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Abstract

This study applies the ‘Flexible-Acceptor’ variant of the General Solubility Equation,
GSE(®,B), to the prediction of the aqueous intrinsic solubility, log,, Sy, of FDA recently-
approved (2016-2020) ‘small-molecule’ new molecular entities (NMEs). The novel equa-
tion had been shown to predict the solubility of drugs beyond Lipinski’s ‘Rule of 5’ chem-
ical space (bRoS) to a precision nearly matching that of the Random Forest Regression
(RFR) machine learning method. Since then, it was found that the GSE(®,B) appears to
work well not only for bRo5 NMEs, but also for Ro5 drugs. To put context to GSE(®,B),
Yalkowsky’s GSE(classic), Abraham’s ABSOLYV, and Breiman’s RFR models were also
applied to predict log,, S, of 72 newly-approve NMEs, for which useable reported solu-
bility values could be accessed (nearly 60% from FDA New Drug Application published
reports). Except for GSE (classic), the prediction models were retrained with an enlarged
version of the Wiki-pS, database (nearly 400 added log,,, S, entries since our recent previ-
ous study). Thus, these four models were further validated by the additional independent
solubility measurements which the newly-approved drugs introduced. The prediction meth-
ods ranked RFR ~GSE (&,B) > ABSOLV > GSE (classic) in performance. It was further
demonstrated that the biases generated in the four separate models could be nearly elimi-
nated in a consensus model based on the average of just two of the methods: GSE (®,B)
and ABSOLV. The resulting consensus prediction equation is simple in form and can be
easily incorporated into spreadsheet calculations. Even more significant, it slightly outper-
formed the RFR method.
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Abbreviations

So Intrinsic aqueous solubility (i.e., the solubility of the uncharged form of the
compound)

MPP  Measure of prediction performance [128]. It refers to the percent of ‘correct’
predictions, as defined by the count of absolute residuals llog,, S°*, — log,, S¢,|
<0.5 divided by n. MPP is represented as a pie chart in the correlation plots.

RMSE root-mean-square error, accounting for bias in the prediction of external test set
solubility values: RMSE = [ (1/(n—1)) Z; (y°*, — bias — y*¢)]'" where y =
log, Sy, n = number of measurements of log;, S.

r coefficient of determination, accounting for bias in prediction of external test
set solubility values [130]: > = 1 — X, (y*™; — bias — y*4)? /=, (°%, — <y>)?,
where y = log,, Sy, and <y> is the mean value of observed log;, S.

bias intercept () in the regression fit: y°* = a + b y*¥, where the slope factor (b) is
fixed at unity.
SD standard deviation: SD = [ (1/n) Z; (y""si — <y>)]"2, where n = number of meas-

urements, <y> = mean value of log;, S,.

1 Introduction

In the 5-year period 2016-2020, 228 drugs were approved by the FDA, mostly for the
treatment of cancer, infectious/viral diseases, and neurological disorders [1-7]. Of these
drugs, 74% are ‘small molecule’ new molecular entities (NMEs). Many of the NMEs are
larger, more lipophilic, and possess more H-bond acceptors, compared to older drugs in
the Lipinski ‘Rule of 5’ (Ro5) chemical space [8, 9]. NMEs outside the Lipinski space are
often dubbed ‘beyond the Rule of 5° (bRoS5) drugs [9-18]. Size inflation is not the only
physicochemical characteristic of the NMEs. Some new drugs are relatively small.

Generally, large molecules may increase pharmacokinetic (PK) risks due to low solu-
bility, possibly low cell permeability, increased efflux, and elevated metabolism. During
drug discovery/early development, strategies to mitigate some of the risks have included:
(1) selecting molecules which can dynamically form intramolecular H-bonds (IMHB) to
shield polar groups, (ii) shielding polar groups by bulky side chains or by N-methylation,
and (iii) selecting molecules with flexible rings structures [14—19]. Flexible molecules
with the potential to form IMHBs have been of particular interest, since these may possess
enhanced solubility in water, by adopting hydrophilic ‘extended’ conformations, as well as
facilitated permeability across cell membranes, by adopting hydrophobic ‘folded’ confor-
mations [17-19].

Solubility plays a central role in the fuller understanding of the PK risks. Reliable and
actionable in silico models to predict solubility of NMEs and of promising molecules not
yet synthesized, could be a valuable contribution to risk assessment [13]. We started to
address this topic in a series of in silico studies [20-22]; the present contribution is a con-
tinuation of that effort.

In a recent study to predict the intrinsic solubility, log;, S,, of four standardized exter-
nal test sets of mostly druglike molecules [20], three methods were critically examined:
(1) Yalkowsky General Solubility Equation (GSE) [23], (ii) Abraham Solvation Equa-
tion (ABSOLV) [24], and (iii) Breiman Random Forest regression (RFR) machine
learning method [25]. RFR was found to be most accurate: for a highly-curated exter-
nal test set of 100 druglike molecules with consistently-determined solubility values
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(average interlaboratory reproducibility, SD,,,~0.17 log;, unit), the strength of the pre-
diction was indicated by the coefficient of determination, 2=0.64, and root-mean-square
error, RMSE=0.76 (log;, unit) [20]. However, the ‘black-box’ machine learning RFR
method has some disadvantages: (i) it does not directly suggest how compounds could be
altered to increase/decrease their solubility [26]; (ii) there is no obvious simple explicit
equation to predict solubility which could be used in a spreadsheet calculation; (iii) the
method ‘learns’ superlatively but ‘teaches’ tepidly. The linear ABSOLV model, based
on Abraham’s five solvation descriptors [24, 27], yielded poorer statistics: ?=0.26 and
RMSE =1.10 for the same test set. The GSE, Eq. 1, was even slightly less successful com-
pared to ABSOLV (r2:0.20, RMSE =1.13) [20]. Nevertheless, the simple classic GSE is
particularly appealing since it requires no ‘training.” Merely the melting point (mp in °C)
and the calculated (or measured) octanol-water partition coefficient, log P, are required to
predict solubility (in log molar units):

log; Sg" ™) = 0.5 — 1.0log, P — 0.01(mp — 25) (1)

In a follow-up study [21], solubility prediction using the above three models was
applied to large molecules (MW >800 g-mol~!). The novel aim was to explore to what
extent Ro5 molecules could be used to predict the log,, S, of molecules from the bRo5
space. For an external test set of 31 large molecules, RFR predicted solubility (r>=0.37,
RMSE=1.07) better than the other two methods. The RFR results suggested that it was
possible to develop a model trained on small Ro5 molecules to predict the solubility of
large bRo5 molecules. Unfortunately, the ‘how’ was not explicitly obvious. Nevertheless,
the RFR method could serve as a benchmark against which other more actionable mod-
els could be measured. Also, the study revealed that the traditional GSE systematically
underpredicts solubility of poorly soluble (S;<50 umol-L~") large molecules and greatly
overpredicts solubility of highly soluble large molecules. The regression analysis of the
three coefficients in Eq. 1 (0.5,—1.0,—0.01), using data partitioned into small and large
molecule sets, resulted in notable differences between the two sets of coefficients, particu-
larly in the first two terms (solvation contributions): (i) the 0.5 intercept in Eq. 1 was found
tobe —0.28 for small molecules and —1.77 for large molecules, and (ii) the log,, P slope
factor, — 1.0, changed from —0.83 to —0.40 in small to large molecules, respectively [21].
The ABSOLYV equation (trained with small molecules) revealed a different pattern of large-
molecule residuals from that of the GSE: the solvation equation underpredicted the solubil-
ity of every large molecule tested. This was especially evident for very flexible molecules
(e.g., gramicidin A, bryamycin, and vancomycin). The principal components analysis of
the solubility database used to train the models revealed an asymmetric distribution in the
data, resembling the shape of a ‘comet’, with small molecules symmetrically occupying
the ‘head’ and large molecules (MW > 800 g-mol™!) exclusively occupying the ‘tail.” Two
hallmarks of bRo5 chemical space reside in the tail [21]: large size and large number of
H-bond acceptors (NHA).

The above study [21] and earlier investigations by Caron and coworkers [15-18, 28]
suggested that the influence of flexibility of large molecules on their solubility and perme-
ability characteristics could be substantial. The latter researchers recommended the use of
the Kier @ molecular flexibility index [29] in modeling the properties of bRo5 molecules.

In our most recent solubility prediction study of bRo5 drugs, we discovered a way to
incorporate the Kier molecular flexibility index, @, plus the Abraham B descriptor (H-bond
acceptor strength) into Yalkowsky’s classic GSE to improve its performance substantially
[22]. The three coefficients in Eq. 1 were empirically determined as smooth functions
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of the sum descriptor, @+ B. The modified equation was named the ‘Flexible-Acceptor’
model, GSE(®,B). It was trained with small (Ro5) molecules to predict the solubility of
large (bRo5) molecules (not used in the training). With just three coefficients in Eq. 1,
each defined as a three-parameter exponential function of @+ B, the strength of predic-
tion nearly matched that of the RFR machine learning method. The coefficient of log,, P
(traditionally fixed at -1.0) changed smoothly from— 1.1 for rigid nonionizable molecules
(@+B=0) to—0.39 for typically flexible (@ ~20, B~6) large molecules. The intercept
(usually fixed at+0.5) varied smoothly from+ 1.9 for rigid small molecules to—2.2 for
flexible large molecules. The mp coefficient remained practically constant, slightly differ-
ent from the traditional value (—0.01) for most molecules. For a test set of 32 large mol-
ecules the GSE(®,B) predicted the intrinsic solubility with RMSE of 1.10 log unit, com-
pared to 3.0 by GSE(classic), and 1.07 by RFR.

Since our last study, it was found that the GSE (®,B) appears to work well not only for
large drugs, but across a wide range of sizes of molecules. This piqued our interest to direct
the new solubility prediction equation to recently-approved drugs (2016-2020), which
comprise both the bRo5 and Ro5 molecules. For comparison, the GSE(classic), ABSOLYV,
GSE(®,B), and RFR models were each applied to predict the intrinsic solubility of 72 new
drugs, for which useable reported solubility values could be accessed, nearly 60% from
FDA published New Drug Application (NDA) reports [1-7]. The method performances
ranked: RFR ~GSE (®,B)> ABSOLV > GSE(classic). The performance of the GSE (®,B)
was almost as good as that of the RFR. However, when the GSE (®,B) and ABSOLV meth-
ods were averaged, the resulting consensus model slightly outperformed the RFR method.

2 Computational Methods and Data Sources
2.1 Thermodynamic Basis of the General Solubility Equation (GSE)

Yalkowsky and coworkers developed the General Solubility Equation (GSE), Eq. 1, to pre-
dict the solubility of liquid/solid nonelectrolytes (mostly industrial organic chemicals) in
water [23, 30-35]. The thermodynamic basis of the equation posits that the dissolution
of a crystalline substance in water comprises two main contributions: (a) crystal lattice
effect (XTL), related to the energy needed to break down the lattice to form a hypothetical
‘supercooled liquid’ (SCL), and (b) solvation effect, related to the energy released as the
SCL dissolves in water. The total solubility of the compound in water is the product of the
above two contributions, which in logarithmic terms can be stated as the sum [33, 34]

log; S = logo S5 + log;o S5 (2)

2.1.1 Crystal Lattice Effect

The lattice contribution, log;, S@TL = —ASm(Tm - T) / 2.303RT, arises from the applica-
tion of the van’t Hoff equation, where AS,, (kJ-mol"-K™) is the standard molar entropy of
phase transformation and T, is the melting point (K). For many small organic compounds,
AS, ~ 0.057 kJ-mol™.K™! [33, 34]. Since at 25 °C, 2.303 RT=5.7 kJ-mol "K', Eq. 2
reduces to Eq. 3, where mp is the melting point in °C.
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log, S = log, S5 — 0.01(mp — 25) 3)

2.1.2 Solvation Effect

Hansch and coworkers [36] demonstrated that log,, S of 156 simple liquid solutes corre-

lated linearly with the octanol-water partition coefficients, log,, P ~ log;, (SE?t / S&?).

This led to the approximation:
i
log;o Sy, = ay +a, log;y P €]

where a; = log,, SL'S[ (solubility of a liquid solute in octanol) and a; ~—1. For small
alcohol, aromatic, and alkane solutes, the series-dependent a, intercepts were deter-
mined as: +0.93,+0.34, —0.25, respectively. The a, slope factors varied less: — 1.1 (alco-
hols), — 1.0 (aromatics), and — 1.2 (alkanes).

Yalkowsky and coworkers surmised that a, = log,, S(S)SL:OS [23]. The entropy of
mixing favors complete miscibility of the two liquids (liquid solute and octanol); i.e.,
the mole fraction=0.5. Since the concentration of pure octanol is 6.32 mol-L ™!, then
logq S23t=10g10 (6.32x0.5)=0.5. With this approximation (and with a;= —1), Eq. 4 sub-
stituted into Eq. 3 reduces to Eq. 1.

These fundamental considerations suggest that the traditional Eq. 1 could be adapted
to compounds from the bRo5 chemical space, since Hansch’s research hinted that the
three coefficients in Eq. 1 could be optimized to different classes of compounds. If the
‘supercooled liquid’ form of a large polar solute is not fully miscible with octanol, then the
logq SECC[L contribution could very well be a negative number. Hence, a large molecule with
a decreased SgSL (due to decreased miscibility) is expected to have an increased S§NCL. This,
in effect, would lessen the contribution of lipophilicity to the predicted solubility.

2.2 ‘Flexible-Acceptor’ General Solubility Equation, GSE(®,B)

In our earlier investigation [22] it was found that molecular flexibility (@) [29] could
be incorporated into a nonlinear variant of the GSE to produce a promising train-
able model with improved accuracy in predicting the solubility of large molecules
(MW > 800 g-mol™!). Further incremental improvements were achieved with an augmented
second descriptor: Abraham’s H-bond basicity (B), a measure of H-bond acceptor potential
[24, 27]. The derived GSE(®,B) has the general form, with the three c-coefficients treated
as three-parameter exponential functions of (@ + B):

GSE(®,B)

log, S, =cy+c; -log,y P+c, - (mp—25)/100 5)
¢y = by + b, exp(—b, - (@ + B)) (6)

¢, =bs +b, [1 —exp(-b; - (@ + B))| @)

¢y =bg +b; [I —exp(=bg - (@ + B))] (8)
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The c-coefficients at aggregated values of @+ B were determined by partial least
squares (PLS open-source package from https://cran.r-project.org/web/packages/pls) analy-
sis of solubility data sorted on values of @+ B and uniformly binned into groupings of
209-1384 points. The details of the PLS procedure have been already described [22]. Since
our database of solubility values has increased in size since our last study and since the
focus now is on new drugs rather than specifically on big drugs, a new set of b-constants
was determined in the current investigation, using druglike molecules as the training set,
but excluding new drugs from the training.

Kier [29] constructed (considering structural attributes such as counts of chains, rings,
branches, and heavy atoms) the molecular flexibility index, &, as the product of first and
second order ‘kappa’ shape indices, 'k and %k, divided by the heavy atom count in the
molecule. Here, values of @ were calculated from the two kappa and the heavy atom count
descriptors provided by the Landrum’s RDKit open-source chemoinformatics library [37].
Table 1 lists these @ values.

2.3 Abraham Descriptors and the ABSOLV Linear Model

To account for the thermodynamics of solute transfer from one phase to another, Abraham
[24, 27] introduced five solvation descriptors: A, B, S,, E, and V. Two of these constitute
hydrogen bonding potential: A is the sum of H-bond acidity (donor strength) and B is the
sum of H-bond basicity (acceptor strength) in the molecule. S, is the dipolarity/polariz-
ability (subscripted so as not to confuse it with solubility), E is an excess molar refrac-
tion in units of (cm3-m01‘1)/10, and V is the McGowan characteristic volume in units of
(cm®-mol~1)/100. Since large molecules have greater number of H-bond acceptors, com-
pared to small molecules [21], the Abraham B descriptor was selected to augment the @
descriptor to further improve solubility prediction in the bRo5 chemical space [22]. Values
of the Abraham descriptors were calculated from 2D structures using the ABSOLV algo-
rithm [27] (¢f., www.acdlabs.com) and are listed in Table 1 for the new drugs.

Abraham and Le [24] amended the ABSOLV model to predict intrinsic solubility
(log molar):

log,o S8 =dy + d|A+ d,B+d;S, + d,E+dsV+deA - B )

The independent variables are the five solute descriptors, plus the cross product of the
H-bond terms. The seven d-coefficients were determined by PLS regression, using the
training set database, exclusive of the new drugs set.

2.4 Statistical Machine Learning Random Forest Regression (RFR) Model

The implementation of the RFR open-source ‘randomForest’ library for the R statistical
software has been described in our earlier solubility prediction studies [20-22]. The ver-
sion used was downloaded from https://www.stat.berkeley.edu/~breiman/RandomForests/
cc_home.htm. The method works by constructing an ensemble of hundreds of decision
trees employing about 200 RDKit-generated molecular descriptors. The same procedure
was applied in the current study. The method was re-trained with the enlarged database,
excluding the newly-approved drugs.
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2.5 Sources of Solubility Data for the Test (New Drugs) and Training (Wiki-pS,
Database) Sets

The annual mini-reviews of FDA drug approvals by Mullard [1-5] were convenient start-
ing points to identify the new drugs and to begin the search for their solubility values. The
data for the newly-approved drugs were wearisome to locate. Since the drugs are relatively
new, there are not many journal publications reporting properties of the compounds. Most
of the data were found in FDA documents. As part of the New Drug Application (NDA)
process, the FDA Center for Drug Evaluation and Research (CDER, www.accessdata.fda.
gov) publishes reports listing some properties of compounds under consideration (review
documents: Product Quality, Quality Assessment, Multi-Discipline, Clinical Pharmacol-
ogy and Biopharmaceutics, and Other). Unfortunately, sometimes the information about
solubility is redacted in these reports. Other useful sources include Product Monographs,
Highlights of Prescription Information, and Safety Data Sheets. Some solubility data were
found in patents. The European Medicines Agency (EMA) publishes Assessment Reports.
The Australian regulatory agency publishes Australian Public Assessment Reports (AUS-
PAR), as well as Australian Product Information documents. These potential sources of
measured solubility data were searched with the ‘solub’ key.

Generally, there was virtually no experimental detail about the measurements in the
published regulatory reports. Most of the reported solubility values are of drugs in water
(Sw), without mention of the saturation pH. The temperature was assumed to be 23 °C
when not stated or when reported as ‘room temperature’ (Table 1). In the dearth of experi-
mental detail, it is a challenge to assess the quality of the reported measurements in most
of the FDA/EMA/AUSPAR reports. Still, there are high quality data in some of the docu-
ments, where solubility measurements were published as a function of pH. Examples of
some of these are presented below.

Of the 169 small-molecule NMEs approved in the 5-year period, 98 quantitative solubil-
ity measurements were found for only 72 NMEs [38-115]. The reported values were trans-
formed into the intrinsic solubility scale, S,, using known (or predicted) pK, values, and
adjusted to 25 °C [116] using the program pDISOL-X (in-ADME Research) [117-122].
Table 1 lists the normalized solubility data, along with the pK, values used in the data
analysis.

The Wiki-pS, (in-ADME Research) intrinsic aqueous solubility database of mostly drug-
like molecules (currently with 7190 deeply-curated entries) was used to train the ABSOLV,
GSE(®,B) and RFR models. Several hundred values from the database have already been
published [20-22, 116-126], and the entire database is currently being prepared for pub-
lication as a book. The newly-approved drugs were used as external test sets and were
excluded from the training process.

The structures of the 72 new drugs considered here (along with the year of approval)
are shown in the Appendix (Fig. 9). In dual-API drug products, each API was treated as a
separate ‘drug’ in the data analysis.

2.6 Sources of Octanol-Water Partition Coefficients (log,, P) and Melting Points
(mp)

Originally in Eq. 1, mp and log,, P, were taken to be experimental values. However, it has
become a common practice to use calculated values, clogP, in place of measured log,
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P. In this study, clogP values were in all cases calculated by the Wildman—Crippen sum
of atomic contributions method in the open-source RDKit chemoinformatics library [37].
Experimental mp values were employed where available and were calculated otherwise
[127]. Values of mp are difficult to predict accurately. Prediction studies suggest root-
mean-square error of about 35 °C. From this, the mp contribution to calculated log S could
be uncertain by ~0.4 log,, unit. Some uncertainty lingers even with tabulated experimental
values, as it is sometimes unclear whether a particular mp value refers to a salt form or a
free-acid/base form of the compound.

3 Results and Discussion
3.1 Data Reduction

For half of the new drugs, log,, S, values in Table 1 were determined from reported Sy,
values, using pDISOL-X. The program also calculated the pH of the saturated solution,
as though the Henderson—-Hasselbalch (HH) equation were valid. When aggregates/com-
plexes form or when supersaturation persists in the suspension, the HH equation does not
accurately predict the shape of the log,, S—pH curve [118—122]. There is no simple way to
recognize such anomalies just from a single Sy, measurement.

The remaining log,, S data were sourced at two or more values of pH, which gener-
ally allowed for more confident determinations of log,, S,. These ‘raw’ log;, S—pH meas-
urements required further data reduction and normalization. For ionizable molecules, the
pK, values are required for such analysis. In cases where measured pK, values could not
be found, they were calculated using the ChemAxon MarvinSketch v5.3.7 program (Che-
mAxon Ltd., https://www.chemaxon.com), as indicated by italic values in Table 1. In a few
cases, it was possible to determine pK, values directly in the analysis of the log,;, S—pH
profiles (bold values in Table 1).

Examples of quality experimental log,, S—pH profiles reported for some of the new
drugs are shown in Fig. 1. Frames a—c are of bases (acalabrutinib, pexidartinib, upadaci-
tinib); frame d is that of an acid (dolutegravir); frame e is that of an ampholyte (talazo-
parib). The data from these five drugs appeared to follow shapes predicted by the Hen-
derson—Hasselbalch equation: it was possible not only to determine the best-fit log,, S,
but also the values of pK, (in five cases) and the pKj, (in two cases). When profiles devi-
ate from expected shapes, it may be possible to assess (and to correct for) the degree to
which the measurements may be supersaturated or if aggregates/complexes are forming
[118-122]. Figure 1f (safinamide) shows such an example of anomaly, where at pH 4.5,
the solubility is higher than that expected for a solution saturated in the free base. Since the
solubility values at pH 1.2 and 4.5 are nearly the same, the suspension at pH 4.5 may have
been supersaturated with respect to the charged form of the base during the measurement.
Had only a single measurement been reported at pH 4.5, the intrinsic solubility might have
been determined at an order of magnitude too high.

3.2 Comparing Properties of the Newly-Approved Drugs to Those in the Database
Training Set

Figure 2 shows the distribution of intrinsic solubility values for the database training set
and the NMEs test set. The new drugs on the average are nearly an order of magnitude less
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Fig.1 New-drug examples of log;, S—pH profiles of good disposition. The solid red curves are the best
fit to the measured data (circles), using the regression analysis program pDISOL-X. It was also possible
to determine the pK, values in cases (a—e). The dashed curves were calculated using the Henderson-Has-
selbalch equation, incorporating the pK, used and the refined log;, S. In cases (b), (d), and (f), it was pos-
sible to determine the salt solubility products (Color figure online)

soluble. Figure 3 compares the properties used to evaluate whether a compound falls into
Lipinski’s ‘Rule of 5° chemical space. The lipophilicities (as indicated by clogP) of the
new drugs on the average are nearly an order of magnitude higher than those of the older
drugs (Fig. 3a). The mean molecular weight of the older drugs is just under 300 g-mol™!;
it is 450 g-mol™' for the new drugs (Fig. 3b). Whereas the distribution of H-bond donors
is nearly the same in the two sets (Fig. 3c), the distribution of H-bond acceptors is quite
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Fig.2 Distribution of intrinsic DISTRIBUTION of INTRINSIC SOLUBILITY, log S,

solubility values, log;, S, in Training Sef
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Fig.3 Lipinski’s Ro5 property distributions: a clogP (RDKit-calculated log,, P, Wildman-Crippen type)
b molecular weight (MW), ¢ number of H-bond donors (NHD), and d number of H-bond acceptors (NHA).
The training set databases distributions are in the upper traces (with counts scaled to right vertical axis) and
the test set new drug distributions are in the lower traces (with counts scaled to right vertical axis). On the
average, compared to the training-set molecules, the newly-approved drugs are about 1.4 times more lipo-
philic, have greater molecular weights by about 1.5 times, have similar distributions of H-bond donors (2/
molecule), but have higher numbers of H-bond acceptors (7/molecule, compared to 4/molecule in the train-
ing set) (Color figure online)
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different (Fig. 3d). On the average, the number of H-bond acceptors, NHA, is about 4 per
molecule for older drugs and nearly 7 per molecule in the newly-approved drugs.

The new drugs violate the boundary conditions of Lipinski’s Ro5 more often than those
in the training set. There are relatively more molecules with clogP > 5 in the new drugs set
(15% of NMEs), compared to that of the training set (6%). For the new drugs, 28% of the
substances have MW > 500 g-mol™', compared to 7% in the training set. The relative num-
ber of NHD > 5 in the new drugs set (5%) is higher than in the training set molecules (2%).
The relative number of NHA > 10 for the new drugs (9%) is greater than in the training set
3%).

The distributions of @ values for the training and test sets are shown in Fig. 4. On the
average, the new drugs are more flexible (mean @=6.2) than the molecules in the training
set (mean @ =4.3). The training set spans a wide range of @ values, from 0.4 to 43. The
newly-approved drugs subtend that space, with @ values ranging from 1.9 to 24.

3.3 Determination of the Three GSE Coefficients from Training Set iso-(® + B) Bins

The training set solubility data were sorted by @+ B into ten bins of increasing values. For
a narrow range of @+ B values in each bin, the three GSE coefficients in Eq. 5 were deter-
mined by linear PLS regression, in the way that Hansch et al. [36] had trained the GSE for
different chemical classes of compounds. Table 2 lists the set of determined c-constants for
each of the bins. The resultant c-constants are depicted by the points on the three curves in
Fig. 5, displayed as a function of the average values of @+ B from each bin. It is possible
to recognize trends for the substantially decreasing c, the steadily increasing c;, and the
very slightly increasing c, coefficients with increasing values of @+ B. Apparently, crys-
tal lattice contributions are not appreciably affected by molecular flexibility and H-bond
acceptor character, and trend near the traditional value (—0.01) in Eq. 1. Evidently, solubil-
ity dependence on flexibility and H-bond acceptor strength are mediated by solution-phase
interactions [26]. The bin analysis results are summarized in Table 2.

From the thermodynamics considerations, the c; coefficient may be viewed as a
measure of the solubility of the ‘supercooled’ liquid solute in octanol (c, & log,, S™9).

oct
Increasingly flexible molecules with strong H-bond acceptor character appear to be less

Fig.4 Distribution of the Kier DISTRIBUTION of KIER FLEXIBILITY INDEX, @
flexibility index, @, in the train- -_
ing database set (upper trace, left ¥ mz_’p’yggabsa?:
axis scale) and the test set (lower 800 F min :}) =04 B
trace, right axis scale) of newly max @ =43
approved drugs. The index was % 700 n = 6879 -
calculated using RDKit ‘kappa’ UO)) 600 b
. =
descriptors (see text). The newly- = ditsibase rican D= 4.3 I
approved drugs are more flexible © 500 new drug mean @ = 6.2
than those in the training set e
(6.2 vs. 4.3) and span a narrower § 400 %0 =
range of values 38 300 - Test Set @
oty depre ey |
200 min @ =1.9 . E/
100 | e 0 5
O
-0

2 4 6 8 10 12 14 16
@ (RDKit Calc)
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Table2 PLS analysis in bins ordered by @+ B: logo S§E=c,+¢, clogP+c, (mp—25)/100

Bin &+ B Range” [ c C, ? RMSE n

1 1.7 0.8-1.9 1.14 -1.24 -0.92 0.70 0.94 209
2 22 1.9-24 0.51 —1.04 -0.82 0.72 0.91 426
3 3.0 2.4-3.6 0.36 -0.95 —-0.88 0.62 1.08 1196
4 4.0 3.64.4 —-0.11 —-0.90 -0.77 0.70 0.96 1187
5 5.0 4.4-57 -0.76 -0.77 -0.70 0.64 1.04 1384
6 6.0 5.7-6.4 —-0.88 —-0.78 —-0.61 0.55 1.01 703
7 7.0 6.4-7.8 —-1.05 -0.77 -0.59 0.66 1.14 760
8 8.5 7.8-9.5 -1.67 —-0.62 —-0.63 0.63 1.13 556
9 10.9 9.5-13.6 —1.81 —-0.54 —-0.94 0.50 1.45 400
10 19.9 13.6-55.9 —-3.06 —-0.33 —-0.14 0.39 1.21 244

*Average @+ B in bin (@ Kier molecular flexibility index, B Abraham H-bond acceptor)
"Range of @+ B values in bin

Fig.5 Training the Flexible- Flexible-Acceptor

Acceptor GSE (&,B) model. The GENERAL SOLUBILITY EQUATION, GSE(®,B)
solubility data in the training log S = Co + ¢4 ClogP + ¢, (mp-25)/100
set were sorted on @+ B and

then divided into ten practi- cQ = -3.464 +5.431 o0.1228(a+B)

cally constant (@ + B) bins
(Table 2). On the average, each
bin contained about 700 log;,

S, measurements. For each bin
(represented by a point in the
plots), the three constants in

Eq. 1 were determined by PLS
regression to best fit the intra-bin
solubility data. The aggregate
intercept coefficient, c,(®,B) in
Eq. 6, is described by an expo- -0.2
nential decay function spanning
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miscible with octanol, as suggested by the decreasing c, coefficients with increasing
@+ B (cf., Table 2 and Fig. 5). Between bins 1 and 10, S decreases by four orders of
magnitude. Given that the c; coefficient also changes with @+ B, the precise thermody-
namic interpretation of the ¢ coefficient is less clear than in the classical derivation [23,
33, 34] where c, is constant.

The points in Fig. 5 were fitted to exponential forms as functions of @+ B to deter-
mine the b-parameters (Eqs. 6-8), using standard nonlinear least-squares methods. The
resultant best-fit curves in Fig. 5 define the aggregated form of the GSE(®,B), in the

final form with the nine b-parameters determined, as shown below.

cy = 3.464 4 5.431 exp(—0.1228 - (@ + B) (10)
¢; = 1.369 + 1.099[1 — exp(—0.1343 - (@ + B))] (11)
¢y = 1.128 + 0.608[1 — exp(—0.247 - (@ + B))] (12)

3.4 ABSOLV Training

The d-coefficients in Eq. 9 were determined by PLS regression using the log;, S, val-
ues from the Wiki-pS, database, excluding those of the NMEs: r*=0.65, RMSE=1.16,
n=7092.

log; S5B5OWY = —0.640 + 0.128A4 + 1.751B + 0.083S,, — 1.526E — 1.223V + 0.065A - B
13)

3.5 Solubility Prediction Results for the Newly-Approved Drugs
3.5.1 Model Training

Figure 6 shows the results of the training of the four models, as measured log,, S, vs.
calculated log,, S, correlation plots. The solid diagonals are identity lines. The dashed
diagonals are + 0.5 log;, unit displaced from the identity lines. The measure of predic-
tion performance (MPP) is indicated by the pie-charts as the percentage of predicted
values that are within+0.5 log;, unit of the observed values [128]. In the first three
frames, the symbols represent the predominant charge states of molecules at pH 7.4:
black diamonds represent uncharged molecules, blue squares represent bases (positive
charged), red circles represent acids (negative charged), and yellow diamonds represent
zwitterions. The zwitterions are less well predicted in the GSE model, compared to the
ABSOLV model [20]. The Random Forest Regression (RFR) internal validation was
applied to randomly-selected 30% of the database, based on training using the other
70% of the database (exclusive of new drugs). For molecules like those of the database,
it is expected that their log,, S, could be predicted with r*=0.90, RMSE =0.62, with
76% of the molecules ‘correctly’ predicted (Fig. 6d). Generally, the other three methods
are less precise, with MPP values ranging around half of the RFR value.
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Fig.6 Training set predictions of the four models considered: measured log,, S, vs. calculated log,, S.
The solid diagonals are identity lines. The dashed diagonals are +0.5 log;, unit displaced from the iden-
tity lines. The pie-charts indicate the percentage of ‘correctly’ predicted values (see text). a GSE(classic)
model, according to Eq. 1 (untrained). b ABSOLV model, Eq. 13, with coefficients determined by PLS
regression. ¢ Flexible-Acceptor GSE(®,B) model, according to Eqs. 10-12 (see text), and d Random Forest
Regression (RFR) internal validation applied to randomly-selected 30% of the database, trained using the
other 70% of the database

3.5.2 Model Testing

Figure 7 shows the results of the predictions of the solubility of the newly-approved drugs
(external test sets) by the four models. Table 3 summarizes the results. Briefly, the four
results look similar, as MPP values range from 28 to 39%. Note that the horizontal scale
in Fig. 7a is quite different from those of the other frames. The GSE(classic) underper-
formed compared to the other methods. The Flexible-Acceptor model produced prediction
metrics nearly equal to those of RFR. None of the methods produced RMSE < 1, which
may be indicative of the uncertain quality of half of the new drugs solubility data reported
as single-point values in water. On the other hand, RFR uncharacteristically overpredicted
the solubility of drugs with log,, S,<7, which may hint that those molecules possessed
structural features not found in the Wiki-pS,, training database. The GSE(®,B) also shows
similar overpredictions.

The bias in the predicted results is near zero (—0.06) in the RFR method. Both GSE
methods show negative bias (—0.33 and —0.25), whereas the ABSOLV method produces
a positive bias (+0.29). A consensus model was suggested by averaging the ABSOLV
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Fig.7 Test set predictions of the four models considered: measured log S, of newly-approved drugs vs.
calculated log S,. See Fig. 6 caption for definitions of common features. a GSE(classic) model, according
to Eq. 1 (untrained). b ABSOLV model, Eq. 13, with coefficients determined by PLS regression. ¢ Flex-
ible-Acceptor GSE(®,B) model, according to Eqgs. 10-12, with (@ + B)-dependent c-coefficient functions
determine by PLS regression (see text), and d Random Forest Regression (RFR) external test set of newly
approved drugs

and GSE(®,B), to minimize the method bias. Figure 8 shows the results of the consensus
model. Although the r* (0.67) and RMSE (1.07) values in the consensus method match
those of the RFR method, the MPP value (40%) and the bias (+0.02) in the consensus
model are slight improvements.

3.5.3 More is Needed than Just Increasing the Size of the Training Set
The Wiki-pS,, database of druglike molecules has steadily grown over the last 10 years.
Lately, it has been our observation that this alone has not proportionately improved its abil-

ity to predict the solubility of drugs. Metrics such as those in Fig. 6 have remained largely
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Fig.8 Consensus model: average
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unchanged [20-22]. Solubility prediction depends on multi-dimensional factors (quality of
measurements of both training and test sets, distribution of training set molecules in chemi-
cal space in relation to the tested drugs, sensitivity of descriptors used in prediction mod-
els, etc.), with some factors yet to be recognized. Simply increasing the size of the solubil-
ity training set may not lead to improved predictions. Lipinski has suggested that compiling
a large physicochemical property database aimed at maximizing chemical diversity may be
an inefficient strategy for predicting the properties of novel molecules, given the enormous
size of the chemical space, and since drugs appear to exist there as small tight clusters
[129]. However, small improvement in solubility prediction can be expected as the training
set acquires additional measurements of regulatory newly-approved molecules on a regular
basis—i.e., drawing from the “tight cluster” space. It would be helpful if the quality of
such measurements were to improve with time. New descriptors which can better differ-
entiate the factors affecting solubility also can be important for narrowing the gap between
the accuracy of the prediction models and that of the experimental data.

4 Conclusion

Many of the new drugs are large and fall outside of the Lipinski Ro5 chemical space, as
depicted in Fig. 3. It would have been helpful to have access to more quantitative solubility
measurements of the newly-approved drugs than provided in the regulatory agency reports.
The experimental uncertainty of nearly half of the new measurements could not be directly
verified. If better practices in solubility measurement were adhered to, as detailed in the
recent data-quality ‘white paper’ by experts from six countries [121], and the experimental
details were more openly shared, newly-reported measurements could achieve results with
interlaboratory SD <0.2 log;, unit. But apparently this is work still in progress. The data
quality in the curated database (SD <0.2 log unit) used here as the training set is not the
limiting factor in prediction, given that the best root-mean-square error achieved in this
study was above a log unit. The benchmark statistical machine learning approaches are
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probably up to the task in narrowing the gap between prediction and measurement. The
Flexible-Acceptor GSE(®,B) performed nearly as well as the benchmark Random For-
est regression method in predicting the aqueous intrinsic solubility of the newly-approved
drugs (2016-2020). A similar near-match had been previously reported by us in the pre-
diction of the solubility of large (bRo5) drugs, supporting the general applicability of the
Flexible-Acceptor model. A consensus model based on the average predictions of the
ABSOLV and GSE(@,B) methods was found to reduce the prediction biases in the separate
methods, but perhaps even more significant, it slightly outperformed the Random Forest
regression method overall. The relatively-simple consensus model can be readily incorpo-
rated into spreadsheet calculations.

Appendix

The structures of the 72 newly-approved drugs, along with the year of approval, are shown
in Fig. 9
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