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Abstract In recent years experiments have demonstrated that living cells can measure low
chemical concentrations with high precision, and much progress has been made in under-
standing what sets the fundamental limit to the precision of chemical sensing. Chemical
concentration measurements start with the binding of ligand molecules to receptor proteins,
which is an inherently noisy process, especially at low concentrations. The signaling net-
works that transmit the information on the ligand concentration from the receptors into the
cell have to filter this receptor input noise as much as possible. These networks, however,
are also intrinsically stochastic in nature, which means that they will also add noise to the
transmitted signal. In this review, we will first discuss how the diffusive transport and binding
of ligand to the receptor sets the receptor correlation time, which is the timescale over which
fluctuations in the state of the receptor, arising from the stochastic receptor-ligand binding,
decay. We then describe how downstream signaling pathways integrate these receptor-state
fluctuations, and how the number of receptors, the receptor correlation time, and the effective
integration time set by the downstream network, together impose a fundamental limit on the
precision of sensing. We then discuss how cells can remove the receptor input noise while
simultaneously suppressing the intrinsic noise in the signaling network.We describe why this
mechanism of time integration requires three classes (groups) of resources—receptors and
their integration time, readout molecules, energy—and how each resource class sets a funda-
mental sensing limit. We also briefly discuss the scheme of maximum-likelihood estimation,
the role of receptor cooperativity, and how cellular copy protocols differ from canonical copy
protocols typically considered in the computational literature, explaining why cellular sens-
ing systems can never reach the Landauer limit on the optimal trade-off between accuracy
and energetic cost.
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1 Introduction

Living cells can sense changes in their environment with extraordinary precision. Receptors
in our visual system can detect single photons [66], some animals can smell single molecules
[15], swimming bacteria can respond to the binding and unbinding of only a limited number
of molecules [12,72], and eukaryotic cells can respond to a difference in ∼10 molecules
between the front and the back of the cell [80]. Recent experiments suggest that the precision
of the embryonic development of the fruitfly Drosophila is close to the limit set by the
available number of regulatory proteins [27,32,39,78]. This raises the question what is the
fundamental limit to the precision of chemical concentration measurements.

Living cells measure chemical concentrations via receptor proteins, which can either be at
the cell surface or inside the cell. Thesemeasurements are inevitably corrupted by two sources
of noise. One is the stochastic transport of the ligand molecules to the receptor via diffusion;
the other is the binding of the ligand molecules to the receptor after they have arrived at
its surface. Berg and Purcell pointed out in the seventies that cells can reduce the sensing
error by increasing the number of measurements, and that they can do so in two principal
ways [12]. The first is to simply increase the number of receptors. The other is to increase
the number of measurements per receptor. In the latter scenario, the cell infers the ligand
concentration not from the instantaneous ligand-binding state of the receptor, but rather from
its average over some integration time T . This time integration has to be performed by the
signaling network downstream of the receptor proteins.

In recent years, tremendous progress has been made in understanding how accurately
cells can measure chemical concentrations [12,13,31,36–38,45,46,49,51,54,64,70,71,80,
85]. Most of these studies assume that the cell estimates the concentration via the mechanism
of time integration as envisioned by Berg and Purcell [12,13,36–38,45,46,51,64,70,71,80,
85], although Mora, Endres, Wingreen and others have shown that under certain conditions
a better estimate of the concentration can be obtained via maximum likelihood estimation
[31,49,54]. In this review, we will limit ourselves to sensing static concentrations, which
do not change on the timescale of the response, and we will focus on the mechanism of
time integration, although we will also briefly discuss the scheme of maximum likelihood
estimation. This review will follow a series of papers written by the authors, but, in doing so,
will also discuss other relevant papers.

Specifically, in this review we will address the following questions: if the downstream
signaling network integrates the state of the receptor over some given integration time T ,
what is then the sensing error? This is the question that was first addressed by Berg and
Purcell [12], and later followed up by many authors [13,45,46,64,70,71,80,85]. The answer
depends on the correlation time of the receptor, which is determined by the stochastic arrival
of the ligandmolecules at the receptor by diffusion and on the stochastic binding of the ligand
molecules to the receptor. Recently, the correct expression for the correlation time and hence
the sensing error has become the subject of debate [12,13,46], which we will review in Sect.
2. The next question is: How do signaling networks integrate the receptor state? Do they
integrate it uniformly in time, as assumed by Berg and Purcell? If not, can cellular sensing
systems then actually reach the sensing limit of Berg and Purcell? As we will see, signaling
networks integrate the receptor state non -uniformly in time, and, as a result, cells can not
only reach the Berg–Purcell limit, but, in some cases, even beat it by about 10 % [36].
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Importantly, the signaling network downstream of the receptor is inherently stochastic,
because of the discrete character of the reactants and the probabilistic nature of their chemical
and physical interactions. This means that while the network is removing the receptor input
noise,which is extrinsic to the network, itwill also add its own intrinsic noise to the transmitted
signal [30,61,76]. Most studies have ignored this intrinsic noise in the signaling network,
essentially assuming that it can be made arbitrarily small [3,11–13,31,36,45,46,49,64,70,
71,80,85]. However, can signaling networks remove the extrinsic noise in the input signal
and simultaneously suppress the intrinsic noise of the signaling network [37,38]? If so, what
resources—receptors, time, readout molecules, energy—are required? Do these resources
fundamentally limit sensing, like weak links in a chain? Or can they compensate each other,
leading to trade-offs between them? We will see that equilibrium networks, which are not
driven out of thermodynamic equilibrium, can sense—energy dissipation is not essential for
sensing [37]. However, their sensing accuracy is limited by the number of receptors; adding a
downstream network can never improve the precision of sensing. This is because equilibrium
sensing systems face a fundamental trade-off between the removal of extrinsic and intrinsic
noise [37].Only non-equilibrium systems can lift this trade-off: they can integrate the receptor
state over time while suppressing the intrinsic noise by using energy to store the receptor
state into stable chemical modification states of the readout molecules [37,38,51]. Storing
the state of the bound receptor over time using a canonical push-pull signaling network
requires at least one readout molecule to store the state and at least 4kB T of energy to store
it reliably [38]. Non-equilibrium systems thus require three resource classes—a resource
or a combination of resources—that are fundamentally required for sensing: receptors and
their integration time, readout molecules, and energy. Each resource class sets a fundamental
sensing limit, which means that the sensing precision is bounded by the limiting resource
class and cannot be enhanced by increasing another class.

Last but not least, we will address the question of whether cellular sensing involves
computations that can be understood using ideas from the thermodynamics of computation
[10,48]. Cells seem to copy the ligand-binding state of the receptor into chemicalmodification
states of downstream readoutmolecules [37,38,51], but can this process be rigorouslymapped
onto computational protocols typically considered in the computational literature [59]? If so,
how do these cellular copy protocols compare to thermodynamically optimal protocols? Can
they reach the Landauer bound, which states that the fundamental limit on the energetic cost
of an irreversible computation is kB T ln(2) per bit? We will see that cellular copy operations
differ fundamentally in their design from thermodynamically optimal protocols, and that as
a result they can never reach the Landauer limit, regardless of parameters [59].

2 The Berg–Purcell Limit

2.1 Set Up of the Problem

Berg and Purcell and subsequent authors [11–13,45,46,64,70,71,80,85] considered the sce-
nario in which the cell estimates the ligand concentration c, assumed to be constant on the
timescale of the response, by monitoring the occupancy of the receptor to which the ligand
molecules bind and unbind. The key idea is that the cell infers the concentration by estimat-
ing the true average receptor occupancy n or probability p that a receptor is ligand bound,
n = p, from the average occupancy nT over some integration time T , and by inverting the
input-output relation p(c) [12]. A central result is that for a single receptor. The time average
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of its occupancy n(t) over the integration time T is nT = (1/T )
∫ T
0 n(t ′)dt ′. The error in the

estimate of the receptor occupancy, δnT , propagates to that in the estimate of the concentra-
tion c. Linearizing the input-output relation p(c), and using the rules of error propagation,
the fractional error in the estimate of the concentration, δc/c, is then given by

(
δc

c

)2

= 1

c2

(
dc

dp

)2

σ 2
nT

, (1)

where σ 2
nT

is the variance in the time-averaged occupancy nT , and dp/dc is the gain, which
determines how the error in the estimate of p propagates to that in the estimate of c. The
gain can be obtained from the input-output relation p(c) = c/(c + K D), where K D is the
receptor-ligand binding affinity: dp/dc = p(1− p)/c. In the limit that the integration time T
is much longer than the receptor correlation time τc, which is defined as the autocorrelation
time of the signal n(t), the variance in the estimate nT of the true mean occupancy p = n is

σ 2
nT

≈ 2σ 2
n τc

T
= Pn (ω = 0)

T
= 2Re

[
Ĉn (s = 0)

]

T
, (2)

where the instantaneous variance σ 2
n = 〈

n2
〉 − 〈n〉2 = p(1 − p), and Pn(ω) and Ĉn(s) are

respectively the power spectrum and the Laplace transform of the correlation function Cn(t)
of n(t). The above expression shows that the variance in the average nT is given by the
instantaneous variance σ 2

n divided by T/(2τc), which can be interpreted as the number of
independent measurements of n(t). Inserting Eq. 2 into Eq. 1 yields

(
δc

c

)2

= 2τc

p(1 − p)T
. (3)

This is indeed the sensing error based on T/(2τc) independent concentration measurements.
Eq. 3 holds for any single receptor, be it a promoter on the DNA, a receptor on the cell

membrane, or a receptor protein freely diffusing inside the cytoplasm [60]. All we need to
do to get the sensing error, is to find the receptor correlation time τc or the zero-frequency
limit of the power spectrum, Pn(ω = 0) = 2σ 2

n τc = 2p(1 − p)τc, which depends on the
scenario by which the ligand finds the receptor.

Below, we describe different studies on the accuracy of sensing a concentration via a
single, spherical receptor. All these studies start from Eqs. 1–3, and then proceed to derive
the power spectrum or receptor correlation time, fromwhich the sensing error can be obtained
via Eqs. 2 or 3. However, as we will see, these studies use completely different approaches
to arrive at the power spectrum or receptor correlation time.

2.2 Expression of Berg and Purcell

To obtain the receptor correlation time τc, Berg and Purcell assumed that the ligand binds
the receptor in a Markovian fashion, which means that τc is given by

τc = 1

k f c + kb
, (4)

where k f is the ligand-receptor binding rate and kb is the unbinding rate. Berg and Purcell
described the binding site as a circular patch on the membrane, with patch radius s. To
get the forward rate k f , they assumed k f is given by the diffusion-limited binding rate kD ,
but with the cross section s renormalized by the sticking probability. For the binding of a
ligand to a membrane patch, k f = kD = 4Ds. We will consider the binding of ligand to a
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spherical receptor protein with ligand-receptor cross section σ , in which case k f = kD =
4πσ D. To get the backward rate kb, Berg and Purcell exploited the detailed-balance condition
k f c(1− p) = pkb, which states that in steady state the net rate of binding equals the net rate
of unbinding.

Combining Eqs. 3 and 4 yields the following expression of Berg and Purcell for the sensing
error (

δc

c

)2

B P
= 2

4πσ Dc(1 − p)T
. (5)

This expression can be understood intuitively: The factor 4πσ Dc is the rate at which
ligand molecules arrive at the receptor, 1 − p is the probability that the receptor is free, and
hence 4πσ Dc(1 − p) is the count rate at which the receptor binds the ligand molecules;
4πσ Dc(1 − p) multiplied with T is thus the total number of counts in the integration time
T . Indeed, this expression states that the fractional error δc/c decreases with the square root
of the number of counts, as we would expect intuitively.

While this expression makes sense intuitively, there are two problems. First, receptor-
ligand binding is, in general, not Markovian. To illustrate this, imagine for the sake of the
argument that a ligand-bound receptor is surrounded by a uniform, equilibrium distribution
of ligand molecules. If the receptor-bound ligand dissociates, then the other ligand molecules
will still have the equilibrium distribution. If it rebinds and then dissociates again, the other
ligand molecules will again still have the equilibrium distribution. The problem arises when
(a) the rebinding of the dissociated ligand molecule is pre-empted by the binding of another
ligand molecule; and (b) if this second molecule dissociates from the receptor before the
first has diffused into the bulk. If this happens, then the receptor and the dissociated ligand
molecule at contact are no longer surrounded by a uniform equilibrium distribution of ligand
molecules. Indeed, the process of binding generates non-trivial spatio-temporal correlations
between the positions of the ligand molecules, which depend on the history of the association
and dissociation events. This turns an association-dissociation reaction into a complicated
non-Markovian, many-body problem, which can, in general, not be solved analytically.

The second problem of the analysis of Berg and Purcell is that not all ligand-receptor
association reactions are diffusion limited. Berg and Purcell were fully aware of this, but
they argued on p. 208 of Ref. [12] that if the ligand “doesn’t stick on its first contact, it
may very soon bump into the site again—and again. If these encounters occur with a time
interval short compared to τb[the time a ligand is bound], their result is equivalent merely
to a larger value of α[the sticking probability]. As we have no independent definition of the
patch radius s, we may as well absorb the effective αinto s.” This argument, however, does
not take into account that when a ligand arrives at the receptor for the first time and does
not stick immediately, it may also return to the bulk, after which another ligand molecule
may bind. Moreover, a ligand molecule that has just dissociated from the receptor may either
rapidly rebind the receptor, or diffuse away from it into the bulk. It thus remained unclear
how accurate the expression of Berg and Purcell, Eq. 5, is.

2.3 Expression of Bialek and Setayeshgar

Bialek and Setayesghar sought to generalize the result of Berg and Purcell by explicitly
taking into account the receptor-ligand binding dynamics [13]. They considered a model in
which the ligand molecules can diffuse, bind the receptor with a rate given by ka multiplied
by the local concentration of the ligand at the receptor surface, and unbind from the receptor
with a rate kd . Here, ka and kd are the intrinsic rate constants, which are determined by
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the chemistry of the receptor-ligand interaction. This model is described by the following
reaction-diffusion equations

dn(t)

dt
= kac(x0, t)(1 − n(t)) − kdn(t), (6)

∂c(x, t)

∂t
= D∇2c(x, t) − δ(x − x0)

dn(t)

dt
, (7)

where c(x, t) is the concentration of ligand at position x at time t and x0 is the position
of the receptor. To solve these equations, Bialek and Setayesghar linearized Eqs. 6 and 7,
and then invoked the fluctuation-dissipation relation, which, applied to this case, relates the
spontaneous fluctuations in the receptor occupancy δn(t) = n(t) − n̄ to the linear response
of the receptor occupancy δn(t) to changes in the binding free energy δF(t); in frequency
space: Pn(ω) = (2kB T/ω)Im [δn(ω)/δF(ω)], where Im[. . . ] denotes the imaginary part.
[13].

This linear-response approach makes it possible to analytically obtain the power spectrum
Pn(ω) and hence the receptor correlation time (see Eq. 1):

τc = p(1 − p)

2π Dc
+ 1

kac + kd
. (8)

Combining this expression with Eq. 3, and exploiting that p = kac/(kac + kd), yields the
following expression for the sensing error:

(
δc

c

)2

BS
= 1

πσ DcT
+ 2

kac (1 − p) T
. (9)

Thefirst termdescribes the contribution to the sensing error from the stochastic transport of the
ligandmolecules to the receptor by diffusion. The second termdescribes the contribution from
the intrinsic stochasticity of the binding kinetics of the receptor: Even in the limit that D →
∞, such that the ligand concentration is uniform in space at all times, the ligand concentration
can still not be measured with infinite precision because the receptor stochastically switches
between the bound and unbound states, leading to noise in the estimate of the receptor
occupancy. This term is absent in Eq. 5 since Berg and Purcell assume that the binding
reaction is fully diffusion limited, which means that all arrivals at the receptor surface lead to
binding; this is equivalent to taking the intrinsic rate constants ka, kd → ∞ at fixed ka/kd ,
while keeping the diffusion-limited rate constant kD = 4πσ D finite.

Can biochemical systems actually reach the diffusion-limited regime where ka 
 kD?
The maximal possible ka is given by transition-state theory, which yields the rate constant
kTST in the absence of any recrossings of the dividing surface that separates the bound from
the unbound state [9,18]. It is kTST = k0 exp[−β
F], where 
F is the free-energy barrier
separating the bound form the unbound state, and k0 is a kinetic prefactor. For spherical
molecules that can bind in any orientation, the prefactor is given by the collision frequency
of a hard-sphere fluid [86], k0 = πσ 2 〈|vRL |〉, where 〈|vRL |〉 = √

8kB T/(πm RL) is the
mean relative velocity of ligand and receptor, with m RL their reduced mass. For diffusion-
limited reactions, we expect that 
F = 0, and kmax

a = k0. For a reduced protein mass of
about m RL � 100 kDa and a cross section of σ � 5 nm, this yields kmax

a ≈ 1011 M−1 s−1.
In contrast, with typical in vivo and in vitro diffusion constants of D � 1 − 100μm2 s−1,
the diffusion-limited rate kD = 4πσ D ≈ 107 −109 M−1 s−1, which is indeed much smaller
than kmax

a .
Although this calculation suggests that ka can exceed kD for biochemical systems, a few

important points are worthy of note: first, binding proceeds via diffusion, which means that
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the transmission coefficient of the reaction is probably (much) lower than unity. Another way
to estimate kmax

a is to imagine that the receptor and ligand, in order to bind, have to diffuse
over a microscopic distance λ, yielding kmax

a = 4πσ 2D/λ and kmax
a /kD = σ/λ. Since λ is

expected to be on the order of the size of a water molecule, also this estimate suggests that
kmax

a can be significantly larger than kD .
In fact, inside the crowded environment of the cell, σ/λ is probably an underestimate,

because ka is set by the diffusion constant at short length and timescales, corresponding to
that of proteins in water, while kD is set by the long-time diffusion constant of proteins inside
crowdedmedia, which is about fivefold lower [26]. On the other hand, proteins typically bind
ligand via patches or binding pockets, and these orientational constraints can drastically lower
the intrinsic binding rate. However, Northrup and Erickson showed that each receptor-ligand
encounter involves many diffusive steps and collisions, during which the two molecules
can reorient [58]. This process is aided by interaction forces, such as coulombic forces or
crowding induced depletion forces, which keep reactant and ligand together, giving them time
for rotational alignment. Indeed, protein–protein association reactions can be fast: association
rates of 108–109 M−1s−1 are not uncommon [68]. These reactions are likely to be diffusion
limited. For a review on protein association rates, we refer the reader to the review article of
Ref. [68].

More generally, the first term on the right-hand side Eq. 9 presents a noise floor that
is solely due to the stochastic transport of the ligand to the receptor by diffusion, inde-
pendent of the binding kinetics of the ligand after it has arrived at the receptor. The first
term is thus considered to be the fundamenetal sensing limit set by the physics of diffu-
sion [13], and it can be compared with the expression of Berg and Purcell, Eq. 5. It is
clear that the expression of Bialek and Setayesghar and that of Berg and Purcell differ by
a factor 1/(2(1 − p)). This difference can have marked implications. Although the Bialek-
Setayeshgar expression predicts that the uncertainty due to diffusion remains bounded even
in the limit that p → 1, the Berg–Purcell expression suggests that it diverges in this limit.
Intuitively, we expect a dependence on p, because a higher receptor occupancy at fixed
kD should reduce the count rate—if the receptor is bound most of the time, because, e.g.,
the receptor-ligand dissociation rate is low, then it cannot bind new molecules at a high
rate.

2.4 The Expression of Kaizu and Coworkers

To elucidate the discrepancy between Eqs. 5 and 9, Kaizu and coworkers rederived the
expression for the sensing error [46]. They considered exactly the same model as that of
Bialek and Setayesghar [13], but analyzed it using the large body of work on reaction-
diffusion systems, developed by Agmon, Szabo and coworkers [1]. The goal is to obtain the
zero-frequency limit of the correlation function, Ĉ(s = 0), from which the correlation time
and hence the sensing error can be obtained, see Eq. 2. The correlation function of any binary
switching process is given by

Cn (τ ) = p
(

p∗|∗ (τ ) − p
)

(10)

where p = n̄ is, as before, the equilibrium probability for the bound state and p∗|∗(τ ) =
〈n(τ )n(0)〉/n is the probability the receptor is bound at t = τ given it was bound at t = 0.
To obtain the correlation function, we thus need p∗|∗(τ ) = 1 − Srev (t |∗), where Srev (t |∗)

is the probability that the receptor is free at time t given that it was occupied at time t = 0.
It is given by the exact expression
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Srev (t |∗) = kd

∫ t

0

[
1 − Srev

(
t ′|∗)]

Srad
(
t − t ′|σ )

dt ′. (11)

The subscript “rev” denotes that a reversible reaction is considered, meaning that in between
t = 0 and t the receptor may bind and unbind ligand a number of times. The probability that
a receptor-ligand pair dissociates between t ′ and t ′ + dt ′ to form an unbound pair at contact
is kd [1−Srev(t ′|∗)]dt ′, while the probability that the free receptor with a ligand molecule at
contact at time t ′ is still unbound at time t > t ′ is Srad(t − t ′|σ); the subscript “rad” means
that we now consider an irreversible reaction (kd = 0), which can be obtained by solving
the diffusion equation using a “radiation” boundary condition [1].

While Eq. 11 is exact, it cannot be solved analytically, because, as discussed above, an
association-dissociation reaction is a non-Markovian, many-body problem. To solve Eq. 11,
Kaizu and coworkers made the assumption that after each receptor-ligand dissociation event,
the other ligand molecules have the uniform, equilibrium distribution. Mathematically, this
assumption can be expressed as

Srad (t |σ) = Srad (t |eq) Srad (t |σ) , (12)

where Srad(t |eq) is the probability that a receptor which initially is free and surrounded by
an equilibrium distribution of ligand molecules remains free until at least a later time t , while
Srad(t |σ) is the probability that a free receptor that is surrounded by only one single ligand
molecule, which initially is at contact, is still unbound at a later time t . To solve Eqs. 11
and 12, a relation between Srad (t |eq) and Srad (t |σ) is needed, which can be obtained from

Srad (t |eq) = e−c
∫ t
0 krad(t ′)dt ′ [65] and the detailed-balance relation for the time-dependent

bimolecular rate constant krad(t) = ka Srad(t |σ) [1].
With these relations, Eqs. 11 and 12 can be solved in Laplace space, which, together with

Eq. 10, yields the following expression for the receptor correlation time τc = (σ 2
n )−1Ĉn(s =

0) [46]:

τc = 1

konc + koff
. (13)

Here kon and koff are the renormalized association and dissociation rates

kon =
(

1

ka
+ 1

kD

)−1

= kakD

ka + kD
, (14)

koff =
(

1

kd
+ Keq

kD

)−1

= kdkD

ka + kD
. (15)

with Keq = ka/kd = kon/koff the equilibrium constant and kD = 4πσ D the diffusion-
limited rate constant—kD = krad(t → ∞) for ka → ∞.

As before, the sensing error is obtained by combining Eq. 13 with Eq. 3, and exploiting
that p = konc/(konc + koff ) = koncτc, [46]:

(
δc

c

)2

K Z
= 2

4πσ Dc (1 − p) T
+ 2

kac (1 − p) T
. (16)

The second term is identical to that of Bialek and Setayesghar, Eq. 9. However, the first
term, which constitutes the fundamental limit, disagrees with the expression of Bialek and
Setaeysghar, but agrees with that of Berg and Purcell, Eq. 5. This suggests that the expression
of Berg and Purcell is indeed the most accurate expression for the fundamental sensing limit.

But it could of course be that both the analysis of Berg and Purcell and that of Kaizu et al.
are inaccurate. To investigate this, Kaizu and coworkers performed particle-based simulations
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Fundamental Limits to Cellular Sensing 1403

Fig. 1 The zero-frequency limit of the power spectrum, Pn(ω → 0) = 2σ 2
n τc with σ 2

n = p(1 − p), as a
function of the average receptor occupancy n for c = 0.4μM; n is varied by changing kd . It is seen that the
theoretical prediction of Kaizu et al. [46] (red line) agrees very well with the simulation results (red symbols),
in contrast to that of Bialek and Setayeshgar [13] (black line). Parameters: D = 1μm2 s−1, σ = 10 nm,
L = 1μm, ka = 552μM−1s−1 (Color figure online)

of the same model studied by Bialek and Setayesghar and Kaizu et al.; to test the expression
of Berg and Purcell, the system was chosen to be deep in the diffusion-limited regime. The
simulations were performed using Green’s Function Reaction Dynamics, which is an exact
algorithm to simulate reaction-diffusion systems at the particle level in time and space, and
hence does not rely on the approximation used to derive the analytical result of Kaizu et al.
[75,82,83]. Figure 1 shows the results for the zero-frequency limit of the power spectrum,
Pn(ω → 0) = 2σ 2

n τc, which provides a test for the receptor correlation time τc and hence
the sensing error (see Eqs. 1 and 2), because σ 2

n = p(1 − p). It is seen that the prediction
of Kaizu and coworkers agrees very well with the simulation results, in contrast to that of
Bialek and Setagesghar. This shows that the expression of Kaizu et al. and hence that of Berg
and Purcell, is the most accurate expression for the sensing precision.

2.5 Role of Rebinding

The question remains why the analysis of Kaizu et al. is so accurate. The central assumption
of Eq. 12 makes the propensity for binding the next ligand independent of the history of
the previous binding events. In essence, it reduces the non-Markovian many-body problem
to a Markovian two-body problem, which can be seen from the expression for the receptor
correlation time, Eq. 13. This is indeed the expression for the correlation time of a receptor
that switches in a memoryless fashion between the bound and unbound states with switching
rates konc and koff .

But why is Eq. 12 accurate? And what is the role of rebindings? Do they not generate
an algebraic tail in the correlation function? As it turns out, these questions are intimately
related. It is well known that in an unbounded system, the correlation function exhibits an
algebraic tail because at long times the relaxation of the receptor state is dominated by the
slow diffusive transport of the ligand over long distances [35,62]. However, we typically
expect the space to be bounded, both for the binding of ligand to a receptor inside the cell
and to a receptor at the cell surface. In this case, the dissociated ligand particles lose memory
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1404 P. R. ten Wolde et al.

on the timescale needed to cross the bounded volume. Indeed, the simulations of [46] were
performed in a finite box of cellular dimensions, yielding exponential, not algebraic, decay
at long times. Now, the correlation function of the theory of Kaizu et al. has an algebraic
tail [46]. This comes from the particle that has just dissociated: in the theory, this particle
returns to the receptor as if it were in an unbounded space, yielding a survival probability,
Srad(t |σ), (Eq. 12), that decays algebraically at long times. However, the theory assumes that
the other particles have, after each dissociation event, the uniform, equilibrium distribution,
and their survival probability Srad(t |eq) decays exponentially at long times. As a result, the
amplitude of the algebraic tail of the correlation function is very small in the theory of Kaizu
et al. [46].

Still, the question remains how accurate the central assumption, Eq. 12, is. To elucidate
the key assumption underlying Eq. 12, it is instructive to imagine a scenario where after
a dissociation event, the other particles do have the uniform distribution; Eq. 12 is then
obeyed. If the dissociated particle then rebinds and unbinds again, then Eq. 12 is still satisfied.
However, Eq. 12 breaks downwhen (a) the rebinding of the dissociated particle is pre-empted
by the binding of another particle from the bulk; and (b) if this second particle dissociates
from the receptor before the first has equilibrated by diffusing into the bulk. This first particle
then no longer obeys the uniform equilibrium distribution, and the survival probability of the
particles other than that which just dissociated, no longer is given by Srad (t |eq). However,
the time a ligand molecule spends near the receptor is typically much shorter than the time
for molecules to arrive from the bulk at biologically relevant concentrations, which means
that the probability of rebinding interference is very small, and condition (a) is not met.
Because biologically relevant concentrations are low, also the dissociation rates are typically
low, which means that in case rebinding interference does happen (and condition (a) is met),
condition (b) is still not met, because during the long time the particle is associated with the
receptor, the previously bound particle has had ample time to diffuse and equilibrate in the
bulk. The likelihood that both conditions are met, necessary for the analysis to break down,
is thus very small [46].

Because rebindings are so much faster than bulk arrivals, they can be integrated out
[46,56,84]. Exploiting that rebinding interference can be neglected, the probability that a
particle that has just dissociated from the receptor will rebind the receptor rather than diffuse
away into the bulk is preb = 1 − Srad(∞|σ) = ka/(ka + kD). The mean number of rounds
of rebinding and dissociation before it diffuses into the bulk is then Nreb = ka/kD , which
rescales the effective dissociation rate: koff = kd/(Nreb + 1) = kdkD/(ka + kD); in this
model, the molecule thus rebinds the receptor before it escapes into the bulk as often as
when it would be the only ligand molecule in the system. Similarly, a molecule that arrives
at the receptor from the bulk may either bind the receptor or escape back into the bulk with
probability pesc = 1− preb; the mean number of rounds of escape and arrival before binding
is Nesc = 1/Nreb, which rescales the effective association rate kon = kD/(1 + Nesc) =
kakD/(ka + kD). These are indeed precisely the rates of Eqs. 14 and 15.

This analysis also elucidates the role of rebinding in sensing. The probability of rebinding
does not depend on the concentration, and rebindings therefore do not provide information
on the concentration. They merely increase the receptor correlation time by increasing the
effective receptor on-time from k−1

d to k−1
off = k−1

d /(1 + Nreb). After (1 + Nreb) rounds of
dissociation and rebinding, themolecule escapes into the bulk, and then anothermoleculewill
arrive at the receptor with rate kDc; this molecule may return to the bulk or bind the receptor,
such that a newmoleculewill bind after a time (konc)−1 on average. Importantly, thismolecule
will bind in a memoryless fashion and with a rate that depends on the concentration. This
binding event thus provides an independent concentration measurement. The mean waiting
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time in between independent binding events is therefore τw = 1/koff + 1/(konc), which
allows us to rewrite Eq. 16 in a form that we would expect intuitively:

(
δc

c

)2

K Z
= 2

konc(1 − p)T
= 2τw

T
. (17)

Indeed, the sensing error δc/c decreases with one over the square root of the number of
independent measurements T/τw during the integration time T .

Lastly,whydoes the expressionofBialek andSetayesghar, Eq. 9,miss the factor 1−p in the
diffusion term, in contrast to the expressions of Berg and Purcell, and Kaizu and coworkers?
All studies start from Eq. 1, which assumes that the input-output relation p(c) is linear over
the range of the fluctuations in nT . However, these analyses differ in how they arrive at the
zero-frequency limit of the power spectrum or, equivalently, the receptor correlation time (see
Eq. 2). The work of Berg and Purcell starts from the assumption that the receptor dynamics is
a random telegraph process; this approach naturally takes into account that when a receptor
is bound to a ligand molecule, it cannot bind new ligand molecules. It thus recognizes that
the net rate of ligand binding depends on the diffusive transport of the ligand to the receptor
and on the receptor occupancy. The theory of Kaizu and coworkers is based on a stochastic,
particle-based description of the receptor dynamics, which also captures the binary character
of the receptor naturally. Why the analysis of Bialek and Setayesghar misses the factor 1− p
in the diffusion term is not entirely clear, but we believe it results from the linearization of the
reaction-diffusion equations, which misses correlations between the state of the receptor and
the local ligand concentration—if amolecule arrives at a ligand-bound receptor, then it cannot
bind to the receptor. In essence, their analysis is a small-noise approximation which is valid
when there are many receptors in close proximity, since then fluctuations in the occupancy
will be small relative to the mean. But for a single receptor, with a single ligand-binding site,
the binary character of the receptor state needs to be taken into account.

3 Can Cells Reach the Berg–Purcell Limit?

The work of Berg and Purcell and subsequent studies like those discussed above [12,13,45,
46,64,70,71,80,85] assume not only a given integration time T , but also that the downstream
signaling network averages the state of the receptor uniformly in time over this integration
time T . It remained unclear, however, how the signaling network determines the (effective)
integration time T , whether the network averages the signal uniformly in time, and how
this assumption affects the sensing precision [36]. It thus remained open whether signaling
networks can actually reach the Berg–Purcell limit.

To address these questions, the authors of Ref. [36] considered linear, but otherwise
arbitrary signaling network. For deterministic networks of this type, the output X (To) at time
To can be written as

X (To) =
∫ To

−∞
χ(To − t ′)RL(t ′)dt ′, (18)

where χ(t − t ′) is the response function of the network and RL(t) is the stochastic receptor
signal, i.e., the number of receptors that are bound to ligand.. To compare to previous results,
the authors assumed that at t = 0 the environment changes instantaneously and that the
receptors and hence RL(t) immediately adjust, so that RL(t) is stationary for 0 < t <

To, with fluctuations that decay exponentially with correlation time τc; here, in contrast to

123



1406 P. R. ten Wolde et al.

Fig. 2 Extracting information from noisy input signals with linear signaling networks. a, c, e, g Theweighting
functions corresponding to different signaling networks are not uniform. b, d, f, h The ability of a signaling
network to measure ligand concentration depends on its weighting function. The typical error (variance) in
the estimate of ligand concentration is plotted as a percentage increase over the error of an estimate based on
uniform weighting, assumed in the Berg–Purcell limit (Eq. 1 with T = To). a Reversible, one-level cascades
selectively amplify late (t = To) values of the signal, b leading to worse performance than the uniform average.
c Irreversible, N -level cascades amplify early (t = 0) values of the signal, d leading to worse performance
than the uniform average. e The optimal weighting function, given in Ref. [36], averages the signal, selectively
amplifying less correlated values. The delta functions are truncated for illustration. f The optimal weighting
function outperforms the uniform average. gA signaling network consisting of two branches, which selectively
amplify late (t = To) (left branch) and early (t = 0) (right branch) values of the signal, approximates the
optimal weighting function (k1 = 3.1; k2 = 10; k3 = 1; k4 = 0.35; k5 = 1; k6 
 1; To = 2). h The network
in f can outperform the uniform average (τc varies for fixed To = 2)

the studies discussed in the previous section, the authors thus assumed a given receptor
correlation time τc—they did not ask how this correlation time is set by the receptor-ligand
cross section, the number of receptors, and the concentration and diffusion constant of the
ligand [46]. Moreover, the authors assumed that either: (1) χ(To − t) = 0 for t < 0, which
corresponds to a scenario where the response time τr of the network is shorter than To, or,
equivalently, the network reaches steady state by the time To; or (2) RL(t) = 0 for t < 0,
which corresponds to a scenario in which the cell is initially in a basal state. In both cases,
X (t) = ∫ To

0 χ(To − t ′)RL(t ′)dt ′. When neither χ(To − t) nor RL(t) are zero for t < 0, then
previous states of the environment influence the state of the network at To, which can either
be a source of noise, or a source of information if the environments are correlated.

While in the studies discussed in the previous section, the concentration is estimated from
the average receptor occupancy, here the idea is that the cell infers the ligand concentra-
tion from the output X (To) and by inverting the input–output relation X(c). Using error
propagation, the error in the estimate of the concentration is then given by

(
δc

c

)2

X
= 1

c2

(
dc

d X

)2

σ 2
X (To). (19)

The authors of Ref. [36] then studied different signaling architectures, shown in Fig. 2.
Clearly, these networks do not, in general, average the receptor signal uniformly in time;
instead, they have non-uniform weighting functions (Fig. 2a, c, e, g). They weigh receptor
signals in the past with a response function that depends on both the lifetime of the signaling
molecules and on the topology of the signaling network. One-layer networks consisting
of a single reversible reaction give most weight to the most recent signal value (left-most
column), while multi-level cascades consisting of irreversible reactions give more weight to

123



Fundamental Limits to Cellular Sensing 1407

signal values more in the distant past (second column). This concept can be generalized to
arbitrarily large signaling networks. Multilevel reversible cascades have weighting functions
that peak at some finite time in the past, balancing the down-weighting of the signal from
the distant past due to the reverse reactions, with the down-weighting of the signal from the
recent past resulting from the multilevel character of the network. Linear combinations of the
weighting functions for reversible and irreversible cascades can be achieved with multiple
cascades that are activated by the input in parallel and which independently activate the same
effector molecule. Clearly, signaling networks allow for very diverse weighting functions.

This idea can be exploited to improve the accuracy of sensing, as shown in the right two
columns of Fig. 2. A network with a feedforward topology that combines a fast reversible
cascade with a slow irreversible cascade cannot only reach the Berg–Purcell limit, but even
beat it by about 10%, when the observation time To is on the order of the receptor correlation
time τc. The reason is that this network selectively amplifies themore recent signal values and
those further back in the past. This is beneficial, because these signal values are less correlated.
Interestingly, feedforward motifs are very common in cellular biochemical networks [2].
Canonical signal transduction pathways that employ these motifs are GPCR signaling [41]
and MAPK signaling [20,87].

Our analysis also provides a clear perspective on the integration time.While in the previous
section the downstream network integrates the input n(t) uniformly in time over a given
integration time T , here the network integates the input RL(t) via a non-uniform weighting
funtionχ(t−t ′). Clearly, To, the timeonwhich the cellmust respond, provides an upper bound
on the integration time. Yet, the processing network weights the input signal by χ(To − t),
which may become zero for t < To. In this case, the effective integration time Teff is limited
by the range over which χ(To − t) is nonzero. For example, the weighting function of the
one-level reversible cascade becomes zero on the time scale k−1

b = τr , the lifetime of the
output component, which sets the relaxation time τr of the network. This can be (much)
smaller than To, in which case Teff is limited by τr : Teff ∼ τr < To. As we will see in Sect.
5, degradation of the output erases memory of the input.

While the data processing inequality suggests that it is advantageous to limit the number
of nodes in a signaling network to minimize the effect of intrinsic noise, this study shows that
there can be a competing effect in favor of increasing the number of nodes: better removal
of extrinsic noise. Additional nodes make it possible to sculpt the weighting function for
averaging the incoming signal, allowing signaling networks to reach and even exceed the
Berg–Purcell limit.

4 Fundamental Sensing Limit of Equilibrium Systems

Signaling networks are stochastic in nature, which means that while they may remove the
extrinsic noise in the input signal, theywill also add their own intrinsic noise to the transmitted
signal. Most studies on the accuracy of sensing have ignored this intrinsic noise of the
signaling network [3,12,13,31,36,45,46,49,64,70,71,80,85]. They essentially assume that
the intrinsic noise can be made arbitrarily small and that the extrinsic noise in the receptor
signal can be filtered with arbitrary precision by simply integrating the receptor signal for
longer. However, the extrinsic and intrinsic noise are not generally independent: changing a
parameter in the system tends to affect both sources of noise [76]. This raises the question
whether the extrinsic and intrinsic noise can be lowered simultaneously, and if so, what
resources would be required to achieve this.
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To address these questions, the authors of [37] first studied equilibrium networks that are
not driven out of thermodynamic equilibrium via the turnover of fuel. Inspired by one com-
ponent signaling networks [81], they started with the simplest possible equilibrium network,
where a free receptor R can either bind a ligandmolecule L or a cytoplasmic readoutmolecule

X (but not both): R + L � RL, R + X
kf�
kr

RX. The linearized deviation δx(t) = X (t) − X

of the copy number X (t) from its steady-state value X is

δx(t) =
∫ t

−∞
χ(t − t ′)

[
γ RL(t ′) + η(t ′)

]
, (20)

where χ(t − t ′) = e−(t−t ′)/τr is the response function with τr = 1/(k f (X + R) + kr ) the
integration time, γ = kf X , RL(t) is the input signal and η describes the intrinsic noise of
the signaling network, set by the rate constants and copy numbers.

The sensing error for this system in steady state can be computed, as before, via Eq. 19.
Here, the variance σ 2

X = 〈δx〉2, obtained from Eq. 20, can be decomposed into the sum
of the extrinsic noise σ 2

ex,x ≡ γ 2KδRL ,δRL and the intrinsic noise σ 2
in,x ≡ γ KδRL ,η +

Kη,η, where K A,B = ∫ t
−∞

∫ t
−∞ e−(t−t ′1)/τICA,B(t ′1, t ′2)e−(t−t ′2)/τIdt1dt2 with the correlation

function CAB(t1, t2) = 〈A(t1)B(t2)〉. This decomposition is not unique, but in this form the
extrinsic noise term features a canonical temporal average of the input (receptor) fluctuations
[61,69,76], which can be made arbitrarily small by increasing the effective integration time
of the network. However, the authors of Ref. [37] found that when doing so in a system with
RT receptors would reduce the total sensing error below 4/RT , the intrinsic noise would
inevitably rise. The network faces a fundamental trade-off between the removal of extrinsic
and intrinsic noise—both noise sources cannot be lowered simultaneously below a limit
corresponding to a sensing error of 4/RT .

Signaling networks are usually far more complicated than one consisting of a single
readout species, and as discussed in the previous section, additional network layers can reduce
the sensing error [36]. This raises the question whether a more complicated equilibrium
network can overcome the limit set by the number of receptors. Searching over all possible
network topologies to address this question is impossible. However, equilibrium systems
are fundamentally bounded by the laws of equilibrium thermodynamics, regardless of their
topology. Indeed, starting from the grand-canonical partition function, one can show that for
any equilibrium network the gain d X/dμ, withμ = μ0+kT log(c) the chemical potential of
the ligand, is given by the co-variance σ 2

X,RL between X and RL , because RL (or, in general,
the complex containing the ligand) is the species conjugate to the chemical potential. This
means that these systems face a trade-off between gain (sensitivity) and noise: increasing the
gain inevitably increases the noise. This hasmarked implications: using d X/dμ = σ 2

X,RL and

Eq. 19,wefind that the sensing error basedon the readoutX is (δc/c)2X = σ 2
X/(σ 2

X,RL)2 ,while

if the receptors themselves are taken as the readout, the sensing error is (δc/c)2RL = 1/σ 2
RL .

From this it follows that
(

δc

c

)2

X
= σ 2

Xσ 2
RL

(
σ 2

X,RL

)2

(
δc

c

)2

RL
≥

(
δc

c

)2

RL
≥ 4

R2
T

. (21)

Here the first equality inequality on the right-hand side follows from the fact that

|σ 2
X,RL |/

√
σ 2

Xσ 2
RL is a correlation coefficient, which is always less than 1 in magnitude. The

second inequality follows from the observation that for any stochastic variable 0 < Y < a,
σ 2

Y ≤ a2/4, meaning that σ 2
RL < R2

T /4. Eq. 21 thus shows that in equilibrium systems
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a downstream signaling network can never improve the accuracy of sensing. The sensing
precision is limited by the total number of receptors RT , regardless of how complicated the
downstream network is, or how many protein copies are devoted to making it.

What is the origin of the sensing limit in equilibrium sensing systems? Why do these sys-
tems face a fundamental trade-off between gain and noise, and between extrinsic and intrinsic
noise? These systems transduce the signal by harvesting the energy of ligand binding: this
energy is used to boot off the downstream signaling molecules from the receptor. However,
detailed balance, by putting a constraint on the binding affinities of receptor-readout and
receptor-ligand binding, then dictates that receptor-readout binding also influences receptor-
ligand binding, thus perturbing the future signal. Indeed, the trade-offs faced by equilibrium
networks are all different manifestations of their time-reversibility. The only way for a time-
reversible system to “integrate” the past is for it to integrate and hence perturb the future.
Concomitantly, in a time reversible system, there is no sense of “upstream” and “down-
stream”, concepts which rely on a direction of time [33]; RL is as much a readout of X , as
the other way around. While in equilibrium systems the readout encodes the receptor state,
the readout is not a stable memory that is decoupled from changes in the receptor state: a
change in the state of the readout, induced by readout-receptor (un)binding, influences the
future receptor state. This introduces cross-correlations between the intrinsic fluctuations in
the activation of the readout, modeled by η(t) in Eq. 20, and the extrinsic fluctuations in
the input RL(t): K RL ,η �= 0. It is these cross-correlations, which ultimately arise from time
reversibility, that lead, in these equilibrium systems, to a fundamental tradeoff between the
removal of extrinsic and intrinsic noise and between increasing the gain and suppressing the
noise.

5 Sensing in Non-equilibrium Systems

To beat the sensing limit of equilibrium systems, energy and the receptor need to be employed
differently. Rather than using the energy of ligand binding to change the state of the readout,
the system should use fuel. This makes it possible change the readout via chemical modifi-
cation, with the receptor catalyzing the modification reaction: RL + X → RL + X∗. This
decouples receptor-ligand binding from receptor-readout binding: the activation of the read-
out does not influence the future receptor signal, while, conversely, a change in the receptor
state does not affect the stability of the readout. Each readout molecule that has interacted
with the receptor provides a stable memory; collectively, the readout molecules encode the
history of the receptor state. This enables the mechanism of time integration, in which the
trade-off between noise and sensitivity is broken, and the extrinsic and intrinsic noise can be
reduced simultaneously [37].

Catalysts cannot change the chemical equilibrium of two reactions that are the micro-
scopic reverse of each other. To make the average state of the readout dependent on the
average receptor occupancy, the activation reaction RL + X → RL + X∗ must therefore be
coupled to a reaction that is not its microscopic reverse, and the system must be driven out
of equilibrium. The simplest implementation is precisely the canonical signaling motif of a
receptor driving a push-pull network. In such a network the receptor itself or the enzyme
associated with it, like CheA in E. coli chemotaxis, catalyzes the activation of a readout pro-
tein X via chemical modification, i.e. the phosphorylation of the messenger protein CheY;
active readout molecules X∗ can then decay spontaneously or be deactivated by an enzyme,
like the phosphatase CheZ in E. coli, via a reaction that is not the microscopic reverse of
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the activation reaction. Typically, the activation via chemical modification is coupled to fuel
turnover, while deactivation is not; in E. coli chemotaxis, for example, phosphorylation of
CheY is fueled by ATP hydrolysis: CheA+ATP+CheY → CheA+ADP+CheYp, while
dephosphorylation is not: CheZ+CheYp → CheZ+CheY+Pi. Another classical example
is MAPK signaling, where activation of MAPK is driven by ATP hydrolysis, while deacti-
vation is not (even though it is typically catalyzed by a phosphatase). In all these systems,
ATP hydrolysis is used to drive the readout molecule to a high energy state, the active phos-
phorylated state, which then relaxes back to the inactive dephosphorylated state via another
pathway, setting up a cycle in state space leading to energy dissipation.

5.1 The Sensing Error

To derive the fundamental resources required for sensing, it is instructive to view the down-
stream system as a device that samples the state of the receptor discretely [38]. The activation

reaction RL + X + ATP
kf→ RL + X∗ + ADP (assumed to be fueled by ATP hydrolysis)

generates samples of the ligand-binding state of the receptor by storing the receptor state in
the stable modification states of the readout molecules.We expect that if there are N receptor-
readout interactions, then the cell has N samples of the receptor state and the error in the
concentration estimate, δc/c, is reduced by a factor of

√
N . However, to derive the effective

number of samples, we have to consider not only the creation of samples, but also their decay

and reliability. The decay reaction X∗ kr→ X is equivalent to discarding or erasing samples.
The microscopically reverse reactions of these activation and deactivation reactions, namely

the receptor-mediated deactivation X∗ +RL+ADP
k−f→ X+RL+ATP and the spontaneous

(or phosphatase catalyzed) activation X
k−r→ X∗ independent of the receptor, generate incor-

rect samples of the receptor state. Energy is needed to break time-reversibility and to protect
the coding.

How the receptor samples are generated, erased, and how they are stored in the readout,
determine the number of samples, their independence, and their reliability, which together
set the sensing precision [38]:

(
δc

c

)2

= 1

p(1 − p)

1

N̄I
+ 1

(1 − p)2

1

N̄eff
. (22)

This expression is obtained fromEq. 20with σ 2
X computed via the linear-noise approximation

[38,76]. The quantity N̄I , discussed below, is the average number of receptor samples that
are independent out of a total of N̄eff samples. The first term is the error on the concentration
estimate that would be expected on the basis of N̄I perfect, independent samples of the
receptor state that can be unambiguously identified (as in Eq. 3). A second correction term
arises, however, because the cell cannot distinguish between those readout molecules that
have collided with an unbound receptor since their last dephosphorylation event, and those
that have not.

The number of independent measurements N̄I can be expressed in terms of collective
variables that describe the resource limitations of the cell

N̄I = 1

(1 + 2τc/
)
︸ ︷︷ ︸

f I

q
︷ ︸︸ ︷(

e
μ1 − 1
) (

e
μ2 − 1
)

e
μ − 1

N̄
︷︸︸︷
ṅτr

p
︸ ︷︷ ︸

N̄eff

. (23)

123



Fundamental Limits to Cellular Sensing 1411

This expression has a clear interpretation. The relaxation time τr is the timescale on which
receptor samples are created and decay. It thus sets the timescale of the memory and hence
the effective integration time (see also Sect. 3). The quantity ṅ is the net flux of X across
the cycle of activation by the receptor and deactivation. It equals the net rate at which X is
modified by the receptor molecules that are bound to ligand. The ratio ṅ/p is thus the rate at
which the receptor, bound or unbound, is sampled, and the quantity ṅτr/p is the total number
of receptor samples taken during τr , N̄ .

Not all of these samples are reliable. The effective number of samples taken during τr is
N̄eff = q N̄ , where 0 ≤ q ≤ 1 measures the quality of each sample. Here, 
μ1 and 
μ2 are
the average free-energy drops across the activation and deactivation pathway respectively,
in units of kB T ; 
μ = 
μ1 + 
μ2 is the total free-energy drop across the cycle, which
is given by the free energy of the fuel turnover, such as that of ATP hydrolysis. When

μ = 
μ1 = 
μ2 = 0, an active read-out molecule is as likely to be created by the
ligand-bound receptor as it is created spontaneously and there is no coding and no sensing;
indeed, in this limit, q = 0 and N̄eff = 0. In contrast, when 
μ1,
μ2 → ∞, q → 1 and
N̄eff → N̄ .

The factor f I denotes the fraction of samples that are independent. It depends on the
correlation time τc of receptor-ligand binding and on the time interval 
 = 2τr/(N̄eff/RT )

between samples of the same receptor. Samples farther apart are more independent.

5.2 Fundamental Resources and Trade-Offs

Eqs. 22 and 23 can be used to find the resources that fundamentally limit sensing. A funda-
mental resource or combination of resources is a (collective) variable that when fixed, puts
a lower bound on the sensing error, no matter how the other variables are varied. It can be
found via constraint-based optimization, yielding [38]:

(
δc

c

)2

≥ MAX

(
4

RT τr/τc
,

4

XT
,

4

ẇτr

)

. (24)

This expression identifies three fundamental resource classes, each yielding a fundamental
sensing limit: RT (1 + τr/τc), which for the relevant regime of time integration τr > τc is
RT τr/τc, XT , and ẇτr . These classes cannot compensate each other in achieving a desired
sensing precision, and hence do not trade-off against each other. The sensing precision is,
like the weakest link in a chain, bounded by the limiting resource, as illustrated in Fig. 3a-c
and Fig. 4. However, within each class, trade-offs are possible. We now briefly discuss the
fundamental resource classes and their associated sensing limits.

Receptors and their integration time, RT τr/τc. The number of receptor samples increases
with the number of readout molecules, XT . In fact, as XT → ∞, the spacing between the
samples 
 → 0 and the effective number of receptor samples N eff → ∞; this is indeed the
Berg–Purcell mechanism of time integration. However, each receptor can take an indepen-
dent concentration measurement only every 2τc, meaning that the number of independent
measurements taken during the integration time τr is, per receptor, τr/τc (the disappearance
of the factor two is due to the fact that the deactivation of X increases the effective spacing
between the samples, see [38]). Assuming that the receptors bind independently (but see
Sect. 6.2), the total number of independent concentration measurements, N I , taken during
τr , is then limited by RT τr/τc, no matter how large XT is (Fig. 3e). This yields the sens-
ing limit of Berg and Purcell, (δc/c)2 ≥ 4/(RT τr/τc), recognizing that the receptors are
assumed to bind independently, and p(1− p) ≤ 0.25 (cf. Eq. 3). While the product RT τr/τc

is fundamental, RT and τr are not: the error is determined by the total number of indepen-
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Fig. 3 Trade-offs in non-equilibrium sensing. a When two resources A and B compensate each other, one
resource can always be decreased without affecting the sensing error, by increasing the other resource; con-
comitantly, increasing a resource will always reduce the sensing error. When both resources are instead
fundamental, the sensing error is bounded by the limiting resource and cannot be reduced by increasing the
other. b, c The three classes time/receptor copies, copies of downstreammolecules, and energy are all required
for sensing, with no trade-offs among them. The minimum sensing error obtained by minimizing Eq. 22 is
plotted for different combinations of (b) XT and w, and (c) RT (1+ τr /τc) and w. The curves track the bound
for the limiting resource indicated by the grey lines, showing that the resources do not compensate each other.
The plot for the minimum sensing error as a function of RT (1 + τr /τc) and XT is identical to that of (c)
with w replaced by XT . d The energy requirements for sensing. In the irreversible regime (
μ → ∞), the
work to take one sample of a ligand-bound receptor, w/(pN̄eff ), equals 
μ, because each sample requires
the turnover of one fuel molecule, consuming 
μ of energy. In the quasi-equilibrium regime (
μ → 0),
each effective sample of the bound receptor requires 4kBT, which defines the fundamental lower bound on the
energy requirement for taking a sample. When 
μ = 0, the network is in equilibrium and both w and N̄ are
0. ATP hydrolysis provides 20kBT, showing that phosphorylation of read-out molecules makes it possible to
store the receptor state reliably. The results are obtained fromEq. 23 with 
μ1 = 
μ2 = 
μ/2. e Sampling
more than once per correlation time requires more resources, while the benefit is marginal. As the sampling
rate is increased by increasing the readout copy number XT , the number of independent measurements N̄I
saturates at the Berg–Purcell limit RT τr /τc , but the energy and protein cost (∝ XT ) continue to rise

dent concentration measurements, and it does not matter whether these measurements are
performed by many receptors over a short integration time or by one receptor over a long
integration time.
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Fig. 4 Cells face a fundamental trade-off between two modes of sensing, an equilibrium mode based on
binding and sequestration and a non-equilibrium mode based on catalysis. These sensing strategies have
different resource requirements

The number of readout molecules, XT . Each concentration measurement needs to be
stored in the chemical modification state of a readout molecule, and XT limits the maximum
number of measurements that can be stored. Consequently, no matter how many receptors
the cell has, or how much time it uses to integrate the receptor state, the sensing error is
fundamentally limited by the pool of readout molecules, (δc/c)2 ≥ 4/XT .

Energy, ẇτr , during the integration timeThe power, the rate at which the fuelmolecules do
work, is ẇ = ṅ
μ, and the totalwork performed during the integration time isw ≡ ẇτr . This
work is spent on taking samples of receptor molecules that are bound to ligand, because only
they canmodify X . The total number of effective samples of ligand-bound receptors obtained
during τr , is pN eff . Hence, the work needed to take one effective sample of a ligand-bound
receptor is w/(pN̄eff ) = 
μ/q (see Eq. 23). Figure 3d shows this quantity as a function of

μ. In the limit that 
μ 
 4kB T , w/(pN̄eff ) = 
μ, because the quality factor q → 1; in
this regime, each receptor state is reliably encoded in the chemical modification state of the
readout, and increasing 
μ further increases increases the sampling cost with no reward in
accuracy. In the opposite regime,
μ < 4kB T , however, the quality of the samples, q , rapidly
decreases with decreasing 
μ. In this regime, the system must take multiple noisy receptor
samples to give the same information as one single perfect sample. In the limit 
μ → 0,
the quality factor q → 
μ/4 and the work to take one effective sample of a ligand-bound
receptor approaches its minimal value of w/(pN eff ) = 
μ/q = 4kT . Substituting this in
Eq. 22 yields another bound on the sensing error: (δc/c)2 ≥ 4/(ẇτr ). The bound can be
reached when RT τr/τc and XT are not limiting, and 
μ → 0. This bound shows that while
the total work w = ẇτr done during the integration time τr is fundamental, the power ẇ and
τr are not, leading to a trade-off between accuracy, speed and power, as found in adaptation
[47].
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5.3 Design Principle of Optimal Resource Allocation

The observation that resources cannot compensate each other, naturally yields the design prin-
ciple of optimal resource allocation, which states that in an optimally designed system, each
resource is equally limiting so that no resource is in excess and thus wasted. Quantitatively,
Eq. 24 predicts that in an optimally designed system

RT τr/τc ≈ XT ≈ w. (25)

In an optimal sensing system, the number of independent concentration measurements
RT τr/τc equals the number of readout molecules XT that store these measurements and
equals the work (in units of kB T ) to create the samples. Interestingly, the authors of Ref.
[38] found that the chemotaxis system of E. coli obeys the principle of optimal resource
allocation, Eq. 25. This indicates that there is a selective pressure on the optimal allocation
of resources in cellular sensing.

6 Discussion

6.1 Different Sensing Strategies Encode and Decode Ligand Information
Differently

Cells use different sensing strategies, which differ in how they process information about
the ligand concentration. The data processing inequality [21] guarantees for any network
that no readout X can have more information about the ligand concentration encoded in its
time trace than the ligand-bound receptor RL has in its time-trace [37]: I (X[0,T ](t);μL ) ≤
I (RL [0,T ](t);μL ), where I is the mutual information between the arguments with μL the
chemical potential of the ligand, and y[0,T ](t) indicates the time trace of y = X, RL from
time 0 to time T . Clearly, the accuracy of sensing for any network is bounded by the amount
of information that is in the time trace of the receptor state. However, the different sensing
strategies differ in how they encode the ligand concentration in the receptor dynamics and in
how they decode the information that is in the receptor time trace.

For equilibrium networks, the data processing inequality guarantees that no readout has
more information about the ligand than the receptors at any given time [37]: I (X (T );μL ) ≤
I (RL(T );μL ) ≤ log2(RT + 1), and therefore the information in the instantaneous level of
the readout is bounded by the total number of receptors RT . This statement is the information-
theoretic analogue of Eq. 21. The history of receptor states does contain more information
about the ligand concentration than the instantaneous receptor state, but an equilibrium signal-
ingnetwork cannot exploit this: its output contains nomore information than the instantaneous
receptor state.

Cells that use themechanism of time integration can exploit the information that is the time
trace of the receptor, and for these networks I (X (T );μL ) can be larger than I (RL(T );μL ).
These cells estimate the ligand concentration from the average receptor occupancy over an
integration time, which, as we have seen in Sect. 3, is determined by the architecture of the
readout system and the lifetime of the readout molecules. It is quite clear that cells employ
this mechanism of time integration: the central motif of cell signaling in both prokaryotes
and eukaryotes, the push-pull network, implements time averaging by storing the receptor
state into stable chemical modification states of the readout molecules, which, collectively,
encode the average receptor occupancy over the past integration time.
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Another sensing strategy is maximum likelihood estimation [31,49,54]. It estimates the
ligand concentration not from the average receptor occupancy over the integration time T ,
as in the mechanism of time integration, but rather from the mean duration of the unbound
state of the receptor τu : ĉMLE = 1/(τukon). The sensing error of this strategy for a single
receptor is (δc/c)2MLE = 1/(konc(1 − p)T ) [31], which is half that of the mechanism of
time integration, see Eq. 17. The reason why this sensing strategy is more accurate is that
only the binding rate depends on the concentration, not the unbinding rate. Hence, only the
unbound interval provides information on the concentration. In contrast, the mechanism of
time integration infers the concentration from the mean receptor occupancy, which depends
on both the unbound interval and the uninformative bound interval.

How cells could actually implement the strategy of maximum-likelihood estimation
remains an open question. One possibility is that receptors are internalized upon ligand
binding, another that they bind ligand only briefly and signal only transiently, which could be
achieved via receptor adaptation or desensitization following ligand binding [31]. Another
intriguing possibility has recently been suggested by Lang et al. [49]. It is inspired by the
observation that many receptors, such as receptor-tyrosine kinases and G-protein coupled
receptors, are chemically modified via fuel turnover [49]. In this scheme, the cell esti-
mates the ligand concentration from the average receptor occupancy over an integration
time T , as in the canonical mechanism of time integration. However, upon ligand bind-
ing, the receptor is driven via fuel turnover through a non-equilibrium cycle of m chemical
modification steps, before it can release and bind new ligand again. In the limit that the
energy drop over the cycle 
μ → ∞ and m → ∞, the sensing accuracy approaches the
maximum-likelihood-estimation limit, even though the concentration is inferred from the
average receptor occupancy. The reason is that in this limit the interval distribution of the
active receptor state becomes a delta function instead of an exponential one as in the case of
canonical time integration. This eliminates the noise from the uninformative bound interval
in estimating the average receptor occupancy.

6.2 The Importance of Spatio-temporal Correlations

Ultimately, the precision of sensing via a mechanism that relies on integrating the recep-
tor state, be it the canonical Berg–Purcell scheme with Markovian active receptor states or
the maximum-likelihood scheme of Lang et al. with non-Markovian active states [49], is
determined by the number of receptors, the receptor correlation time, and how the readout
molecules sample the receptor molecules. The analysis of Ref. [38] ignores any spatio-
temporal correlations of both the ligandmolecules and the readoutmolecules. In this analysis,
the different receptor molecules bind the ligand molecules independently, and the correla-
tion time of the receptor cluster is that of a single receptor molecule τc. The total number
of independent concentration measurements in the integration time T is then the number of
receptors RT times the number of independent measurements per receptor, T/τc, yielding the
fundamental limit (δc/c)2 ≥ 2τc/(p(1− p)RT T ). Importantly, because τc is independent of
the number of receptors, the sensing error decreases with the number of receptors. However,
diffusion introduces spatio-temporal correlations between the different ligand-receptor bind-
ing events [11–13,85]. Consequently, the correlation time τN of RT receptors on a spherical
cell of radius R is not that of a single receptor molecule, but is rather given by [11]

τN = 1

kac + kd
+ ka (kac + RT kd)

4π DR (kac + kd)2
. (26)
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As pointed out by Wang et al. [85], the correlation time τN increases with the number
of receptors RT (and even diverges for RT → ∞), which means that when RT is large
and/or the integration time T is short, the mechanism of time integration breaks down. In
this regime the equilibrium sensing strategy is superior, because it relies on sensing the
instantaneous receptor state [85]. Using receptors that bind ligand non-cooperatively as the
readout, (δc/c)2RL = 1/σ 2

RL = 1/((p(1− p)RT ), which indeed decreases with RT [37,85].
When the integration time T is longer than τN , the sensing error is given by [11]

(
δc

c

)2

= 2τN

RT T p(1 − p)
(27)

= 1

2π DRcT

(

1 + kac

RT kd

)

+ 2

RT kacT

(

1 + kac

kd

)

, (28)

= 1

2π DRcT

(

1 + kac

RT kd

)

+ 2

RT kac(1 − p)T
. (29)

For large RT (but not so large that τN > T ), the sensing error reduces to
(

δc

c

)2

= 1

2π DRcT
. (30)

This, apart from the factor 1 − p, is the classical result of Berg and Purcell [12,13]. At
sufficiently large RT , the sensing error is limited by diffusion, the size of the cell and the
integration time. It becomes independent of RT , because the decrease of the instantaneous
error with RT , 1/(RT (p(1− p)), is cancelled by the increase of the correlation time with RT .
Another interpretation of the observation that the sensing error becomes independent of RT

and p in the large RT limit is the following: Receptor binding given that ligand is at contact
is independent, and hence its contribution to the sensing error (second term) decreases with
RT , going to zero as RT → ∞. The contribution from diffusion (first term) becomes, in this
limit, independent of RT and p, because there are always enough free receptors available for
binding each new ligand molecule that arrives at the cell surface; indeed, by replacing R by
σ , Eq. 30 is identical to Eq. 5 for p → 0—the sensing error of a cell with many receptors
(some of which are bound) is identical to that of a single receptor of the same size that is
always free, and binds and unbinds ligand with intrinsic rates ka, kd → ∞.

Not only in the encoding of the ligand concentration in the receptor dynamics, but also
in the decoding of this information by the readout system, spatio-temporal correlations can
become important. Receptor and readout molecules are often spatially partitioned, due e.g.,
to the underlying cytoskeletal network or lipid rafts. Even in a system that is spatially homo-
geneous on average, spatio-temporal partitioning would occur, because of the finite speed of
diffusion. We have recently shown that this partitioning decreases the propagation of noise,
essentially because the activation of the different readout molecules becomes less corre-
lated [55]. Whether there exists an optimal diffusion constant of the readout molecules that
matches the correlation length and time of the receptors, which is set by the ligand diffusion
and binding dynamics, is an intriguing question for future work.

6.3 The Dimensionality of the System

It is well known that the effect of diffusion depends, in general, on the dimensionality of the
system. Inspired by this observation, Tkačik and Bialek asked how accurately living cells
can sense the concentration of transcription factors, which regulate gene expression [77].
Transcription factors find their promoter on the DNA via a combination of 1D diffusion
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along the DNA and 3D diffusion in the cytoplasm. Since the seminal work of Berg, Winter
and Von Hippel it is widely appreciated that 1D sliding on the DNA can speed up the search
process, by increasing the effective target size [42]. By applying the linear-response theory,
briefly described in Sect. 2.3, Tkačik and Bialek found that the effect of the larger target size
is largely cancelled by the increased temporal correlations associated with 1D diffusion. As
a result, sliding has, according to their analysis, only a marginal effect on the fundamental
limit to the precision of transcription-factor sensing and hence transcriptional regulation.

We revisited this problem by applying the stochastic, particle-based analysis described
in Sect. 2.4 [60]. Our analysis, supported by GFRD simulations, reveals that also in the
presence of 1D sliding, which generates algebraic return time distributions for the dissociated
transcription factors, promoter switching can, to an excellent approximation, be described
as a random telegraph process with exponentially distributed waiting times. The reason is
that under biologically relevant conditions, the residence time of the transcription factors on
the DNA is still short compared to the time at which they arrive at random from the bulk. In
fact, as in the case for the spherical receptor (cf. Eq. 17), the rebindings, which involve 3D
diffusion and 1D sliding, can be integrated out, such that the precision in the estimate of the
number of transcription factors inside the cell, N , obtained by monitoring the promoter over
an integration time T , is given by

δN

N
=

√
2τs

N (1 − p)T
. (31)

This surprisingly simple but accurate expression reveals that the sensing precision depends
on not only the number of transcription factors, N , and the average promoter occupancy, p,
but also on the search time τs of a single transcription factor. Indeed, τs contains all the
combined effects of the complicated interplay of 3D diffusion and 1D sliding. Importantly,
this shows that when sliding speeds up the search process, it must also decrease the sensing
error. Our expression also provides a simple estimate for howmuch it can do so. Experiments
suggest that sliding speeds up the search process of the lac repressor by a factor 4, compared
to a hypothetical scenario in which it directly binds its operator [40]. Eq. 31 then predicts
that this decreases the fractional error in the concentration estimate by a factor of 2.

More recently, Bicknell and coworkers [14] studied the effect of dimensionality on the
precision of sensing by applying the approach of Bialek and Setayesghar [13]. They found
that while in an unbounded space in 3 dimensions, the sensing precision remains finite (as
observed in the other studies discussed in Sect. 2), in an unbounded space in 1D and 2D
the sensing error diverges, due to the diverging return times of a random walker in 1D and
2D. However, as the authors pointed out, and discussed in Sect. 2.5, the space is typically
bounded, which means that at times longer than that needed to cross the space, the receptor
fluctuations decay exponentially, leading to a finite sensing error. Moreover, as noted above,
also when 1D diffusion or 2D diffusion is coupled to 3D diffusion, as is typically the case in
signal transduction pathways or gene regulation networks, the sensing error remains finite.

6.4 Cooperative Receptor Activation

One important aspect that we have not addressed so far is the role of receptor cooperativity.
It is now well established that receptors are often activated cooperatively, with the most
studied and best characterized example being the receptor cluster of the E. coli chemotaxis
system [16]. How does this affect the precision of sensing? This question was addressed by
Skoge and coworkers [70,71]. They first studied the role of cooperative receptor activation
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in equilibrium systems [70]. Their model for receptor activation is based on an Ising model,
which, in this context, can be considered as a generalization of theMonod-Wyman Changeux
model of allostery [28,52]. In the model, each receptor protein can switch between an active
and an inactive conformational state, like a spin in an Ising system. The energy of the system
then depends on both the chemical potential of the ligand, which acts as a magnetic field
on each of the receptors, and on the (spin–spin) coupling between the conformational states
of neighboring receptors. The authors then studied by analytical theory and simulations the
response of this system to a small step change in the concentration, measuring both the
amplitude of the response (the gain) and the noise in the activity over a given integration
time; this ratio is the signal-to-noise ratio, similar to the inverse of σ 2

X/(d X̄/dc)2 that sets
the sensing error (see Eq. 19). Interestingly, the authors observed that cooperativity, which
corresponds to a non-zero conformational spin–spin coupling, does not help:while it increases
the gain, it also increases the correlation time of the noise, such that the signal-to-noise ratio
actually decreases. The optimal signal-to-noise ratio, and hence the minimal sensing error,
is always obtained for independent receptors.

In a subsequent publication, Skoge et al. asked whether cooperativity can increase the
signal-to-noise ratio when the receptor dynamics is coupled to a non-equilibrium process that
biases the conformational dynamics [71]. The authors found that while the non-equilibrium
drive reduces the sensing error by decreasing the receptor correlation time at fixed gain, it
does not make it possible to lift the trade-off between gain and noise in cooperative receptor
activation: independent receptors are again always optimal.

The work of Skoge et al. thus shows that in non-equilibrium systems that rely on time
integration of the receptor state, cooperative receptor activation does not reduce the sensing
error, because it increases the correlation time of the receptor—this decreases the effective
number of independent receptor samples that can be obtained during the integration time set
by the downstreamnetwork.However, our analysis shows that equilibrium systemsdonot rely
on time integration, and hence do not suffer from a slowing down of the receptor dynamics;
indeed, these systems infer the concentration from instantaneous receptormeasurements [37].
This opens the possibility that cooperativity is beneficial in equilibrium sensing. Indeed, our
analysis reveals that for all equilibrium systems in which the receptors bind the ligand non-
cooperatively, (δc/c)2X ≥ 1/RT , which is typically (i.e., when RT ≥ 4) worse than the
fundamental bound for all equilibrium networks, given by Eq. 21. Hence, to reach the latter
bound, cooperative ligand binding is necessary [37]. In [37], we show that cooperative ligand
binding makes it indeed possible to beat the non-cooperative bound, but whether equilibrium
sensing systems can actually reach the limit of Eq. 21 remains an open question.

6.5 The Role of Energy in Sensing

Perhaps the best known mechanism for enhancing fidelity via fuel turnover is kinetic proof-
reading, which is an error-correction scheme that has been invoked to explain the low error
rates in awide variety of processes, ranging fromDNA replication and protein synthesis to the
immune response [43,57]. Kinetic proofreading makes it possible to increase the specificity
of an enzyme for the right substrate over the wrong one beyond the bound set by equilibrium
thermodynamics. The scheme relies on non-equilibrium cycles that drive the system through
a sequence of discrimination steps, thereby amplifying the effect of the difference in binding
free energy.

While it seems intuitively clear that fuel turnover can be used to enhance the precision of
sensing, how it can be used is less obvious. In the maximum-likelihood scheme of Lang et
al. it is used to make the interval-distribution of the active receptor state more deterministic
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[49]. In the scheme of time integration, fuel turnover is used to sample the receptor state
more reliably [38,51].

The latter example seems tantalisingly related to the thermodynamics of computation,
formulated by Bennett and Landauer decades ago [10,48]. In particular, the receptor state
appears to be copied into the chemical modification states of readout molecules, which
thereby acts as memory elements for time integration [38,51]. Performing copy operations
repeatedly using the same readout requires net work input, unless the correlation between
the data bit (receptor) and the memory (readout), generated by the copy operation, is used
to extract work [59]. Indeed, the arguments of Landauer and Bennett [10,48] show that the
minimal amount of work for a perfect copy cycle is kB T ln(2). But how does this bound
apply to biochemical networks?

To answer this question it is important to make a formal mapping between cellular sensing
systems and copy operations. As it turns out, cellular copy protocols differ fundamentally
from ideal quasi-static protocols, such as those considered by Landauer and Bennett [10,48].
Copying entails changing the state of thememory,whichmeans that a thermodynamic driving
force must be applied to the system. Thermodynamically optimal protocols increase the
driving force slowly, such that the memory is slowly driven to its new state. In contrast,
in cellular systems the thermodynamic driving force for the reactions that implement the
copy process is typically constant, because the fuel molecules that drive these reactions are
commonly present at constant concentration [59]. As a result, cellular systems face a trade-
off between cost and precision that is both qualitatively and quantitatively distinct from that
required thermodynamically, regardless of parameters [59]. They dissipate more to achieve
the same accuracy. One of the most vivid manifestations of this difference concerns the
Landauer limit itself. One of the surprising, but by now well-known, results of Bennett and
Landauer was that quasi-static protocolsmake it possible to perform repeated copies with 100
% accuracy at only a finite energy cost of, indeed, kB T ln(2) per copy. In contrast, cellular
copy protocols can only reach 100 % accuracy when the cost diverges. For the purpose of
sampling a noisy signal, however, perfect copies are not necessarily ideal. Indeed, as we have
seen in Sect. 5.2, the energetically most efficient approach to record the receptor state is to
take many noisy samples, which together make up one effective sample. For the canonical
push-pull network considered here the minimal cost to take one effective receptor sample
is 2kB T on average if the receptor occupancy is p = 0.5 [38]. For a bi-functional kinase
system, in which the kinase associated with the receptor catalyzes the phosphorylation of
the readout when the receptor is bound to ligand, but dephosphorylation when the receptor
is not bound to ligand, this minimal cost is even lower: 1kB T [59].

6.6 How Resources Determine the Fundamental Sensing Limit: Trade-Offs
Between Equilibrium and Non-equilibrium Sensing

Information processing devices require resources to be built and run. Components are needed
to construct the system, space is required to accommodate the components and energy is
required to make the components and operate the system. These resources constrain the
design and performance of any device, and cellular sensing systems are no exception. Mak-
ing proteins is costly [25]. They also take up valuable space: both the membrane and the
cytoplasm are highly crowded, with proteins occupying 25–75 % of the membrane area
[50] and 20–30 % of the cytoplasmic volume [29]. And many cellular signaling pathways,
including two-component systems in bacteria [74], GTP-ase cycles as in the Ras system [63],
phosphorylation cycles as in MAPK cascades [19], are driven out of thermal equilibrium via
the turnover of fuel. Also the adaptation system that allows E. coli to adapt to a wide range of
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background concentrations is driven out of equilibrium [47]. However, cells also commonly
employ equilibrium motifs, such as protein binding and sequestration. Indeed, as we have
seen, sensing does not fundamentally require energy input [37]. Equilibrium sensing sys-
tems can respond to changes in the environment by harvesting the energy of ligand binding,
thereby capitalizing on the work that is performed by the environment to change the ligand
concentration. Also adaptation does not fundamentally require energy consumption [22].

When does the non-equilibrium sensing strategy outperform the equilibrium one? This
depends on the resources available to the cell, as summarized in Fig. 4. Comparing the bound
for non-equilibrium systems, Eq. 24, with that for equilibrium ones without cooperative
binding, (δc/c)2 ≥ 1/RT , predicts that non-equilibrium systems can sense more accurately
when there is at least one readout molecule available per receptor, and the amount of energy
dissipated per receptor during the integration time is at least 1kB T [37].

Interestingly, evolution may have toggled between equilibrium and non-equilibrium
sensing strategies. Bacteria employ both one- and two-component signaling networks. One-
component systems follow the equilibrium strategy, consisting of adaptor proteins which
can bind an upstream ligand and a downstream effector. Two-component systems are similar
to the non-equilibrium push-pull system considered here, consisting of a kinase (receptor)
and its substrate. Intriguingly, some adaptor proteins, like RocR, contain the same-ligand
binding domain as the kinase and the same effector-binding domain as the substrate of a
two-component system, i.e. NtrB-NtrC [81]. They could thus transmit the same signal. Our
results suggest that these are alternative signaling strategies, selected because of different
resource selection pressures. It is tempting to believe that when sensing precision is impor-
tant, but space for receptors on the membrane is limiting, non-equilibrium sensing becomes
essential, because it makes it possible to take more concentration measurements per receptor.

7 Conclusion

In this review we have focused on sensing concentrations that do not vary on the timescale
of the response of the system. While some questions remain open, such as the importance of
spatio-temporal correlations in both ligand-receptor and receptor-readout binding, the role
of active transport [34] and non-cognate ligands [17,53], this problem is by now fairly well
understood. We understand how the receptor correlation time depends on the diffusion and
binding kinetics of the ligand (although the question of the correlation time of multiple recep-
tors is, arguably, still open), how the effective integration time depends on the lifetime of
the readout molecules and the architecture of the readout network, and how the precision of
sensing depends on the number of receptors, the number of readout molecules, the recep-
tor correlation time, the integration time, and energy. We understand how combinations of
resources impose fundamental sensing limits and what this implies for the optimal design of
cellular sensing systems.

The challenge will be to make a similar leap for systems that do not respond rapidly
on the timescale of variations in the input signal. For these systems, we have to take the
dynamics of the input signal into account. On this front, progress has been made in recent
years. We are now beginning to understand how in these systems information transmission
depends on the lifetime of the readout molecules and on the topology of the readout network
[4,23,24,79], and what the trade-off between energy dissipation and information processing
is [5,6,44,67]. Yet, many questions are still wide open: What is the performance measure
that best descibres the design logic of cellular sensing systems? Is it the average sensing
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error, the instantaneous mutual information, the information transmission rate [79], or the
learning rate [6,44]? What resource combinations impose fundamental sensing limits? Also
new questions arise: How accurately can living cells predict the future input signal [8]? And
what are the thermodynamic costs of cellular prediction [7,73]? The physics of sensing will
remain a fascinating problem for many years to come.
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