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Abstract An important aspect of constructing discrete velocity models (DVMs) for the
Boltzmann equation is to obtain the right number of collision invariants. It is a well-known
fact that DVMs can also have extra collision invariants, so called spurious collision invari-
ants, in plus to the physical ones. A DVM with only physical collision invariants, and so
without spurious ones, is called normal. For binary mixtures also the concept of supernormal
DVMs was introduced, meaning that in addition to the DVM being normal, the restriction
of the DVM to any single species also is normal. Here we introduce generalizations of this
concept to DVMs for multicomponent mixtures. We also present some general algorithms
for constructing such models and give some concrete examples of such constructions. One
of our main results is that for any given number of species, and any given rational mass
ratios we can construct a supernormal DVM. The DVMs are constructed in such a way that
for half-space problems, as the Milne and Kramers problems, but also nonlinear ones, we
obtain similar structures as for the classical discrete Boltzmann equation for one species, and
therefore we can apply obtained results for the classical Boltzmann equation.

Keywords Boltzmann equation ·Discrete velocity models ·Collision invariants ·Mixtures ·
Boundary layers
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1 Introduction

The Boltzmann equation is a fundamental equation in kinetic theory [17,18]. It is a well-
known fact that discrete velocity models (DVMs) can approximate the Boltzmann equation
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up to any order [12,23,26], and that these discrete approximations can be used for numerical
methods [25] (and references therein). One important aspect in the construction ofDVMs is to
not have any extra collision invariants, in addition to the physical ones [24]. In contrast to the
continuous case, DVMs can have non-physical or spurious collision invariants in addition to
the physical ones; mass, momentum, and energy. DVMswithout spurious collision invariants
are called normal. Their construction is a classical problem that has been studied for single
species as well as binary mixtures [11,13,14,19–21,28–30].

It was for a while conjectured that all normal DVMs could be obtained from someminimal
models by so called one-extensions [10,11,13,28]. A one-extension is obtained by, having
already three velocities (out of four) from a possible collision in a normal DVM, adding the
fourth velocity and so obtaining a new normal DVM,with onemore velocity. However, it was
found in [13,31], that this is not the case. Still, the method of one-extensions is an effective
way of creating new normal DVMs out of already existing ones, as well as for single species
as for binary mixtures and other extensions.

For a DVM for a binary mixture to be normal, the two restrictions of the DVM to the
single species, don’t need to be normal. Therefore the concept of supernormal DVMs for
binary mixtures was introduced for normal DVMs, such that the two restrictions of the DVM
to the single species also are normal. We generalize this concept to DVMs for mixtures of
several species.We introduce a new concept of semi-supernormal DVMs formulticomponent
mixtures for normal DVMs, with the property that the restrictions of the DVM to the single
species also are normal. The concept of supernormal DVMs for multicomponent mixtures
is kept for normal DVMs, with the property that not only the restrictions of the DVM to
the single species are also normal, but, moreover, such that the restrictions to any collection
of species also are normal. We present algorithms for constructing such DVMs. Actually,
to check whether a DVM for a multicomponent mixture is supernormal or not, we just
have to consider the restrictions to all possible binary mixtures and check whether they are
supernormal or not.We also prove that for any finite number of species and any combinations
of rational mass ratios there is a supernormal DVM. Our constructed DVMs can always be
extended to larger DVMs by the method of one-extensions. It is also always possible to
2ex2tend them to DVMs that are symmetric with respect to the axes in this way.

The construction of the DVMs is such that for half-space problems [3], as the Milne and
Kramers problems [2], but also nonlinear ones [27], one obtain similar structures as for the
classical discrete Boltzmann equation for one species. We present the half-space problems
and applicable existence results to our case, without any proofs, since they can be found
elsewhere [5,6,9]. The results obtained in [6] can also be generalized by similar methods. To
our knowledge no similar results exist in the continuous case for multicomponent mixtures,
except for binary mixtures; for the linearized problem see [1], and for the nonlinear case,
with equal masses, see [4].

The remaining part of the paper is organized as follows.
We review DVMs for single species and the concept of normal DVMs in Sect. 2, and

DVMs for binary mixtures and the concept of normal and supernormal DVMs in Sect. 3. Our
main results are presented in Sect. 4, where the concept of supernormal DVMs is generalized
to mixtures of several species, algorithms of their construction are presented, and explicit
constructions are made. In particular, it is proved that for any finite number of species and
any combinations of rational mass ratios there is a supernormal DVM. In Sect. 5 we state the
problems and applicable results for linearized (Sect. 5.1) and nonlinear (Sect. 5.2) half-space
problems.
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2 Normal Discrete Velocity Models

The general discrete velocity model (DVM), or the discrete Boltzmann equation, (see [16,24]
and references therein) reads

∂ fi
∂t

+ ξi · ∇x fi = Qi ( f, f ) , i = 1, ..., n, (1)

where V = {ξ1, ..., ξn} ⊂ R
d is a finite set of velocities, fi = fi (x, t) = f (x, t, ξi ) for

i = 1, ..., n, and f = f (x, t, ξ) represents the microscopic density of particles with velocity
ξ at time t ∈ R+ and position x ∈ R

d .
For a function g = g(ξ) (possibly depending on more variables than ξ ), we identify g

with its restrictions to the points ξ ∈ V, i.e.

g = (g1, ..., gn) , with gi = g (ξi ) for i = 1, ..., n.

Then f = ( f1, ..., fn) in Eq. (1).
The collision operators Qi ( f, f ) in (1) are given by

Qi ( f, f ) =
n∑

j,k,l=1

Γ kl
i j

(
fk fl − fi f j

)
for i = 1, ..., n, (2)

where it is assumed that the collision coefficients Γ kl
i j , 1 ≤ i, j, k, l ≤ n, satisfy the relations

Γ kl
i j = Γ kl

j i = Γ
i j
kl ≥ 0, (3)

with equality unless the conservation laws (conservation of momentum and kinetic energy)

ξi + ξ j = ξk + ξl and |ξi |2 + ∣∣ξ j
∣∣2 = |ξk |2 + |ξl |2 (4)

are satisfied. A collision is obtained by the exchange of velocities
{
ξi , ξ j

}
� {ξk, ξl} , (5)

and can occur if and only if Γ kl
i j �= 0. Geometrically, the collision obtained by (5) is repre-

sented by a rectangle (see Fig. 1) in R
d with corners in

{
ξi , ξ j , ξk, ξl

}
, where ξi and ξ j (and

therefore, also ξk and ξl ) are diagonal corners.
A function φ = φ (ξ) is a collision invariant, if and only if

φi + φ j = φk + φl , (6)

Fig. 1 Elastic collision
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for all indices such that Γ kl
i j �= 0, or, equivalently, if and only if

〈φ, Q ( f, f )〉 = 0, (7)

for all non-negative functions f . We have the trivial collision invariants (also called the
physical collision invariants) φ0 = 1, φ1 = ξ1, ..., φd = ξd , φd+1 = |ξ |2 (including all
linear combinations of these). Here and below, we denote by 〈·, ·〉 the Euclidean scalar
product on R

n .
In the continuous case the only collision invariants are the physical ones. However, it is

well known that for DVMs there can also be so called spurious collision invariants. DVMs
without spurious collision invariants, i.e. with only physical collision invariants of the form

φ = a + b · ξ + c |ξ |2 (8)

for someconstanta, c ∈ R andb ∈ R
d (methods of their construction are described in e.g. [11,

13]), are called normal, if the collision invariants 1, ξ1, ..., ξd , |ξ |2 are linearly independent.
A DVM such that 1, ξ1, ..., ξd , |ξ |2 are linearly dependent is called degenerate, and non-
degenerate if 1, ξ1, ..., ξd , |ξ |2 are linearly independent. Typical examples of degenerate
DVMs are the Broadwell models [15].

A Maxwellian distribution (or just a Maxwellian) is a function M = M(ξ), such that

Q(M, M) = 0 and M ≥ 0,

and is for normal DVMs of the form

M = eφ = Keb·ξ+c|ξ |2 , with K = ea > 0, (9)

where φ is given in Eq. (8).

3 Supernormal DVMs for Binary Mixtures

The general DVM, or the discrete Boltzmann equation, for a binary mixture of the species
A and B reads

⎧
⎪⎪⎨

⎪⎪⎩

∂ f Ai
∂t

+ ξ A
i · ∇x f Ai = QAA

i ( f A, f A) + QBA
i ( f B , f A), i = 1, ..., nA

∂ f Bj
∂t

+ ξ B
j · ∇x f Bj = QAB

j ( f A, f B) + QBB
j ( f B , f B), j = 1, ..., nB

, (10)

where Vα = {
ξα
1 , ..., ξα

nα

} ⊂ R
d , with α ∈ {A, B}, are finite sets of velocities, f α

i =
f α
i (x, t) = f α(x, t, ξα

i ) for i = 1, ..., nα , and f α = f α (x, t, ξ) represents the microscopic
density of particles (of species α) with velocity ξ at time t ∈ R+ and position x ∈ R

d . We
denote by mα the mass of a molecule of species α. Here and below, α, β ∈ {A, B}.

For a function gα = gα(ξ) (possibly depending on more variables than ξ ), we identify gα

with its restrictions to the points ξ ∈ Vα , i.e.

gα = (gα
1 , ..., gα

nα ), with gα
i = gα

(
ξα
i

)
.

Then f α = ( f α
1 , ..., f α

nα ) in Eq. (10).

The collision operators Qβα
i ( f β, f α) in (10) are given by

Qβα
i ( f β, f α) =

nα∑

k=1

nβ∑

j,l=1

Γ kl
i j (β, α) ( f α

k f β
l − f α

i f β
j ) for i = 1, ..., nα ,
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438 N. Bernhoff, M. Vinerean

Fig. 2 Mixed elastic collision

where it is assumed that the collision coefficients Γ kl
i j (β, α), with 1 ≤ i, k ≤ nα and

1 ≤ j, l ≤ nβ , satisfy the relations

Γ kl
i j (α, α) = Γ kl

j i (α, α) and Γ kl
i j (α, β) = Γ

i j
kl (α, β) = Γ lk

j i (β, α) ≥ 0,

with equality unless the conservation laws (conservation of momentum and kinetic energy)

mαξα
i + mβξ

β
j = mαξα

k + mβξ
β
l and mα

∣∣ξα
i

∣∣2 + mβ

∣∣∣ξβ
j

∣∣∣
2 = mα

∣∣ξα
k

∣∣2 + mβ

∣∣∣ξβ
l

∣∣∣
2

are satisfied. A collision is obtained by the exchange of velocities
{
ξα
i , ξ

β
j

}
�

{
ξα
k , ξ

β
l

}
, (11)

and can occur if and only if Γ kl
i j (α, β) �= 0. Geometrically, the collision obtained by (11) is

represented by an isosceles trapezoid, see Fig. 2 for α �= β, (in particular, a rectangle, cf.

Fig. 1 for single species, if α = β) in R
d , with the corners in

{
ξα
i , ξ

β
j , ξα

k , ξ
β
l

}
, where ξα

i

and ξ
β
j (and therefore, also ξα

k and ξ
β
l ) are diagonal corners, and

mα

∣∣ξα
i − ξα

k

∣∣ = mβ

∣∣∣ξβ
j − ξ

β
l

∣∣∣ .

A function φ = (
φA, φB

)
, with φα = φα(ξ), is a collision invariant, if and only if

φα
i + φ

β
j = φα

k + φ
β
l ,

for all indices such that Γ kl
i j (α, β) �= 0. Normal DVMs, i.e. non-degenerate DVMs without

spurious collision invariants, or equivalently, non-degenerate DVMs only with the physical
collision invariants (which are trivial by our assumptions on the collision coefficients)

φ =
(
φA, φB

)
, with φα = φα(ξ) = aα + mαb · ξ + cmα |ξ |2 , (12)

for some constant aA, aB , c ∈ R and b ∈ R
d , have exactly d + 3 linearly independent

collision invariants. Methods of their construction can be found in e.g. [11,13]. If in addition
to the DVM being normal, the DVMs VA and VB are normal, respectively, then the DVM is
said to be supernormal [13].

The Maxwellians are

M = eφ , i.e. M =
(
MA, MB

)
, with Mα = eφα

,

where (for normal models) φ is given by Eq. (12).
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4 DVMs for Mixtures

In this section we will generalize the concept of supernormal DVMs to the case of multicom-
ponent mixtures. We begin by introducing a different approach for considering the discrete
Boltzmann equation for mixtures.

Assume that we have s different species, labelled with α1, ..., αs , with the masses

mα1 , ...,mαs . For each species αi we fix a set of velocity vectors V αi =
{
ξ

αi
1 , ..., ξ

αi
nαi

}
⊂ R

d

and assign the label αi to each velocity vector in V αi . We obtain a set of n = nα1 + ... + nαs

pairs (each pair being composed of a velocity vector and a label).

P =
{(

ξ
α1
1 , α1

)
, ...,

(
ξα1
nα1

, α1

)
, ...,

(
ξ

αs
1 , αs

)
, ...,

(
ξαs
nαs

, αs

)}

= {(v1, α(1)) , ..., (vn, α(n))}, with n = nα1 + ... + nαs . (13)

Obviously, the same velocity can be repeated many times, but only for different species.
We consider the system (1)–(2) with the collision coefficients

Γ kl
i j = Γ kl

j i = Γ
i j
kl ≥ 0 (14)

with equality unless we have conservation of mass for each species, momentum, and kinetic
energy

{α(i), α( j)} = {α(k), α(l)} ,
mα(i)vi + mα( j)v j = mα(k)vk + mα(l)vl , and

mα(i) |vi |2 + mα( j)
∣∣v j

∣∣2 = mα( j) |vk |2 + mα(l) |vl |2 . (15)

A collision is obtained by the exchange of velocities
{
(vi , α(i)) ,

(
v j , α( j)

)}
� {(vk, α(k)) , (vl , α(l))} , (16)

and can occur if and only if Γ kl
i j �= 0. Geometrically, the collision obtained by (16) is, as

in the case of binary mixtures, represented by an isosceles trapezoid, cf. Fig. 2 (a rectangle
if α(i) = α( j) or more generally if and only if mα(i) = mα( j)) in R

d , with the corners in{
vi , v j , vk, vl

}
, where vi and v j (and therefore, also vk and vl ) are diagonal corners, and

mα(i) |vi − vk | = mα( j)
∣∣v j − vl

∣∣ , (17)

if α(i) = α(k), and with k and l interchanged in (17), otherwise.
A function φ = φ(v), is a collision invariant, if and only if

φi + φ j = φk + φl ,

for all indices such that Γ kl
i j �= 0. The collision invariants include, and for normal models are

restricted to

φ = (φ1, ..., φn) , with φi = aα(i) + mα(i)b · vi + cmα(i) |vi |2 (18)

for some constant aα1 , ..., aαs , c ∈ R and b ∈ R
d . For normal models we will have exactly

s + d + 1 linearly independent collision invariants. We will below address how to construct
special types of such normal models.

The Maxwellians are

M = eφ , i.e. M = (M1, ..., Mn) , with Mi = eφi , (19)

where (for normal models) φ is given by Eq. (18).
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440 N. Bernhoff, M. Vinerean

4.1 Supernormal DVMs for Mixtures

The notion of supernormal models was introduced for binary mixtures by Bobylev and
Vinerean in [13] (see Sect. 3), and denotes a normal discrete velocity model, which is normal
also considering the sets of velocities for the different species separately.

Here we extend the concept of supernormal DVMs for binary mixtures to include also the
cases of several species.

Definition 1 ADVM {Vα1 , . . . ,Vαs } for a mixture of s species is called normal if the DVM
is non-degenerate and has exactly s + d + 1 linearly independent collision invariants.

Definition 2 A DVM {Vα1 , . . . ,Vαs } for a mixture of s species is called semi-supernormal
if the DVM is normal as a mixture and the restriction to each velocity set Vαi , 1 ≤ i ≤ s, is
a normal DVM.

Definition 3 A DVM {Vα1 , . . . ,Vαs } for a mixture of s species is called supernormal if the
restriction to each collection

{V1, . . . ,Vr } ⊆ {
Vα1 , . . . ,Vαs

}
, 1 ≤ r ≤ s,

of velocity sets is a normal DVM for a mixture of r species.

Theorem 1 A DVM for a mixture of s species with the velocity sets Vαi , 1 ≤ i ≤ s, is
semi-supernormal if, for each 2 ≤ j ≤ s there exists 1 ≤ i < j ≤ s, such that the restriction
to the pair {Vαi ,Vα j } of velocity sets is a supernormal DVM for a binary mixture.

Proof The restriction to each velocity set Vαi =
{
ξ

αi
1 , ..., ξ

αi
nαi

}
, 1 ≤ i ≤ s, is normal.

Hence, the collision invariants will be of the form φ = (φα1 , ..., φαs ), where φ
αi
j = aαi +

mαib
αi · ξ

αi
j + cαi mαi

∣∣∣ξαi
j

∣∣∣
2
for 1 ≤ j ≤ nαi and 1 ≤ i ≤ s.

We denote bα1= b and cα1 = c and apply mathematical induction. Assume that
bα j−1= bα j−2= ... = bα1= b and cα j−1 = cα j−2 = ... = cα1 = c for some 2 ≤ j ≤ s.
Then there exists 1 ≤ i ≤ j − 1, such that the restriction to the pair {Vαi ,Vα j } of velocity
sets is normal and therefore bα j = bαi = b and cα j = cαi = c. Hence, the collision invariants

will be of the form φ = (φα1 , ..., φαs ), where φ
αi
j = aαi + mαib · ξ

αi
j + cmαi

∣∣∣ξαi
j

∣∣∣
2
for

1 ≤ j ≤ nαi and 1 ≤ i ≤ s. ��
Theorem 2 A DVM {Vα1 , . . . ,Vαs } for a mixture of s species is supernormal if and only if
the restriction to each pair {Vαi ,Vα j }, 1 ≤ i < j ≤ s, of velocity sets is a supernormal
DVM for a binary mixture.

Proof The theorem follows directly from the definition of supernormal DVMs and Theorem
1. ��

We will below use the concept of ”linearly independent” collisions. Intuitively, a set of
collisions is linearly dependent if one of them can be obtained by a combination of (some
of) the other collisions (including corresponding reverse collisions), and correspondingly
linearly independent if this is not the case. More formally, each collision can be represented
by an n−dimensional vector with 0, −1, and 1 as the only coordinates, see e.g. [13] , in the
way that collision (11) is represented by a vector

(0, ..., 0, 1︸︷︷︸
i

, 0, ..., 0, 1︸︷︷︸
j

, 0, ..., 0, −1︸︷︷︸
k

, 0, ..., 0, −1︸︷︷︸
l

, 0, ..., 0) ∈ Z
n .
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We then say that a set of collisions is linearly independent if and only if the set of the
corresponding vectors is linearly independent.

Algorithm for construction of semi-supernormal DVMs for mixtures

(1) Choose a set of velocities Vα1 such that it corresponds to a normal DVM for single
species. This set should be chosen in such a way, that we can obtain normal models for
any mass ratio we intend to consider. If this is not the case, we might need to extend the
set later.

(2) Iteration step. For i = 2, . . . , s :
Choose a normal set of velocities Vαi such that, it together with one of
Vα1 , . . . ,Vαi−1 corresponds to a supernormal DVM for binary mixtures.

For an example of how this can be done, see subsection 4.2 below.

Remark 1 If we don’t allow any collisions between the two species, we will have 2d + 4
linearly independent collision invariants, but wewould like to have d+3 linearly independent
collision invariants. Hence, cf. [13] , we need to have d + 1 linearly independent (also with
respect to the collisions inside the two species) collisions between the two species.

Algorithm for construction of supernormal DVMs for mixtures

(1) Choose a set of velocities Vα1 such that it corresponds to a normal DVM for single
species. The comment of Step 1) in the construction of semi-supernormal DVMs above
is still applicable here.

(2) Iteration step. For i = 2, . . . , s :
Choose a normal set of velocities Vαi such that, together with each of
Vα1 , . . . ,Vαi−1 it corresponds to a supernormal DVM for binary mixtures.
Also here, Remark 1 is applicable, in all cases, and examples can be found in Sect. 4.2
below.

4.2 Construction of a Family of Supernormal DVMs for Mixtures

We start with a normal DVM V, which contains the normal DVM with the 6 velocities

{(±1,±1), (3,±1)}
for d = 2 or the normal DVM with the 10 velocities

{(±1,±1,±1), (3,±1, 1)}
for d = 3.

Extensions to larger normal models (of any finite size) can be obtained by the so-called
one-extension method [10,11,13,28]. A one-extension is obtained by, having three velocities
from a possible collision, but not the fourth, in the velocity set, add the fourth velocity from the
collision to the velocity set and obtain a new linearly independent (with respect to previously
existing collisions) collision. The geometrical interpretation of a one-extension (in a set of
velocities for a single species), having three corners of a rectangle, but not the fourth, in the
velocity set, add the fourth corner to the velocity set. In particular, our starting models can be
extended to normal DVMs symmetric to the axes by the one-extension method. The smallest
symmetric normal extensions of our starting models are the 12-velocity DVM

{(±1,±1), (±3,±1), (±1,±3)}
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for d = 2 and the 32-velocity DVM

{(±1,±1,±1), (±3,±1,±1), (±1,±3,±1), (±1,±1,±3)}
for d = 3. All models, constructed below, can be extended to DVMs symmetric to the axes
(still having the desired properties) by the one-extension method.

We let

Vαi = h

mαi

V, i = 1, ..., s, (20)

for some positive number h > 0. Our starting models are normal DVMs, which easily can
be checked by methods in [13]. Note that the starting models only allow mass ratio 1.

However, for example, the 36-velocity model in d = 2 with components in {±1,±3,±5}
canbe used forV to obtain a supernormalDVMfor binarymixtureswithmass ratios including

{
2, 3, 4, 5,

3

2
,
4

3
,
5

2
,
5

3
,
5

4

}
,

and the 216-velocity model in d = 3 with components in {±1,±3,±5} can be used for V to
obtain a supernormal DVM for binary mixtures with mass ratios including

{
2, 3, 4, 5, 6, 7, 8, 9,

3

2
,
4

3
,
5

2
,
5

3
,
5

4
,
6

5
,
7

2
,
7

3
,
7

4
,
7

5
,
7

6
,
8

3
,
8

5
,
8

7
,
9

2
,
9

4
,
9

5
,
9

7
,
9

8

}

Hence, for d = 2, if we choose masses from the set {m, 2m, . . . , 5m}, the DVM, obtained
by using the 36-velocity model as V, will be supernormal. Furthermore, in this case we can,
for example, let s = 5 and mi = i · m for i = 1, . . . , 5 to obtain a supernormal DVM by
using the 36-velocity model as V. Moreover, for d = 3, if we choose masses from the set
{m, 2m, . . . , 5m, 6m, 7m, 8m, 9m}, the DVM, obtained by using the 216-velocity model as
V, will be supernormal. In this case we can, for example, let s = 9 and mi = i · m for
i = 1, . . . , 9 to obtain a supernormal DVM by using the 216-velocity model as V.

More generally, we can use different sets V (as long as they contain the necessary veloc-
ities) for different species. Below, we will consider some more general cases.

Lemma 1 Let d = 2 or d = 3. For any given positive integer m = mA

mB
, there is a super-

normal DVM for a binary mixture with mass ratio m.

Proof For d = 2, let V be a normal DVM, such that

{(±1,±1), (3,±1), (m − 2, 1), (m + 2, 1)} ⊆ V

if m is odd, and

{(±1,±1), (3,±1), (m − 3, 1), (m + 1, 3)} ⊆ V

if m is even. Such normal DVMs can be obtained from the normal DVM
{(±1,±1), (3,±1)} by one-extensions. Furthermore, let

VA = h

mA
V and VB = h

mB
V.

Without any collisions between the different species we will, since the DVMs are normal,
have the collision invariants

φ =
(
φA, φB

)
, where φα

j = aα + mαbα · ξα
j + cαmα

∣∣∣ξα
j

∣∣∣
2
for 1 ≤ j ≤ nα , (21)

123



Discrete Velocity Models for Mixtures Without Nonphysical... 443

with aα, cα ∈ R, bα = (bα
1 , bα

2 ) ∈ R
2, andα ∈ {A, B}. The collisions obtained by (below, we

omit the indices A and B for the velocities, since they are implicit by the masses appearing)
{

h

mA
(1, 1),

h

mB
(−1, 1)

}
�

{
h

mA
(−1, 1),

h

mB
(1, 1)

}
, (22)

and
{

h

mA
(1, 1),

h

mB
(1,−1)

}
�

{
h

mA
(1,−1),

h

mB
(1, 1)

}
(23)

will imply that bA1 = bB1 and bA2 = bB2 , respectively. Furthermore, the collisions obtained by
{

h

mA
(m + 2, 1),

h

mB
(−1, 1)

}
�

{
h

mA
(m − 2, 1),

h

mB
(3, 1)

}
,

if m is odd, and
{

h

mA
(m + 1, 3),

h

mB
(−1,−1)

}
�

{
h

mA
(m − 3, 1),

h

mB
(3, 1)

}
(24)

if m is even, will imply that cA = cB . It follows that the collision invariants will be on the
form

φ =
(
φA, φB

)
, where φα

j = aα + mαb · ξα
j + cmα

∣∣∣ξα
j

∣∣∣
2
for 1 ≤ j ≤ nα , (25)

with aα, c ∈ R, b ∈ R
2, and α ∈ {A, B}.

For d = 3, let V be a normal DVM, such that

{(±1,±1,±1), (3,±1, 1), (m − 2, 1, 1), (m + 2, 1, 1)} ⊆ V

if m is odd, and

{(±1,±1,±1), (3,±1, 1), (m − 3, 1, 1), (m + 1, 3, 1)} ⊆ V

if m is even. Such normal DVMs can be obtained from the normal DVM
{(±1,±1,±1), (3,±1, 1)} by one-extensions. Furthermore, let

VA = h

mA
V and VB = h

mB
V.

Without any collisions between the different species we will, since the DVMs are normal,
have the collision invariants

φ =
(
φA, φB

)
, where φα

j = aα + mαbα · ξα
j + cαmα

∣∣∣ξα
j

∣∣∣
2
for 1 ≤ j ≤ nα , (26)

with aα, cα ∈ R, bα = (bα
1 , bα

2 , bα
3 ) ∈ R

3, and α ∈ {A, B}. The collisions obtained by
{

h

mA
(1, 1, 1),

h

mB
(−1, 1, 1)

}
�

{
h

mA
(−1, 1, 1),

h

mB
(1, 1, 1)

}
,

{
h

mA
(1, 1, 1),

h

mB
(1,−1, 1)

}
�

{
h

mA
(1,−1, 1),

h

mB
(1, 1, 1)

}
,

and
{

h

mA
(1, 1, 1),

h

mB
(1, 1,−1)

}
�

{
h

mA
(1, 1,−1),

h

mB
(1, 1, 1)

}
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Fig. 3 16-velocity supernormal model for binary mixture with mass ratio 2

will imply that bA1 = bB1 , b
A
2 = bB2 , and bA3 = bB3 , respectively. Furthermore, the collisions

obtained by
{

h

mA
(m + 2, 1, 1),

h

mB
(−1, 1, 1)

}
�

{
h

mA
(m − 2, 1, 1),

h

mB
(3, 1, 1)

}
,

if m is odd, and
{

h

mA
(m + 1, 3, 1),

h

mB
(−1,−1, 1)

}
�

{
h

mA
(m − 3, 1, 1),

h

mB
(3, 1, 1)

}
,

if m is even, will imply that cA = cB . It follows that the collision invariants will be on the
form (25) (with b ∈ R

3). ��
Example 1 Assume that d = 2, s = 2, and the mass ratio m = 2, and let

V = {(±1,±1), (3,±1), (1, 3), (3, 3)} ,

which is a normal DVM, in Eq. (20). Then the collisions (22)–(23) are represented by the
blue/dashed ( - - - - - ) isosceles trapezoids in Fig. 3, and the red/broken (− − −) isosceles
trapezoids represents the collision (24).

Example 2 We now consider the case d = 2 and s = 3, with masses m, 2m, and 4m. If we
let V be as in Example 1 in Eq. (20), then we obtain a semi-supernormal DVM (see Fig. 4).
On the other hand, if we let

V = {(±1,±1), (3,±1), (1, 3), (3, 3), (5, 1), (5, 3)} , (27)

in Eq. (20), then we obtain a supernormal DVM (see Fig. 5). Instead of using the same V
for all species, we can use different sets for different species. The DVM in Fig. 6 is still
supernormal, even if we only used the set (27) for the heavy species, while we used the set
from Example 1 for the ”middle” species, and the set

V ={(±1,±1), (3,±1)} ,

for the ”light” species.
In fact in Fig. 4 still the collisions (22)–(23) are represented by the blue/dashed

( - - - - - ) isosceles trapezoids and the collision (24) (for mass ratios 2) by the red/broken
(− − −) isosceles trapezoids. However, the collision (24) is missing for mass ratio 4 (and
there is no other to replace it either), and so theDVMfails to be supernormal.However, in Figs.
5 and 6 the collision (24) for mass ratio 4 is represented by the brown/chain
isosceles trapezoid, and hence the DVMs are supernormal.

123



Discrete Velocity Models for Mixtures Without Nonphysical... 445

Fig. 4 24-velocity semi-supernormal model for mixture of three species with mass ratios 2, 2, 4

Fig. 5 30-velocity supernormal model for mixture of three species with mass ratios 2, 2, 4

Fig. 6 24-velocity supernormal model for mixture of three species with mass ratios 2, 2, 4

Theorem 3 Let d = 2 or d = 3. For any given positive rational number m = mA

mB
there is

a supernormal DVM for a binary mixture with mass ratio m.

Proof Assume that m = mA

mB
= p

q
, with p, q ∈ Z and SGD(p, q) = 1.

For d = 2, let V be a normal DVM, such that

{(±1,±1), (3,±1), (p − 2, 1), (p + 2, 1), (q − 2, 1), (q + 2, 1)} ⊆ V

if p and q are odd,

{(±1,±1), (3,±1), (p − 3, 1), (p + 1, 3), (q − 2,−1), (q + 2, 1)} ⊆ V

if p is even and q is odd (or with p and q interchanged, if p is odd and q is even), and

{(±1,±1), (3,±1), (p − 3, 1), (p + 1, 3), (q − 3, 1), (q + 1, 3)} ⊆ V
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if p and q are even. Such normal DVMs can be obtained from the normal DVM
{(±1,±1), (3,±1)} by one-extensions. Furthermore, let

VA = h

mA
V and VB = h

mB
V.

Without any collisions between the different specieswewill, since theDVMsare normal, have
the collision invariants (21). Similarly as in the proof of Lemma 1, bA = bB . Furthermore,
the collisions obtained by

{
h

mA
(p + 2, 1),

h

mB
(q − 2, 1)

}
�

{
h

mA
(p − 2, 1),

h

mB
(q + 2, 1)

}
,

if p and q are odd,
{

h

mA
(p + 1, 3),

h

mB
(q − 2,−1)

}
�

{
h

mA
(p − 3, 1),

h

mB
(q + 2, 1)

}
,

if p is even and q is odd (or with p and q interchanged, if p is odd and q is even), and
{

h

mA
(p + 1, 3),

h

mB
(q − 3, 1)

}
�

{
h

mA
(p − 3, 1),

h

mB
(q + 1, 3)

}
,

if p and q are even, will imply that cA = cB .
For d = 3, let instead V be a normal DVM, such that

{(±1,±1,±1), (3,±1, 1), (p − 2, 1, 1), (p + 2, 1, 1), (q − 2, 1, 1), (q + 2, 1, 1)} ⊆ V

if p and q are odd,

{(±1,±1,±1), (3,±1, 1), (p − 3, 1, 1), (p + 1, 3, 1), (q − 2,−1, 1), (q + 2, 1, 1)} ⊆ V

if p is even and q is odd (or with p and q interchanged, if p is odd and q is even), and

{(±1,±1,±1), (3,±1, 1), (p − 3, 1, 1), (p + 1, 3, 1), (q − 3, 1, 1), (q + 1, 3, 1)} ⊆ V

if p and q are even. Similar extensions of the case d = 2 as in the proof of Lemma 1 imply
that bA = bB and cA = cB in Eq. (26). ��

Note that the sets of velocities used in the proofs of Lemma 1 and Theorem 2, in no way
are unique. Furthermore, there can also be sets of velocities that do not contain the velocities
assumed in the proof, but still are supernormal for the given mass ratio. We have just proven
that there exist such sets of velocities for any rational mass ratio.

Theorem 4 Let d = 2 or d = 3. For any given number s of species with given rational
masses mα1 , ...,mαs there is a supernormal DVM for the mixture.

Proof This is an immediate consequence of Theorem 2 and Theorem 3. Just take the velocity

set to be large enough to include any possible mass ratio mi j = mαi

mα j
. ��

In this study we are considering the problem of constructing DVMs for mixtures with the
right number of collision invariants. Another important issue is the one of approximating the
full Boltzmann equation for mixtures by DVMs. One possible way to address this problem
is provided in [10]. In [10] the same velocity set is used for different species. This is not
the case in the DVMs constructed above. However, if desirable, it is possible to find ”large”
normal (and symmetric) DVMs that contains the velocity sets for all of the species and
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hence, can be used as a common velocity set for all species. For meaningful simulations in
the case of a mixture we need to have “enough” many collisions between each two species.
We have been satisfied by finding d + 1 collisions between each two species. However,
one important aspect is that we have demanded these collisions to be linearly independent
(also with respect to the collisions inside the two species) in the way that none of them can
be obtained by combining the others (including corresponding reverse collisions), also in
combination with the collisions inside the two species. These d + 1 collisions are certainly
not the only ones between the two species. However, all collisions between the two species
can be obtained by combining (one or more of) those d + 1 linearly independent collisions
(including corresponding reverse collisions) with the collisions inside the two species. For
example: in the simplified cases when V = {(±1,±1)} for d = 2 or V = {(±1,±1,±1)}
for d = 3 in Eq. (20), we will have two and three linearly independent collisions between two
species, respectively, while the total number of possible collisions between two species are
10 and 52 (counting a collision and the reverse collision as the same collision), respectively.

Remark 2 Lemma 1, Theorem 2, and Theorem 3 can in an obvious way also be proved to be
valid for any d ≥ 4.

Remark 3 We can combine the approach in this section with one for polyatomic molecules
(with a finite number of internal energies), which can be obtained in a similar way, to obtain
models for mixtures with internal energies. It is then also possible to add bimolecular reactive
collisions [8] and by that extend to models for bimolecular chemical reactions.

5 Boundary Layers for Mixtures

The approach for considering the discrete Boltzmann equation for mixtures in Sect. 4, cf.
Eqs. (13)–(15), results in that the system (1)–(2) has a similar structure for mixtures as for
single species. One general difference (not mentioning the numerical differences in concrete
cases) is that the number of collision invariants (for normal models) are increased from d+2
for single species to d+s+1 for mixtures of s components. However, apart of this the general
structure will be the same. We will below present some results for half-space problems that
now can be extended to the case of multicomponent mixtures from the case of single species
[5,6,9] (see also [7] for the case of binary mixtures).

The planar stationary system for the discrete Boltzmann equation reads

v1i
d Fi
dx

= Qi (F, F) , x ∈ R+, i = 1, ..., n,

or

B
dF

dx
= Q (F, F) , x ∈ R+, B = diag(v11, ..., v

1
n), (28)

where vi = (
v1i , ..., v

d
i

)
, i = 1, ..., n, and we assume that

v1i �= 0, for i = 1, ..., n.

Given a Maxwellian M (19) we denote

F = M + M1/2 f , (29)

in Eq. (28), and obtain

B
d f

dx
+ L f = S( f, f ), (30)
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where L is the linearized collision operator (n × n matrix) and S is the quadratic part. The
linearized operator L still has a similar structure for mixtures as in the case of single species,
since it is obtained in a similar way. Therefore by using similar methods as in the case of
single species, see for example [5,9], one can prove that the matrix L is symmetric and
semi-positive, and that the null-space N (L) of L is given by

N (L) = {
M1/2φ | φ is a collision invariant

}
. (31)

Furthermore, S belongs to the orthogonal complement of N (L), i.e.

S ( f, f ) ∈ N (L)⊥ (32)

and

|S (g, g) − S (h, h)| ≤ K̃ (|g| + |h|) |g − h| (33)

for some positive constant K̃ > 0.
We denote by n±, where n+ + n− = n, and m±, with m+ + m− = q , the numbers of

positive and negative eigenvalues (counted with multiplicity) of the matrices B and B−1L
respectively, and by m0 the number of zero eigenvalues of B−1L . Moreover, we denote by
k+, k−, and l the numbers of positive, negative, and zero eigenvalues of the p× p matrix K ,
with entries

ki j = 〈
yi , y j

〉
B = 〈

yi , By j
〉
,

such that
{
y1, ..., yp

}
is a basis of the null-space of L , i.e.

N (L) = span
(
y1, ..., yp

)
.

The numbers k+, k−, and l are independent of the choice of basis
{
y1, ..., yp

}
. By [9] (see

also [5]) there is a basis
{
u1, ..., uq , y1, ..., yk, z1, ..., zl , w1, ..., wl

}
(34)

of Rn , such that

yi , zr ∈ N (L), B−1Lwr = zr and B−1Luα = λαuα, (35)

and
〈
uα, uβ

〉
B = λαδαβ , with λ1, ..., λm+ > 0 and λm++1, ..., λq < 0,

〈
yi , y j

〉
B = γiδi j , with γ1, ..., γk+ > 0 and γk++1, ..., γk < 0,

〈uα, zr 〉B = 〈uα,wr 〉B = 〈uα, yi 〉B = 〈wr , yi 〉B = 〈zr , yi 〉B = 0,

〈wr , ws〉B = 〈zr , zs〉B = 0 and 〈wr , zs〉B = δrs . (36)

Here {u1, ..., um+} are eigenvectors corresponding to positive eigenvalues, {um− , ..., uq
}
are

eigenvectors corresponding to negative eigenvalues, {y1, ..., yk, z1, ..., zl} is a basis for the
eigenspace corresponding to the eigenvalue zero, and {w1, ..., wl} are generalized eigenvec-
tors corresponding to the eigenvalue zero.

If the Maxwellian in Eq. (29) is non-drifting in the x-direction (i.e. with b1 = 0, where b1
is the first component of b in Eq. (9) or Eq. (19) for single species and mixtures respectively),
then l = d for single species and l = d + s − 1 for a mixture of s components, the DVM
is normal and symmetric with respect to the axes. In addition there are (for normal DVMs
symmetric with respect to the axes) typically two other values of b1 for which l is non-zero
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(cf. [22] for the continuous case of single species). These numbers will differ for single
species and mixtures cf. [5–7], but the general structure will remain the same.

We can (without loss of generality) assume that

B =
(
B+ 0
0 −B−

)
, (37)

where

B+ = diag
(
v11, ..., v

1
n+

)
and B− = −diag

(
v1n++1, ..., v

1
n

)
, with

v11, ..., v
1
n+ > 0 and v1n++1, ..., v

1
n < 0.

We also define the projections R+ : Rn → R
n+

and R− : Rn → R
n−
, by

R+s = s+ = (s1, ..., sn+) and R−s = s− = (
sn++1, ..., sn

)

for s = (s1, ..., sn).

Remark 4 The results below can be extended in a natural way (cf. [5,6]), to yield also for
singular matrices B, if

N (L) ∩ N (B) = {0} .

Remark 5 For the discrete Nordheim–Boltzmann (or Uehling–Uhlenbeck) equation the col-
lision operator (2) in Eq. (1) is replaced with

Qε
i (F) =

N∑

j,k,l=1

Γ kl
i j (Fk Fl (1 + εFi )

(
1 + εFj

) − Fi Fj (1 + εFk) (1 + εFl)),

where it is assumed that the collision coefficients Γ kl
i j satisfy the relations

Γ kl
i j = Γ kl

j i = Γ
i j
kl ≥ 0,

with equality unless the conservation laws (4), respectively, are satisfied. Here ε = 0 cor-
responds to the classical discrete Boltzmann equation, and we have ε = 1 for bosons and
ε = −1 for fermions.

Then the singular points are

P = M

1 − εM
,

where M is a Maxwellian, but the collision invariants are unchanged for normal DVMs.
Hence, the ideas and the DVMs constructed in Sect. 3 can be used also for these cases.

However, we need to replace Eq. (29) by

f = P + √
RF , with R = P(1 + εP),

to obtain corresponding properties for the operators L and S, and replace Eq. (33) by

|S (g) − S (h)| ≤ K̃ (1 + |g| + |h|)(|g| + |h|) |g − h|
for some positive constant K̃ > 0.
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5.1 Linearized Problem

We consider the inhomogeneous (or homogeneous if g = 0) linearized problem

B
d f

dx
+ L f = g, (38)

where g = g(x) ∈ L1(R+,Rn), with one of the boundary conditions

(O) the solution tends to zero at infinity, i.e.

f (x) → 0 as x → ∞;
(P) the solution is bounded, i.e.

| f (x)| < ∞ for all x ∈ R+;

(Q) the solution can be slowly increasing at infinity, i.e.

| f (x)| e−εx → 0 as x → ∞, for all ε > 0.

In case of boundary condition (O) we additionally assume that

g(x) ∈ N (L)⊥ for all x ∈ R+. (39)

Remark 6 Boundary condition (O) corresponds to the case whenwe havemade the lineariza-
tion (29) around a Maxwellian M , such that F → M as x → ∞. Boundary conditions (P)
and (Q) are the boundary conditions in the Milne and Kramers problem respectively.

At x = 0 we assume the boundary condition

f +(0) = C f −(0) + h0, (40)

where C is a given n+ × n− matrix and h0 ∈ R
n+

(cf. [5,6]).

Theorem 5 [5]

(i) Let

U+ = span (u1, ..., um+) = span
{
u | B−1Lu = λu for some λ > 0

}
.

Assume that condition (39) is fulfilled, that

dim (R+ − CR−)U+ = m+,

and that

h0, (R+ − CR−) exB
−1L B−1g(x) ∈ (R+ − CR−)U+ for all x ∈ R+.

Then the system (38) with boundary conditions (O) and (40) has a unique solution.
(ii) Assume that

lim
x→∞ x

∞∫

x

〈
g (σ ) , z j

〉
dσ = 0 for j = 1, ..., l,

and that

dim (R+ − CR−) X+ = n+, (41)
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with X+ = span (u1, ..., um+ , y1, ..., yk+ , z1, ..., zl). Then the system (38) with bound-
ary conditions (P) and (40) has a unique solution with the asymptotic flow

fA =
k∑

i=1

μ∞
i yi +

l∑

j=1

η∞
j z j ,

if the k− parameters μ∞
k++1, ..., μ

∞
k are prescribed.

(iii) Assume that condition (41) or the condition

dim (R+ − CR−) X̃+ = n+,

with X̃+ = span (u1, ..., um+ , y1, ..., yk+ , z1 + w1, ..., zl + wl) is fulfilled. Then the
system (38) with boundary conditions (Q) and (40) has a unique solution with the
asymptotic flow

fA(x) =
k∑

i=1

μ∞
i yi +

l∑

j=1

((
η∞
j − xα∞

j

)
z j + α∞

j w j

)
,

if the k− + l parameters μ∞
k++1, ..., μ

∞
k and α∞

1 , ..., α∞
l are prescribed.

5.2 Non-linear Problem

We now consider the non-linear system
⎧
⎨

⎩

B d f
dx + L f = S( f, f )

f +(0) = C f −(0) + h0
f (x) → 0 as x → ∞,

(42)

where C is a given n+ × n− matrix, h0 ∈ R
n+
, and the non-linear part fulfills

S ( f, f ) ∈ N (L)⊥

and

|S (g, g) − S (h, h)| ≤ K̃G(|g| , |h|) |g − h| (43)

for some positive constant K̃ > 0 and differentiable function G : R+ × R+ → R+ with
positive partial derivatives and G(0, 0) = 0. Assumption (43) is a generalization of the
corresponding assumption (33), used in [6]. Assumption (33) is enough for the discrete
Boltzmann equation for mixtures. However, we need the generalization (43), if we want to
be able to consider for example the Nordheim-Boltzmann equation (see Remark 5).

The boundary condition f (x) → 0 as x → ∞ corresponds to the case when we have
made the transformation (29) for a Maxwellian M = M∞, such that F → M∞ as x → ∞.

We assume that

dim (R+ − CR−) X̂+ = n+, (44)

with X̂+ = span (u1, ..., um+ , y1, ..., yk+ , w1, ...., wl).
If C = 0, then condition (44) is fulfilled. In particular,

{
u+
1 , ..., u+

m+ , y+
1 , ..., y+

k+ , w+
1 , ..., w+

l

}

is a basis of Rn+
.
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The following result on boundary layers gives the number of conditions that must be posed
on the given data h0 to obtain a well-posed problem. Theorem 6 below can be proved by
similar arguments as the corresponding Theorem in [6].

Theorem 6 Let condition (44) be fulfilled and suppose that 〈h0, h0〉B+ is sufficiently small.
Then with k+ + l conditions on h0, the system (42) has an (at least locally) unique solution.
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