Skip to main content
Log in

Improving the Dynamic Method for Determining Hygroscopic Points of Soluble Solids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The paper considers a variant of the dynamic method for determining hygroscopic points of soluble solids, which can be used to determine hygroscopic points of highly viscous saturated solutions. In this variant, the water vapor sorption/desorption rate coefficient is neither specified nor used in calculations. The theoretical foundations of the variant are studied, and an example of calculating the hygroscopic point of fructose is given. The distinct feature of the dynamic method for determining hygroscopic points of substances is its simple execution technique as it requires only analytical balances, dishes for weighing samples, and sealed chambers (desiccators), which makes the method easily implementable in any chemical laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leopold, H.G., Johnston, J.: The vapor pressure of the saturated aqueous solutions of certain salts. J. Am. Chem. Soc. 49, 1974–1988 (1927). https://doi.org/10.1021/ja01407a019

    Article  CAS  Google Scholar 

  2. Arai, Ch., Wakabayashi, Y., Mizuno, A., Komatsu, I., Sano, Y.: Measurements of lower humidities over saturated aqueous salt solutions. Kagaku Kogaku Ronbunshu 9, 241–244 (1983). https://doi.org/10.1252/kakoronbunshu.9.241

    Article  CAS  Google Scholar 

  3. Wexler, A., Hasagawa, S.: Relative Humidity-Temperature Relationships of Some Saturated Salt Solutions in the Temperature Range 0° to 50 ° C. J. Res. Nat. Bur. Stand. 53, 19–26. (1954) https://books.google.ru/books?hl=ru&lr=&id=9fssappUnhUC&oi=fnd&pg=PA19&dq=Wexler,+A.%3BHasagawa,+S.+Relative+Humidity-Temperature+Relationships+of+Some+Saturated+Salt+Solutions+in+the+Temperature+Range+0%C2%B0+to+50%C2%B0C.+Journal+of+Research+of+the+National+Bureau+of+Standarts+1954,+53,+19-26&ots=olS70OTmiH&sig=xiEMrWlyHL4UeU1PsHKKrrBHTIA&redir_esc=y#v=onepage&q&f=false

  4. Carotenuto, A., Dell’Isola, M.: An experimental verification of saturated salt solution-based humidity fixed points. Intern. J. Thermophys. 17, 1423–1439 (1996). https://doi.org/10.1007/BF01438677

    Article  CAS  Google Scholar 

  5. Jensen, O.M.: A method for high accuracy determination of equilibrium relative humidity. Sens. Actuators, A 181, 13–19 (2012). https://doi.org/10.1016/j.sna.2012.04.031

    Article  CAS  Google Scholar 

  6. Burnett D., Garcia A.R., Naderi M., Acharya M.: Moisture Sorption Properties of Pharmaceutical Materials Studied by DVS. https://public.jenck.com/notijenck/uploads/propiedades-de-sorcion-de-humedad-de-los-materiales-farmaceuticos-estudiados-por-dvs.pdf

  7. Rörig-Dalgaard, I., Svensson, S.: High accuracy calibration of a dynamic vapor sorption instrument and determination of the equilibrium humidities using single salts. Rev. Sci. Instrum. 87, 054101 (2016). https://doi.org/10.1063/1.4949513

    Article  CAS  PubMed  Google Scholar 

  8. Bousfeld, W.R.: Iso-piestic solutions. Trans. Faraday Soc. 13, 401–413 https://pubs.rsc.org/en/content/articlepdf/1918/tf/tf9181300401 (1918)

  9. Tereshchenko, A.G.: Using the Isopiestic Method to Study Hygroscopic Properties of Soluble Solutes. J. Sol. Chem. 48, 379–394 https://link.springer.com/article/10.1007%2Fs10953-018-0840-y (2019)

  10. Rard, J.A.: The Isopiestic method: 100 years later and still in use. J. Solution. Chem. 48, 271–282 (2019). https://doi.org/10.1007/s10953-019-00848-4

    Article  CAS  Google Scholar 

  11. Windsor, W.E., Sobel, F., Morris, V.B., Hooper, M.V.: Critical relative humidities of some salts. Review Sci. Instr. 24, 334 (1953). https://doi.org/10.1063/1.1770704

    Article  Google Scholar 

  12. Apelblat, A., Korin, E.: Temperature Dependence of vapor pressures over saturated aqueous solutions at invariant points of the NaCl + KNO3 + H2O, NaCl + Na2CO3 + H2O, and NaCl + Na2SO4 + H2O systems. J. Chem. Eng. Data 56, 988–994 (2011). https://doi.org/10.1021/je1009653

    Article  CAS  Google Scholar 

  13. Pestov, N.. Ye.., Glazova, T.V.: Hygroscopicity of fertilizers, its determination and elimination tech-niques. Zh. Khim. Prom. 4(5), 33–38 (1939)

    Google Scholar 

  14. Kanazawa, T.: Improved method for hygroscopicity measurement of mineral fertilizers. Koge Kagaku Dzassi 68, 619–622. (in Japanese) https://www.jstage.jst.go.jp/article/nikkashi1898/68/4/68_4_619/_article/-char/ja/ (1965)

  15. Tereshchenko, A.G.: Dynamic method for the determination of hygroscopicity of water soluble solids. J. Sol. Chem. 49, 1029–1051 (2020). https://doi.org/10.1007/s10953-020-01007-w.pdf

    Article  CAS  Google Scholar 

  16. Tereshchenko, A.G.: Structuring of reference data on the hygroscopic points of soluble substances. J. Chem. Thermodyn. 159, 106471 (2021). https://doi.org/10.1016/j.jct.2021.106471

    Article  CAS  Google Scholar 

  17. Tereshchenko, A.G.: Structuring of reference data on the hygroscopic points of soluble substances in the range 41–69% RH. J. Chem. Thermodyn. 171, 106790. https://www.sciencedirect.com/science/article/pii/S0021961422000696 (2022)

  18. Ivchuk, N.P., Bobrovnik, L.D., Tanashchuk, L.I., Nazarova, O.P., Scripnik, V.F.: Viscosity of massecuite during fructose crystallization. Sakh. prom. 26–27 (1994). http://dspace.nuft.edu.ua/jspui/handle/123456789/10078

  19. Chemist’s handbook / ed. by Nikolsky, B.P. M-L, Khimiya/Chemistry 3, 715–725, (in Russian) https://www.geokniga.org/books/11598 (1965)

  20. Kirgintsev, A.N., Trushnikova, L.N., Lavrentyeva, V.G.: Solubility of inorganic substances in water. Handbook. Leningrad: Chemistry. (in Russian). http://www.vixri.ru/d2/Nirgincev%20A.%20P.,%20_%20Rastvorimost%20neorganicheskix%20veshestv%20v%20vode..pdf (1972)

  21. ASTM E 104–02. Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions (2012)

Download references

Acknowledgements

The author expresses gratitude to O.S. Kvashnina (National Research Tomsk Polytechnic University) for the English language support.

Author information

Authors and Affiliations

Authors

Contributions

AGT is the only authour of the article under submission. He wrote the manuscript text and prepared all the tables.

Corresponding author

Correspondence to Anatoly G. Tereshchenko.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, A.G. Improving the Dynamic Method for Determining Hygroscopic Points of Soluble Solids. J Solution Chem 52, 861–869 (2023). https://doi.org/10.1007/s10953-023-01274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01274-3

Keywords

Navigation