Skip to main content

Advertisement

Log in

Tetraalkylammonium Chlorides as Melting Point Depressants of Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

With the (re)advent of eutectic mixtures within the field of deep eutectic solvents, special attention has been given to the measurement of solid–liquid equilibrium (SLE) phase diagrams, supported by the relevant information they can provide on the molecular interactions and melting temperature depression of any given system. As such, this work investigates the SLE phase diagrams of mixtures between ionic liquids and tetraalkylammonium chlorides (methyl, ethyl, and propyl), with the goal of decreasing the melting temperature of ionic liquids and ammonium salts, thus, expanding their application scope. Results show that tetraalkylammonium salts exhibit negative deviations from thermodynamic ideality when mixed with ionic liquids, which are increased by increasing their alkyl chain length and are interpreted in terms of anion exchange mechanisms. In turn, this nonideality contributes greatly to depression of the melting point of the ionic liquids examined. Overall, this work demonstrates that the correct combination of tetraalkylammonium/ILs anions and cations can lead to significant melting point depressions in both species, thus creating new ionic liquid mixtures using an approach akin to that used to form deep eutectic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hillert, M.: Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis, 2nd edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  2. Campbell, F.C.: Chapter 12 - Phase Diagram Determination in Phase Diagrams—Understanding the Basics. ASM International (2012)

  3. Schmid-Fetzer, R.: Phase diagrams: the beginning of wisdom. J. Phase Equilibria Diffus. 35, 735–760 (2014). https://doi.org/10.1007/s11669-014-0343-5

    Article  CAS  Google Scholar 

  4. Raynor, G.V.: William Hume-Rothery, 1899–1968. Biogr. Mem. Fellows R. Soc. 15, 109–139 (1969). https://doi.org/10.1098/rsbm.1969.0006

    Article  CAS  Google Scholar 

  5. Martins, M.A.R., Pinho, S.P., Coutinho, J.A.P.: Insights into the nature of eutectic and deep eutectic mixtures. J. Solution Chem. 48, 962–982 (2019). https://doi.org/10.1007/s10953-018-0793-1

    Article  CAS  Google Scholar 

  6. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 99, 70–71 (2003). https://doi.org/10.1039/b210714g

    Article  CAS  Google Scholar 

  7. Hansen, B.B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J.M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B.W., Gurkan, B., Maginn, E.J., Ragauskas, A., Dadmun, M., Zawodzinski, T.A., Baker, G.A., Tuckerman, M.E., Savinell, R.F., Sangoro, J.R.: Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev. 121, 1232–1285 (2021). https://doi.org/10.1021/acs.chemrev.0c00385

    Article  CAS  PubMed  Google Scholar 

  8. van den Bruinhorst, A., Gomes, M.C.: Is there depth to eutectic solvents? Curr. Opin. Green Sustain. Chem. 37, 100659 (2022). https://doi.org/10.1016/j.cogsc.2022.100659

    Article  CAS  Google Scholar 

  9. Like, B.D., Uhlenbrock, C.E., Panzer, M.J.: A quantitative thermodynamic metric for identifying deep eutectic solvents. Phys. Chem. Chem. Phys. 25, 7946–7950 (2023). https://doi.org/10.1039/D3CP00555K

    Article  CAS  PubMed  Google Scholar 

  10. Martins, M.A.R., Abranches, D.O., Silva, L.P., Pinho, S.P., Coutinho, J.A.P.: Insights into the chloride versus bromide effect on the formation of urea-quaternary ammonium eutectic solvents. Ind. Eng. Chem. Res. 61, 11988–11995 (2022). https://doi.org/10.1021/acs.iecr.2c01274

    Article  CAS  Google Scholar 

  11. Abranches, D.O., Schaeffer, N., Silva, L.P., Martins, M.A.R., Pinho, S.P., Coutinho, J.A.P.: The role of charge transfer in the formation of type I deep eutectic solvent-analogous ionic liquid mixtures. Molecules 24, 3687 (2019). https://doi.org/10.3390/molecules24203687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez, L., Silva, L.P., Martins, M.A.R., Ferreira, O., Ortega, J., Pinho, S.P., Coutinho, J.A.P.: Indirect assessment of the fusion properties of choline chloride from solid-liquid equilibria data. Fluid Phase Equilib. 448, 9–14 (2017). https://doi.org/10.1016/j.fluid.2017.03.015

    Article  CAS  Google Scholar 

  13. Agieienko, V., Buchner, R.: Is ethaline a deep eutectic solvent? Phys. Chem. Chem. Phys. 24, 5265–5268 (2022). https://doi.org/10.1039/D2CP00104G

    Article  CAS  PubMed  Google Scholar 

  14. van den Bruinhorst, A., Raes, S., Maesara, S.A., Kroon, M.C., Esteves, A.C.C., Meuldijk, J.: Hydrophobic eutectic mixtures as volatile fatty acid extractants. Sep. Purif. Technol. 216, 147–157 (2019). https://doi.org/10.1016/J.SEPPUR.2018.12.087

    Article  Google Scholar 

  15. Brinkmann, J., Rest, F., Luebbert, C., Sadowski, G.: Solubility of pharmaceutical ingredients in natural edible oils. Mol. Pharm. 17, 2499–2507 (2020). https://doi.org/10.1021/acs.molpharmaceut.0c00215

    Article  CAS  PubMed  Google Scholar 

  16. Migliorati, V., D’Angelo, P.: Deep eutectic solvents: a structural point of view on the role of the anion. Chem. Phys. Lett. 777, 138702 (2021). https://doi.org/10.1016/J.CPLETT.2021.138702

    Article  CAS  Google Scholar 

  17. Cappelluti, F., Mariani, A., Bonomo, M., Damin, A., Bencivenni, L., Passerini, S., Carbone, M., Gontrani, L.: Stepping away from serendipity in Deep Eutectic Solvent formation: prediction from precursors ratio. J. Mol. Liq. 367, 120443 (2022). https://doi.org/10.1016/J.MOLLIQ.2022.120443

    Article  CAS  Google Scholar 

  18. Niedermeyer, H., Hallett, J.P., Villar-Garcia, I.J., Hunt, P.A., Welton, T.: Mixtures of ionic liquids. Chem. Soc. Rev. 41, 7780–7802 (2012). https://doi.org/10.1039/c2cs35177c

    Article  CAS  PubMed  Google Scholar 

  19. Canongia Lopes, J.N., Cordeiro, T.C., Esperança, J.M.S.S., Guedes, H.J.R., Huq, S., Rebelo, L.P.N., Seddon, K.R.: Deviations from ideality in mixtures of two ionic liquids containing a common ion. J. Phys. Chem. B. 109, 3519–3525 (2005). https://doi.org/10.1021/jp0458699

    Article  CAS  PubMed  Google Scholar 

  20. Abranches, D.O., Silva, L.P., Martins, M.A.R., Fernandez, L., Pinho, S.P., Coutinho, J.A.P.: Can cholinium chloride form eutectic solvents with organic chloride-based salts? Fluid Phase Equilib. 493, 120–126 (2019). https://doi.org/10.1016/j.fluid.2019.04.019

    Article  CAS  Google Scholar 

  21. Welton, T.: Ionic liquids: a brief history. Biophys. Rev. 10, 691–706 (2018). https://doi.org/10.1007/S12551-018-0419-2/SCHEMES/3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pontes, P.V.A., Crespo, E.A., Martins, M.A.R., Silva, L.P., Neves, C.M.S.S., Maximo, G.J., Hubinger, M.D., Batista, E.A.C., Pinho, S.P., Coutinho, J.A.P., Sadowski, G., Held, C.: Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equilib. 448, 69–80 (2017). https://doi.org/10.1016/j.fluid.2017.04.007

    Article  CAS  Google Scholar 

  23. Fukaya, Y., Iizuka, Y., Sekikawa, K., Ohno, H.: Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem. 9, 1155–1157 (2007). https://doi.org/10.1039/b706571j

    Article  CAS  Google Scholar 

  24. Muhammad, N., Hossain, M.I., Man, Z., El-Harbawi, M., Bustam, M.A., Noaman, Y.A., Mohamed Alitheen, N.B., Ng, M.K., Hefter, G., Yin, C.-Y.: Synthesis and physical properties of choline carboxylate ionic liquids. J. Chem. Eng. Data. 57, 2191–2196 (2012). https://doi.org/10.1021/je300086w

    Article  CAS  Google Scholar 

  25. de Souza, Í.F.T., Ribeiro, M.C.C.: A Raman spectroscopy and rheology study of the phase transitions of the ionic liquid choline acetate. J. Mol. Liq. 322, 114530 (2021). https://doi.org/10.1016/J.MOLLIQ.2020.114530

    Article  Google Scholar 

  26. Sakizadeh, K., Olson, L.P., Cowdery-Corvan, P.J., Ishida, T., Whitcomb, D.R.: Thermographic materials containing ionic liquids, Patent US7163786B1 (2005)

  27. Kick, M., Keil, P., König, A.: Solid–liquid phase diagram of the two ionic liquids EMIMCl and BMIMCl. Fluid Phase Equilib. 338, 172–178 (2013). https://doi.org/10.1016/J.FLUID.2012.11.007

    Article  CAS  Google Scholar 

  28. Zhang, S.J., Lu, X.M., Zhou, Q., Li, X., Zhang, X., Lu, S.: Ionic Liquids: Physicochemical Properties. Elsevier, Oxford (2009)

    Google Scholar 

  29. Gera, R., Moll, C.J., Bhattacherjee, A., Bakker, H.J.: Water-induced restructuring of the surface of a deep eutectic solvent. J. Phys. Chem. Lett. 13, 634–641 (2022). https://doi.org/10.1021/acs.jpclett.1c03907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van den Bruinhorst, A., Kollau, L.J.B.M., Vis, M., Hendrix, M.M.R.M., Meuldijk, J., Tuinier, R., Esteves, A.C.C.: From a eutectic mixture to a deep eutectic system via anion selection: Glutaric acid + tetraethylammonium halides. J. Chem. Phys. 155, 014502 (2021). https://doi.org/10.1063/5.0050533

    Article  CAS  PubMed  Google Scholar 

  31. Vilas-Boas, S.M., Abranches, D.O., Crespo, E.A., Ferreira, O., Coutinho, J.A.P., Pinho, S.P.: Experimental solubility and density studies on aqueous solutions of quaternary ammonium halides, and thermodynamic modelling for melting enthalpy estimations. J. Mol. Liq. 300, 112281 (2020). https://doi.org/10.1016/j.molliq.2019.112281

    Article  CAS  Google Scholar 

  32. Rowlinson, J.: Molecular thermodynamics of fluid-phase equilibria. J. Chem. Thermodyn. 2, 158–159 (1970). https://doi.org/10.1016/0021-9614(70)90078-9

    Article  Google Scholar 

  33. Elliott, J.R., Lira, C.T.: Introductory Chemical Engineering Thermodynamics. Pearson Education, New York (2012)

    Google Scholar 

  34. Hammond, O.S., Bowron, D.T., Edler, K.J.: Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem. 18, 2736–2744 (2016). https://doi.org/10.1039/C5GC02914G

    Article  CAS  Google Scholar 

  35. Knorr, A., Fumino, K., Bonsa, A.M., Ludwig, R.: Spectroscopic evidence of ‘jumping and pecking’ of cholinium and H-bond enhanced cation–cation interaction in ionic liquids. Phys. Chem. Chem. Phys. 17, 30978–30982 (2015). https://doi.org/10.1039/C5CP03412D

    Article  CAS  PubMed  Google Scholar 

  36. Gilmore, M., Moura, L.M., Turner, A.H., Swadźba-Kwaśny, M., Callear, S.K., McCune, J.A., Scherman, O.A., Holbrey, J.D.: A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K. J. Chem. Phys. 148, 193823 (2018). https://doi.org/10.1063/1.5010246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 and LA/P/0006/2020, and CIMO (UIDB/00690/2020 and UIDP/00690/2020) and SusTEC (LA/P/0007/2021), financed by national funds through the FCT/MEC (PIDDAC). L.P.S. acknowledges FCT for her Ph.D. Grant (SFRH/BD/135976/2018).

Author information

Authors and Affiliations

Authors

Contributions

Mónia A.R. Martins: Conceptualization, Methodology, Investigation, Writing - original draft, Writing - review & editing.   Dinis O. Abranches: Conceptualization, Methodology, Investigation, Writing - review & editing.  Liliana P. Silva: Conceptualization, Methodology, Investigation.  Simão P. Pinho: Conceptualization, Methodology, Investigation, Writing - review & editing, Supervision, Funding acquisition.   João A.P. Coutinho: Conceptualization, Methodology, Investigation, Writing - review & editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Simão P. Pinho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 330 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, M.A.R., Abranches, D.O., Silva, L.P. et al. Tetraalkylammonium Chlorides as Melting Point Depressants of Ionic Liquids. J Solution Chem 53, 538–551 (2024). https://doi.org/10.1007/s10953-023-01285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01285-0

Keywords

Navigation