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Given a large number (the “flock”) of moving physical objects, we investigate
physically reasonable mechanisms of influencing their orbits in such a way that
they move along a prescribed course and in a prescribed and fixed configura-
tion (or “in formation”). Each agent is programmed to see the position and
velocity of a certain number of others. This flow of information from one agent
to another defines a fixed directed (loopless) graph in which the agents are rep-
resented by the vertices. This graph is called the communication graph. To be
able to fly in formation, an agent tries to match the mean position and veloc-
ity of his neighbors (his direct antecedents on the communication graph) to
his own. This operation defines a (directed) Laplacian on the communication
graph. A linear feedback is used to ensure stability of the coherent flight pat-
terns. We analyze in detail how the connectedness of the communication graph
affects the coherence of the stable flight patterns and give a characterization of
these stable flight patterns. We do the same if in addition the flight of the flock
is guided by one or more leaders. Finally we use this theory to develop some
applications. Examples of these are: flight guided by external controls, flocks of
flocks, and some results about flocks whose formation is always oriented along
the line of flight (such as geese).
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1. INTRODUCTION

In observing large schools of fish or flocks of birds, what strikes us most
is their capability of maneuvering while maintaining the pattern formed by
their bodily positions (up to translation and/or rotation). If the flock is
large enough, it dawns on us that the animals cannot possibly keep track
of the positions and velocities of all the others; on contrary, they must
execute a local algorithm that enables them to stay “in formation” while
the flock as a whole executes its motion or maneuver. In fact, biologically
based models studied in ref. 20 indicate that animals do not keep track of
more than something on the order of ten others. This algorithm must be
such that the configuration is stable against perturbation (such as sudden
wind, etcetera).

While still little appears to be known about the algorithm that ani-
mals actually employ to fly (or run, or swim) in stable configurations (but
see refs. 16, 20), neighbor-based algorithms are now employed to control
the movement of groups of artificial agents (robots, drones, see refs. 10,
13, 15, 23, 25). In order to see how the need for such an algorithm may
arise, we mention the following taken from the literature (see ref. 7). Sup-
pose that many autonomous (not steered by an external source) vehicles
find themselves in an enclosed space with only one relatively narrow exit.
The object is to get all the vehicles to leave the space through the exit
as quickly as possible, with a minimum of computation on the part of
the vehicles, and without collisions. One way to achieve this is to have
the vehicles move a circular formation first, then have the vehicles exit the
through the opening one after the other. We end Section 8 with a simula-
tion of a movement reminiscent of this problem.

The part of the problem we address is how can one achieve that
autonomous agents move towards a formation and, once formation is
attained, how can we ensure it is stable against perturbations. There are
various approaches to achieve this. One of the first ones led to “boids”.(24)

In many of these applications one is not necessarily preoccupied with
actual physical objects, but rather a numerical simulation. In ref. 26, pre-
vious approaches were greatly simplified, but again the equations are not
plausible for physical agents (they are more interested in phase transi-
tions). Fax and Murray(4,5) were among the first to write down equations
that were meant to govern actual physical entities. Our exposition follows
along these lines.

An area of research which is closely related to the theme of this
paper is that of consensus seeking autonomous agents. In this case agents
achieve consensus if their associated variables converge to a common
value. In refs. 17, 18, 21, 23, the convergence to consensus is proved under
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a variety of circumstances. However, in our case the agents, being physical
objects, do not want to coalesce to the same position but to a position
a fixed distance away from its neighbors, and they must satisfy Newton’s
Law.

The algorithm we investigate (following refs. 11, 12, 3) in this paper
has the following ingredients. The individual agents are identical (all do
the same computation). Each individual agent complies with Newton’s
Law in that it changes position and velocity by applying a force or thrust,
which causes it to accelerate in the desired direction. Furthermore, in
order to compute the thrust each agent may use as its input only the fol-
lowing data: its own position and velocity relative to an absolute coordi-
nate system and those of a small (and fixed) collection of neighbors. It
will turn out that in fact only the position and velocity of the others rela-
tive to it will be used except when we wish the flock to accelerate (see the
equations at the end of Section 2). In addition the computation requires
the desired position of each agent in the formation. (Again, the aforemen-
tioned equations show that we only require the relative positions.) Finally,
the algorithm that computes the thrust is only to use affine combinations
of the above quantities, and must, at least for a large collection of initial
conditions, cause the whole system to converge to an in formation orbit,
that is: an orbit of the flock in which all the relative positions have the
desired value.

In the next section we will consider such a model. We will address
two main issues. The first is to decide exactly what kind of coherent
motions the flight of the flock converges to if we choose an appropri-
ate linear feedback. It turns out that this depends on the topology of the
graph whose vertices represent the agents and whose directed edges (i, j)
represent the relation: agent i sends information to agent j in the flock.
Thus in Section 3 we discuss some notions of graph theory. The first main
result, (Theorem 4.4), which specifies the set of asymptotic orbits of the
flock, is a generalization of results obtained by refs. 5 and 12.

The second main issue is essentially new and addresses the question
how to arrange the algorithm that computes the force or thrust applied
by each agent in such a way that the “center of mass” of the flock fol-
lows a specified orbit and the configuration is stable against perturbations
throughout the orbit (see Theorem 5.2). In ref. 12, this issue was addressed
only in the case linear acceleration is desired.

In the remaining sections we simplify the stability calculation for hier-
archies of graphs, extending earlier results of ref. 27 (see Section 7), and
modify the notion of in formation to a biologically more reasonable one
that involves orientable configurations (Section 8). The equation that gov-
erns the evolution of this system is nonlinear. The last section summarizes
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the main lines of thought in this paper, now with the benefit of being able
to use the language developed in the course of this work.

This exposition depends on a theorem stated here (as Theorem 3.6)
but proved in a companion paper(3) since its proof requires quite a few
lemmas unrelated to the main argument here. With this exception, the
theory developed here is self-contained.

2. THE LINEAR MODEL

The individual agents are assumed to move in IRd , so that the dynam-
ical coordinates (position and velocity) of each agent constitute a point in
the tangent bundle T IRd ∼= IR2d . In physical applications (such as buffalo
or drones) d will usually be 2 or 3. The agents are numbered, say, from 1
through N . It is convenient to think of the coordinates of the entire flock
as the graph of a function

C : {1, . . . ,N}→ IR2d

in the product X≡{1, . . . ,N}× IR2d . Indeed we will end up writing a gen-
eral position in X as a (tensorial) sum of the positions of each agent (see
Equations 2.1 and 2.2).

We now choose coordinates in X. A point in z∈X is specified by a
column vector of 2dN real numbers as follows. The position and velocity of
agent j are given by the entries numbered 2d(j − 1)+ 1 through 2dj . The
first of these real numbers specifies the first of its position coordinates (the
x-coordinate) and the second specifies the first of the velocity coordinates.
The third entry is the second position coordinate, and so on alternatingly.

It turns out that the Kronecker product (⊗) provides us with the ade-
quate description of the space X. Using this product, we can write an
arbitrary point z∈X as

z=
N∑

i=1

ei ⊗ρi, (2.1)

where ei is an N -vector with a single 1 in the k-th entry as its only non-
zero entry and ρi is the position-velocity vector of the i-th agent. Alterna-
tively, if we wish to specify the position xi and velocity vi of the individual
agent separately, we can write

z=
N∑

i=1

ei ⊗
(
xi

(
1
0

)
+vi ⊗

(
0
1

))
. (2.2)
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Each agent is assigned a desired position hi ∈ IRd in the flock. (We
can also assign a desired velocity, but the only choice for a stabilizable in
formation state turns out to be a velocity that is the same for all agents,
see Section 5.) We thus obtain a vector h as follows:

h=
N∑

i=1

ei ⊗hi ⊗
(

1
0

)
.

This vector is the desired configuration vector.

Definition 2.1. The orbit φ : IR→X of the flock is said to be in for-
mation if it is given by

φ(t)=h+
N∑

i=1

ei ⊗α=h+1N ⊗α,

for some function α : IR→ IR2d of the form

α=q⊗
(

1
0

)
+p⊗

(
0
1

)
and p= dq

dt
,

where 1 denotes the N -dimensional vector of all ones.

Each agent is allowed to see only some of its colleagues (its
neighborhood) and applies the same linear feedback as the others. This
neighborhood does not vary. The agent continually averages its neighbors’
positions and velocities, then subtracts that from its own. It then com-
pares this with the desired outcome of that calculation (namely, the same
operation performed on the hk). Thus if agent k has agents i and j as its
neighbors, it calculates the d-dimensional vector (xk −hk)− 1/2(xi −hi)−
1/2(xj −hj ) and another one, vk−1/2vi −1/2vj . The operation that does
this for each agent will be called the (directed) Laplacian. The agent is
then allowed to compute linear combinations of the components of this
2d-dimensional vector and use these to determine its thrust. Finally, we
allow the agent to correct its orbit using linear combinations of its own
position-velocity vector.

As an example, consider a flock in IR3 so that agent i has posi-
tion (xi, yi, zi), velocity (ui, vi,wi), and desired position (hx,i , hy,i , hz,i).



906 Veerman et al.

Assume that agent 1 sees only agents 2 and 3. The equations of motion
for agent 1 become (with some further assumptions, see below).

ẋ1 = u1

u̇1 = au1 +f
(
(x1 −hx,1)− 1

2
(x2 −hx,2 +x3 −hx,3)

)
+g

(
u1 − 1

2
(u2 +u3)

)

ẏ1 = v1

v̇1 = av1 +f
(
(y1 −hy,1)− 1

2
(y2 −hy,2 +y3 −hy,3)

)
+g

(
v1 − 1

2
(v2 +v3)

)

ż1 = w1

ẇ1 = aw1 +f
(
(z1 −hz,1)− 1

2
(z2 −hz,2 + z3 −hz,3)

)
+g

(
w1 − 1

2
(w2 +w3)

)

These equations are invariant under Galilean transformations only if a=0.
The parameter a and other similar parameters in this model (the matrix
A4 in the remark after Theorem 4.2) are parameters that can used by a
central authority to ‘steer’ the orbit of the flock as a whole. A few exam-
ples of this will be discussed in Section 5.

In a more compact notation using the Kronecker product for matrices
as well, we can write the above equations of motions for the whole system
very succinctly in the following way.

Definition 2.2. With the above conventions, the equations of motion
of the flock are:

ż= IN ⊗Az+LN ⊗K(z−h). (2.3)

Here IN is the N × N identity matrix and LN is the N × N (directed)
Laplacian matrix (see Section 3). The matrices A and K are assumed to
be constant. The matrix K may be chosen to stabilize in formation orbits
(see below).

The matrix K is essentially a linear filter. To obtain the equations of
the above example (these are the equations studied by ref. 12), we chose
A and K to have a particularly simple form, namely:

A=

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 a 0 0 0 0
0 0 0 1 0 0
0 0 0 a 0 0
0 0 0 0 0 1
0 0 0 0 0 a

⎞

⎟⎟⎟⎟⎟⎠
and K=

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
f g 0 0 0 0
0 0 0 0 0 0
0 0 f g 0 0
0 0 0 0 0 0
0 0 0 0 f g

⎞

⎟⎟⎟⎟⎟⎠
.
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The origin of the matrix K in equation 2.3 is in a control theoretic
formulation of this problem, of which an extensive discussion can be
found in ref. 5. The thought underlying the last term of equation 2.3 is
that each agent performs two computations. Agent k filters its data by
applying the 2d × 2d matrix K to its own 2d components of the vector
z−h (the vector zk−hk), and it applies the k-th row of the Laplacian LN
to the flock (this computation involves only data from the agents it sees
directly). That said, we should remark that the order in which these oper-
ations are executed is irrelevant, since:

(LN ⊗ I2d)(IN ⊗K)= (IN ⊗K)(LN ⊗ I2d).

Thus we may think of the agents as computing the Laplacian before fil-
tering their output. Since the output of the computation gives the acceler-
ation, we can think of K as a feedback. This is also the approach taken
by ref. 5.

In Section 8, a model will discussed in which each hi is rotated by the
angle in which agent i is flying. This has the advantage that the formation
as a whole can orient itself. However, the resulting equation is nonlinear.

As a final remark in this section, we should point out that the main
conclusions are valid if we replace the above Laplacian by a weighted ver-
sion of it: the diagonal entries equal 1, all other entries are non-positive,
and row-sums are zero. We do not pursue this here in the interest of
readability (but see ref. 3).

3. THE LAPLACIAN IN GRAPH THEORY

Throughout this paper we focus on the problem of a fixed communi-
cation graph. While in the biological setting the ‘neighbors’ change, there
is a substantial analysis to be done in this case as the next few sections
demonstrate. Moreover, in the context of controlling robots, unmanned
vehicles, or satellites, a fixed communication is quite natural and suitable
for designing coordination control algorithms.

In this section we give the definitions of some graph theoretic notions
relevant to the development of the theory of the model discussed in the
Section 2. We mention a characterization of the (right) eigenspace asso-
ciated with the eigenvalue zero for a Laplacian on an arbitrary graph
(Theorem 3.6). At the end of the section we also discuss an example that
we will use throughout the text.

As was discussed in the previous sections, each agent i receives infor-
mation from a fixed collection of agents distinct from it. This collection is
denoted by N (i), the neighborhood of i.
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Definition 3.1. An agent at v is called a leader if N (v)=∅.

Definition 3.2. The communication graph G is the (directed and
loopless) graph whose i-th vertex represents agent i and that has a
directed edge from j to i if and only if j ∈N (i).

Recall that a graph is called loopless if no edge connects a vertex to
itself. The in-degree matrix D and the adjacency matrix Q are given as fol-
lows. The matrix D is diagonal and its only non-zero entries are given by

dii = card(N (i)) if N (i) �=∅.

Denote by D+ the diagonal matrix whose only non-zero entries are given
by

dii =1/card(N (i)) if N (i) �=∅.

(This is sometimes called the pseudo-inverse of D.) The adjacency matrix
Q is the matrix whose only non-zero elements are given by

qij =1 if j ∈N (i).

Definition 3.3. The directed Laplacian associated with the graph G

is given by

L≡D+(D−Q).

A few remarks are in order. With this definition the Laplacian on a
regular 2-dimensional lattice is a negative multiple of the standard discret-
ization of the Laplacian (which would correspond to Q−D). (There are
other conventions possible, the choice essentially dictated by convenience.
For instance: in ref. 12, we chose to follow a different convention, namely:
L=D−Q.)

For future reference we observe at this point that if agent i is a leader,
then the i-th row of the Laplacian consists of zeroes.

We are interested in the spectrum of this Laplacian. Many things are
known about the spectrum of the undirected Laplacian (see ref. 7 for an
in-depth treatment, and ref. 3 for some facts relevant to the current situ-
ation). The most familiar statement of these is undoubtedly that if G is
undirected and connected the spectrum L is real and contained in [0,2]
and moreover the eigenvalue zero has algebraic and geometric multiplicity
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1. Its associated (right) eigenvector is (a multiple of) 1, the vector whose
entries are equal to 1.

In ref. 12, we proved an extension of this, namely if G is a loopless
directed graph, then zero is an eigenvalue with algebraic and geometric
multiplicity 1 if and only if G has a rooted, directed spanning tree. The
latter means that G has a vertex v such that there is a directed path from
v to every other vertex in G. In Theorem 3.6 below, we will give the mul-
tiplicity of the zero eigenvalue and characterize its associated eigenvectors
for arbitrary directed graphs. The proof of this result will be published in
a forthcoming paper.(3) First we need some notation.

Given any vertex v in G, the reachable set R(v) is the union of v and
the collection of vertices j so that there is a directed path from v to j .

Definition 3.4. A reach R is a maximal reachable set in G, that is:
a collection R is a reach if it equals R(v) for some v ∈G and if there is
no �∈G so that R(v)⊂R(�) (properly).

Notice that whenever a v is a leader, R(v) must be a reach. Further,
a strongly connected graph has exactly one reach. However, a weakly con-
nected graph may have more than one reach and if that is the case the
reaches cannot all be mutually disjoint. It is not hard to see that one can
always write a finite graph G as a finite union of reaches G=∪k

i=1Ri , and
that for a given graph G the collection {R1, . . . ,Rk} of reaches is unique
(up to permutation).

Definition 3.5. Let {R1, . . . ,Rk} denote the reaches of G. The com-
mon part Ci of the i-th reach Ri is defined as

Ci ≡Ri ∩{∪j �=iRj }.

The complement of the common part Ci in the reach Ri will be referred
to as the exclusive part Hi .

Note that for any given reach Ri , its common part Ci may be empty, but
the exclusive part Hi is not.

As an example we give the adjacency matrix Q and the associ-
ated (directed) Laplacian of a connected graph with 5 vertices whose
reaches are given by R1 ={1,2,3,4} and R2 ={3,4,5} with exclusive parts
H1 ={1,2} and H2 ={5}.

Q=

⎛

⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0
1 0 0 1 0
0 0 1 0 1
0 0 0 0 0

⎞

⎟⎟⎟⎠ and L=D+(D−Q)=

⎛

⎜⎜⎜⎝

0 0 0 0 0
−1 1 0 0 0
−1/2 0 1 −1/2 0
0 0 −1/2 1 −1/2
0 0 0 0 0

⎞

⎟⎟⎟⎠.
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The Laplacian acts from the left on vectors. We will consider these
vectors as functions from the vertices of the graph G to C.

Theorem 3.6. Let L be the (directed) Laplacian matrix associated
with a loopless graph G with N vertices and exactly k reaches. Then the
eigenvalues of L are contained in the closed unit disk in the complex plane
centered on 1. The algebraic and geometric multiplicity of the eigenvalue
zero equals k. Its associated eigenspace has a basis γ1, γ2, . . . , γk in IRN

whose elements γi satisfy: (i) γi(v)= 0 for v ∈G−Ri; (ii) γi(v)= 1 for v ∈
Hi; (iii) γi(v)∈ (0,1) for v∈Ci; (iv)

∑
i γi =1N .

Proof. The first part of the statement is a straightforward application
of Gershgorin’s Theorem (see ref. 2). The second and third are extensions
(proved in ref. 3) of the well-known theorem that asserts that the Lapla-
cian of a connected undirected loopless graph has a unique zero eigenvalue
(for example, see ref. 2 or 7) whose associated eigenvector has constant
entries.

Remark. One can in fact easily solve for γi |Ci and give an explicit for-
mula for it. Since this would involve some definitions we refer the reader
to ref. 3.

Remark. If the number of reaches in the graph is one, the graph has
a spanning tree, and conditions (i) through (iv) reduce to the case where
the nullspace is spanned by the all ones vector.

4. FORMATION AND STABILITY

In this section we analyze the behavior of the solutions of the sta-
bilized (see Definition 4.3) system. The main result (Theorem 4.4) is that
K can be chosen so that we can identify a set W of solutions associated
with the zero eigenvalue of the Laplacian and such that every solution is
asymptotic to a solution in W (stability is global since Equation 4.3 is lin-
ear). The set W is characterized in terms of the connectivity properties of
the underlying communication graph. In particular if the graph has pre-
cisely k reaches then the set W has dimension 2dk: for each reach, one
can specify a position and velocity.

The separation of the momentum from the position parts of any
vector is done for physical reasons: We want to maintain the relation
ẋk=vk for each agent. This leads to the following specifications: For each
agent we have

ρi =xi ⊗ e1 +vi ⊗ e2 where e1 =
(

1
0

)
and e2 =

(
0
1

)
.
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Similarly, for any 2d by 2d matrix C

C=
4∑

i=1

Ci ⊗Ji, (4.1)

where the matrices Ji are defined by:

J1 =
(

1 0
0 0

)
J2 =

(
0 1
0 0

)
J3 =

(
0 0
1 0

)
J4 =

(
0 0
0 1

)
.

The meaning of this decomposition is that C1 pairs position-like
entries with position-like entries, C2 pairs position with velocity, and so
on. We will use this decomposition whenever necessary, so that A and K

for example have decompositions in terms Ai and Ki , respectively.
If we want to maintain the relation ẋk=vk together with equation 2.3

it is easy to see that we must require the following.

Remark 4.1. For physical reasons we define A1 = 0, A2 = Id , and
K1 =K2 =0.

To formulate the next few results, it will be convenient to define new coor-
dinates z. Define

y= z−h−1N ⊗α or

z=y+h+1N ⊗α=y+h+1N ⊗
(
q⊗

(
1
0

)
+p⊗

(
0
1

))
. (4.2)

In the following statement we show, among others, that if we allow h to
have position AND velocity-like components, we can without loss of gen-
erality choose the velocity-like components to be zero. So for the purpose
of the following proposition alone set

h=
N∑

k=1

ek ⊗
(
ξk ⊗

(
1
0

)
+ηk ⊗

(
0
1

))
.

Proposition 4.2. Given N agents equipped with a fixed communi-
cation graph. Then

i): The system given by Equation 2.3 admits an in formation solu-
tion for every desired constant configuration {ξk}Nk=1 if and only if A3 = 0
and (without loss of generality) all the ηk are 0.
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ii): In formation, the position and velocity of the system as a whole
satisfy

q̇ = p

ṗ = A4p

Proof. We start by proving the ‘only if ’ part of item i). Use the
above coordinate transformation to eliminate z. Clearly, if the system is in
formation then y=0. Upon setting y=0 and using that LN ·1=0, Equa-
tion 2.3 becomes:

ḣ+1N ⊗ α̇=1N ⊗ (Aα)+ IN ⊗Ah+0.

Using the above notation together with the hypothesis that ḣ=0, we get

1⊗
[
q̇⊗

(
1
0

)
+ ṗ⊗

(
0
1

)]
=1⊗

[(
4∑

i=1

Ai ⊗Ji
)(

q⊗
(

1
0

)
+p⊗

(
0
1

))]

+
N∑

k=1

ek ⊗
[(

4∑

i=1

Ai ⊗Ji
)(

ξk ⊗
(

1
0

)
+ηk ⊗

(
0
1

))]

From this it is clear that the terms in the last set of square brackets do
not depend on the index k. This is only possible if for all k, the 2d-vec-
tor (ξk−ξ1)⊗e1 is in Ker(

∑4
i=1Ai⊗Ji), and by assumption, this can only

happen if A3 =0. On the other hand, recall that, for physical reasons, we
assumed that A2 =Id (see Remark 4.1). Then for the same reason we must
have that the differences of the ηk must all be zero. Thus (for all k) we
set ηk equal to η0. Without loss of generality, the resulting term can be
absorbed in the p-term of the equation. Now notice that the last term (the
one containing ek) is zero and the ‘only if ’ part of i) follows.

The ‘if ’ part of the first statement and the second statement of the
theorem follow directly from writing out the resulting equations.

Remark. In the case that A4 �= 0, the equations do not respect Gali-
lean invariance; the agents observe their velocity with respect to the ground
and accelerate accordingly. Also if the diagonal entries of A4 are all equal,
the agents do not change direction while they accelerate. (In that case
the acceleration depends only on the groundspeed.) We will assume from
now on that all ηk are zero. Note, though, that the a priori given off-set
h needs to be evaluated in the original coordinate system (see however
Section 8).
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In the following theorem we assume that we are given N agents
equipped with a fixed communication graph with k reaches. Use the
notation {γi}i∈{0,...k} for a fixed set of eigenvectors associated with
the zero eigenvalue of the Laplacian of the communication graph (see
Theorem 3.6). Let {λi}Ni=k+1 be the non-zero eigenvalues of LN .

Definition 4.3. The system given by Equation 2.3 is called stabiliz-
able if K can be chosen such that for each non-zero λ in the spectrum
of L, all eigenvalues of A+λK have real part strictly less than zero (and
stabilized if K has been chosen this way).

Theorem 4.4. Suppose the system given in Equation 2.3 is stabi-
lized. Then every orbit is asymptotic to an orbit in h + V where V is
the space of linear combinations of {γi ⊗ρj }i∈{0,...k},j∈{1,...2d}, where the γi
span Ker(L) and are as in Theorem 3.6 and the ρj are 2d independent
solutions of ρ̇j =Aρj as in Proposition 4.3.

Remark. Recall that the vectors γi can be explicitly calculated from
the Laplacian.

Proof. By Proposition 4.2 we know that in formation solutions
exist. So, choose α so that α̇ = Aα. After the coordinate change given
in Equation 4.2, Equation 2.3 becomes a 2dN -dimensional autonomous
ordinary linear differential equation of the form:

ẏ= IN ⊗Ay+LN ⊗Ky≡My. (4.3)

The solutions eMty0 of this system form a 2dN -dimensional linear space.
As is well-known the components of any solution y(t) is a sum of terms
of the form (see ref. 1): p(t)eµt , where µ is an eigenvalue of M and p is
a polynomial in t whose degree is less than the geometric multiplicity of
that eigenvalue.

Next observe that IN and LN are simultaneously triangularized by
conjugating M with U ⊗ I2d where U brings L into upper triangular form
(see also ref. 12). One easily verifies that

(U−1 ⊗ I2d)(I ⊗A+L⊗K)(U ⊗ I2d)

is block upper triangular and that its diagonal blocks are of the form A+
λK, for λ an eigenvalue of L. The hypothesis in the Theorem now implies
that if φ(t) is a solution that can be written as a linear combination of
exponentials involving only eigenvalues of A+λK for λ non-zero, then it
is a linear combination of decaying eigen solutions.
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On the other hand, assume that φ(t)= γi ⊗ ρj and substitute into
Equation 4.3. One obtains:

γi ⊗ ρ̇j =γi ⊗ (Aρj ).

In accordance with Proposition 4.2, this gives us 2d linearly independent
solutions for each i.

Definition 4.5. A set W of solutions φ : IR → X is called locally
stable if every solution starting nearby is asymptotic to a solution in W .
The set W is globally stable if this is true for every initial condition. W
is minimal and stable if it has no proper subset satisfying the same (local)
condition. (In the non-autonomous case, consider sets of solutions φ : IR→
X×R in the extended phase-space.)

Note that the standard notions of “attractor” do not easily apply in
this case due to the lack of compactness of the involved spaces. (For a
detailed discussion of these and related concepts, see ref. 14).

With the above definition we can thus summarize the main result
of this section (Theorem 4.4) as follows: if the system is stabilized, then
we can identify a stable set associated with the zero eigenvalue of the
Laplacian of the communication graph. The proof that (for a large set of
constant matrices A) a system given by Equation 2.3 can be stabilized will
be taken up in the next section.

As an example of the ideas in this section, consider a system of 5
agents on the line (IR). In this case the matrix A4 is a scalar a. Suppose
also that h is given by

h=

⎛

⎜⎜⎜⎝

0
1
2
3
4

⎞

⎟⎟⎟⎠⊗
(

1
0

)

and furthermore that its Laplacian L is the one given in the example at
the end of Section 3. Since this graph has two reaches, the eigenspace cor-
responding to the zero eigenvalue is two-dimensional. It is easy to verify
that it is spanned by
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γ1 =

⎛

⎜⎜⎜⎝

1
1

2/3
1/3
0

⎞

⎟⎟⎟⎠ and γ2 =

⎛

⎜⎜⎜⎝

0
0

1/3
2/3
1

⎞

⎟⎟⎟⎠.

Thus if a �=0 the set V of linear combinations of {γ1, γ2} Kronecker-mul-
tiplied with vectors of the form

{(
q0 − p0

a

)(1
0

)
+ p0

a

(
1
a

)
eat
}

form a 4-dimensional stable linear space of solutions to Equation 4.3 with
initial condition ρ(0)= (q0, p0). (If a=0, the matrix A is a Jordan matrix
of order 2 with associated eigenvalue 0, and we get a degree one polyno-
mial in the second term.) The set h+V is a stable set for Equation 2.3. It
is the unique minimal stable set only if a�0. If a<0 the (unique) minimal
stable set is given by h+V together with the condition that p0 =0.

With this notation we see that the last theorem reduces to specifying
a (globally) stable set. Note that generally this is a set much bigger than
the set of in formation solutions. However, there is a special case discussed
earlier in the literature (see Introduction) which immediately follows from
this.

Corollary 4.6. Suppose the system given in 2.3 is stabilized. Then
the set of in formation solutions is globally stable if and only if its com-
munication graph of G has exactly one reach.

For instance a (loopless) connected undirected graph always has one
reach, and thus the above corollary applies to it (see also ref. 12). Again,
minimality applies in a more restricted set of circumstances.

5. THE PROOF OF STABILIZABILITY AND APPLICATIONS

The matrix A in Equation 2.3 can be used to steer the flock according
to Proposition 4.2 (provided we can stabilize the system). In this section
we give the proof that for various important choices of A, the system
can indeed be stabilized by choosing K3 and K4 appropriately. The free-
dom of choice is sufficient to linearly accelerate the formation or steer it
along circular arcs, thus permitting great freedom in the advance program-
ming of the orbit. We show this by choosing the entries of K3 and K4
appropriately and showing that Equation 2.3 is stabilized and then apply
Theorem 4.4.
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In this section we will use the following notation:

ε≡ min
λ∈spec(L)−{0}

{Re(λ)}>0.

We will also decompose matrices as before (see Equation 4.1). Denote the
diagonal elements of A4 by am ∈ IR, those of K3 by fm ∈ IR and those of
K4 by gm∈IR (where m ranges between 1 and d). In the following proposi-
tion, the orbit is steered by the matrix in accordance with Proposition 4.2;
we prove that there is a filter K such that the flock flies in formation for a
large set of matrices A. (The matrix A4 is time independent. If we allow it
to be time dependent, stability is a much more complicated issue.) A more
general statement is given in the main result of this section, Theorem 5.2.

Proposition 5.1. Suppose A4, K3, and K4 are diagonal. Given A4,
the system can always be stabilized by setting (gk, fk) so that for all k ∈
{1, . . . , d}:

fk <0
gk <0

fk >−gk(εgk +ak)
.

Proof. First, notice that the conditions of the theorem are equiva-
lent with the statement that:

fk <0
gk <0

ε >max
{
−fk+agk

g2
k

,0
}
.

(5.1)

It follows from the proof of Theorem 4.4 that the fundamental modes
of Equation 4.3 not associated with the zero eigenvalue of the Laplacian
decay as eνt , where ν is the real part of the eigenvalues of A+λK for λ∈
spec(L)\{0}. According to this and Remark 4.1, we obtain for the stability
calculation:

A+λiK = Id ⊗J2 +λiK3 ⊗J3 + (A4 +λiK4)⊗J4

=
d∑

k=1

Ek ⊗
(

0 1
λifk ak +λigk

)
,

where Ek is the d × d matrix whose only non-zero entry is 1 at the k-th
location on the diagonal. For brevity we now drop the subscript k for the
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course of this proof. We need to make sure that for any given a, we can
choose f and g such that for all λ∈ spec(L)−0⊂ ({1}+B1)\{0}, the roots
x± of

x2 − (a+λg)x−λf =0 (5.2)

have negative real part.
Our argument relies on continuity. Since

x± =a+λg±
√
(a+λg)2 +4λf ,

we see (using Equation 5.1) that if λ=λ0 ∈ IR+ and very large then both
roots have negative real parts. Suppose that for some λs in the spectrum of
L one of the roots x± of the above characteristic polynomial has positive
real part. Then (by the Intermediate Value Theorem) there must be a value
λ on the segment connecting λ0 and λs such that one of the roots has real
part zero. Upon substitution of x± = iτ where τ is real, into that polyno-
mial, one easily sees that:

∃ τ ∈ IR such that λ = −τ(τ + ia)
(f + igτ )

= − (f +ag)
g2

g2τ 2

f 2 +g2τ 2
+ i(Imaginary Part).

Since by construction Re(λ) >Re(λs)� ε, this contradicts Equation 5.1.
Thus for any λs in the spectrum of L (except 0) the associated eigenvalues
have negative real parts.

Remark. The above criterion is sufficient but not necessary. It could
for instance be improved by using the fact that the imaginary part of λ has
modulus less than or equal to 1. It is in fact possible to get a necessary
and sufficient criterion (as was done in ref. 12): Multiply the above char-
acteristic polynomial with its conjugate and then use the Routh-Hurwitz
Theorem which gives necessary and sufficient conditions for a polynomial
with real coefficients to have roots with negative real parts. However, our
current method has the advantage of giving very concise sufficient criteria.

Remark. An alternative approach yields an optimal result. The price
one pays is that the resulting criterion is very unwieldy. We outline it here.
It is easily checked that Equation 5.2 with a= 0 has roots with negative
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real parts if and only if f <0 and g<0. Set x= iτ and λ=λr + iλi . When
a �=0, that equation has roots with negative real parts if and only if

a=−λif
τ

−λrg+ i
(
λrf

τ
−λig+ τ

)
.

Since a is real, the imaginary part must be zero. This yields a quadratic
equation in τ . If that equation has real roots τ±, define I (τ±) be the max-
imal open interval containing zero and not containing −λif

τ± −λrg. In this
case we get a condition of the form: If a is in the intersection of the
intervals I (τ±), then Equation 5.2 has roots with negative real part. Fur-
thermore, of all intervals containing zero, this intersection is the maximal
interval with that property.

From the above we see that the matrix A4 can be used to affect veloc-
ity changes. If the system at time t=0 is supposed to have ‘average’ veloc-
ity p0 and p1 at time t=1, then one has

p1 = exp(A4)p0.

Since A4 is assumed to be diagonal its elements can easily be calculated.
There are two problems with this. First, for diagonal A4, the above equa-
tion implies that the components of the average velocity cannot change
sign. Second, this acceleration is exponential and so for any physical
object can be maintained only for short times. The following result indi-
cates how in addition to the above, in formation maneuvers can be made
that change the direction of the flock’s motion into any arbitrary other
direction. Note that it is sufficient to prove that one can describe circles
in a plane. Without loss of generality we may thus prove this theorem for
d=2. In the Theorem, set K3 =f I2 and K4 =gI2.

Theorem 5.2. Fix some a0>0. Assume that K is as in Proposition
5.1 with ak replaced by a0. Then

i): If A4 is diagonal and its diagonal entries ak satisfy |ak| < a0,
then each component stably accelerates (or decelerates) according to v(t)=
v(0) eat where |a|�a0, or

ii): If A4 =
(

0 −k
k 0

)
and |k|�2

√
|1+ ε g2

f
| · |εf | �=0, then the formation

stably describes circles at constant speed v0 �=0, with curvature κ=k/v0.

Proof. The first part of the theorem is of course the same as the
previous proposition.
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We may assume that v0 �= 0. The conditions of Proposition 5.1 imply

that
√

|1+ ε g2

f
| · |εf | �=0.

We begin by recalling that a curve z(t) in the complex plane
parametrized by arc-length satisfies:

z̈= ik(t)ż.

Here k is a real function and its absolute value is equal to the curvature.
(In fact the curve is uniquely determined by k(t) and an initial condition
(z(0), ż(0)).) If the curve is such that (as in our case) |ż(t)|= v0, then the
curvature equals |k|/v0. We have chosen the convention that z̈ makes an
angle of +π/2 with the tangent-vector ż to the curve. Of course, we take
k to be constant (to avoid having to deal with a non-autonomous system
of equations). Now call the real direction x and the imaginary direction y
and call the components of a tangent vector (v,w). Then we can translate
this as follows (using 2 spatial and 2 velocity components):

d

dt

⎛

⎜⎝

x

v

y

w

⎞

⎟⎠=

⎛

⎜⎝

0 1 0 0
0 0 0 −k
0 0 0 1
0 k 0 0

⎞

⎟⎠

⎛

⎜⎝

x

v

y

w

⎞

⎟⎠ .

This corresponds to setting

q̇ = p

ṗ = A4p
where A4 =

(
0 −k
k 0

)
.

We obtain as before that

A+λiK= Id ⊗J2 +λiK3 ⊗J3 + (A4 +λiK4)⊗J4.

But now A4 is not diagonal. Recalling the assumptions on K3 and K4 and
denoting the eigenvalue λi by λ, it is easy to see that

A+λK=

⎛

⎜⎝

0 1 0 0
λf λg 0 −k
0 0 0 1
0 k λf λg

⎞

⎟⎠ .

It follows upon inspection of A+λK that the eigenvalues x of A+λK are
determined by the zeros of the following polynomial equation:

k2x2 + (x2 −λgx−λf )2 =0. (5.3)
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Now if k=0, Proposition 5.1 affirms that all roots have negative real part.
As before, the argument relies on the Intermediate Value Theorem.

The second statement of the theorem is false if and only if there is an
intermediate value for k such that x± = iτ (where τ ∈ IR) is a solution of
the above equation. Now τ = 0 together with the conditions of Proposi-
tion 5.1 lead to a contradiction. So, since τ �= 0, the above equation now
becomes

k2 =
(
τ + iλg+ λf

τ

)2

.

Set λ=λr + iλi . Since k is real, we must have that τ + iλg+ λf
τ

is real. This
gives

λi =−gτ
f
λr, (5.4)

and so:

k=±
((

1+ g2λr

f

)
τ +λrf 1

τ

)
. (5.5)

Using the inequalities in the conditions of Proposition 5.1 (note that f +
εg2>−a0g=0) and the fact that λr ∈ [ε,2], one sees that both coefficients
of this rational function of τ are negative. It is then a straightforward cal-
culation to show that the minimum of |k| as a function of τ is twice the
square root of the product of these coefficients. Thus

if ∀λ∈ spec(L)−{0} : |k|�2

√

|1+Re(λ)
g2

f
| · |Re(λ)f | �=0,

then for those values of λ equation 5.3 cannot have a root. This yields the
estimate for k. The theorem follows by noting that the curvature κ is given
by the value of k divided by the velocity of the flock.

Remark. The configuration of the flock during the manoeuver
described in the second part of the theorem does not change. Each agent
in the flock follows a translate of the same path. Thus the formation itself
does not change its orientation.

Remark. One may get a stabler system if one allows the matrices K3
and K4 to have non-zero off-diagonal elements as well.
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Remark. One can use Equation 5.4 to eliminate τ from Equation 5.5.
This immediately leads to a sharper (if less concise) criterion. The forma-
tion stably describes circles if and only if for all λ=λr + iλi ∈spec(L)−{0}:

|k|�−f
g

λi

λr
−gλi −gλ

2
r

λi

This is derived by the Routh-Hurwitz method in ref. 28.
Let us return to the example at the end of Section 4. Since it deals

with agents on line, we cannot make turns. However, Theorem 5.1 still
applies. Now it is again straightforward to convince oneself that the char-
acteristic polynomial of its Laplacian (given at the end of Section 3) is

ξL(x)=−x2
(
x− 1

2

)
(x−1)

(
x− 3

2

)
.

For the formation to remain intact at accelerations less than or equal to
1 (in absolute value), we must choose the filter K such that

K=
(

0 0
f g

)
where

f < 0
g < 0
f > −g(g2 +1)

.

For example, f =−1 and g=−4 works.

6. FLOCKS WITH INDEPENDENT LEADERS

In this section we analyze the behavior of a (stabilized) flock as it
tries to follow one or more leaders whose orbits are prescribed functions
of time (independent of the orbits of the other agents). Such leaders are
called independent. The theory in the previous sections allows for the pres-
ence only of dependent leaders (see below). Here we extend that theory in
the sense that we assume there is at least one independent leader.

The equations of motion for the position x� and velocity v� of a
leader (see Definition 3.1) at vertex � are given by (compare also with the
explicit equations at the end of Section 2)

ẋ�=v� and v̇�=A4v�. (6.1)

Recall now that each reach of the communication graph has at most one
leader. We will now assume that at least one of the leaders will follow an
a priori given orbit instead of its orbit being determined by Equation 6.1
plus an initial condition. More precisely:
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Definition 6.1. An agent at � is called an independent leader if it is
a leader and if, instead of by Equation 6.1, its orbit is determined by an
a priori given differentiable function ψ� : IR→ IRd :

x�≡ψ�(t) and v�≡ ψ̇�(t) or z�(t)≡ψ�(t)⊗
(

1
0

)
+ ψ̇�(t)⊗

(
0
1

)
.

A leader that is not independent will also be called a dependent leader and
its orbit satisfies Equation 6.1.

Assume we have N +k agents of which k are independent leaders. The
vertices representing independent leaders will be denoted by L. Without loss
of generality we can assume that the desired position for an independent
leader is zero: for �∈L we have h�=0. The vertices not in L will be denoted
by 1 through N . Remove from the Laplacian LN+k those rows that corre-
spond to independent leaders and in the resulting N by N + k matrix write
the column corresponding to the i-th vertex of this matrix as Li . (These col-
umns are considered as vectors below.) Now denote by P =PN the “reduced
(directed) Laplacian” obtained by subsequently also removing the columns
that correspond to the independent leaders. Thus the i-th column of PN cor-
responds to the vertex i which by assumption is not an independent leader.
With a slight abuse of notation we will again use z for the position-velocity
vector of agents 1 through N . With this notation, it is straightforward to
verify the following lemmas (see also the example that follows the lemmas).

Lemma 6.2. With the above notation (L the set of independent
leaders), the equations of motion become:

ż= IN ⊗Az+PN ⊗K(z−h)+
∑

�∈L
L�⊗ (Kz�(t)). (6.2)

Performing the coordinate change y= z−h again, and making some
obvious abbreviations, the above equation of motion reads:

ẏ= (IN ⊗A+PN ⊗K)y+g(t)=My+g(t). (6.3)

Lemma 6.3. The characteristic polynomials of LN+k and PN sat-
isfy: xkχP (x)=χL(x) where k=|L| is the number of independent leaders.

Let us illustrate these ideas with our (by now) standard example. In
it, rows (or columns) 1 and 5 correspond to leaders. Let us assume that
both are independent leaders and that their orbits are determined by the
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functions ψ1 and ψ5 respectively. The equations of motion become (after
relabeling rows 2, 3, and 4 of the old Laplacian L5, to become rows 1, 2,
and 3 of the reduced Laplacian P3):

ż = I3 ⊗
(

0 1
0 a

)
z+

⎛

⎝
1 0 0
0 1 − 1

2
0 − 1

2 1

⎞

⎠⊗K(z−h)+
⎛

⎝
−1
− 1

2
0

⎞

⎠⊗
(
K

(
ψ1
ψ̇1

))

+
⎛

⎝
0
0

− 1
2

⎞

⎠⊗
(
K

(
ψ5
ψ̇5

))
.

Note that z and h now have 3 position-like and 3 velocity-like coor-
dinates. In this example every original reach has a leader which is now
independent. Observe that P has no zero eigenvalue. Since we can choose
K such that the original system is stabilized, and by the last lemma, P3’s
eigenvalues are identical to the nonzero ones of L5, we expect I3 ⊗A+
P3 ⊗K to have negative eigenvalues for the same choice of K (discussed at
the end of Section 5). A stable set of solutions is thus given by the “par-
ticular solution” to the non-homogeneous equation (all other solutions are
asymptotic to it).

This example illustrates the general principle we state in the next
theorem. We assume that we are given N +k agents, of which k are inde-
pendent leaders denoted by L, equipped with a fixed directed loopless
communication graph G. Let G=∪k

i=1Ri be the unique union of reaches
of G (Definition 3.5). Index the reaches and let I denote the set of indices
for which the following is true:

i ∈I ⇔ Ri contains no independent leader.

Use the notation {γi}i∈I for a fixed set of eigenvectors associated with
the zero eigenvalue of the Laplacian of the communication graph (see
Theorem 3.6).

Theorem 6.4. Suppose K is chosen such that the original Laplacian
system is stabilized. Let yp(t) be any particular solution of Equation 6.2.
Then every orbit is asymptotic to an orbit in h+yp(t)+V where V is the
space of linear combinations of {γi ⊗ρj }i∈I,j∈{1,... ,2d}, where the γi are in
the span of Ker(LN+k) and are as in Theorem 3.6 and the ρj are 2d inde-
pendent solutions of ρ̇j =Aρj as in Proposition 4.2.

Remarks. We point out that the set h+ yp(t)+ V identified in the
theorem is a minimal (globally) stable set. Note also that if I is empty,
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we have the situation of the example, and all solutions will be asymptotic
to the sum of h+yp(t).

Proof. Do the substitution to obtain Equation 6.3. The general
solution of that equation is given by (see refs. 1, 9)

y(t)= eMty(0)+ eMt
∫ t

0
e−Msg(s)ds.

The second term of the right hand side is yp(t), the particular solution of
the theorem. Since every solution of Equation 6.3 can be written as the
sum of the particular solution yp(t) and a solution of the homogeneous
equation

ẏ= (IN ⊗A+PN ⊗K)y=My,

the problem is now reduced to finding the asymptotic orbits of the homo-
geneous equation. Keeping in mind the relation between the spectra of L
and P (Lemma 6.3), the proof of Theorem 4.4 now applies verbatim.

We have not mentioned in formation solutions yet. The reason is that
one does not in general expect the stable set we described in the last theo-
rem to contain in formation solutions. To see this, we will take the analysis
of our earlier example a bit further.

In order for there to be in formation solutions, certainly the posi-
tions of the two leaders must maintain a constant difference. Thus, let us
set ψ1(t)=ψ5(t)= k cos(ωt). To ensure stability at least against constant
acceleration, we follow Section 5 and set f =−1 and g=−4 in the linear
feedback K. Since the aim is to follow the leader we also set A4 = a= 0.
Going back to Equation 6.3 we can write:

g(t)=
⎛

⎝
−1
− 1

2
− 1

2

⎞

⎠⊗
((

0 0
f g

)(
k cos(ωt)
ωk sin(ωt)

))
=
⎛

⎝
1
1
2
1
2

⎞

⎠⊗
(

0
cω

)
cos(ωt−φω).

Here we have set

cω=k
√
g2ω2 +f 2 =k

√
16ω2 +1 and φω= arctan

(
gω

f

)
=arctan(4ω).
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Using a new time-variable τ such that ωτ =ωt−φω, Equation 6.3 becomes
the real part of this equation:

ẏ=My+
⎛

⎝
1
1
2
1
2

⎞

⎠⊗
(

0
cω

)
eiωτ =My+g0 e

iωτ ,

where, of course, the dot represents differentiation with respect to τ and
g0 is a 6-dimensional vector. One can derive (variation of constants and
the Ansatz that y = ζeiωτ see ref. 1 or 9)—or simply check by substitu-
tion—that the general complex valued solution of the equation is

yc(τ )= eMτy0 + (M− iωI3)
−1(eMτ − eiωτ I3) g0.

We are interested in the real part of an asymptotic solution. Because we
have chosen K such that spec(M) is strictly contained in the negative left
half of the complex plane, we can write such a solution as:

y(τ) = �
{
−(M− iωI3)

−1eiωτ
}
g0

= −(M2 +ω2)−1(M cos(ωt−φω)−ωI3 sin(ωt−φω)) g0.

If ω is very small then the sine-term and φω both are negligible and the
phase-shift will be small. However, if ω is big, the sine-term dominates and
φω is large and phase-shifts appear. This conclusion is independent of the
graph and even of the values of f and g as long as they satisfy the con-
ditions in Section 5. Thus we expect phase-shifts in general. We have not
thoroughly investigated the amplitudes here. We only have established that
in general the flight pattern will not be in formation.

Remark 6.5. A flock with an independent leader whose position is
a (non-constant) function of time, will not in general be asymptotic to an
in formation solution.

We finally remark that this last calculation is reminiscent of the ele-
mentary treatment of the non-homogeneous heat-equation (see ref. 8 for
example). This is no coincidence. In some sense these systems (if stabi-
lized) correspond to a heat equation with the spatial variable discretized.
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7. HIERARCHICAL FLOCKS

In this section we will show how large communication graphs can be
assembled from smaller ones in such a way that the calculation of the sta-
bility is not affected by assembling the graphs. The obvious advantage of
this construction is that for certain very large graphs, the stability calcu-
lation in Theorem 4.4 involves only a low-dimensional Laplacian and the
2d-dimensional matrices A and K, and therefore is greatly simplified. This
leads to the construction of hierarchical graphs Gn and their associated
Laplacians Ln which appeared in ref. 27. We give a simplified account of
this construction and extend the results.

Definition 7.1. Let g1 and g2 be two directed graphs. The connected
sum g= g1 ∪i1=i2 g2 is the graph obtained by attaching g2 to g1 through
the identification the vertices i1 ∈g1 and i2 ∈g2.

Denote by �i the Laplacian associated to gi and by � the Laplacian
of the union g=g1 ∪i1=i2 g2. The characteristic polynomial of a Laplacian
L is written as χL(x).

Lemma 7.2. If i2 ∈ g2 is a leader then the characteristic polyno-
mial of the Laplacian of the union g = g1 ∪i1=i2 g2 is given by χ�(x)=
χ�1(x)

(
χ�2 (x)

x

)
.

Proof. First arrange the Laplacian matrices �i in such a way that i1
is the last row of �1 and i2 the first of �2. The proof of this observation
follows most conveniently by inspection of the Laplacian matrix �.

Definition 7.3. Let g1 and g2 be two directed graphs with n1 and n2
vertices each. The hierarchical product g= g1 ×i2 g2 is the graph obtained
by attaching a copy of g2 to each vertex i of g1 (every time by identifying
the vertices i ∈g1 and i2 ∈g2).

By repeating the connected sum construction we thus immediately obtain
the following results for this hierarchical product.

Proposition 7.4. (see ref. 27) Suppose i2 is a leader. The Laplacian
� of g = g1 ×i2 g2 is given by �= �1 ⊗En2,1 + In1 ⊗ �2 where EN,1 is the
N ×N matrix whose only non-zero entry is a leading one, and IN stands
for the N ×N identity matrix.

Proposition 7.5. Suppose i2 is a leader. The Laplacian � of g =
g1 ×i2 g2 has characteristic polynomial χ�(x)=χ�1(x)

(
χ�2 (x)

x

)n1
.
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To aid in the understanding of the notation, we consider a simple
example. Suppose g1 is a 2-vertex graph with Laplacian �1, and g2 is a
3-vertex graph with Laplacian �2, where:

�1 =
(

0 0
−1 1

)
and �2 =

⎛

⎝
0 0 0

−1/2 1 −1/2
0 −1 1

⎞

⎠ .

Both graphs have the property that their first entry corresponds to the
leader. Now define g3 = g1 × g2. Its associated Laplacian �3 equals �1 ⊗
E3,1 + I2 ⊗�2. Thus

�3 =
(

0 0
−1 1

)
⊗
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠+
(

1 0
0 1

)
⊗
⎛

⎝
0 0 0

−1/2 1 −1/2
0 −1 1

⎞

⎠

=

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
−1/2 1 1/2 0 0 0

0 −1 1 0 0 0
−1 0 0 1 0 0
0 0 0 −1/2 1 1/2
0 0 0 0 −1 1

⎞

⎟⎟⎟⎟⎟⎠
.

It is easy to see that the characteristic polynomial of �3, χ�3(x), is given
by

χ�3(x)=χ�1(x)

(
χ�2(x)

x

)2

.

Thus the eigenvalues in the spectrum of �3 is determined by those of �1
and �2 only. The process can be continued by defining for example g4 =
g2 × g3. For the characteristic polynomial of the associated Laplacian we
obtain

χ�4(x)=χ�2(x)

(
1
x

· χ�1(x)(χ�2(x))
2

x2

)3

= (χ�1(x))
3(χ�2(x))

7

x9
.

It is clear from this example that by starting with a few Laplacians
with a known spectrum, we can obtain ever larger graphs by making the
above procedure recursive. More generally we can use unions and prod-
ucts to obtain ever larger graphs without changing the eigenvalues of the
spectrum of the associated new Laplacian, as long as the second graph in
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gn+1 = gn ∪jn=jn−1 gn−1 or gn+1 = gn ×jn−1 gn−1 is attached to the first by
way of a leader (jn−1). Let us call the associated Laplacians �n and �n−1.
We thus obtain that the eigenvalues of the Laplacian �n+1, associated with
the sum or product of the two others, are the same as those of �n and
�n−1. This has immediate consequences for the design of stabilized large
graphs, since for given K the eigenvalues of I ⊗A+ �n+1 ⊗K depend on
the eigenvalues of �n+1 which are the same as those of �n and �n−1. In
particular, if K is chosen to stabilize Equation 6.2 for both �n and �n−1
then the same K will stabilize the product.

In fact, it is easy to see that, if gn and gn−1 each have exactly one reach
(and if the gluing is done by using a leader), one can calculate the eigen-
vectors of gn∪jn=jn−1 gn−1 and gn×jn−1 gn−1 in terms of the eigenvectors of
gn and gn−1. Since for the purposes of this paper we are mostly concerned
with the spectrum of the Laplacian, we will not discuss these results here.

8. ORIENTABLE FLOCKS, A NONLINEAR MODEL

Note that the in formation solutions so far do not allow the forma-
tion itself to change direction. In other words, once agents start out flying
in formation, say in a “V” shaped formation as geese, the tip of the “V”
will always point in the same direction, even though the flock may move in
the opposite direction. To make our model biologically a little more realis-
tic we will briefly discuss how to overcome this problem by introducing a
rotational term into the equations. To simplify the discussion, we will, in
this section, assume that the communication graph has but a single reach
and no independent leaders. The existence of certain stable rotating solu-
tions, and other unusual solutions, is still an open problem. These are of
interest to biology (see ref. 20) and we briefly address that question at the
end this section. In contrast to the previous sections, Equation 8.1 is non-
linear. Thus the stability we prove in Theorem 8.7 is local.

We have already observed that positions are only calculated relative to
the positions of other agents. Let us now assume that d=2 and the desired
relative positions are known up to an angle, namely the angle of flight.

The equations we will set up have a singularity whenever the speed of
any of the agents is zero. So we will from now on assume that that is not the
case. In the following Ei is the N by N matrix whose only non-zero entry
is a one in the i-th diagonal entry. The vectors hi are as in Section 2.

Definition 8.1. Let z(t) be the position-velocity vector of a flock
whose N members have velocities {vi}Ni=1. Let Rv : IR2 → IR2 be the
operation that rotates the x-axis (or e1) onto the v axis. Now define the
linear operator:



Flocks and Formations 929

Rz : X→X≡h→
N∑

i=1

Ei ⊗Rvi ⊗
(

1 0
0 0

)
hi,

Definition 8.2. An orbit φ : IR→X of the flock is said to be in (ori-
ented) formation if it is given by

φα(t)=R1⊗αh+1⊗α and α̇=Aα (and A4 =0).

Denote this orbit by φα. This formation is oriented along the line of flight
(as opposed to Definition 2.1).

Later on we will use the fact that our assumptions imply that R1⊗αh
is a constant vector. this can be seen by noting that R1⊗αh only depends
on the direction of the velocity part p of α. Since A4 = 0, we know by
Proposition 4.3 that p is constant.

Definition 8.3. With all the conventions the same as before (in
addition to the above definition), the equations for an orientable flock are:

ż= I ⊗Az+L⊗K(z−Rzh). (8.1)

The following result is obtained by substituting the in formation solu-
tion into Equation 8.1.

Lemma 8.4. For every position vector h and every solution α of
α̇ = Aα, the system of Definition 8.1 admits an (oriented) in formation
solution φα.

The stability of the in formation solutions is a much more deli-
cate issue here, because Equation 8.1 is non-linear. For simplicity, we call
Equation 8.1 stable at a solution φ if upon substituting z=φ+y and lin-
earizing, the resulting equation for y, ẏ=My, is such that the eigenvalues
of M either have negative real part or are identical to zero. Take a partic-
ular in formation solution:

φα(t)=R1⊗αh+1⊗α where α=q⊗
(

1
0

)
+p⊗

(
0
1

)
,

and suppose A4 = 0 (so that p is constant). We will show that if ||p||
is large enough, the system is stable at this solution. We first need two
lemmas.
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Lemma 8.5. Suppose p∈ IR2 fixed, and v∈ IR2 small. Then

p+v
||p+v|| − p

||p|| = 1
||p||

(
v− (p, v)p

||p||2
)

+O(||v||2)= 1
||p||Tp†v+O(||v||2),

where Tp† : IR2 → IR2 is the orthogonal projection onto the orthogonal
complement of p.

Proof. This is of course well-known and can be verified by direct
computation, or, more easily, geometrically: Project the segment in IRd

connecting p + x to p onto the hyperplane that is tangent to the unit
sphere and orthogonal to p and finally divide by ||p||.

Lemma 8.6. Suppose y =∑N
i=1 ei ⊗

(
xi ⊗

(
1
0

)
+vi ⊗

(
0
1

))
and α

as before. From Definition 8.1 we obtain:

R1⊗α+yh−R1⊗αh=
N∑

i=1

||hi ||
||p|| ei ⊗RhiTp†vi ⊗

(
1
0

)
+O(||v||2).

Here ei denotes the standard i-th unit vector.

Proof. This follows by applying the previous Lemma to the terms
of R1⊗α+yh−R1⊗αh that correspond to the individual agents. Each term
corresponds to the difference between rotating hi by p+vi

||p+vi || and rotating
hi by p

||p|| .

Using the methods of the previous sections we can choose K3 and K4
(see Remark 4.1) such that the system of Equation 2.3 is stabilized (see
Definition 4.3). According to the proof of Theorem 4.4, this means that
the matrix I ⊗A+L⊗K all of whose non-zero eigenvalues have negative
real part. With some abuse of notation we will simply say that in this case
the system of Equation 8.1 is stabilized.

Theorem 8.7. Suppose the flock has a communication graph with
a single reach. Let φα be an in formation solution of Equation 8.1 with
associated velocity p. Assume that the system is stabilized and that A4 =0.
Then if ||p|| is large enough (and all other parameters are held fixed),
Equation 8.1 is stable at φα.

Proof. Substitute R1⊗αh+ 1 ⊗α+ y=φα + y for z in Equation 8.1.
Note that the odd columns of A are zero so that I ⊗A(Rh)= 0. Also
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(L⊗K)(1⊗α)=0. Finally, note that Rzh=R1⊗α+yh because Rz depends
only on the velocity-components of z. We then obtain from 8.1:

1⊗ (α̇−Aα)+ ẏ= (I ⊗A+L⊗K)y+L⊗K(R1⊗αh−R1⊗α+yh).

The left hand side reduces to ẏ by the definition of in formation solutions
above.

The first term on the right hand side is of the form My where M is
a matrix whose eigenvalues have either negative real part or are identical
to zero. Now linearize the second term of the right hand side so that it
has the form Qy. Then from the foregoing, one concludes that the matrix
Q has entries that are O(||p||−1), which for ||p|| big are arbitrarily small.
Thus the eigenvalues of M that had negative real part uniquely correspond
to eigenvalues of M+Q with negative real part (by continuity).

We still have to prove that zero eigenvalues of M remain zero after
the perturbation. It suffices to prove that M has a zero eigenvalue with
multiplicity 2d = 4. So fix φα and let y(t) be the difference between two in
formation solutions φβ and φα (a 4-dimensional linear space). We calculate
the derivative of the righthand side of Equation 8.1 at φα in the direction
of y(t). Substitute φβ −φα for y in

ẏ= (I ⊗A+L⊗K)y+L⊗K(R1⊗αh−R1⊗α+yh).

Because Rz only depends on the velocity components of z, we have
that

R1⊗α+y =R1⊗α+(1⊗β−1⊗α)=R1⊗β.

Using that L1=0 we find that the remaining Laplacian terms cancel and

ẏ= I ⊗Ay.

However, since A4 =0, A is nilpotent, and thus (I⊗A)2 =I⊗A2=0. There-
fore y corresponds to a vector in the eigenspace of L associated with the
eigenvalue 0 of M.

In fact, in the last part of this proof y(t)≡φβ(t)−φα(t) is an affine
function of time according to Lemma 8.4 (since A4 =0). Thus the Jordan
block in question has dimension 2.

To obtain rotating solutions we follow the strategy of Theorem 5.2
and use the same form of the matrix A4 as we did there. We first need
a lemma.
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Lemma 8.8. Suppose ||p|| is constant, then

d

dt
R1⊗α = ||ṗ||

||p|| R
1⊗ṗ⊗

(
0
1

).

Proof. Set

y(t)=
∑

ei ⊗ [q(t+dt)−q(t)]⊗
(

1
0

)
+ ei ⊗ [p(t+dt)−p(t)]⊗

(
0
1

)
,

and note that

d

dt
R1⊗α = lim

dt→0

1
dt

(R1⊗α(t+dt)−R1⊗α(t)
)= lim

dt→0

1
dt

(R1⊗α(t)+y −R1⊗α(t)
)
.

By hypothesis ||p|| is constant and thus p is orthogonal to ṗ. In Lemma
8.6, Tp† ṗ= ṗ, and thus this lemma gives us that

d

dt
R1⊗α h=

N∑

i=1

||hi ||
||p|| ei ⊗

(
Rhi ṗ

)⊗
(

1
0

)
=

N∑

i=1

||ṗ||
||p|| ei ⊗

(
Rṗhi

)⊗
(

1
0

)
,

which yields the desired result.

Proposition 8.9. Under the coordinate change:

y≡ z−R1⊗αh−1⊗α

Equation (8.1) becomes

ẏ=−|k|R
1⊗ṗ⊗

(
0
1

)h+ (I ⊗A+L⊗K)y+L⊗K (R1⊗αh−R1⊗α+yh
)
.

(8.2)

Proof. This is the same substitution as in Theorem 8.7, but now
instead of p= constant and so d

dt
R1⊗α = 0, we apply the above Lemma.

Furthermore, we recall that since α̇=A4α, the flock must describe a cir-
cular motion in which q(t)=q0(cos kt, sin kt), so that ||ṗ||/||p||= |k|.
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To check if we can get an in formation solution (with k �=0), we see if
y=0 is solution of Equation 8.2 in the previous Proposition. Clearly this
is not the case. However, it is easy to convince oneself (heuristically) that if
||p|| is large enough and |k| small enough (and other parameters are held
fixed) there are solutions that stay close to the in formation orbit (which is
not itself a solution). It is be sufficient to argue that ||y|| remains small for
all time. When |k|= 0, the system drives itself exponentially fast to an in
formation solution. When |k| is small enough the perturbation cannot beat
the exponential stability and y must remain close to zero. A more detailed
analysis of this situation will be given in a forthcoming work. For now we
illustrate these motions with a simulation. In the Fig. 1, we simulated a
flock flying in a straight line, when the curvature k is turned on. The value
for k is the circular part is 0.1, and f and g have the value of −8 and
−12, respectively. The flock turns maintaining the configuration approxi-
mately constant, but aligned with the line of flight. In ref. 28, we look at
these and other examples in more detail.

-200 -100 0 100 200 300 400 500 600

0

100

200

300

400

500

Fig. 1. (color online) This figure is a simulation using Equation 8.1 of a flock turning
around. Note that the orientation of the flock’s configuration changes. Each ‘christmas tree
shaped’ hexagon is a snapshot of the position of the flock, the lines that form the figure only
facilitate visual inspection, they have no physical or mathematical content.
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In particular in biological applications, one is most interested in the
situation where there are leaders. The theory for leaders in the current
context can be developed parallel to the one in Section 6. However, the
analysis of stable orbits is much more difficult in this case.

9. CONCLUDING REMARKS

We briefly summarize the main lines of thought in this paper. We
study the dynamics of Equation 2.3 with the underlying communication
graph being fixed but otherwise essentially completely arbitrary (loopless-
ness being a natural requirement in this setting, not really a restriction).
The effort is not directed at finding solutions—after all, the system of
equations is linear—but rather at characterizing the stable set of solutions
in the general case. So far, this had only been done in the case where the
underlying graph has a single reach (that is: the underlying graph has a
spanning tree).

The motivation comes on the one hand from the search for algo-
rithms to control the flight of collections of artificial objects moving in
formation. On the other hand aggregational behavior is also very common
in biology. In the latter case, experiments and observations (19) suggest that
at least in many cases, fish when swimming in a school change neighbors
frequently. Furthermore these experiments also suggest that the formation
is ‘noisy’. Our analysis should be considered only as a preliminary step in
the modeling of these phenomena. Such a step is justified by the fact—as
this article demonstrates—that the analysis is substantial and indeed leads
to unexpected new mathematical territory (the characterization of the mul-
tiplicity of the eigenspace of zero of the Laplacian of a graph in terms of
the connectivity of the underlying graph, see ref. 3).

In reality, animals, when they get too close or too far away from
another, will behave nonlinearly (they avoid the collision in one case, and
simply cease to notice one another in the other). However, when they are
in formation or very close to it, their flight may very well be modeled by
linearized equations similar to the system we studied. One can of course
add noise to the system here described. Our stability results are relevant in
that the stabler a particular solution is, the larger the perturbation tends
to need to be to knock the orbit away from the originally stable solution.
This is of course the reason why the calculation of the eigenvalues closest
to the origin is of paramount importance. Throughout the paper we use
graph theoretic methods to aid in the calculation of these eigenvalues (see
for example Section 7).

In Section 8 we study a system of equations (Equation 8.1) which is
nonlinear for a different reason. It describes the flight of a flock (in IR2)
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with a tendency to orient the configuration along the line of flight. The
linear model studied earlier serves as a good guideline for the behavior of
this system. Of course, due to the nonlinearity, stability analysis gives only
local results: a large enough perturbation may knock the system out of a
stable in formation orbit.

Techniques for dealing with variable graphs exist,(10,21,22) mostly in
the context of consensus seeking. The general tenor of those results is that
if the varying graph has a spanning tree often enough, then consensus
will be achieved. In principle this approach can be applied to our system,
whether linear or nonlinear, and presumably with similar results. This will
be done elsewhere.
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