange
Act of 1934, are boilerplate and required by the SEC’s forms. Others, such as the 756 refer-
ences to the Migratory Bird Treaty Act of 1918, or the 27 references to the Price-Anderson
Nuclear Industries Indemnity Act of 1957 over the last 23 years, are not.

In the mid-1990s, the SEC introduced its Electronic Data Gathering, Analysis, and
Retrieval (“EDGAR”) system. Since then, nearly all registered company 10-K reports have
been uploaded and made available on EDGAR, resulting in more than 160,000 10-K reports
accessible online. We retrieve these 10-K reports and build a multi-stage pipeline that identi-
fies and normalizes references to Acts and Agencies. References are first identified through
standard natural language processing techniques; once a reference fragment is identified, it is
then passed through a second stage of normalization. As one example, many filers reference
the “Gramm Leach Bliley Financial Services Modernization Act of 1999;” however, they do
not do so using its full name, as above. Instead, they frequently refer to it as “GLB,” “Gra-
ham Leach Bliley,” “Gramm Leach Bliley,” or the “Financial Services Modernization” Act.
In order to handle this variation, we built a mapping for over 600 potential Act references,
relying on a combination of the US Code, Wikipedia, and manual review. This mapping is
then combined with fuzzy-string matching techniques to correct for spelling mistakes such
as “Graham Leach Bliley.” The result is a high-precision and high-recall extraction of 401
unique Federal Acts and 133 Agencies across our 23-year dataset. In total, we identify more
than 4.5 million Act and Agency references contained in 10-K reports over the past 23 years.

3 Theory of Regulatory Ecosystems

Modern ecology and environmental science rely heavily on the spatial modeling of ecosys-
tems, allowing researchers to analyze the dynamics and interactions of environment and
inhabitants [11,12] in open systems. In such models, environments are typically represented
by two- or three-dimensional spaces that may be discretized into grids. Each “cell” of a grid
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may contain or interact with resources or organisms like timber, infrared radiation, or cattle.
These cells may also provide an area over which measures like averages or sums may be
calculated. For example, since the 1970s, scientists have been using satellite instrumentation
and representations of the earth’s surface to model systems related to surface temperature,
rainfall, land use, and soil hydrology [13,14].

We follow this spatial systems approach to model the regulatory environment. In the
general casewithM companies and N regulations, we can represent the regulatory ecosystem
as M vectors in an N -dimensional space. We refer to each of these M vectors as a company
or filing “profile.” These profiles can encode only for the binary presence of regulatory
exposure—a 0 or 1 in each dimension for each regulation. The profiles can also encode for
the number of references in that regulatory dimension—0 or more for each regulation. At
present, the regulatory space consists of N = 401 dimensions—one for each Act currently
identified in our data.

Initially, in the ground state where no regulation exists, these M company vectors are all
equal to the zero vector. As institutions “perform work” by expending “regulatory energy” to
regulate companies, however, one ormore of theseM company vectorsmove, i.e., their profile
vectors increase away from the zero vector. In the simplest case, where institutions regulate
only one dimension i and all companies are homogeneous, then all M vectors move along
dimension i proportional to regulatory work. This change in position away from the ground
state in regulatory space captures an increase in total energy in the system. Subsequently,
institutions may continue to perform work to regulate or de-regulate companies, resulting in
increased or decreased energy along that dimension i .

In reality, institutions may simultaneously regulate and de-regulate along many dimen-
sions. Furthermore, regulatory energy may not translate to equal motion in all cases. In some
cases, non-conservative forces like lobbying “frictions” may reduce motion. In other cases,
companies may exhibit different “mass” or other heterogeneity, translating equal regulatory
energy into unequal regulatory “motion.” Companies may also mutate, grow, or die over
time, changing both the behavior of institutions and other companies as well as their own
exposure to regulatory forces. In any case, the result is that companies may occupy varying
positions in regulatory space over time. However, by measuring the total change in position
from the ground state, we therefore obtain a measure of total energy in the regulatory system
at a given time.

In the simplest casewhere institutions regulate homogeneous companies and all companies
experience regulation equally, allM companies occupy the same position in regulatory space.
However, as these assumptions are relaxed, then the positions of companies may vary across
regulatory space. Measuring the “diversity” or degree of variation between companies allows
us to understand how far away from the homogeneous case a regulatory system is. Just as in
ecology and physics, the degree of diversity between companies has important implications
for the efficiency and fragility of systems.

4 Methodology and Results

To formalize these concepts with notation, let a 10-K profile p(a) in ZN have element pi (a)
equal to the number of references to Act i for a company a’s annual filing. This vector p
can then be normalized or projected. For example, we can project p from the number of
references to a “bitstring” vector b(a), whose element bi (a) is equal to 1 if a company a’s
filing mentions Act i at least once, else 0. Alternatively, we can aggregate or normalize these
filings by viewing them as a time-indexed collection. Let F(t) be the matrix whose rows
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Fig. 1 Total number of Act references per filing over time

correspond to the set of all p or b vectors filed within a given year t . Then the grand sum
of F(t) is the total number of references, the j th column sum of F(t) is the number of
references to the j th Act, and the i th row sum is the number of references per firm in year t .
It is possible to normalize the number of references per Act to a rate of reference per filing
by dividing the column sums of F(t) by the number of rows m(t), which we call r j (t) for
j th Act in year t .

We then use these representations to measure the total energy, temperature, and diversity
of the regulatory ecosystem as follows. First, we measure the total energy of the regulatory
ecosystem using p-vectors as:

E(t) =
∑

i

∑

j

Fi, j (t) (1)

Figure 1 shows that the total energy, as measured by number of references to Acts per
year, has increased substantially in the last 23 years. In 1996, there were just over 40,000
references to Acts in the nearly 5000 filings that year; by 2006, these numbers had more
than quadrupled to nearly 200,000 references in just over 9000 filings; and, through three
quarters of 2016, these numbers have again increased to an annualized rate of over 300,000
references.

Total energy alone can be misleading with respect to policy interpretations, however, as
there are a number of reasonswhy energymay changewithout relation to regulatory exposure
or “burden.” For example, (i) the economy may grow or shrink in real or nominal terms,
increasing or decreasing the total number of companies or companies meeting registration
requirement, (ii) the SEC rules governing registration or filings may change, increasing or
decreasing the number of companies or references, or (iii) c.p., the relative incentives to
incorporate or take on shareholders may change, increasing or decreasing the number of
companies registered. These factors do not necessarily imply more or less regulation as
experienced by individual companies, although they may be viewed as endogenous to some
policy questions.
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Fig. 2 Average number of Act references per filing over time

Table 1 Summary of energy and
temperature measures over time

Year E(t) T (t)

1995 17,672 7.9

2000 75,851 10.6

2005 166,518 18.2

2010 227,210 25.0

2015 242,107 30.8

We can control for these factors by normalizing total energy to a “temperature,” taking into
account the number of filings per year as an analogy to area or volume.While this conception
simplifies the traditional distinction between types of energy, we select it for its ecological
analogy. To calculate, we take the average rate of references per filing, “temperature,” T (t)
as follows:

T (t) = E(t)

m(t)
(2)

Figure 2 shows that, over the last 23 years, T (t) has been monotonically increasing. While
the rate of reference, like the total energy in Fig. 1 above, clearly shows the effect of the
Sarbanes-Oxley changes in 2003, this trend remains unbroken both well before and well
after. In 1996, the average number of references per filing was 8.4; by 2006, it had more than
doubled to 20.9; and by 2016, the rate had increased again by more than 50% to 31.7 Act
references per filing. Even if the amount of energy or cost does not scale linearly per filing
with the number of references, the monotonic, 237% increase in T (t) clearly demonstrates
an increasing regulatory temperature.

Table 1 below summarizes the data from Figs. 1 and 2 above.
Finally, we may ask—is temperature or energy changing in concert with diversity, or is

the change in temperature concentrated along a single dimension of regulation? For example,
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Fig. 3 Average number of unique Acts and Agencies per filing over time

changes in energy or temperature can represent more or less reliance on the same Act, e.g.,
the Securities ExchangeAct of 1934; in this case, the number of unique Acts referenced is not
changing, but the regulatory exposure per Act is. Alternatively, the total number of unique
Acts referenced could be increasing or decreasing; for example, in 2003, most registered
companies added references to the recently enacted Sarbanes-Oxley Act, which had not
previously been referenced. Changes such as these represent an increase or decrease in the
number of dimensions or diversity of regulatory exposure, but not necessarily the intensity
of each exposure.

Using our notation above, we evaluate the diversity question by calculating two measures.
First, we calculate the number of unique Acts per filing through the sum of b vectors above.
Then, we calculate the average number of unique Acts per filing, across all companies in a
given year; this is 1

m

∑
j
∑

i b
j
i , where b

j
i is the bit corresponding to whether the i th Act was

referenced in the j th company filing and m is the number of companies per year.
Figure 3 shows that, over the last 23 years, the diversity of Acts referenced has increased

jointly with temperature. Like Figs. 1 and 2 above, the time series exhibits a jump following
Sarbanes-Oxley; however, like Fig. 2, the time series also exhibits a monotonic increase over
two decades, growing from 3.1 unique Acts per filing in 1996 to 5.6 unique Acts per filing
in 2006 to 7.9 Acts per filing in 2016. This increase suggests that the increase in regulatory
ecosystem temperature has been, at least in part, related to an increase in the number of
dimensions along which institutions are regulating.

As an additional measure of diversity, we analyze each company’s yearly regulatory
“bitstring.” As noted earlier, we calculate the 401-bit vector b for each company-year, where
each bit corresponds to the presence of the 401 discrete Acts we identify. Although the
regulatory space has 401 dimensions, the bitstring for a given filing is likely to be extremely
sparse. For example, consider the 2012 10-K filed by the Boeing Company. Their filing
features a bitstring with 12 non-zero elements, including Acts such as the Homeland Security
Act, the Employee Retirement Income Security Act, the Patient Protection And Affordable
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Fig. 4 Hamming distance heatmap for 1994 Act bitstrings

Care Act and the American Taxpayer Relief Act. Alternatively, the 2014 10-K of Facebook
Inc. features 10 unique elements, including The Bank Secrecy Act, the U.S. Foreign Corrupt
Practices Act, the USA Patriot Act, and the Credit CARD Act.

After applying this formalization to all companies for all years, we calculate the average
pairwise Hamming distance [15] between all company bitstrings in a given year. Hamming
distance is commonly used to evaluate the diversity of genomic [16–18] and other related data
[19–21]. It can be interpreted as proportional to the average number of regulatory dimensions
not in common between companies. More explicitly, the Hamming distance between two
companies a and b in year t is:

da,b(t) =
∑

i

p(a) ⊕ p(b) (3)

where ⊕ is the element-wise XOR operator. We can then write the average Hamming dis-
tance d̄(t) as the average over all combinations of a and b at t . Figure 4 visualizes the
structure of the distance matrix D for all a, b as of 1994. The large block in the lower right
corresponds primarily to special purpose vehicles like trusts or limited partnerships, and the
overall structure corresponds to sectors and industries.

Figure 5, the average Hamming distance d̄(t) over time for Acts and Agencies, portrays
mean-field distance between firms at scale, confirming an increasing diversity across the
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Fig. 5 Average pairwise Hamming distance between company filing regulatory bitstrings over time

Table 2 Summary of diversity
measures over time

Year Average unique acts d̄(t)

1995 2.9 3.7

2000 3.6 4.5

2005 5.0 6.1

2010 6.2 6.8

2015 7.5 8.9

global regulatory ecosystem. Over time, companies are subject, on average, to increasingly
different requirements. While not monotonically increasing like the rate of reference and
number of unique references above, the average distance increases 18 of 23 years in the
sample. In 1996, two firms were separated on average by fewer than four regulatory Act
“bits” or “genes”; by 2016, this number has increased to nearly 10.

Table 2 summarizes the data from Figs. 3 and 4 above.

5 Conclusion and Future Work

In this paper, we have presented the first large-scale, longitudinal characterization of the
energy, “temperature,” and diversity of the regulatory ecosystem as characterized by our spa-
tial model. We have identified increasing regulatory exposure along an increasing number
of dimensions, providing evidence in support of the claim that regulatory burden is increas-
ing. Using a bitstring representation of firm regulatory exposure, we have confirmed that
the aggregate Federal regulatory ecosystem is becoming more diverse over time, providing
evidence in support of the claim that regulatory complexity is increasing. These conclusions
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are based on more than 20 years, 30,000 companies, 160,000 10-K reports, and 4.5 million
references contained in uniquely comprehensive and accurate 10-K reports.

In future work, we intend to expand upon these questions and connect to an extant research
agenda, including the development of a more detailed theoretical framework, the modeling
of agent-based or computational regulatory ecosystems, the categorization of regulatory
“species” and “climates,” and the integration of this analysis with our existing work on the
complexity of other statutory, regulatory, and judicial systems [22,23].

Our work contributes to both the broader literature on legal complexity [24–27] and efforts
to document the physical properties of legal systems as complex adaptive systems [28–33].
In addition, this paper is among a growing set of recent works applying tools of machine
learning and natural language processing to better understand the behavior of various legal
systems [34–36].

In sum, we believe that this framework for modeling and measurement will contribute to
ongoing academic and policy discussions around legal complexity and policy design. The
continued development of both global and specialized regulatory indices can provide for a
principled, empirical basis of evaluation, standing in stark contrast to the vague generaliza-
tions that frequently guide current policy decisions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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