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Abstract
The liquid state is one of the three principal states of matter and arguably the most impor-
tant one; and liquid mixtures represent a large research field of profound theoretical and 
practical interest. This topic is of importance in many areas of the applied sciences, such 
as in chemical engineering, geochemistry, the environmental sciences, biophysics and bio-
medical technology. First, I will concisely present a review of important concepts from 
classical thermodynamics of nonelectrolyte solutions; this will be followed by a survey 
of (semi-)empirical approaches to representing the composition and temperature depend-
ence of selected thermodynamic mixture properties, and finally the focus will be on dilute 
binary nonelectrolyte solutions where one component, a supercritical solute, is present in 
much smaller quantity than the other component, called the solvent. Partial molar proper-
ties in the limit of infinite dilution (indicated by a superscript ∞) are of particular interest. 
For instance, activity coefficients (Lewis–Randall (LR) convention) are customarily used to 
characterize mixing behavior, and infinite-dilution values �LR,∞

i
provide a convenient route 

for obtaining binary parameters for several popular solution models. When discussing  
solute (j)—solvent (i) interactions in solutions where the solute is supercritical, the Henry 
fugacity hj,i(T ,P) , also known as Henry’s law (HL) constant, is a measurable thermody-
namic key quantity. Its temperature dependence yields information on the partial molar 
enthalpy change on solution ΔH∞

j
(T ,P) , while its pressure dependence yields information 

on the partial molar volume VL,∞

j
(T ,P) of solute j in the liquid phase (superscript L). I 

will clarify issues frequently overlooked, touch upon solubility data reduction and correla-
tion, report a few recent high-precision experimental results on dilute aqueous solutions 
of supercritical nonelectrolytes, and show the equivalency of results for caloric quantities 
(e.g. ΔH∞

j
 ) obtained via van ’t Hoff analysis of high-precision solubility data with directly 

measured calorimetric data.
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Any sufficiently advanced technology is indistinguishable from magic.
Arthur C. Clarke, Profiles of the Future: An Inquiry into the Limits of the 

Possible, revised edition. Harper & Row, New York, 1973.
How often have we walked this narrow thoroughfare without having noticed that 

little shop? Or, if noticed, passed it by? Let us just try the door … it opens … a 
bell tinkles … What an odd shop … What can it have for sale? Shall we go in?

Avram Davidson, editor, Magic for Sale, Ace Science Fiction, 1983.

1  Introduction

1.1 � Preliminaries

Physical chemistry and chemical physics (if they are, indeed, fields apart) of liquids and 
liquid mixtures or solutions are indispensable parts of many areas of the pure and applied 
sciences, such as chemistry, physics, biophysics, chemical engineering, and geoscience, 
among others. In particular, this large and fundamentally important research field forms 
bridges between topics where work on macromolecules, colloids, glasses, liquid crystals 
and biological materials constitutes the highly active and rapidly expanding field of soft-
matter chemical physics [1–19]. Most processes of interest in chemical engineering are 
carried out in fluid solution phases, and nonelectrolyte solutions constitute, perhaps, the 
most important subfield which will be considered in this review. Based on thermodynam-
ics, molecular physics and statistical mechanics, the three main reasons for the enormous 
effort invested into experimental, theoretical and computer-based research in this field are:

	 (I)	 It is hoped that by studying mixture/solution properties and solubilities we will 
steadily improve our knowledge on interactions between molecules in bulk liquid 
phases. Any advance in this area will directly benefit science in general, and sepa-
ration industry in particular, since the most common processes there are predomi-
nantly based on vapor–liquid equilibria (VLE) involving multicomponent systems. 
A classic book in this area, combining thermodynamic theory with experimental 
practice, has been authored by Hála et al. [20].

	 (II)	 The appearance of new physical phenomena not found with the pure liquid compo-
nents is scientifically fascinating as well as challenging. It adds a new dimension 
to thermo-physical research and opens the door for novel ideas and developments.

	 (III)	 Science-based chemical engineering is one of the most important segments of a 
modern society, with fluid phase separation technology and chemical/biochemi-
cal product design being cornerstones of the field. Solvents have always been the 
mainstay of the chemical industry, and associated technological problems must 
be resolved as fast as possible; that includes restrictions aimed at preserving the 
quality of human life in general, i.e., environmental (sustainability, toxicology, 
etc.) [21, 22] and specific health issues. The practitioners involved must deal with 
them efficiently and pragmatically.

      Experiments are the fundament of science: they provide the basis for inductive reason-
ing (known informally as bottom-up reasoning), which after amplifying, logically ordering 
and generalizing our experimental observations leads to hypotheses and then theories, and 
thus to new knowledge. In contradistinction, deduction (informally known as top-down rea-
soning), orders and explicates already existing knowledge, thereby leading to predictions 
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which may be corroborated experimentally, or falsified [23]. In fact, a theory has no value 
in science unless it is possible to test it experimentally. Though correct in principle, from 
a practical point of view the following problem exists: the huge number of potentially 
useful solubility data connected with binary, ternary, quaternary, etc., systems at differ-
ent temperatures T and pressures P effectively precludes the experimental determination of 
mixture/solution properties and solubilities for all but a few representative key systems of 
physical–chemical/technological interest. This is best illustrated by calculating the number 
of multi-component solutions containing c components, which can be formed out of, say, 
p = 500 chemicals (this is a reasonable estimate of the number of solvents generally avail-
able to chemists working in academic, governmental and industrial research laboratories). 
The number of multi-component solutions is given by the c-combination 

Hence, C500
2

= 0.12475 × 106 different binary solutions may be formed, 
C500
3

= 20.7085 × 106 different ternary solutions, C500
4

= 2.573031125 × 109 different qua-
ternary solutions, and so forth. Thus, reliable and effective prediction methods for thermo-
dynamic properties of fluids, pure and mixed, are an indispensable tool of the trade.

In order to facilitate development and discussion of ideas, I consider it helpful to 
introduce here a few physical concepts that will be discussed in more detail later on (see 
Sect.  2.3). The obvious power and utility of an equation-of-state (EOS) has stimulated 
research in this field for about 150 years, that is, since van der Waals (vdW). He was one of 
the first to utilize molecular theory to describe semi-quantitatively thermodynamic proper-
ties of liquid mixtures in terms of pure-component properties [24–28]. It was based on his 
then newly developed celebrated volumetric equation of state for pure fluids,

or alternatively written,

Here, V is the molar volume, and R denotes the molar gas constant. The parameter b is 
known as the covolume and allows for the finite hard size of the molecules, and the aver-
aged attractive intermolecular interaction in the real fluid leads to a correction of the pres-
sure amounting to a

/
V2.

The vdW equation of state is cubic in V, that is,

and such a cubic expression (this is a minimum requirement) is capable of representing 
both liquid-like and vapor-like molar volumes at sufficiently low temperatures (via the 
Maxwell equal-area rule). It yields also a critical point (indicated by a subscript c) with 
critical temperature Tc , critical pressure Pc and critical molar volume Vc. For the first time, 
properties of both liquid and vapor could be described by an equation of state using molec-
ular-based parameters, which feature is prerequisite for using an EOS in the calculation of 
vapor–liquid equilibria. A frequently used alternative form of the vdW equation of state is

(1)Cp
c
=

(
p

c

)
=

p!

c!(p − c)!
=

p(p − 1) ⋅ ⋅ ⋅ (p − (c − 1))

c!
.

(2)
(
P +

a

V2

)
(V − b) = RT ,

(3)P =
RT

V − b
−

a

V2
.

(4)V3 −

(
b +

RT

P

)
V2 +

a

P
V −

ab

P
= 0,
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where Z is known as the compression factor. As best seen with Eq. 5, in the limit as V → ∞ 
the vdW equation yields the perfect-gas (pg) [29], or ideal-gas, equation of state, that is,

All pressure-explicit equations of state should satisfy this limit. The term “equation of 
state” most frequently refers to the equilibrium relation between pressure, volume, temper-
ature and composition of the uniform fluid phase, in the absence of special external force 
fields.1 Most conveniently, the composition is characterized by the mole fractions xi of the 
components, i.e.,

Here, ni is the amount of substance of component i in the mixture, n ≡ c∑
i

ni is the total 

amount of substance, and for a pure substance xi = 1.
Based on his equation of state, Eq. 2, van der Waals formulated his corresponding states 

theorem (CST) for pure fluids. However, the derived universal critical compression factor

is considerably larger than common experimental values. Although first derived for a vdW 
fluid, it was shown later that CST is much more generally applicable: it is, in fact, valid for 
any EOS with two adjustable parameters (two-parameter CST), and, as shown by Pitzer 
[36], it can be derived from statistical mechanics.

(5)Z ≡ PV

RT
=

1

1 − b∕V
−

a

RTV
,

(6)Zpg =
PVpg

RT
= 1.

(7)xi ≡ ni

/
c∑
i

ni = ni
/
n,

c∑
i

xi = 1.

(8)Zc,vdW =
Pc,vdWVc,vdW

RTc,vdW
=

3

8
,

1  The thermodynamic systems treated in this review are generally referred to as simple systems. By defini-
tion, such systems are macroscopically homogeneous, isotropic, uncharged, non-reactive, and large enough 
to neglect surface effects. In addition, simple systems are not acted upon, for instance, by electrostatic or 
magnetic fields; in addition, the fluid samples are small enough so that the influence of the earth’s gravita-
tional field is not detected in a variation of properties with the height of the containing vessel. Pressure is 
the only mechanical force considered, causing contraction or dilation of the fluid. Near the critical point, 
many thermodynamic properties (and transport properties as well) show anomalies linked to the divergence 
of the fluid’s isothermal compressibility [29–31].
 

where � denotes the mass density. Thus, associated with the large compressibility in a near-critical fluid 
(say, within 1 K from the critical point), the presence of the gravitational field will cause the local value of 
the density to vary with height, i.e., macroscopic density gradients (gravitational sedimentation) develop 
due to compression under the fluid’s own weight. Over the height of a few centimeters, they can cause den-
sity variations as large as 10% [32–34]. Note that the divergence of the compressibility gives rise to diver-
gencies of the isobaric expansion coefficient and the isobaric heat capacity, etc., and measurements close to 
the critical point become significantly distorted. For experiments on fluid systems under terrestrial labora-
tory conditions and sufficiently removed from the critical region the influence of the earth’s gravitational 
field is generally ignored. However, for interpreting precision measurements in the critical region and to test 
theoretical predictions of critical phenomena, experiments taking advantage of the microgravity environ-
ment of space (space laboratories) are indispensable and have indeed been performed [35].

�
T
= −V−1(�V∕�P)T = �

−1(��∕�P)T
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Nevertheless, from such a volumetric vdW-type EOS, for any given composition, PVT 
information may be obtained. Using classical thermodynamics, isobaric residual proper-
ties and isochoric (isometric) residual properties can be computed, and vapor–liquid phase 
equilibria (VLE) can be calculated (for definitions see Sect. 2). However, for many prac-
tical applications concerning liquid solutions, the focus is on the direct modeling of the 
molar excess Gibbs energy GE

(
T ,P,

{
xi
})

 and related quantities, such as activity coeffi-
cients (see Sect. 2), though in principle an adequate PVTx equation of state implies a reli-
able GE. Note that only PVTx systems comprised of chemically non-reactive components 
will be considered. With few exceptions, the following general system of notation will be 
used throughout:

•	 Solutions/mixtures are of prime interest, and their molar single-phase properties, such 
as the molar volume V, will be represented by the plain symbol M; additional super-
scripts (such as E, identifying an excess property, or R, indicating a residual property) 
will be attached as needed. Thus, I have adopted the nomenclature suggested by Van 
Ness and Abbott [17].

•	 A total property of a single-phase multicomponent solution is either indicated by a 
superscript t, or represented by the product nM, i.e.,Mt ≡ nM; n =

∑
i

ni denotes the 

total amount (of substance) in the phase, and ni is the amount (of substance) of compo-
nent i. Again, the suggestion of Van Ness and Abbott [17] is adopted.

•	 Molar single-phase pure-substance properties will be characterized by a superscript 
asterisk and, if needed, identified by a subscript, i.e., M∗

i
, i = 1,2,…;

•	 Partial molar properties referring to a component i in solution will be identified by a 
subscript, i.e., M

i
, i = 1,2,…; additional superscripts/subscripts will be attached as 

needed. Since a superscript asterisk characterizes a pure-substance property, no overbar 
is needed to indicate a partial molar property.

The notation adopted in this review facilitates reading equations and avoids as much as 
possible index-cluttering.

1.2 � Thermodynamic Fundamentals

Consider a single-phase, multicomponent PVTx system, either open or closed, where the 
amounts ni, nj, nk,… of components i, j, k,… may vary either because of interchange of 
matter with the surroundings, or because of chemical reactions within the system, or both. 
The fundamental equation for a change of state of a phase, also known as the fundamen-
tal property relation, or the differential form of the fundamental equation in the internal 
energy representation, reads

and, equivalently,

(9)d(nU) = Td(nS) − Pd(nV) +

c∑
i

[
�(nU)

�ni

]

nS,nV ,nj≠i
dni,

(10)d(nS) =
1

T
d(nU) +

P

T
d(nV) +

c∑
i

[
�(nS)

�ni

]

nU,nV ,nj≠i
dni,
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in the entropy representation [17, 37]. Here, nU = Ut
(
nS, nV , n1, n2,…

)
 denotes the exten-

sive total internal energy (indicated by the superscript t), and U the intensive molar inter-
nal energy, nS = St

(
nU, nV , n1, n2,…

)
 denotes the extensive total entropy, and S the inten-

sive molar entropy.
The intensive parameter furnished by the first-order partial derivative of the total inter-

nal energy with respect to the amount of substance ni of component i,

is called the chemical potential of component i in the mixture. It is an intensive conceptual 
state function. And from Eq. 10 one obtains

Hence the fundamental property relation Eq. 9 can be written in a more compact form,

while the fundamental property relation Eq. 10 becomes

Equations 13 and 14 are fundamental because they completely specify all changes that 
can take place in simple, single-phase, multicomponent PVTx systems, either open or 
closed, and they form the basis of extremum principles predicting equilibrium states. How-
ever, I reiterate that in this review only simple, non-reacting fluid systems will be covered.

The fundamental property relations for open single-phase systems (either in the internal 
energy representation, Eq.  13, or in the entropy representation, Eq.  14), that is, the dif-
ferential forms of the fundamental equations for open systems, can be integrated over the 
change in the amount of substance at constant values of the intensive quantities 

{
T ,−P,�i

}
 

or 
{
1∕T ,P∕T ,−�i

/
T
}
 , respectively, and immediately yield the fundamental equations for 

an open, single-phase, multicomponent PVTx system:

in the internal energy representation, and

in the entropy representation. These equations are also known as the integrated forms of 
the fundamental equations for a change of the state of a phase; and the state functions 
nU

(
nS, nV ,

{
ni
})

 and nS
(
nU, nV ,

{
ni
})

 are commonly known as primary functions, or as 
cardinal functions, or as thermodynamic potentials.

(11)

[
�(nU)

�ni

]

nS,nV ,nj≠i
≡ �i,

(12)

[
�(nS)

�ni

]

nU,nV ,nj≠i
= −

�i

T
.

(13)d(nU) = Td(nS) − Pd(nV) +

c∑
i

�idni,

(14)d(nS) =
1

T
d(nU) +

P

T
d(nV) −

c∑
i

�i

T
dni.

(15)nU = T(nS) − P(nV) +

c∑
i

�ini,

(16)nS =
1

T
(nU) +

P

T
(nV) −

c∑
i

�i

T
ni,
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Alternatively, Eqs. 15 and 16 can be regarded as a consequence of Euler’s theorem on 
homogeneous functions, which asserts the following: if f

(
z1, z2,…

)
 is a homogeneous 

function of degree k in the variables 
{
z1, z2,…

}
 , that is, if it satisfies for any value of the 

constant scaling parameter � the relation

it must also satisfy

In thermodynamics only homogeneous functions of degree k = 0 and k = 1 are impor-
tant. The former are known as intensive functions, and the latter are known as extensive 
functions. Based on the homogeneous first-order properties of both Ut and St , that is,

where for a more compact notation, in analogy to Ut and St, nV  has been replaced by 
V t, use of Eq. 18 with k = 1, in conjunction with Eqs. 13 and 14, yields Eqs. 15 and 16, 
respectively. The corresponding sets of extensive variables, i.e., 

{
nS, nV , n1, n2,…

}
 for the 

internal energy representation, and 
{
nU, nV , n1, n2,…

}
 for the entropy representation, are 

called independent canonical or natural variables. With a satisfactory fundamental equa-
tion established, all thermodynamic equilibrium properties of a PVTx phase can be calcu-
lated by fairly simple mathematical manipulations, that is, by combinations of appropriate 
derivatives of the corresponding primary function (thermodynamic potential); it is for this 
reason that they are called fundamental equations.

As indicated by Eq.  13, the parameters T, −P and �i are partial derivatives of 
nU = Ut

(
nS, nV , n1, n2, ⋅ ⋅ ⋅

)
 and are thus also functions of 

{
nS, nV , n1, n2, ⋅ ⋅ ⋅

}
∶

T, P and �i are each homogeneous zeroth-order functions (intensive functions) in the 
independent extensive variables nS, nV and 

{
ni
}
 , and any relation expressing an intensive 

parameter in terms of independent extensive parameters, as indicated by Eqs.  21–23, is 
called a general equation of state. A single equation of state does not contain complete 
information on the thermodynamic properties of the system. However, the complete set of 
these three equations of state is equivalent to the fundamental equation and contains all 
thermodynamic information. Analogous comments apply to the fundamental property rela-
tion in the entropy representation, Eq. 14, leading to the corresponding general equations 
of state as indicated below:

(17)f (�z1, �z2,…) = �
kf
(
z1, z2,…

)
,

(18)kf
(
z1, z2,…

)
=
∑
i

zi
(
�f
/
�zi

)
zj≠i
, i = 1, 2,… .

(19)Ut
(
�St, �V t, �n1, �n2,…

)
= �Ut

(
St,V t, n1, n2,…

)
,

(20)St
(
�Ut, �V t, �n1, �n2, ⋅ ⋅ ⋅

)
= �St

(
Ut,V t, n1, n2, ⋅ ⋅ ⋅

)
,

(21)
[
�(nU)∕�(nS)

]
nV ,{ni}

= T , hence T = T
(
nS, nV , n1, n2,…

)
,

(22)
[
�(nU)∕�(nV)

]
nS,{ni}

= −P, hence P = P
(
nS, nV , n1, n2,…

)
,

(23)
[
�(nU)

/
�ni

]
nS,nV ,{nj≠i}

= �i, hence �i = �i

(
nS, nV , n1, n2,…

)
.
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For constant-composition fluids (and thus also for pure fluids), T = T
(
nU, nV , n1, n2, ⋅ ⋅ ⋅

)
, 

or explicitly resolved for the extensive total internal energy nU = Ut,

This type of equation is known as the caloric equation of state.
Clearly, by using Eqs. 25 and 27 we obtain either a pressure-explicit equation of state

or, when resolved for the extensive total volume nV = V t , a volume-explicit equation of 
state

A well-known example of a volume-explicit EOS is the virial equation in pressure, and a 
well-known example of a pressure-explicit EOS is the van der Waals equation. Note, how-
ever, that most equations of state in practical use are explicit in pressure.

In the fundamental property relations for an open single-phase PVTx system in both 
the internal energy representation and the entropy representation, the extensive properties 
are the mathematically independent variables, while the intensive parameters are derived. 
Clearly, this situation does not conform to experimental practice. The choice of nS and 
nV as independent extensive variables in Eq. 13, and of nU and nV as independent exten-
sive variables in Eq.  14, is not convenient: experiment-based experience shows that the 
conjugate intensive parameters {T ,P} and {1∕T ,P∕T} , respectively, are much more easily 
measured and controlled. In order to describe the system behavior when one or more of its 
intensive parameters are held constant (for instance, in isothermal or isobaric processes), 
alternative versions of the fundamental equations are necessary in which one or more of 
the extensive parameters are replaced by the conjugate intensive parameter(s) without loss 
of information. The appropriate formal mathematical technique for generating equivalent 
alternative thermodynamic potentials is the Legendre transformation [37–40].

Equation 15 suggests the definition of useful alternative energy-based primary functions 
related to nU and with total differentials (fundamental property relations) consistent with 
Eq. 13, but with a set of canonical variables different from {nS, nV, {ni}}, while Eq. 16 
suggests the definition of useful alternative entropy-based primary functions related to nS 
and with total differentials (fundamental property relations) consistent with Eq.  14, but 
with a set of canonical variables different from {nU, nV, {ni}}.

Consider the exact (total) differential

pertaining to the function f (0) with n independent variables Xi,

(24)
[
�(nS)∕�(nU)

]
nV ,{ni}

=
1

T
, hence

1

T
=

1

T

(
nU, nV , n1, n2,…

)
,

(25)
[
�(nS)∕�(nV)

]
nU,{ni}

=
P

T
, hence

P

T
=

P

T

(
nU, nV , n1, n2,…

)
,

(26)
[
�(nS)

/
�ni

]
nU,nV ,{nj≠i}

= −
�i

T
, hence

�i

T
=

�i

T

(
nU, nV , n1, n2,…

)
.

(27)Ut = Ut(T , nV , n1, n2,…).

(28)P = P
(
T , nV , n1, n2,…

)
,

(29)V t = V t
(
T ,P, n1, n2,…

)
.

(30)df (0) = c1dX1 + c2dX2 + ⋅ ⋅ ⋅ + cndXn,
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where

Consider now the function obtained by subtracting the product of X1 with its conjugate 
partial derivative c1 from the base function f (0) , Eq. 31:

The corresponding total differential reads

and with Eq. 30 one obtains

Comparison of Eq. 30 with Eq. 35 shows that the original variable X1 and its conjugate 
c1 have interchanged their roles (and a minus sign was introduced): for such an interchange 
it suffices to subtract c1X1 =

(
�f (0)

/
�X1

)
Xj≠1

X1 from the base function to yield the first-
order partial Legendre transform,

which is frequently identified by a bracket notation indicated above. This Legendre trans-
form represents a new function with the independent variables 

{
c1,X2,X3,… ,Xn

}
 being 

the canonical (or natural) variables.
The second-order partial Legendre transform is obtained via

which yields the total differential

Hence

Analogously, the Legendre transformation of higher order p of the base function f (0) 
that introduces the partial derivatives 

{
c1, c2,… , cp

}
 into f (0) reads

and the associated total differential is

(31)f (0) = f (0)
(
X1,X2, ⋅ ⋅ ⋅,Xn

)
,

(32)ci =
(
�f (0)

/
�Xi

)
Xj≠i

.

(33)f (1) = f (0) − c1X1.

(34)df (1) = df (0) − c1dX1 − X1dc1,

(35)df (1) = −X1dc1 + c2dX2 + c3dX3 + ⋅ ⋅ ⋅ + cndXn.

(36)f (1) = f (1)
(
c1,X2,X3,… ,Xn

)
= f (0)

[
c1
]
,

(37)f (2) = f (0) − c1X1 − c2X2,

(38)
df (2) = df (0) − c1dX1 − X1dc1 − c2dX2 − X2dc2

= −X1dc1 − X2dc2 + c3dX3 + ⋅ ⋅ ⋅ + cndXn.

(39)f (2) = f (2)
(
c1, c2,X3,… ,Xn

)
= f (0)

[
c1, c2

]
,

(40)
f (p) =f (0) −

p∑
i=1

ciXi = f (p)
(
c1, c2,… , cp,Xp+1,Xp+2,… ,Xn

)

≡f (0)[c1, c2,… , cp
]
,
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The complete Legendre transform, i.e., the transform of order p = n , replaces all vari-
ables by the conjugate partial derivatives, and vanishes identically for any system; this fol-
lows directly from the definition:

The associated differential expression reads

In thermodynamic theory, the complete Legendre transform of the internal energy nU of 
an open PVTx phase with c components has all extensive canonical variables replaced by 
their conjugate intensive variables, thus yielding the null function

and correspondingly

with canonical variables 
{
T ,P,

{
�i

}}
. This property of the complete Legendre transform 

gives rise to the Gibbs–Duhem equation, which represents an important relation between 
the intensive parameters T, P and 

{
�i

}
 of the system and shows that they are not independ-

ent of each other.
When focusing on the fundamental equation in the entropy representation for an open, 

single-phase, multicomponent (c components) PVTx system, Eq.  16, the complete Leg-
endre transform of the total entropy nS (again all extensive canonical variables are replaced 
by their conjugate intensive variables) is identically zero, thus yielding the null function

and correspondingly,

with canonical variables 
{
1∕T ,P∕T ,

{
�i

/
T
}}

 . This property of the complete Legendre 
transform gives rise to the entropy-based Gibbs–Duhem equation, which shows that the 
intensive parameters characterizing the system, i.e., 1∕T  , P∕T  and �i

/
T  , are not independ-

ent of each other.

(41)df (p) = df (0)
[
c1, c2,… , cp

]
=

p∑
i=1

(
−Xi

)
dci +

n∑
k=p+1

ckdXk.

(42)f (n) = f (0) −

n∑
i=1

ciXi = f (n)
(
c1, c2,… , cn

) ≡ f (0)
[
c1, c2,… , cn

]
= 0.

(43)0 = df (0)
[
c1, c2,… , cn

]
=

n∑
i=1

(
−Xi

)
dci.

(44)0 = nU

[
T ,−P,

c∑
i

�i

]
= nU − T(nS) + P(nV) −

c∑
i

�ini,

(45)0 = −(nS)dT + (nV)dP −

c∑
i

nid�i,

(46)0 = nS

[
1

T
,
P

T
,−

c∑
i

�i

T

]
= nS −

1

T
(nU) −

P

T
(nV) +

c∑
i

�i

T
ni,

(47)0 = −(nU)d
(
1

T

)
− (nV)d

(
P

T

)
+

c∑
i

nid
(
�i

T

)
,
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As shown in Eq. 40, a partial Legendre transform f (p) of order p of the base function 
f (0)

(
X1,X2,… ,Xn

)
 , with 1 ≤ p ≤ (n − 1) , is obtained via subtraction of p products of Xi 

with its conjugate partial derivative ci =
(
�f (0)

/
�Xi

)
Xj≠i

 , i.e., via subtraction of 
p∑
i=1

ciXi . The 

number of partial Legendre transforms of order p is therefore given by the number of com-
binations without repetition, that is, by

The total number NLe,p of partial Legendre transforms, that is, the total number of 
equivalent alternatives to f (0) , is thus obtained from

Since the total number N t
Le

 of Legendre transforms includes the complete transform, it 
is given by

The complete Legendre transform, that is, the transform of order p = n, vanishes 
identically.

Application of the above results to the fundamental equations for an open multicompo-
nent PVTx phase either in the internal energy representation, Eq. 15, or in the entropy rep-
resentation, Eq. 16, is now straightforward. Provided the summation term 

c∑
i

�ini in the for-

mer is treated as a single term (in this case n = 3 ), the entire number N t of equivalent 
primary functions (equivalent thermodynamic potentials) related to the internal energy, 
including nU , and therefore the number of the corresponding equivalent fundamental prop-
erty relations, i.e., of the total differentials of these functions, is seven:

They are presented in Tables 1 and 2, respectively, together with the null function and 
its associated internal energy-based Gibbs–Duhem equation [37].

Since the total differentials of the primary functions presented in Table 2 are equivalent, 
alternatives to the definition of the chemical potential �i of component i by Eq.  11 are 
possible:

The last equality, that is,

(48)Cn
p
=

n!

p!(n − p)!
,

(49)NLe,p =

p=n−1∑
p=1

Cn
p
= 2n − 2.

(50)N t
Le

=

p=n∑
p=1

Cn
p
= NLe,p + 1 = 2n − 1.

(51)N t = NLe,p + 1 = 2n − 1 = 7,

(52a)

�
i
≡
[
�(nU)

�n
i

]

nS,nV ,nj≠i
=

[
�(nH)

�n
i

]

nS,P,nj≠i

=

[
�(nF)

�n
i

]

T ,nV ,nj≠i
=

[
�(nG)

�n
i

]

T ,P,nj≠i
.
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is the preferred working definition, because T and P are the most useful experimental 
thermodynamic coordinates. Recalling the definition of a partial molar property, that is,

(52b)
�i

(
T ,P, x1, x2,…

) ≡
[
�(nG)

�ni

]

T ,P,nj≠i
≡Gi

(
T ,P, x1, x2,…

)

(52c)Mi ≡
(
�(nM)

�ni

)

T ,P,nj≠i
, n =

∑
i

ni,

Table 1   Equivalent alternative extensive primary functions (thermodynamic potentials) related to the 
extensive internal energy nU (see Eq. 15), applying to single-phase, multicomponent PVTx systems, either 
open or closed

They are obtained via Legendre transformations of the fundamental equation in the internal energy repre-
sentation. Also listed is the complete Legendre transform that vanishes identically, i.e., the null function

Primary form Primary function (thermodynamic poten-
tial)

Alternative form

Symbol Name

nU nU Internal energy
T(nS) − P(nV) +

c∑
i

�
i
n
i

nU + P(nV) nH Enthalpy
T(nS) +

c∑
i

�
i
n
i

nU − T(nS) nF Helmholtz energy
−P(nV) +

c∑
i

�
i
n
i

nU − T(nS) + P(nV)

= nH − T(nS) = nF + P(nV)

}
nG Gibbs energy c∑

i

�
i
n
i

nU −
c∑
i

�
i
n
i

nX Not named T(nS) − P(nV)

nU + P(nV) −

c�
i

�
i
n
i

= nH −

c�
i

�
i
n
i

⎫⎪⎪⎬⎪⎪⎭

nY Not named T(nS)

nU − T(nS) −

c�
i

�
i
n
i

= nF −

c�
i

�
i
n
i

⎫⎪⎪⎬⎪⎪⎭

nJ Grand canonical potential −P(nV)

nU − T(nS) + P(nV) −

c�
i

�
i
n
i

= nG −

c�
i

�
i
n
i

⎫⎪⎪⎬⎪⎪⎭

Null function 0
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where nM = Mt
(
T ,P, n1, n2,…

)
 is an extensive mixture thermodynamic property, and 

M = M
(
T ,P, x1, x2,…

)
 stands for any intensive thermodynamic mixture property (exclud-

ing, of course, temperature, pressure and composition), we recognize that �i is the par-
tial molar Gibbs energy Gi of component i in solution. Note that a partial molar property 
Mi

(
T ,P, x1, x2,…

)
 is an intensive state function, a property of the mixture, and in general 

Mi ≠ M∗
i
 ; Mi s obeys the summability relations:

respectively.
Analogically, when treating the summation term 

c∑
i

�i

T
ni in Eq. 16 (entropy representa-

tion) as a single term (in this case again n = 3 ), the entire number of equivalent primary 
functions (equivalent thermodynamic potentials) related to the entropy, including nS , and 
therefore the number of corresponding equivalent fundamental property relations is also 
seven. They are summarized in Tables 3 and 4, respectively, together with the appropriate 
null function and its associated entropy-based Gibbs–Duhem equation [37]. The replace-
ment of one or more of the extensive variables nU, nV ,

{
ni
}
 by the corresponding conju-

gate intensive variable(s) 1/T, P/T and �i∕T  , respectively, yields primary functions known 
as Massieu–Planck functions. Interestingly, such a Legendre transform of the entropy was 
already reported by Massieu in 1869, and thus predates the Legendre transforms of the 
internal energy reported by Gibbs in 1875 (see Callen [30]). 

(52d)M =
∑
i

xiMi or nM =
∑
i

niMi,

Table 2   Equivalent alternative 
forms of the fundamental 
property relation in the internal 
energy representation (see 
Eq. 13)

They are total (exact) differentials of the primary functions (thermody-
namic potentials) presented in Table 1, and thus apply to single-phase, 
multicomponent PVTx systems either open or closed. Also listed is the 
Gibbs–Duhem equation corresponding to the null function

Total (exact) differential of the primary function 
(Total (exact) differential of the thermodynamic 
potential)

Canonical 
(natural) vari-
ables

d(nU) = Td(nS) − Pd(nV) +
c∑
i

�
i
dn

i

nS, nV ,
{
n
i

}

d(nH) = Td(nS) + (nV)dP +
c∑
i

�
i
dn

i

nS,P,
{
n
i

}

d(nF) = −(nS)dT − Pd(nV) +
c∑
i

�
i
dn

i

T , nV ,
{
n
i

}

d(nG) = −(nS)dT + (nV)dP +
c∑
i

�
i
dn

i

T ,P,
{
n
i

}

d(nX) = Td(nS) − Pd(nV) −
c∑
i

n
i
d�

i

nS, nV ,
{
�
i

}

d(nY) = Td(nS) + (nV)dP −
c∑
i

n
i
d�

i

nS,P,
{
�
i

}

d(nJ) = −(nS)dT − Pd(nV) −
c∑
i

n
i
d�

i

T , nV ,
{
�
i

}

0 = −(nS)dT + (nV)dP −
c∑
i

n
i
d�

i

T ,P,
{
�
i

}
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Though not always immediately recognized, the (molar) Massieu–Planck functions are 
simply related to the (molar) thermodynamic potentials [37]:

(53)S =
Y

T
,

(54)� =
TS − PV

T
=

X

T
,

Table 3   Equivalent alternative extensive primary functions (thermodynamic potentials) related to the 
extensive entropy nS (see Eq. 16), applying to single-phase, multicomponent PVTx systems, either open or 
closed

They are obtained via Legendre transformation of the fundamental equation in the entropy representation 
and are known as Massieu–Planck functions. Also listed is the complete Legendre transform that vanishes 
identically, i.e., the null function

Primary form Primary function (thermodynamic 
potential)

Alternative form

Symbol Name

nS nS Entropy 1

T
(nU) +

P

T
(nV) −

c∑
i

�
i

T
n
i

nS −
P

T
(nV) n� Not named 1

T
(nU) −

c∑
i

�
i

T
n
i

nS −
1

T
(nU) n� Massieu function P

T
(nV) −

c∑
i

�
i

T
n
i

nS −
1

T
(nU) −

P

T
(nV)

= n� −
1

T
(nU) = nΨ −

P

T
(nV)

⎫⎪⎬⎪⎭

n� Planck function
−

c∑
i

�
i

T
n
i

nS +
c∑
i

�
i

T
n
i

n� Not named 1

T
(nU) +

P

T
(nV)

nS −
P

T
(nV) +

c�
i

�
i

T
n
i

= n� +

c�
i

�
i

T
n
i

⎫⎪⎪⎬⎪⎪⎭

n� Not named 1

T
(nU)

nS −
1

T
(nU) +

c�
i

�
i

T
n
i

= n� +

c�
i

�
i

T
n
i

⎫⎪⎪⎬⎪⎪⎭

n� Kramers function P

T
(nV)

nS −
1

T
(nU) −

P

T
(nV) +

c�
i

�
i

T
n
i

= n� +

c�
i

�
i

T
n
i

⎫⎪⎪⎬⎪⎪⎭

Null function 0
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At constant composition, the fundamental property relations corresponding to Legendre 
transforms excluding the chemical potentials are readily obtained, and for one mole of a 
homogeneous fluid at constant composition, the following four energy-based fundamental 
property relations apply:

(55)� =
TS − U

T
= −

F

T
,

(56)� =
TS − U − PV

T
= −

G

T
,

(57)� =
U + PV

T
=

H

T
,

(58)� =
U

T
,

(59)� =
P

T
V = −

J

T
,

(60)dU(S,V) = TdS − PdV ,

Table 4   Equivalent alternative 
forms of the fundamental 
property relation in the entropy 
representation (see Eq. 14)

They represent total (exact) differentials of the primary functions 
(thermodynamic potentials) presented in Table  3, and thus apply to 
single-phase, multicomponent PVTx systems, either open or closed. 
They are known as fundamental Massieu–Planck property relations. 
Also listed is the Gibbs–Duhem equation corresponding to the null 
function

Total (exact) differential of the primary function 
(Total (exact) differential of the thermodynamic 
potential)

Canonical 
(natural) vari-
ables

d(nS) =
1

T
d(nU) +

P

T
d(nV) −

c∑
i

�
i

T
dn

i

nU, nV ,
{
n
i

}

d(n�) =
1

T
d(nU) − (nV)d

P

T
−

c∑
i

�
i

T
dn

i

nU,
P

T
,
{
n
i

}

d(n� ) = −(nU)d
1

T
+

P

T
d(nV) −

c∑
i

�
i

T
dn

i

1

T
, nV ,

{
n
i

}

d(n�) = −(nU)d
1

T
− (nV)d

P

T
−

c∑
i

�
i

T
dn

i

1

T
,
P

T
,
{
n
i

}

d(n�) =
1

T
d(nU) +

P

T
d(nV) +

c∑
i

n
i
d
�
i

T

nU, nV ,

{
�
i

T

}

d(n� ) =
1

T
d(nU) − (nV)d

P

T
+

c∑
i

n
i
d
�
i

T

nU,
P

T
,

{
�
i

T

}

d(n�) = −(nU)d
1

T
+

P

T
d(nV) +

c∑
i

n
i
d
�
i

T

1

T
, nV ,

{
�
i

T

}

0 = −(nU)d
1

T
− (nV)d

P

T
+

c∑
i

n
i
d
�
i

T

1

T
,
P

T
,

{
�
i

T

}
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Focusing now on the molar Helmholtz energy and the molar Gibbs energy, Eqs. 62 and 
63 yield

and in view of the definitions of F and G (see Table 1) and Eq. 64, the Gibbs–Helmholtz 
equations

and

are obtained. For simplicity’s sake the subscript 
{
xi
}
 , indicating constant composition, has 

been omitted. Simple mathematical manipulations yield the following alternative forms:

and

Equation 68 suggests an alternative to the fundamental property relation involving the 
Gibbs energy as presented in Table 2 i.e.,

By introducing the dimensionless property G∕RT ,

is obtained, and

Equation 70 is of considerable utility. All terms have the dimension of amount-of-sub-
stance and, in contradistinction to Eq. 69, the enthalpy rather than the entropy appears in 
the first term of the right-hand side of this exact differential, with obvious benefits for the 
discussion of experimental results.

(61)dH(S,P) = TdS + VdP,

(62)dF(T ,V) = −SdT − PdV,

(63)dG(T ,P) = −SdT + VdP.

(64)S = −(�F∕�T)V = −(�G∕�T)P,

(65)U = F − T(�F∕�T)V ,

(66)H = G − T(�G∕�T)P,

(67)
(
�(F∕T)

�T

)

V

= −
U

T2

(68)
(
�(G∕T)

�T

)

P

= −
H

T2
.

(69)d(nG) = −(nS)dT + (nV)dP +

c∑
i

�idni,

(70)d
(
nG

RT

)
= −

nH

RT2
dT +

nV

RT
dP +

c∑
i

�i

RT
dni,

(71)
G

RT
=

c∑
i

xi
�i

RT
=

c∑
i

xi
Gi

RT
.
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Analogously, Eq. 67 suggests an alternative to the fundamental property relation involv-
ing the Helmholtz energy, F, as presented in Table 2 i.e.,

By introducing the dimensionless property F∕RT  , the corresponding fundamental prop-
erty relation reads

with

Note, that in contradistinction to Eq. 72, the first term on the right-hand side of Eq. 73 
contains the internal energy instead of the entropy.

2 � Thermodynamic Properties of Fluids

2.1 � Residual Properties

The thermodynamic equations formally introduced in Sect.  1.2 establish exact relations 
between system properties and judiciously selected variables, the most convenient being 
the sets 

{
T ,P,

{
xi
}}

 and 
{
T ,V ,

{
xi
}}

 . However, they do not provide numerical values for 
any thermodynamic property: reliable experimental data and reliable models are necessary 
to reach this goal. The perfect gas [29] (or ideal gas), identified by the superscript pg, is a 
hypothetical substance for which the intermolecular potential energy is zero, and which 
obeys (see Eq. 6) the simple PVT equation of state

While no real fluid conforms to this model, nevertheless the concept is eminently useful, 
because (a) the associated simple equations may frequently be used as reasonable approxi-
mations of real-gas behavior at low pressures, and (b) the model serves as the basis for the 
definition of extremely useful auxiliary functions known as residual functions, which play 
a central role in the description of real-fluid behavior. Note, that in the limit of vanishingly 
small pressure, real-gas behavior in many respects approaches perfect-gas behavior, but not 
in all, a fact which is frequently overlooked. Specifically, for a constant composition gas 
(this includes a pure gas) at constant temperature,

For comparing real-fluid properties to perfect-gas properties at the same temperature, 
same pressure and same composition, say, the actual molar volume V to Vpg , two obvious 
choices exist: one may quantify deviations in terms of a ratio measure, here the compres-
sion factor

(72)d(nF) = −(nS)dT − Pd(nV) +

c∑
i

�idni.

(73)d
(
nF

RT

)
= −

nU

RT2
dT −

P

RT
d(nV) +

c∑
i

�i

RT
dni,

(74)
F

RT
= −

PV

RT
+

c∑
i

xi
�i

RT
.

(75)PVpg = RT .

(76)lim
P→0

Z = 1.
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or in terms of a difference measure, here the molar residual volume,

The two functions are, of course, related,

and since the zero-pressure limit of VR becomes indeterminate, that is, both the numerator 
(Z − 1) and the denominator P vanish as the pressure reaches its limiting value zero, de 
l’Hôpital’s rule yields

Since experiments show that (�Z∕�P)T remains generally finite in the limit of vanish-
ingly small pressure, VR remains also generally finite; it is given by the second  amount 
density-series virial coefficient B,

Hence VR is nonzero except at the Boyle temperature at which B = 0 . Equation 81 iden-
tifies an experimentally accessible macroscopic property as a key thermophysical quan-
tity establishing an important link to the intermolecular pair-potential energy function u(r) 
[41–43]:

Here, NA is the Avogadro constant, kB is the Boltzmann constant,2 and NAkB = R . Note, 
however, that Eq. 82 is for pair-potential energies that do not depend on the relative orien-
tation of the molecules.

In analogy to VR , molar isobaric residual properties MR of a single-phase pure fluid or 
constant-composition fluid mixture are defined similarly by [17, 18, 29, 46]

where the Ms denote molar values of any extensive thermodynamic property 
nM

(
T ,P,

{
xi
})

 , such as U, H, S, V, G or F. M
(
T ,P,

{
xi
})

 is the actual molar property value 
of the fluid at the temperature, pressure and composition of interest, and Mpg

(
T ,P,

{
xi
})

 is 
the molar property value for the fluid in its perfect-gas state at the same T, P and 

{
xi
}
 . Note 

that the perfect-gas state is hypothetical except in the zero-pressure limit, where the per-
fect-gas EOS is valid (that is, for this real perfect-gas state PV = RT  ). Residual properties 

(77)Z ≡ V∕Vpg = PV∕RT ,

(78)VR ≡ V − Vpg = V − RT∕P.

(79)VR = RT
Z − 1

P
,

(80)lim
P→0

VR = RT lim
P→0

(
�Z

�P

)
T
.

(81)lim
P→0

VR = B.

(82)B = −2πNA

∞

∫
0

[
exp

(
−u(r)∕kBT

)
− 1

]
r2dr.

(83)MR
(
T ,P,

{
xi
}) ≡ M

(
T ,P,

{
xi
})

−Mpg
(
T ,P,

{
xi
})

,

2  With the Avogadro constant N
A
 and the Boltzmann constant k

B
 now being exactly defined [44, 45], 

that is, N
A
= 6.022 140 76 × 10

23
mol

−1 and k
B
= 1.380 649 × 10

−23
J K

−1 , the (molar) gas constant is 
R = N

A
k
B
= 8.314 462 618 J K

−1
mol

−1.



644	 Journal of Solution Chemistry (2022) 51:626–710

1 3

are the most direct measures of the effects of the intermolecular forces. The computation of 
values M of any thermodynamic fluid property is based on

From the defining equation, Eq. 83, we have for a differential change in state at constant 
T and constant 

{
xi
}

and integration from P = 0 to the pressure of interest P yields

In contradistinction to the observed limiting behavior of the residual volume, see Eq. 81, 
experimental evidence indicates that for the pivotal properties enthalpy and entropy the 
zero-pressure terms can be set equal to zero (at constant T and 

{
xi
}
 ), that is,

Thus, for the molar isobaric residual enthalpy HR
(
T ,P,

{
xi
})

 we obtain, in conjunction 
with (�H∕�P)T ,{xi} = V − T(�V∕�T)P,{xi} , (�H

pg∕�P)T ,{xi} = 0 , and Eq. 87

and for the molar isobaric residual entropy, we obtain, in conjunction with 
(�S∕�P)T ,{xi} = −(�V∕�T)P,{xi} , (�S

pg∕�P)T ,{xi} = −R∕P , and Eq. 87,

Since Eq. 87 is also valid for M = CP , and the pressure dependence of the molar iso-
baric heat capacity Cp = (�H∕�T)P,{xi} is given by

(84)M
(
T ,P,

{
xi
})

= MR
(
T ,P,

{
xi
})

+Mpg
(
T ,P,

{
xi
})

,

(85)dMR =

[(
�M

�P

)
T ,{xi}

−

(
�Mpg

�P

)
T ,{xi}

]
dP,

(86)

M
R
(
T ,P,

{
x
i

})
=
(
M

R
)
zero pressure

+

P

∫
0

[(
�M

�P

)
T ,{xi}

−

(
�Mpg

�P

)
T ,{xi}

]
dP, constant T , {x

i
}.

(87)

lim
P→0

MR
�
T ,P,

�
xi
��

=
�
MR

�
zero pressure

= 0

for

MR = HR
�
T ,P,

�
xi
��

and MR = SR
�
T ,P,

�
xi
��

⎫⎪⎬⎪⎭
.

(88)

HR
(
T ,P,

{
xi
})

=

P

∫
0

[
V − T

(
�V

�T

)
P,{xi}

]
dP = −RT2

P

∫
0

(
�Z

�T

)
P,{xi}

dP

P
, constant T , {xi},

(89)

SR
(
T ,P,

{
xi
})

=

P

∫
0

[
−

(
�V

�T

)
P,{xi}

+
R

P

]
dP

= −R

P

∫
0

[
T
(
�Z

�T

)
P,{xi}

+ Z − 1

]
dP

P
, constant T , {xi}.

(90)

(
�CP

�P

)

T ,{xi}

= −T

(
�
2V

�T2

)

P,{xi}

,
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and 
(
�C

pg

P

/
�P

)
T ,{xi}

= 0 , the molar isobaric residual constant-pressure heat capacity is 
obtained from

Clearly,

and all three functions approach zero for P → 0 . The isobaric residual functions are the 
conventional forms since they are advantageously based on 

{
T ,P,

{
xi
}}

 as independ-
ent variables. They have been most useful in applications to real gases and gas mixtures, 
though their suitability in dealing with liquid systems has been greatly furthered by the 
application of the corresponding-states theorem (CST): this theorem is firmly based on 
statistical mechanics and occupies a leading position in the field of property estimation 
[1, 16–18, 36, 47–50]. The most popular approaches are based on Pitzer’s three-parameter 
CST correlation [51–55]. For pure (*) fluids, that is, for gases, vapors and liquids, the com-
pression factor Z∗ = PV∗∕RT  is expressed as a function of reduced temperature Tr ≡ T∕Tc , 
reduced pressure Pr ≡ P∕Pc and acentric factor � , which quantity is defined by

Here, Pσ,r ≡ Pσ

/
Pc is the reduced vapor pressure Pσ(T) at reduced temperature Tr = 0.7 . 

Specifically, in the key three-parameter CST correlation

Z(0) represents the simple-fluid contribution to Z∗ that is based on experimental PVT data 
of Ar, Kr and Xe for which � is essentially zero (and thus a two-parameter CST correla-
tion suffices); Z(1) represents the non-simple-fluid contribution to Z∗ : it is determined via 
experimental PVT data of selected fluids with � ≠ 0 (quantum fluids, strongly polar fluids 
and fluids with strong hydrogen bonds are excluded). Critically evaluated values of the � s 
for many fluids, together with values for Tc and Pc , are tabulated in Ref. 49. One of the best 
Pitzer-type correlations is that developed by Lee and Kesler [56–58]: these authors present 
tables for the contributions Z(0)

(
Tr,Pr

)
 and Z(1)

(
Tr,Pr

)
 , as well as for derived functions 

(91)

C
R

P

�
T ,P,

�
x
i

��
= −T

P

∫
0

�
�
2V

�T2

�

P,{xi}

dP = −RT

P

∫
0

�
T

�
�
2Z

�T2

�

P,{xi}

+ 2

�
�Z

�T

�
P,{xi}

�
dP

P

⎫
⎪⎬⎪⎭
constant T , {x

i
}.

(92)

UR = HR − PVR = HR − RT(Z − 1),

GR = HR − TSR = RT

P

∫
0

(Z − 1)
dP

P
,

FR = UR − TSR = GR − RT(Z − 1),

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(93)� ≡ −1 − log10
(
Pσ,r

)
Tr=0.7

.

(94)
Z∗ =

PV∗

RT
= f

(
Tr,Pr,�

)

= Z(0)
(
Tr,Pr

)
+ �Z(1)

(
Tr,Pr

)
, all fluids,
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for both liquid and vapor phases, covering large temperature and pressure ranges, i.e., 
0.30 ≤ Tr ≤ 4.00 and 0.01 ≤ Pr ≤ 10.00.

In order to use generalized CST correlations for mixtures, conventional practice is based 
on the assumption that mixture properties can be represented by the same correlation types 
developed for pure fluids, though with appropriately defined values for the correspond-
ing-states scaling parameters of the mixture, that is, by essentially empirically averaging 
pure-component parameters Tc,i , Pc,i and �i to obtain pseudocritical temperatures Tpc , pseu-
docritical pressures Ppc and pseudo-acentric factors �p referring to the mixture. This is 
accomplished by using recipes known as mixing rules. Thus, a three-parameter CST corre-
lation for the mixture compression factor Z, in the one-fluid approximation, may be written 
as

where the pseudoreduced temperature Tpr and the pseudoreduced pressure Ppr are defined 
by

The simplest set of mixing rules for pseudocritical parameters are those of Kay [59]. 
They are defined as mole-fraction-weighted sums of the pure-component values, and so is 
�p , i.e.,

Although simple to apply, for mixtures of molecularly noticeably dissimilar fluids Kay’s 
rules are often inadequate, and more flexible and thus more elaborate recipes must be intro-
duced [49], such as quadratic mixing rules (reminiscent of those used in the multicompo-
nent vdW model):

where Tc,ii and Tc,jj denote the critical temperatures of the pure components i and j, respec-
tively, Pc,ii and Pc,jj are their critical pressures, respectively, and for the evaluation of the 
cross parameters Tc,ij and Pc,ij empirical recipes known as combining rules are required.

However, I emphasize that temperature and volume, or alternatively, amount density 
�n ≡ 1∕V  , or number density, are the commonly used variables in statistical mechanics; 
and in addition, on the practical side, most PVTx equations of state, such as cubic vdW-type 
equations, are pressure-explicit [1, 16–18, 49, 60–65]: hence T and V (and for mixtures, of 
course, also the composition 

{
xi
}
 ) are the natural (canonical) independent variables. Thus, 

for a single-phase pure fluid or constant-composition mixture one may also define molar 
residual functions in 

(
T ,V ,

{
xi
})

-space, i.e., molar isochoric (isometric) residual functions

Again, the Ms denote molar properties of any extensive thermodynamic property 
nM

(
T , nV ,

{
xi
})

 of the fluid, for instance, U, H, S, G or F, and Mpg
(
T ,V ,

{
xi
})

 is the cor-
responding molar property of the fluid in its hypothetical perfect-gas state at the same 

(95)Z =
PV

RT
= f

(
Tpr,Ppr,�p

)
= Z(0)

(
Tpr,Ppr

)
+ �pZ

(1)
(
Tpr,Ppr

)
, all fluids,

(96)Tpr ≡ T
/
Tpc and Ppr ≡ P

/
Ppc.

(97)Tpc =

c∑
i

xiTc,i, Ppc =

c∑
i

xiPc,i, �p =

c∑
i

xi�i.

(98)Tpc =

c∑
i

c∑
j

xixjTc,ij and Ppc =

c∑
i

c∑
j

xixjPc,ij,

(99)Mr
(
T ,V ,

{
xi
}) ≡ M

(
T ,V ,

{
xi
})

−Mpg
(
T ,V ,

{
xi
})

.
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temperature, the same molar volume and the same composition. Note the important fact 
that if the temperature and the volume are the same for the real fluid state and the perfect 
gas state, the pressure is not the same. Equation 99 may also be used for the definition of a 
residual pressure, an intensive property:

With the availability of a pressure-explicit EOS in the form P = P
(
T ,V ,

{
xi
})

 , isochoric 
residual properties are the properties of direct interest. In complete analogy to Eqs. 86 and 
87 we have

Again, experimental evidence indicates that for the pivotal properties internal energy 
and entropy the infinite-volume terms (zero-pressure terms) can be set equal to zero (at 
constant T and 

{
xi
}
 ), that is,

Thus, for the molar isochoric residual internal energy Ur
(
T ,V ,

{
xi
})

 we obtain, in con-
junction with (�U∕�V)T ,{xi} = −P + T(�P∕�T)V ,{xi} , (�U

pg∕�V)T ,{xi} = 0 , and Eq. 102,

and for the molar isochoric residual enthalpy Hr
(
T ,V ,

{
xi
})

 we obtain, in conjunction with 
(�H∕�V)T ,{xi} = T(�P∕�T)V ,{xi} + V(�P∕�V)T ,{xi}, (�H

pg∕�V)T ,{xi} = 0 , and Eq.  87,  at 
constant temperature  and composition

For the molar isochoric residual entropy Sr
(
T ,V ,

{
xi
})

 we obtain, in conjunction with 
(�S∕�V)T ,{xi} = (�P∕�T)V ,{xi} , (�S

pg∕�V)T ,{xi} = R∕V  , and Eq. 101, at constant tempera-
ture and composition

(100)Pr
(
T ,V ,

{
xi
}) ≡ P

(
T ,V ,

{
xi
})

− RT∕V = RT
Z − 1

V
.

(101)

Mr
(
T ,V ,

{
xi
})

= (Mr)infinite volume
(zero pressure)

+

V

∫
∞

[(
�M

�V

)
T ,{xi}

−

(
�Mpg

�V

)
T ,{xi}

]
dV , constant T , {xi}.

(102)

lim
V→∞

Mr
�
T ,V ,

�
xi
��

= (Mr)infinite volume
(zero pressure)

= 0

for

Mr = Ur
�
T ,V ,

�
xi
��

and Mr = Sr
�
T ,V ,

�
xi
��

⎫⎪⎬⎪⎭
.

(103)

Ur
(
T ,V ,

{
xi
})

=

V

∫
∞

[
−P + T

(
�P

�T

)
V ,{xi}

]
dV = RT2

V

∫
∞

(
�Z

�T

)
V ,{xi}

dV

V
, constant T , {xi},

(104)

Hr
�
T ,V ,

�
xi
��

=

V

∫
∞

�
T
�
�P

�T

�
V ,{xi}

+ V
�
�P

�V

�
T ,{xi}

�
dV = RT2

V

∫
∞

�
�Z

�T

�
V ,{xi}

dV

V
+ RT(Z − 1)

⎫⎪⎬⎪⎭
.

(105)

Sr
(
T ,V ,

{
xi
})

=

V

∫
∞

[(
�P

�T

)
V ,{xi}

−
R

V

]
dV = R

V

∫
∞

[
T
(
�Z

�T

)
V ,{xi}

+ Z − 1

]
dV

V
.
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Since CV of a real gas approaches Cpg

V
 for V → ∞ (i.e., for P → 0 ), Eqs. 101 and 102 

apply, and together with 
(
�C

pg

V

/
�V

)
T ,{xi}

= 0 , and

the molar isochoric residual constant-volume heat capacity Cr
V

(
T ,V ,

{
xi
})

 at constant T 
and 

{
xi
}
 may be calculated via

Clearly,

and all three functions approach zero for V → ∞ (i.e., for P → 0 ). For the computation of 
values M of any thermodynamic fluid property,

is used.
The two types of residual functions, i.e., MR

(
T ,P,

{
xi
})

 and Mr
(
T ,V ,

{
xi
})

 , are rigor-
ously related:

Note that P and V are parameters associated with the state of the real fluid system at 
temperature T and constant composition 

{
xi
}
 , and are therefore not related by the perfect-

gas law: the lower integral limit denotes the gas-pressure P = RT∕V  for which the molar 
volume of the perfect-gas mixture has the same value V as that of the real mixture at T and {
xi
}
.

Alternatively, we have

Note that V r
(
T ,V ,

{
xi
})

 and PR
(
T ,P,

{
xi
})

 are identically zero.
Since at constant composition the perfect-gas properties Upg,Hpg,C

pg

P
 and Cpg

V
 are all 

functions of temperature only, i.e., the first-law properties are independent of pressure and 
of volume, the equality

(106)

(
�CV

�V

)

T ,{xi}

= T

(
�
2P

�T2

)

V ,{xi}

,

(107)

Cr
V

(
T ,V ,

{
xi
})

= T

V

∫
∞

(
�
2P

�T2

)

V ,{xi}

dV = RT

V

∫
∞

[
T

(
�
2Z

�T2

)

V ,{xi}

+ 2
(
�Z

�T

)
V ,{xi}

]
dV

V
.

(108)

Hr = Ur + PrV = Ur + RT(Z − 1),

Fr = Ur − TSr = −RT

V

∫
∞

(Z − 1)
dV

V
,

Gr = Hr − TSr = Fr + RT(Z − 1),

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(109)M
(
T ,V ,

{
xi
})

= Mr
(
T ,V ,

{
xi
})

+Mpg
(
T ,V ,

{
xi
})

(110)Mr
(
T ,V ,

{
xi
})

= MR
(
T ,P,

{
xi
})

+

P

∫
RT∕V

(
�Mpg

�P

)
T ,{xi}

dP.

(111)MR
(
T ,P,

{
xi
})

= Mr
(
T ,V ,

{
xi
})

+

V

∫
RT∕P

(
�Mpg

�V

)
T ,{xi}

dV .



649Journal of Solution Chemistry (2022) 51:626–710	

1 3

In contradistinction, the second-law perfect-gas properties Spg , Gpg and Fpg are functions 
of temperature and they do depend on pressure:

and they do depend on volume:

Hence, by virtue of Eq. 110 or Eq. 111, respectively, the following relations between the 
residual second-law properties are obtained:

2.2 � Isobaric Residual Properties, Fugacities and Fugacity Coefficients

One of the most important functions in solution chemistry is the fugacity coefficient 
�
π
i

(
T ,P,

{
xπ
i

})
 of component i in solution in phase π [66]. It is related to the isobaric resid-

ual chemical potential, which may be obtained either by applying the partial molar deriva-
tive prescription

to the expression for the molar isobaric residual Gibbs energy of the mixture in phase π,

or by substituting the expression for the chemical potential of component i in a perfect-gas 
mixture

(112)MR
(
T ,P,

{
xi
})

= Mr
(
T ,V ,

{
xi
})

holds for M = U,H,CP and CV .

(113)
(
�Spg

�P

)
T ,{xi}

= −
R

P
,

(114)
(
�Gpg

�P

)
T ,{xi}

=

(
�Fpg

�P

)
T ,{xi}

=
RT

P
,

(115)
(
�Spg

�V

)
T ,{xi}

=
R

V
,

(116)
(
�Fpg

�V

)
T ,{xi}

=

(
�Gpg

�V

)
T ,{xi}

= −
RT

V
.

(117)Sr
(
T ,V ,

{
xi
})

= SR
(
T ,P,

{
xi
})

− R lnZ,

(118)Fr
(
T ,V ,

{
xi
})

= FR
(
T ,P,

{
xi
})

+ RT ln Z,

(119)Gr
(
T ,V ,

{
xi
})

= GR
(
T ,P,

{
xi
})

+ RT ln Z.

(120)Mi

(
T ,P,

(
xi
))

=

[
�(nM)

�ni

]

T ,P,nj≠i
,

(121)

GR,π
(
T ,P,

{
xπ
i

})
= Gπ

(
T ,P,

{
xπ
i

})

−

c∑
i

xπ
i
G

pg,∗

i
(T ,P) − RT

c∑
i

xπ
i
ln xπ

i
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directly into the defining equation for the isobaric residual chemical potential (the 
two formulations follow from Eq. 52b). Hence the partial molar isobaric residual Gibbs 
energy/the isobaric residual chemical potential of component i in solution in phase π reads

providing a rigorous basis for the definition of the fugacity coefficient of component i 
in solution in phase π. The fugacity concept was introduced by Lewis [67]. It serves to 
maintain the simple formal structure of thermodynamic equations applicable to perfect-
gas (ideal-gas) systems, while avoiding the troublesome behavior of the chemical potential 
when either P or xπ

i
 approaches zero. Thus, in analogy to the expression for an isothermal 

change of the chemical potential of component i in a perfect-gas mixture,

where Pi = xiP is the partial pressure of component i, the fugacity f π
i

(
T ,P,

{
xπ
i

})
 of com-

ponent i in a real solution phase π with composition 
{
xπ
i

}
 is partially defined by.

For thermodynamic consistency we require as the second part of the definition

that is,

Equations 125 and 126 together constitute the complete definition of the fugacity f π
i
 of 

component i in solution in phase π . General integration of Eq. 125 at constant temperature 
[17] from the state of component i in a perfect-gas mixture to the state of i in the real mix-
ture (phase π ) at the same pressure and the same composition yields

where the partial molar residual Gibbs energy in (T ,P, x)-space of component i in solution 
in phase π, GR,π

i

(
T ,P, {xπ

i
}
)
 , and the residual chemical potential in (T ,P, x)-space of com-

ponent i in solution in phase π, �R,π

i

(
T ,P, {xπ

i
}
)
 , are given by Eq. 123. The dimensionless 

ratio appearing on the right-hand side of Eq. 128 as the argument of the logarithm is a new 
property and is called the fugacity coefficient �π

i
 of component i in solution in phase π:

(122)
�
pg

i

(
T ,P,

{
xπ
i

})
= G

pg

i

(
T ,P,

{
xπ
i

})

= G
pg,∗

i
(T ,P) + RT ln xπ

i

(123)

G
R,π

i

(
T ,P, {xπ

i
}
)
= �

R,π

i

(
T ,P, {xπ

i
}
) ≡ G

π

i

(
T ,P, {xπ

i
}
)

− G
pg,∗

i
(T ,P) − RT ln xπ

i
= �

π

i

(
T ,P, {xπ

i
}
)
− G

pg,∗

i
(T ,P) − RT ln xπ

i

}
,

(124)dG
pg

i
= d�

pg

i
= RTd ln

(
xiP

)
= RTd lnPi, constant T ,

(125)dGπ

i
= d�π

i
≡ RTd ln f π

i
, constant T ,

(126)f
pg,π

i
≡ xπ

i
P,

(127)lim
P→0

(
f π
i

xπ
i
P

)
≡ 1, constant T .

(128)

G
R,π

i

(
T ,P, {xπ

i
}
) ≡ �

R,π

i

(
T ,P, {xπ

i
}
)

≡Gπ

i

(
T ,P, {xπ

i
}
)
− G

pg

i

(
T ,P, {xπ

i
}
)
=RT ln

f π
i

(
T ,P, {xπ

i
}
)

xπ
i
P

,
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or, perhaps, more convenient,

For a perfect-gas system, necessarily GR,π

i
= �

R,π

i
= 0 and thus �pg

i
= 1 . For a real pure 

substance i we obtain

where GR,π,∗

i
(T ,P) denotes the molar isobaric residual Gibbs energy of pure component i in 

phase π, f �,∗
i

(T ,P) is its fugacity, and

is the fugacity coefficient ��,∗

i
 of pure i in phase π, or, perhaps, more convenient 

For the overall fugacity of the solution in phase π we have

where GR,π
(
T ,P, {xπ

i
}
)
 is the molar isobaric residual Gibbs energy of the solution, and

is the overall fugacity coefficient of the solution in phase π, or, perhaps, more convenient,

Evidently, fugacity, having the dimension of pressure, and the dimensionless fugacity 
coefficient are intensive state functions related to exponentials of (partial) molar isobaric 
residual Gibbs energies (divided by RT) as indicated above by Eqs.  129, 132 and 135. 
Viewing the fugacity as a “corrected pressure” may be misleading and obscure these exact 
relations. As the pressure goes to zero (at constant temperature and composition), the (par-
tial) molar residual Gibbs energies divided by RT, as introduced above, all approach zero 
on the basis that the perfect-gas state is approached asymptotically; hence f π

i
→ xπ

i
P ≡ Pi , 

f
�,∗

i
→ P and f π → P , respectively. Thus,

(129)�
π

i

(
T ,P, {xπ

i
}
) ≡ f π

i

(
T ,P, {xπ

i
}
)

xπ
i
P

= exp

(
G

R,π

i

(
T ,P, {xπ

i
}
)

RT

)}
,

(130)ln
[
�
π

i

(
T ,P, {xπ

i
}
)]

=
G

R,π

i

(
T ,P, {xπ

i
}
)

RT
=
�
R,π

i

(
T ,P, {xπ

i
}
)

RT
.

(131)G
R,π,∗

i
(T ,P) ≡ G

�,∗

i
(T ,P) − G

pg,∗

i
(T ,P) = RT ln

f
�,∗

i
(T ,P)

P
,

(132)�
�,∗

i
(T ,P) ≡ f

�,∗

i
(T ,P)

P
= exp

(
G

R,π,∗

i
(T ,P)

RT

)
,

(133)ln
[
�
�,∗

i
(T ,P)

]
=

G
R,π,∗

i
(T ,P)

RT

(134)GR,π
(
T ,P, {xπ

i
}
) ≡ Gπ

(
T ,P, {xπ

i
}
)
− Gpg

(
T ,P, {xπ

i
}
)
= RT ln

f π
(
T ,P, {xπ

i
}
)

P
,

(135)�
π
(
T ,P, {xπ

i
}
) ≡ f π

(
T ,P, {xπ

i
}
)

P
= exp

(
GR,π

(
T ,P, {xπ

i
}
)

RT

)
,

(136)ln
[
�
π
(
T ,P, {xπ

i
}
)]

=
GR,π

(
T ,P, {xπ

i
}
)

RT
.
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and

The fugacity coefficients are always positive: for real systems, they may be larger than 1 
or smaller than 1, and they are unity for a perfect-gas system.

Since GR,π

i

(
T ,P, {xπ

i
}
)
 is the partial molar isobaric residual Gibbs energy of component 

i in phase π, i.e.,

the associated summability relation yields the molar residual Gibbs energy of the solution

For convenience, the non-dimensional quantity GR,π
/
RT  is frequently used instead of 

GR,π , hence

We recognize that ln�π
i
 is a partial molar property in relation to ln�π, where �π is the 

overall fugacity coefficient of the solution in phase π:

The fundamental residual-property relation (canonical variables T, P, nπ
i
 ) valid for a 

fluid in any phase π, may now be written as

(137)lim
P→0

f π
i

xπ
i
P

= lim
P→0

�
π

i
= 1,

(138)lim
P→0

f
�,∗

i

P
= lim

P→0
�
�,∗

i
= 1,

(139)lim
P→0

f π

P
= lim

P→0
�
π = 1.

(140)G
R,π

i

(
T ,P, {xπ

i
}
) ≡

(
�

(
nπGR,π

)
�nπ

i

)

T ,P,nπ
j≠i

,

(141)GR,π
(
T ,P, {xπ

i
}
)
=

c∑
i

xπ
i
G

R,π

i

(
T ,P, {xπ

i
}
)
.

(142)

GR,π
(
T ,P, {xπ

i
}
)

RT
=
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π
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G
R,π

i

(
T ,P, {xπ

i
}
)

RT

=
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x
π
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�
R,π

i

(
T ,P, {xπ

i
}
)

RT
=
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i

x
π

i
ln�

π

i

(
T ,P, {xπ

i
}
)
= ln�

π
(
T ,P, {xπ

i
}
)
.
}

(143)

ln�
π

i

(
T ,P, {xπ

i
}
)
=

(
�

[
nπ ln�π

(
T ,P, {xπ

i
}
)]

�n
π

i

)

T ,P,n
π
j≠i

=

(
�

[
nπGR,π

(
T ,P, {xπ

i
}
)/

RT
]

�n
π

i

)

T ,P,n
π
j≠i

=
G

R,π

i

(
T ,P, {xπ

i
}
)

RT
=

�
R,π

i

(
T ,P, {xπ

i
}
)

RT
.

}
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or, alternatively,

Here,

where HR,π is the molar isobaric residual enthalpy of the solution in phase π, that is, 

and

where VR,π is the molar isobaric residual volume of the solution in phase π, that is,

Evidently, the partial molar property analogues of Eqs. 145 and 147 are

and

respectively. Here, HR,π

i
 is the partial molar isobaric residual enthalpy, and VR,π

i
 is the par-

tial molar isobaric residual volume of component i in solution in phase π, respectively. The 
corresponding summability relations read

(144a)

d

(
nπGR,π

RT

)
= −

nπHR,π

RT2
dT

+
nπVR,π

RT
dP +

c∑
i

�
R,π

i

RT
dn

π

i
,

(144b)
d(nπ ln�π) = −

nπHR,π

RT2
dT

+
nπVR,π

RT
dP +

c∑
i

(
ln�

π

i

)
dn

π

i
.

(145)−
HR,π

�
T ,P, {xπ

i
}
�

RT2
=

�
�

�
GR,π

�
RT

�
�T

�

P,{xπ
i
}

=

�
� ln�π

�T

�

P,{xπ
i
}

⎫⎪⎬⎪⎭
,

(146)HR,π
(
T ,P, {xπ

i
}
)
= Hπ

(
T ,P, {xπ

i
}
)
− Hpg

(
T ,P, {xπ

i
}
)
.

(147)
VR,π

�
T ,P, {xπ

i
}
�

RT
=

�
�

�
GR,π

�
RT

�
�P

�

T ,{xπ
i
}

=

�
� ln�π

�P

�

T ,{xπ
i
}

⎫⎪⎬⎪⎭
.

(148)VR,π
(
T ,P, {xπ

i
}
)
= Vπ

(
T ,P, {xπ

i
}
)
− Vpg

(
T ,P, {xπ

i
}
)
.

(149)
(
� ln�π

i

�T

)

P,{xπ
i
}

= −
H

R,π

i

RT2
= −

Hπ
i
− H

pg,∗

i

RT2
,

(150)
(
� ln�π

i

�P

)

T ,{xπ
i
}

=
V
R,π

i

RT
=

Vπ
i
− V

pg,∗

i

RT
,
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and

Evaluation of ln�π
i

(
T ,P, {xπ

i
}
)
 , using an equation of state in conjunction with Eq. 150, 

is now straightforward. Since the molar volume of pure component i in the perfect-gas state 
is given by V

pg,∗

i
= RT∕P , and its partial molar volume in phase π by 

Vπ
i
=

RT

P

[
�(nπZπ)

/
�nπ

i

]
T ,P,

{
nπ
j≠i
} , integration at constant T and constant composition from 

P = 0 (where �π
i
= 1 ) to arbitrary pressure P yields

Equation  153a is a generally valid relation for the determination of ln�π
i

(
T ,P, {xπ

i
}
)
 

from any volume-explicit EOS. By way of example, consider the binary vapor-phase mix-
ture ( π =V , xV

1
= 1 − xV

2
 ) adequately described by a two-term virial equation in pressure, 

i.e., ZV
(
T ,P, xV

2

)
= 1 +

B(T ,xV2 )
RT

P . After some mathematical manipulation we obtain the 
compact expression for the fugacity coefficients of component 1 and 2, respectively, in the 
binary vapor mixture:

Here, B
(
T , xV

2

)
= xV

1
B11(T) + xV

2
B22(T) + xV

1
xV
2
�12(T) is the second virial coefficient of 

the mixture, �12 ≡ 2B12 −
(
B11 + B22

)
 , B11 and B22 are the second virial coefficients of the 

pure components, and B12 designates a composition-independent interaction virial coeffi-
cient (cross-coefficient). When focusing on highly dilute systems, the fugacity coefficient 
of, say, component 2 at infinite dilution in the vapor phase is thus given by

For pure substance i in phase π we have

and

To conclude this section, I emphasize that GR,π
(
T ,P, {xπ

i
}
)/

RT  is a convenient generat-
ing function for molar isobaric residual properties (see Eq. 144a).

(151)HR,π
(
T ,P, {xπ

i
}
)
=

c∑
i

xπ
i
H

R,π

i

(
T ,P, {xπ

i
}
)
,

(152)VR,π
(
T ,P, {xπ

i
}
)
=

c∑
i

xπ
i
V
R,π

i

(
T ,P, {xπ

i
}
)
.

(153a)ln�π
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�
T ,P, {xπ

i
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�
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P

�
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�(nπZπ)

�nπ
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�
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�
nπ
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� − 1

⎤⎥⎥⎦
dP

P
, constant T , {xi},

(153b)ln�V
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P

RT

(
Bii(T) +

(
xV
j

)2

�12(T)
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, i, j = 1, 2, i ≠ j.

(153c)ln�
V,∞

2
(T ,P) =

P

RT

(
2B12 − B11

)
,
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(
� ln�
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)

P

= −
H
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i

RT2
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H
�,∗
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− H
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i
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,
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� ln�
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In principle, the exact classical thermodynamic method of using isobaric residual func-
tions for the calculation of property changes of single-phase constant-composition fluids 
for any arbitrary equilibrium change of state is a quite general and powerful tool; and appli-
cations profit greatly from contributions based on the corresponding states theorem, such 
as the popular Lee–Kesler tables [56–58]. However, for a complete description, the perfect-
gas heat capacities Cpg

P

(
T ,

{
xi
})

 must be available.
To illustrate the convenient use of isobaric residual functions in the calculation of prop-

erty changes for single-phase, constant-composition fluids (pure or multicomponent sys-
tems), consider an arbitrary change of state, say, from an initial condition characterized by {
T1, P1

}
 to a final condition 

{
T2, P2

}
 . Such a change of state causes a change

of any molar thermodynamic property M
(
T ,P,

{
xi
})

 . When interest focuses on M = H, the 
change of enthalpy per mole of mixture Δ1→2H is given by

Here, (�Hpg∕�P)T ,{xi} = 0 and (�Hpg∕�T)P,{xi} = C
pg

P
 were taken into account. For 

M = S , the change of entropy per mole of mixture Δ1→2S is given by

since dSpg =
(
C
pg

P

/
T
)
dT − (R∕P)dP . Evaluation of the integrals involving Cpg

P
 requires 

empirical expressions for the temperature dependence of the perfect-gas heat capacities 
involved [68]. For pure fluids, a commonly used empirical equation [49] reads

and extensive data compilations are available [69–71]. For fairly simple molecules, Cpg,∗

P
(T) 

may be calculated using the frequencies of their normal modes of vibration [72–74].
The heat capacities of perfect-gas mixtures are rigorously obtained by mole-fraction 

averaging the pure-substance perfect-gas heat capacities, that is,

(156)Δ1→2M = M
(
T2,P2,

{
xi
})

−M
(
T1,P1,

{
xi
})

,

(157)

Δ1→2H = HR
2

(
T2,P2,

{
xi
})

− HR
1

(
T1,P1,

{
xi
})

+

T2

∫
T1

C
pg

P

(
T ,

{
xi
})

dT ,

(158)

Δ1→2S = SR
2

(
T2,P2,

{
xi
})

− SR
1

(
T1,P1,

{
xi
})

+

T2

∫
T1

[
C
pg

P

(
T ,

{
xi
})/

T
]
dT − R ln

(
P2∕P1

)
,

(159)
C
pg,∗

P
(T)

R
= C0 + C1T + C2T

2 + C3T
3 + C4T

4,

(160)

C
pg

P

�
T ,

�
xi
��

=

c�
i

xiC
pg,∗

Pi
(T),

C
pg

V

�
T ,

�
xi
��

=

c�
i

xiC
pg,∗

Vi
(T),

⎫
⎪⎪⎬⎪⎪⎭

,
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and their difference is the same as that for pure perfect gases, 
C
pg

P

(
T ,

{
xi
})

− C
pg

V

(
T ,

{
xi
})

= R.

Since the perfect-gas state is characterized by the absence of intermolecular forces, the 
corresponding-states theorem is inapplicable, and when experimental data on Cpg,∗

P
(T) are 

lacking, reliable estimation methods based on molecular structure have to be used [49, 
75–77].

2.3 � Empirical Equations of State: Selected Comments

From PVT equations of state, volumetric properties as well as residual functions character-
izing deviations from perfect-gas (ideal-gas) behavior can be calculated (see Sects. 2.1 and 
2.2). The PVT relation may be a pressure-explicit EOS or a volume-explicit (amount den-
sity-explicit) EOS. The simplest, practically useful polynomial EOS are cubic in molar vol-
ume (i.e., they are pressure-explicit), since they are capable of yielding the perfect-gas limit 
for V → ∞ , and of representing both liquid-like and vapor-like volumes for sufficiently low 
temperatures. The five-parameter equation [17]

where the adjustable parameters b, �, �, �, � depend, in general, on temperature and com-
position, can be considered a generalization of the vdW equation Eq. 3 [61], to which it 
reduces for � = b , � = � = 0 , and � = constant = a . Over the decades, many specializations 
of Eq. 161 have been suggested [78], two of the most popular being the Redlich–Kwong 
(RK) Eq. (1949) [79],

where b = bRK , � = �RK(T) ≡ aRK
/
T1∕2 , � = bRK , � = bRK and � = 0 , and the Peng–Robin-

son (PR) Eq. (1976) [80],

where b = bPR , � = �PR(T) ≡ aPR(T) , � = bPR , � = 2bPR , and � = −b2
PR

.
Significantly, all modern cubic equations of state have a temperature-dependent � . 

While the RK equation gives a somewhat better critical compression factor than the origi-
nal van der Waals EOS (see Eq. 8 and associated comments), i.e.,

and better second virial coefficients [81], it is still not very accurate for vapor pres-
sures and liquid densities. It was Soave (S) [82, 83] who generalized, in 1972, the tem-
perature dependence of the attractive parameter in the RK equation by writing, with 
� = �S(T) ≡ aS(T)),

(161)P =
RT

V − b
−

�(V − �)

(V − b)
(
V2 + �V + �

) ,

(162)P =
RT

V − bRK
−

aRK

T1∕2V
(
V + bRK

) ,

(163)P =
RT

V − bPR
−

�PR(T)

V2 + 2bPRV − b2
PR

,

(164)Zc,RK =
1

3
,

(165)P =
RT

V − bS
−

aS(T)

V
(
V + bS

) .
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In order to obtain the EOS parameters aS(T) and bS , the most frequently employed con-
ventional approach makes use of the mathematical requirements for the occurrence of an 
inflection point on the critical isotherm in the {P,V}-plane, that is, (�P∕�V)Tc = 0 and (
�
2P

/
�V2

)
Tc
= 0 at the critical point ( P = Pc,V = Vc ). When applying these classical criti-

cal constraints, experience shows that the preferred sets of expressions for evaluating 
aS
(
Tc
) ≡ aS,c and bS are in terms of Tc and Pc , simply because critical pressures are known 

for more substances with better precision than critical molar volumes Vc[1, 49]. For the 
Soave equation of state we obtain

and the same value for the critical compression factor as that of the Redlich–Kwong equa-
tion of state, i.e., Zc,S =

1

3
.

The Soave equation of state, Eq. 165, may now be written as

Thus, at temperatures T ≤ Tc , the attraction parameter aS(T) is now expressed as 
the product of its value at the critical point and a dimensionless temperature-dependent 
α-function, that is

Clearly, for the limiting value of the α-function as T → Tc (i.e.,Tr → 1 ) we require

This empirical function was primarily formulated to help better fit vapor pressure data 
of hydrocarbons, and Soave suggested as a generally useful form

whose limiting value for T → Tc is one, in accord with Eq.  169. With a substantially 
expanded property set of vapor pressure data becoming available (a then new compilation 
from the American Petroleum Institute), the �S(T ,�)-relation was refitted by Graboski and 
Daubert [84–86] to yield an improved expression with

When applying the classical critical constraints to the Peng–Robinson equation of state, 
Eq. 163, we obtain

and the EOS may be rewritten as follows:

(166)�S

(
Tc
) ≡ aS

(
Tc
) ≡ aS,c = 0.42748

R2T2
c

Pc

and bS = 0.08664
RTc

Pc

,

(167)P =
RT

V − bS
−

aS,c�S(T ,�)

V
(
V + bS

) .

(168)aS(T) = aS,c�S(T ,�).

(169)lim
T→Tc

�S(T ,�) = 1.

(170)
�S(T ,�) =

�
1 + wS

�
1 −

√
T∕Tc

��2
,

wS = 0.480 + 1.574� − 0.176�2

⎫⎪⎬⎪⎭
,

(171)wS = 0.48508 + 1.55171� − 0.1561�2.

(172)�PR

(
Tc
) ≡ aPR

(
Tc
) ≡ aPR,c = 0.45724

R2T2
c

Pc

and bPR = 0.07780
RTc

Pc

,
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Thus, at temperatures T ≤ Tc , the attraction parameter �PR(T) = aPR(T) is now 
expressed as the product of its value at the critical point and a dimensionless temperature-
dependent α-function, that is,

again with the constraint

Correlating vapor-pressure data with the Peng–Robinson equation of state yielded

Over the years, many other α-functions of increasing complexity have been proposed. 
The Soave-type α-function is a generalized, polynomial expression which has been honed 
over decades, thereby making it so popular. It has been recognized that adequately formu-
lated α-functions substantially improved predictions of vapor pressure, especially of polar 
liquids [87]. However, its behavior was established for subcritical conditions only, and the-
ory-based guidelines for developing adequate α-function in general, and for supercritical 
conditions in particular, have been lacking until very recently. Based on a careful thermo-
dynamic/mathematical analysis of the problem, researchers from Nancy, France, that is, 
Le Guennec, Lasala, Privat and Jaubert, have established the requirements for consistent 
α-functions to be used in cubic equations of state applied at both subcritical and supercriti-
cal conditions [88–90].

The method of parameter evaluation for the PR equation of state remains unchanged, 
and the critical compression factor is Zc,PR = 0.307 . This value is nearer the common 
experimental values (particularly for nonpolar compounds) and explains partially the fact 
that the PR equation of state predicts liquid densities more accurately than the Soave equa-
tion of state.

Despite the inherent empiricism [91], both the Soave and the Peng–Robinson EOS have 
remained mainstays for calculating thermodynamic properties of fluids and vapor–liquid 
equilibria: nearly 150 years after van der Waals’ dissertation [24], generalized vdW equa-
tions are still a hot topic in chemical engineering.

The greatest utility of cubic equations of state is for vapor–liquid phase equilibrium cal-
culations involving mixtures. Extension of vdW-type model equations to multicomponent 
mixtures rests upon the inherent assumption that the same EOS used for the pure fluid 
components can be used for the c-component mixture, provided adequate prescriptions for 
the mixture parameters are available. The van der Waals one-fluid approximation provides 
such recipes for the composition dependence of the mixture interaction energy parameter a, 
say, aS or aPR , and of the mixture molecular size parameter b, say, bS or bPR . These mixing 
rules are quadratic in mole fraction:

(173)P =
RT

V − bPR
−

aPR,c�PR(T ,�)

V2 + 2bPRV − b2
PR

.

(174)aPR(T) = aPR,c�PR(T ,�),

(175)lim
T→Tc

�PR(T ,�) = 1.

(176)
�PR(T ,�) =

�
1 + wPR

�
1 −

�
T
�
Tc

��2
,

wPR = 0.37464 + 1.54226� − 0.26992�2

⎫⎪⎬⎪⎭
.
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where xi and xj are the mole fractions of components i and j, respectively. The attractive 
vdW interaction parameters of the pure components are denoted by aii and ajj , while aij 
measures the strength of the attractive interaction between unlike molecules. Similarly, the 
composition dependence of the mixture parameter b (also known as the mixture covolume) 
is also approximated by a quadratic mixing rule

where bii and bjj denote the vdW size parameters (covolumes) of the pure components, and 
bij characterizes the repulsive interaction between unlike molecules.

For three-parameter cubic equations of state, such as the Patel–Teja (PT) equation [92],

where the parameters in the generalized vdW equation, Eq.  161, are given by b = bPT , 
� = �PT(T) ≡ aPT(T) , � = bPT , � = bPT + cPT , and � = −bPTcPT , a similar mixing rule for 
the third parameter, here for cPT , is usually assumed:

I emphasize that these commonly used mixing rules are semiempirical approximations, 
and alternative recipes could be used and have indeed been suggested. However, to apply 
Eqs. 177 and 178 (and 180), for unlike interactions (i ≠ j) the cross-interaction parameters 
aij and bij (and cij ) have to be known: evaluation of these quantities in terms of pure-sub-
stance parameters is one of the key problems in molecular thermodynamics [1, 41–43, 49, 
60, 93, 94]. The most common choices for combining rules are the geometric-mean rule 
for aij suggested by Galitzine in 1890 [95], and later by Berthelot in 1898 [96, 97], and the 
arithmetic-mean rule for bij , though in engineering calculations, both are routinely modi-
fied on an empirical basis:

The parameters kij and lij are known as binary interaction parameters. For three-parame-
ter cubic equations of state, cij is typically approximated by

mij being another empirical binary interaction parameter.
So far, every cubic EOS that has been proposed has some limitations, either with 

respect to the range of operating conditions or types of fluids it could be applied to. Further 
progress in developing pressure-explicit multiparameter equations of state, was initially 

(177)a
({

xi
})

=

c∑
i=1

c∑
j=1

xixjaij,

(178)b
({

xi
})

=

c∑
i=1

c∑
j=1

xixjbij,

(179)P =
RT

V − bPT
−

�PT(T)

V2 + V
(
bPT + cPT

)
− bPTcPT

,

(180)cPT
({

xi
})

=

c∑
i=1

c∑
j=1

xixjcPTij.

(181)aij =
�
1 − kij

�√
aiiajj,

(182)bij =
(
1 − lij

)(
bii + bjj

)/
2.

(183)cij =
(
1 − mij

)(
cii + cjj

)/
2,
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greatly stimulated by work on the virial equation in the amount density �n = 1∕V  , which 
for a pure gas/vapor at not too high densities reads

This equation has a sound theoretical foundation [98]. Here, B(T) is the second virial 
coefficient, C(T) is the third virial coefficient, and so forth. The celebrated EOS of Ben-
edict, Webb and Rubin (BWR) [99–101] of 1940,

was an important step in the right direction and represented the volumetric properties of 
industrially important fluids (hydrocarbons) reasonably well. However, the BWR equa-
tion of state was found to give unsatisfactory results in low-temperature applications, at 
high fluid densities, and in the critical region. To alleviate these deficiencies, many modi-
fications of the BWR equation, with many more parameters, have been proposed [56–58, 
102–105] and are still widely used.

As already pointed out, fundamental equations have a great inherent advantage over vol-
umetric PVTx equations of state: they contain complete information on the thermodynamic 
system. Thus, once a judiciously selected empirical relation has been developed for one 
of the fundamental equations, say, for nU = Ut

(
nS, nV ,

{
ni
})

 , or nH = Ht
(
nS,P,

{
ni
})

 , 
or nF = Ft

(
T , nV ,

{
ni
})

 , or nG = Gt
(
T ,P,

{
ni
})

 , in principle, all other thermody-
namic fluid properties can be calculated by combinations of appropriate derivatives. 
Since the independent variable entropy nS is not directly measurable, neither the funda-
mental equation formulated in terms of internal energy, nor that formulated in terms of 
enthalpy, are used for developing empirical correlational equations. The advantage of using 
nG = Gt

(
T ,P,

{
ni
})

 is that the intensive canonical variables T and P are easily measured, 
monitored and controlled; this makes the Gibbs energy so important in Physical Chemis-
try as well as in Chemical Engineering. However, due to the discontinuity in slope of the 
Gibbs energy surface at the liquid (L)/vapor (V) phase boundary, i.e.,

nG = Gt
(
T ,P,

{
ni
})

 can only be used to represent the liquid part of the Gibbs energy 
surface or the vapor part separately, thus precluding a closed mathematical description 
of the entire fluid range (P = Pσ denotes the vapor pressure, with the subscript σ indicat-
ing saturation conditions) [63, 64]. In contradistinction, formulations based on Helmholtz 
energy-based fundamental equations, using canonical variables T and V (or T and �n ), are 
suitable for describing the entire fluid region. They are valid for liquid and vapor states, 
for equilibria between them, and the description of supercritical states is included. Their 
validity range terminates at the melting curve, thus allowing the calculation of liquid-phase 
properties, but not of properties of the coexisting solid phase. Modern fundamental equa-
tions are usually based on the Helmholtz energy [63, 64, 106–108]. However, in practi-
cal applications the dimensionless property F(T ,V)∕RT  (see Eq. 73) is usually replaced 
by F

(
T , �n

)/
RT  , �n = 1∕V  , which quantity is split into a residual part and a perfect-gas 

(ideal-gas) part, where both are empirically expressed by dimensionless functions of the 

(184)
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+⋯ .
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/
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/
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inverse reduced temperature � ≡ Tc∕T  and the reduced amount density, i.e., the inverse 
reduced molar volume, � ≡ �n

/
�n,c = Vc∕V ∶

The commonly used functional form of the residual term is that found in modified BWR 
equations. For details, see Refs. [63, 64, 106–108]. The most important application of the 
approach represented by Eq.  187 is the IAPWS (International Association for the Prop-
erties of Water and Steam) formulation 1995 for the thermodynamic properties of water 
prepared by Wagner and Pruß [108]. By using high-precision experimental data and apply-
ing modern strategies for optimizing the functional form of the EOS and for the simultane-
ous nonlinear data fitting, they obtained the so-called IAPWS-95 formulation covering the 
temperature range from the melting line to 1273 K and pressures up to 1000 MPa. In this 
range, IAPWS-95 represents all data to within their experimental uncertainty. In the criti-
cal region, data are represented very well, and IAPWS-95 can be reasonably extrapolated 
up to extremely high pressures and temperatures. The equation for the dimensionless per-
fect-gas part �pg(�, �) contains 8 terms, while the equation for the dimensionless residual 
part �r(�, �) contains 56 terms.

Note that the dimensionless property F(T ,V)∕RT  is related to the molar Massieu func-
tion divided by R (see Eq. 55):

Quite recently, generalized models for calculating thermodynamic mixture properties 
using Helmholtz energy-based fundamental equations have been developed [109–113]. 
For instance, the GERG-2008 equation developed by Kunz and Wagner [113] is based on 
data of 21 natural gas components. Over the entire composition range, it covers the liquid 
phase, the gas phase, the supercritical region, and VLE within the range 90 K to 450 K, 
and up to 35 MPa. However, when applied to significantly asymmetric binary mixtures, 
say, methane + pentane, it predicts critical curves with physically unreasonable temperature 
maxima [114]; thus, further work is indicated.

2.4 � Property Changes on Mixing and Excess Properties

Experimental determination, correlation and prediction of mixture properties are topics of 
central importance in chemical thermodynamics, and data on binary liquid mixtures are of 
particular interest. Primarily, they are useful for testing and guiding theories that attempt 
to predict thermodynamic mixture properties from the properties of the constituent pure 
components, and the experimental results provide information on parameters characteriz-
ing interactions between unlike species. In turn, these data constitute the very foundation 
for the development of predictive methods for properties of liquid multicomponent mix-
tures that, on the application side, are indispensable for the calculation of phase equilibria. 
At present, no generally satisfactory theory exists that provides a reliable basis for pre-
diction/correlation of thermodynamic data for binary liquid mixture, and thus, a fortiori, 
for ternary and multinary mixtures. Fortunately, large numbers of (critically) evaluated 
experimental data of excess properties (for a definition see below) are available in system-
atic data collections, such as the Solubility Data Series (IUPAC-NIST) [115, 116], NIST 
ThermoData Engine [117–120] or Landolt-Börnstein [121–129], or in data banks, such as 

(187)
F
(
T , �n

)
RT

= �(�, �) = �
r(�, �) + �

pg(�, �).

(188)
F

RT
= −

�

R
.
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the Dortmund Data Bank [70]. Based on this wealth of experimental information, well-
honed semi-empirical models, such as UNIFAC [130–136], DISQUAC [137–140], and 
the recent MOQUAC model [141] have been developed for correlating, extrapolating and 
predicting, in particular, molar excess Gibbs energies GE and molar excess enthalpies HE , 
over reasonably large temperature ranges. However, estimated infinite-dilution properties, 
aqueous solubilities of hydrocarbons, and excess heat capacities CE

P
 of liquid mixtures are 

frequently not satisfactory [142]. Similar comments apply to COSMO-RS and related mod-
els [143–147].

When describing reality, instead of considering total mixture properties 
Mt = nM

(
T ,P,

{
xi
})

 it is helpful to discuss the corresponding molar mixture properties in 
relation to the properties of the pure liquid constituents at the same T, P and 

{
xi
}
 , i.e., to 

focus on difference measures. Discussion is thus based on a new class of thermodynamic 
functions known as property changes of mixing, customarily designated by the symbol Δ 
and, on a molar basis, defined by

The corresponding new class of partial molar property changes of mixing (see Eq. 52c) 
is defined by

With the corresponding summability relation at constant T and P, see Eq. 52d, we have

or

and the exact differential of the extensive property nΔM is

From Eq. 192 a differential change in nΔM is given by

Hence, comparison with Eq. 193, and after division by n,

(189)ΔM
(
T ,P,

{
xi
}) ≡ M

(
T ,P,

{
xi
})

−

c∑
i

xiM
∗

i
(T ,P).

(190)

(
�(nΔM)

�ni

)

T ,P,nj≠i
≡ ΔMi

(
T ,P,

{
xi
})

= Mi

(
T ,P,

{
xi
})

−M∗

i
(T ,P).

(191)ΔM
(
T ,P,

{
xi
})

=

c∑
i

xiΔMi

(
T ,P,

{
xi
})

,

(192)nΔM
(
T ,P,

{
xi
})

=

c∑
i

niΔMi

(
T ,P,

{
xi
})

,

(193)d(nΔM) = n
(
�ΔM

�T

)
P,{xi}

dT + n
(
�ΔM

�P

)
T ,{xi}

dP +

c∑
i

ΔMidni.

(194)d(nΔM) =

c∑
i

ΔMidni +

c∑
i

nidΔMi.

(195)
(
�ΔM

�T

)
P,{xi}

dT +

(
�ΔM

�P

)
T ,{xi}

dP −

c∑
i

xidΔMi = 0,
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is obtained: this is another form of the general Gibbs–Duhem equation. In this section, the 
focus will be on M = G, S, V , H , and because of direct measurability, ΔH(via calorim-
etry) and ΔV(via dilatometry) are the molar property changes of mixing of special interest.

Applying residual-function approaches or equations-of-state methods to liquid mix-
tures, frequently consisting of chemically quite complex components, is often unsatisfac-
tory. Thus, for many applications discussed in this symposium, one way to proceed is to 
select in place of the perfect gas (ideal gas) a reference basis that is more appropriate for 
condensed phases: the most commonly selected basis is the ideal solution (indicated by a 
superscript id). In fact, this approach represents the classic method in solution thermody-
namics [148–150]. Compared to the perfect-gas basis, we recognize that changes in com-
position affect liquid mixture properties much stronger than changes in pressure.

Consider a liquid equilibrium phase with composition 
{
xi
} ≡ {

xL
i

}
 at uniform tempera-

ture and pressure. Using the idealized composition dependence of the component fugacity 
as represented by the Lewis–Randall (LR) rule [17, 66, 151], 

one obtains for the partial molar Gibbs energy. 

Discussion of real-solution behavior may now be based on deviations from Lewis–Ran-
dall ideal-solution behavior, i.e., on the differences between property values of real solu-
tions and property values calculated for the Lewis–Randall ideal-solution model at the 
same T, P and 

{
xi
}
 based on Eq. 197. That is, the partial molar Gibbs energy Gid

i
 of com-

ponent i serves as a generating function for other partial molar properties of an LR-ideal 
solution that hence-forward will be indicated by a superscript id (alternative ideal-solution 
models are possible, and are indeed used, though the LR-ideal solution is the conventional 
reference for mixture behavior of liquid phases). For instance, the temperature derivative 
and the pressure derivative yield the partial molar entropy and the partial molar volume, 
respectively,

while the Gibbs–Helmholtz equation yields the LR-ideal partial molar enthalpy

The LR-ideal molar properties corresponding to the partial molar properties of 
Eqs. 197–200 are obtained with the summability relation:

(196)f id
i

(
T ,P,

{
xi
}) ≡ f LR

i

(
T ,P,

{
xi
})

= xif
L,∗

i
(T ,P), valid for 0 ≤ xi ≤ 1,

(197)Gid
i

(
T ,P,

{
xi
})

= G∗

i
(T ,P) + RT ln xi.

(198)Sid
i

(
T ,P,

{
xi
})

= S∗
i
(T ,P) − R ln xi,

(199)V id
i

(
T ,P,

{
xi
})

= V∗

i
(T ,P),

(200)Hid
i

(
T ,P,

{
xi
})

= H∗

i
(T ,P).

(201)Gid
(
T ,P,

{
xi
})

=
∑
i

xiG
∗

i
(T ,P) + RT

∑
i

xi ln xi,

(202)Sid
(
T ,P,

{
xi
})

=
∑
i

xiS
∗

i
(T ,P) − R

∑
i

xi ln xi,



664	 Journal of Solution Chemistry (2022) 51:626–710

1 3

The molar property changes of mixing for LR-ideal solutions, ΔMid , may be obtained as 
special cases from the general defining equation, Eq. 189:

That is, by substituting the corresponding expression for Mid , Eqs.  201–204, into 
Eq. 205 (or the corresponding expressions for Mid

i
 , Eqs. 197–200), we obtain

The general property ΔMid
i

(
T ,P,

{
xi
})

 of Eq.  205 denotes a partial molar property 
change of mixing for LR-ideal solutions, such as those appearing in Eqs. 206–209:

Quantities measuring deviations of real solution properties M
(
T ,P,

{
xi
})

 from LR-ideal 
solution properties Mid

(
T ,P,

{
xi
})

 at the same T, P and 
{
xi
}
 (see Eqs. 201–204), constitute 

another highly useful new class of functions called molar excess properties. They are des-
ignated by a superscript E and are defined by

The corresponding partial molar excess properties for component i in solution are 
defined by

and with the summability relation we have

(203)V id
(
T ,P,

{
xi
})

=
∑
i

xiV
∗

i
(T ,P),

(204)Hid
(
T ,P,

{
xi
})

=
∑
i

xiH
∗

i
(T ,P).

(205)

ΔMid
�
T ,P,

�
xi
�� ≡Mid

�
T ,P,

�
xi
��

−
�
i

xiM
∗

i
(T ,P)=

�
i

xi
�
Mid

i

�
T ,P,

�
xi
��

−M∗

i
(T ,P)

�

=
�
i

xiΔM
id
i

�
T ,P,

�
xi
��

⎫⎪⎬⎪⎭
.

(206)ΔGid
(
T ,P,

{
xi
})

=
∑
i

xiΔG
id
i

(
T ,P,

{
xi
})

=RT
∑
i

xi ln xi,

(207)ΔSid
(
T ,P,

{
xi
})

=
∑
i

xiΔS
id
i

(
T ,P,

{
xi
})

= − R
∑
i

xi ln xi.

(208)ΔV id
(
T ,P,

{
xi
})

=
∑
i

xiΔV
id
i

(
T ,P,

{
xi
})

= 0,

(209)ΔHid
(
T ,P,

{
xi
})

=
∑
i

xiΔH
id
i

(
T ,P,

{
xi
})

= 0.

(210)ΔMid
i

(
T ,P,

{
xi
}) ≡ Mid

i

(
T ,P,

{
xi
})

−M∗

i
(T ,P)

(211)ME
(
T ,P,

{
xi
}) ≡ M

(
T ,P,

{
xi
})

−Mid
(
T ,P,

{
xi
})

.

(212)

(
�

(
nME

)
�ni

)

T ,P,nj≠i

≡ ME
i

(
T ,P,

{
xi
})

= Mi

(
T ,P,

{
xi
})

−Mid
i

(
T ,P,

{
xi
})

,
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Substituting the ideal-solution expressions Eqs. 201–204 into Eq. 211, and taking into 
account Eq. 189, we obtain the following relations:

First-law excess properties are identical to the property changes of mixing.
As a generating function, the molar excess Gibbs energy GE is of central interest. As a 

matter of convenience, Eq. 197 may be generalized in such a manner that an expression for 
the partial molar Gibbs energy Gi is obtained that is valid for any real mixture per defini-
tion. Thus, we may write

where �LR
i

(
T ,P,

{
xi
})

 is known as the Lewis–Randall (LR) activity coefficient of compo-
nent i in solution. With the defining prescription Eq. 212, the partial molar excess Gibbs 
energy is thus given by

In view of Eq. 213, the molar excess Gibbs energy reads

(213)ME
(
T ,P,

{
xi
})

=

c∑
i

xiM
E
i

(
T ,P,

{
xi
})

.

(214)

G
E
�
T ,P,

�
x
i

��
=G

�
T ,P,

�
x
i

��
−

c�
i

x
i
G

∗

i
(T ,P) − RT

c�
i

x
i
ln x

i

=ΔG
�
T ,P,

�
x
1

��
− RT

c�
i

x
i
ln x

i

⎫
⎪⎪⎬⎪⎪⎭

,

(215)

S
E
�
T ,P,

�
x
i

��
=S

�
T ,P,

�
x
i

��
−

c�
i

x
i
S
∗

i
(T ,P) + R

c�
i

x
i
ln x

i

=ΔS
�
T ,P,

�
x
i

��
+ R

c�
i

x
i
ln x

i

⎫
⎪⎪⎬⎪⎪⎭

,
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�
x
i

��
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c�
i

x
i
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∗
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(T ,P)

=ΔV
�
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�
x
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⎫
⎪⎬⎪⎭
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�
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c�
i

x
i
H

∗

i
(T ,P)

=ΔH
�
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+ RT ln �
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{
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,
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�
�

�
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�
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�
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= G

i

�
T ,P,

�
x
i

��
− G

id

i

�
T ,P,

�
x
i

��

= RT ln �
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Since Si = −
(
�Gi

/
�T

)
P,{xi}

 , we have for the molar excess entropy

With Vi =
(
�Gi

/
�P

)
T ,{xi}

 , the molar excess volume is given by

and finally, with the Gibbs–Helmholtz equation or via HE = GE + TSE we obtain for the 
molar excess enthalpy

The ideal-solution equations for Mid (M = G, S, V, H) which follow from the Lewis–Ran-
dall rule are given by Eqs.  201–204. I reiterate that Eqs.  220–223 only apply when the 
Lewis–Randall model for the ideal solution is used.

Central to the development of useful relations is the fundamental property relation

and, of course,

and so forth. The definition of an excess property is not restricted to any phase, though they 
are predominantly used for liquid mixtures.

Excess properties and property changes of mixing are closely related, and one may read-
ily calculate ME from ΔM and vice versa. By combining the definitions Eqs. 211 and  189, 
in conjunction with ΔMid defined by Eq. 205, the important relation

(220)

GE
�
T ,P,

�
xi
��

= G
�
T ,P,

�
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��

− Gid
�
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�
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=

c�
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xiG
E
i

�
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�
xi
��

= RT

c�
i

xi ln �
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i

�
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�
xi
��

⎫
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.
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xiS
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�
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xi ln �
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�
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�
xi
���

�T
�
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xiV
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��

− Hid
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��
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c�
i

xiH
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i

�
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��

= −RT2

c�
i

xi
�
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i

�
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���
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(224)d
(
nGE

)
= −

(
nSE

)
dT +

(
nVE

)
dP + RT

c∑
i

ln �LR
i

dni,

(225)GE = HE − TSE and GE
i
= HE

i
− TSE

i
,
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is obtained, with a similar one holding for the corresponding partial molar quantities:

Rearranging Eq.  226, the difference ΔM −ME = ΔMid is zero except for the second-
law properties M = G, F (= G—PV) and S, see Eqs. 206–209, and similarly for the partial 
molar properties in Eq. 227, the difference ΔMi −ME

i
= ΔMid

i
 is zero except for the sec-

ond-law properties Mi = Gi , Fi

(
= Gi − PVi

)
 and Si . Further, from Eq. 226 we see imme-

diately that since a molar excess property represents also the difference between the real 
change of a property of mixing and the LR-ideal-solution change of a property of mixing, 
we may identify it, alternatively to the defining equation Eq. 211, as a molar excess prop-
erty change of mixing

Analogously, from Eq. 228 we may identify, alternatively to defining equation Eq. 212, 
a partial molar excess property as a partial molar excess property change of mixing

Evidently, the terms molar excess property and molar excess property change of mixing 
may be used interchangeably, and both are indeed found in the literature. If the focus is on 
properties of mixtures, then ME and ME

i
 are preferred, while for mixing processes the nota-

tions (ΔM)
E = ΔME and 

(
ΔMi

)E
= ΔME

i
 may be regarded as being more appropriate.

For the four quantities selected for a more detailed discussion, Eqs. 226 and 227 yield 
the following: for the second-law properties

is obtained, while for the first-law properties we have

in accord with Eqs. 214–217. Depending on the point of view, VE = ΔV  is known as 
either the molar excess volume or the molar volume change of mixing, and HE = ΔH is 
called either the molar excess enthalpy or the molar enthalpy change of mixing.

In analogy to Eq. 193, the exact differential of the extensive property nME
(
T ,P,

{
xi
})

 
is given by

(226)ME
(
T ,P,

{
xi
})

= ΔM
(
T ,P,

{
xi
})

− ΔMid
(
T ,P,

{
xi
})

,

(227)ME
i

(
T ,P,

{
xi
})

= ΔMi

(
T ,P,

{
xi
})

− ΔMid
i

(
T ,P,

{
xi
})

.

(228)ME = ΔM − ΔMid ≡ (ΔM)
E.

(229)ME
i
= ΔMi − ΔMid

i
≡ (

ΔMi

)E
.

(230)GE = ΔG − RT

c∑
i

xi ln xi, and GE
i
= ΔGi − RT ln xi,

(231)SE = ΔS + R

c∑
i

xi ln xi, and SE
i
= ΔSi + R ln xi,

(232)VE = ΔV , and VE
i
= ΔVi,

(233)HE = ΔH, and HE
i
= ΔHi,

(234)d
(
nME

)
= n

(
�ME

�T

)

P,{xi}

dT + n

(
�ME

�P

)

T ,{xi}

dP +

c∑
i

ME
i
dni,
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while Eq. 213 yields for a differential change in nME

Comparison with Eq. 234 and division by n results in

which is still another form of the general Gibbs–Duhem equation.
For convenience, instead of GE

i
 the non-dimensional group GE

i

/
RT  is frequently 

used, which quantity is directly related to the LR-based dimensionless state function 
ln �LR

i

(
T ,P,

{
xi
})

 by

Using the summability relation, we have

The corresponding fundamental excess-property relation for a single-phase system, in 
which the amounts ni may vary either through interchange of matter with its surroundings 
(open phase) or because of chemical reactions within the system or both, reads

in complete analogy to Eq. 70. By inspection we find

The corresponding Gibbs–Duhem equation reads

(235)d
(
nME

)
=

c∑
i

ME
i
dni +
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i

nidM
E
i
.
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(
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E
i
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/
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i
.
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i

RT
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which at constant T and P reduces to

Rewriting it for a binary mixture

we recognize that if in a binary mixture �LR
1

 increases (or decreases) with increasing x1 , 
then �LR

2
 must simultaneously decrease (or increase) with increasing x1 . In addition, when 

x2 → 0 , and thus x1 → 1 , the slope of the curve ln �LR
1

 vs. x1 is zero, and vice versa, when 
x1 → 0 , and thus x2 → 1 , the slope of the curve ln �LR

2
 vs. x1 is zero: each ln �LR

i
 curve 

(i = 1, 2) terminates at xLR
i

= 1 with zero value and zero slope.
The fundamental excess-property relation Eq.  239 with canonical variables T, P and {

ni
}
 supplies complete information on excess properties. It is of central importance in 

solution chemistry because HE , and its temperature dependence CE
P
 , the molar excess heat 

capacity at constant pressure (molar excess isobaric heat capacity)

the molar excess volume VE and ln �LR
i

 are experimentally accessible quantities: excess 
enthalpies and excess isobaric heat capacities may be obtained more or less directly via 
calorimetry, and excess volumes may be obtained more or less directly via dilatometry, or 
pycnometry, or vibrating-tube densimetry, or buoyancy methods (exploiting the Archime-
des principle), respectively [37, 46, 66, 68, 152–160]. The excess Gibbs energy, in prin-
ciple the key excess property, is a conceptual property that cannot be measured directly 
(nor can the excess entropy), though it can be quantitatively deduced from vapor–liquid 
equilibrium (VLE) measurements via determination of LR activity coefficients [17, 20, 46, 
161–172]. For mixtures at low to moderate pressure, that is, well below the critical pres-
sure, the conventional highly effective and refined “phi/gamma ( �∕� )” approach to VLE is 
commonly used: note that isothermal measurements are advantageous [17]. For applica-
tions at pressures up to a few bars, to an excellent approximation the equilibrium relation 
for a binary system reads

and

(243)−
HE

RT2
dT +

VE

RT
dP −

c∑
i

xid ln �
LR
i

= 0,

(244a)
c∑
i

xid ln �
LR
i

(
T ,P,

{
xi
})

= 0.

(244b)
dln�LR

1

dx1
= −

x2

x1

dln�LR
2

dx1
,

(245)

CE
P

�
T ,P,

�
xi
��

=

�
�HE

�
T ,P,

�
xi
��

�T

�

P,{xi}

= T

�
�SE

�
T ,P,

�
xi
��

�T

�

P,{xi}

= CP

�
T ,P,

�
xi
��

−

c�
i

xiC
∗

Pi
(T ,P) = ΔCP

�
T ,P,

�
xi
��

⎫⎪⎪⎬⎪⎪⎭

,

(246)yiPΦi = xi�
LR
i

Pσ,i, hence �
LR
i

=
yiPΦi

xiPσ,i

, i = 1 or 2,
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Here, �ij is defined by

where the identically subscripted second virial coefficients Bii and Bjj refer to the pure 
vapor of component i or j, respectively, and Bij is known as the interaction virial coeffi-
cient, or cross-coefficient. Note that we have �ij = �ji . In Eq. 247a, �V

i

(
T ,P, yi

)
 denotes the 

vapor-phase fugacity coefficient of component i, and �V,∗

i

(
T ,Pσ,i

)
 is the fugacity coefficient 

of pure saturated vapor at T and Pσ,i . These phase-equilibrium relations are easily extended 
to multicomponent mixtures.

The classical data reduction approach uses activity coefficients directly determined by 
Eq.  246. Insertion of the so obtained �LR

i
 s into Eq.  220 or Eq.  238 yields values of 

GE
�
RT =

c∑
i

xi ln �
LR
i

 that are then fit to an appropriate analytical correlating equation rep-

resenting the composition dependence of GE
/
RT(see next section). For more recent meth-

ods see Van Ness and Abbott [17]. Combination with calorimetrically measured excess 
enthalpies yields the molar excess entropy

For one mole of a constant-composition mixture,

and for the corresponding partial molar excess properties, see Eq. 237,

is obtained. Hence the partial molar analogues of Eqs. 240 and 241, respectively, are

and

Thus, the partial molar excess entropy is given by

(247a)Φi =
�
V
i

�
T ,P, yi

�

�
V,∗

i

�
T ,Pσ,i

� exp

⎡
⎢⎢⎢⎣
−

P

∫
Pσ,i

V
L,∗

i

RT
dP

⎤
⎥⎥⎥⎦
,

(247b)≅ exp

[(
Bii − V

L,∗

i

)(
P − Pσ,i

)
+ Py2

j
�ij

RT

]
, i ≠ j.

(248)�ij ≡ 2Bij − Bii − Bjj,

(249)SE
(
T ,P,

{
xi
})

=
[
HE

(
T ,P,

{
xi
})

− GE
(
T ,P,

{
xi
})]/

T .

(250)d

(
GE

RT

)
= −

HE

RT2
dT +

VE

RT
dP,

(251)d

(
GE

i

RT

)
= d ln �LR

i
= −

HE
i

RT2
dT +

VE
i

RT
dP,

(252)

(
� ln �LR

i

�T

)

P,{xi}

= −
HE

i

RT2
,

(253)

(
� ln �LR

i

�P

)

T ,{xi}

=
VE
i

RT
.
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Finally, I list the useful relations

and, important for calorimetric work at high pressure

and

Modern calorimeters allow reliable measurements of HE and CP (and thus of CE
P
 ) at 

elevated T and P, and the results have to be consistent with experimentally determined 
volumetric properties, as indicated by Eqs. 256 and 257, respectively. However, outside the 
critical region the influence of pressure on excess properties is usually rather small.

Focusing now on the non-dimensional excess property GE
/(

x1x2RT
)
 for a binary mix-

ture, we find this quantity of considerable practical utility, especially when a graphical 
(visual) evaluation of experimentally determined GE s is intended. Note that

where �LR,∞
1

 and �LR,∞
2

 are the LR activity coefficients at infinite dilution. These quanti-
ties play an important role in solution chemistry and have found many applications in the 
characterization of liquid solution behavior. In general, for binary mixtures extrapolation 
of ME

/
x1x2 to x1 = 0 and x2 = 0 , respectively, is the most convenient and reliable graphi-

cal method for determining the infinite-dilution partial molar excess properties ME,∞

1
 and 

M
E,∞

2
.

2.5 � Correlation of Experimental Data

In general, experimental data have to be treated on their way from experiment in the labo-
ratory to the place of application, be it in support of theory development, or model check-
ing, or plant operation. Clearly, the mathematical treatment should aim to eliminate incon-
sistencies without distorting the results, it should correlate the data to within experimental 
error, provide at least realistic first derivatives upon differentiation, and it should combine 
adequate flexibility with reasonable simplicity. Unfortunately, no theoretical model of any 
general validity exists that satisfactorily describes the composition dependence of excess 
properties of liquid mixtures, and relations commonly used are semiempirical at best [1, 

(254)SE
i
=

HE
i
− GE

i

T
= −RT

(
� ln �LR

i

�T

)

P,{xi}

− R ln �LR
i

.

(255)

CE
P
=

�
�HE

�T

�

P,{xi}

= T

�
�SE

�T

�

P,{xi}

= −T

�
�
2GE

�T2

�

P,{xi}

= −2RT
�
i

xi

�
� ln �LR

i

�T

�

P,{xi}

− RT2
�
i

xi

�
�
2 ln �LR

i

�T2

�

P,{xi}

⎫⎪⎪⎬⎪⎪⎭

,

(256)

(
�HE

�P

)

T ,{xi}

= VE − T

(
�VE

�T

)

P,{xi}

=

[
�

(
VE

/
T
)

�(1∕T)

]

P,{xi}

,

(257)
(
�CE

P

/
�P

)
T ,{xi}

= −T
(
�
2VE

/
�T2

)
P,{xi}

.

(258)lim
x1→0

GE
/
RT

x1x2
= ln �

LR,∞

1
and lim

x2→0

GE
/
RT

x1x2
= ln �

LR,∞

2
,
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16–18]. Focusing now on binary liquid mixtures, one procedure is to express ME
/
x1x2 

at constant temperature and pressure as a power series in x1 (since x2 = 1 − x1 , x1 can be 
selected as the single independent variable). However, an equivalent power series, with cer-
tain advantages, is the popular empirical expansion due to Redlich and Kister [173–175],

where the parameters A0 and Am , m = 1, 2, 3,… are, in general, functions of T and P; trun-
cations of Eq. 259 with a ≤ 3 are frequently used in the literature. The partial molar excess 
property values at infinite dilution, ME,∞

i
= lim

xi→0
ME

i
 , are given by

For highly skewed data, using more than four terms may cause spurious oscillations of 
the ME

i
 s, and may yield unreliable ME,∞

i
 s. Superior flexibility for fitting strongly unsym-

metrical curves is provided by Padé approximants [1, 17, 176–178] of order [a/b], where 
the denominator must never become zero:

As alternatives, expressions based on orthogonal polynomials have been suggested 
[179–181], e.g., expansions based on Legendre polynomials in z12 ≡ x1 − x2:

with L0
(
z12

)
= 1 , L1

(
z12

)
= z12 , L2

(
z12

)
=
(
3z2

12
− 1

)/
2 , L3

(
z12

)
=
(
5z3

12
− 3z12

)/
2 , and 

so forth. The summation limit np is selected as required to fit the available experimental 
data. If HE data are available at several temperatures, the temperature dependence of the 
coefficients ap has to be incorporated via, say,

or an exponential temperature dependence [182].
Used with necessarily discrete experimental data, Legendre polynomial expansions have 

the merit that increasing the number of terms to improve the fit will only slightly influence 
the values of lower-order terms. As pointed out by Pelton and Bale [180, 181], using Leg-
endre expansions in terms of Lp

(
z12

)
 instead in terms of Lp

(
x1
)
 has certain advantages. 

Conversion formulae to calculate Legendre coefficients from Redlich–Kister coefficients 
(or from power series coefficients) have been given by Pelton and Bale [181], Howald and 
Eliezer [183], and Tomiska [184].

When the number of components increases to three and beyond, experimental work to 
determine excess properties increases sharply, thus explaining the scarcity of experimental 
data for multicomponent mixtures. The situation is aggravated by less reliable empirical/
semiempirical correlating functions describing the composition dependence of multinary 

(259)
ME

x1x2
= A0 +

a∑
m=1

Am

(
x1 − x2

)m
, constant T ,P,

(260)M
E,∞

1
= A0 +

a∑
m=1

Am(−1)
m and M

E,∞

2
= A0 +

a∑
m=1

Am.

(261)
ME

x1x2
=

A0 +
a∑

m=1

Am

�
x1 − x2

�m

1 +
b∑

n=1

Bn

�
x1 − x2

�n
, constant T ,P.

(262)HE = x1x2

np∑
p=0

apLp
(
z12

)
, constant T ,P,

(263)ap = ap0 + ap1T + ap2T
2 + ap3T

3 +⋯ ,
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excess properties, though, for instance, the Redlich–Kister expansion can be generalized 
without difficulty. However, predictions of multicomponent solution properties from results 
pertaining to the constituent binaries alone, without ternary (or higher) terms, are always 
approximate, the most successful correlation of this type being Kohler’s equation [185]: it 
relates the excess molar Gibbs energy GE,123 of a ternary liquid mixture with mole frac-

tions 
{
x1, x2, x3

}
 , 

3∑
i=1

xi = 1 , to the excess molar Gibbs energies GE,ij of the three binary 

subsystems with composition 
{
x�
i
, x�

j
= 1 − x�

i

}
, where the mole fractions characterized by 

a superscript prime are defined by

Based on the reasonable approximation that pairwise molecular interactions i ⇔ j 
remain constant along lines representing mixtures having a constant composition ratio 
xi
/
xj , the binary quantities GE,ij are assumed to depend only on 

{
x�
i
, x�

j
= 1 − x�

i

}
 , and.

Kohler’s equation treats the binary subsystems equally, and the model does not impose 
any restrictions on the functional form of the expressions selected to represent the compo-
sition dependence of binary GE,ij data. Similar comments apply, of course, to HE,123 , CE,123

P
 

and VE,123 . Kohler’s equation can be generalized to correlate/predict the composition 
dependence of molar excess properties of multicomponent systems with four or more com-
ponents. Assuming again that pairwise molecular interactions i ⇔ j remain constant at con-
ditions imposing a constant composition ratio xi

/
xj = x�

i

/
x�
j
, and using Eq.  262 for the 

binary subsystems with z�
ij
≡ x�

i
− x�

j
 , that is,

such a generalized equation for the molar excess enthalpy HE,123…c of a c-component sys-
tem reads [37]

For the composition dependence of the excess molar enthalpies HE,ij
(
x′
i
, x′

j

)
 of the 

binary subsystems, any function, say, Redlich–Kister, Padé or Legendre polynomial (see 
Eq. 262), may be used. In fact, each binary system could be represented by a different cor-
relating equation.

Traditionally, the thermodynamic description of real liquid solutions is based on the 
excess-property formalism presented above. As already pointed out, large numbers of 
(critically) evaluated experimental data on GE and ln �LR

i
 , HE , CE

P
 and VE of binary liquid 

(264)x�
j
≡ xi

/(
xi + xj

)
and x�

j
≡ xj

/(
xi + xj

)
.

(265)
G

E,123
(
x1, x2, x3

)
=
(
x1 + x2

)2
G

E,12
(
x
�

1
, x

�

2

)

+
(
x1 + x3

)2
G

E,13
(
x
�

1
, x

�

3

)
+
(
x2 + x3

)2
G

E,23
(
x
�

2
, x

�

3

)
.

(266)HE,ij
(
x�
i
, x�

j

)
= x�

i
x�
j

np∑
p=0

apLp

(
z�
ij

)
, constant T ,P,

(267)

H
E,12…c

�
x1, x2,… , x

c

�
=

c�
j=i+1

c−1�
i=1

��
x
i
+ x

j

�2
H

E,ij

�
x
�

i
, x

�
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��

=
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c−1�
i=1

�
x
i
x
j
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a
p
L
p

�
z
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ij

��

⎫
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.
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mixtures are now available in systematic data collections [70, 115–129], and are at the dis-
posal of liquid-state physical chemists and chemical engineers.

For the global thermodynamic description of liquid nonelectrolyte mixtures, CE
P
 s 

are pivotal properties, and taking advantage of the exact relations of Eq.  255, consider-
able economy in experimental effort can be attained. In order to obtain precise values of 
GE

(
T ,P,

{
xi
})

 (as well as of HE
(
T ,P,

{
xi
})

 and SE
(
T ,P,

{
xi
})

 ) over wide ranges of tem-
perature at constant pressure P (though well below the vapor–liquid critical region), it suf-
fices to determine GE

(
T = Tref,P,

{
xi
})

 and HE
(
T = Tref,P,

{
xi
})

 at one suitably selected 
reference temperature (frequently,Tref = 298.15 K ), and to measure the temperature 
dependence of the molar excess heat capacity CE

P

(
T ,P,

{
xi
})

 over a large enough tempera-
ture range of interest at constant pressure and at well distributed compositions. These data 
then permit the consistent determination of the remaining excess properties GE , HE and SE 
over this temperature range by integration of the relevant differential equations. Compared 
to the converse approach of determining GE over a reasonably large temperature range and 
deriving HE , SE and CE

P
 by differentiation with respect to T, it is an obviously advantageous 

route that will yield more reliable results. This will be especially the case when GE values 
are needed at low temperatures where the vapor pressures of the mixtures are small and the 
conventional determination of GE is difficult. Well below the vapor–liquid critical region, 
CE
P
 of a constant-composition mixture frequently shows a simple temperature dependence, 

that is, at constant pressure it can be approximated satisfactorily by [157],

where � ≡ Tref∕T  . Using the differential equations presented in Eq. 255, integration over 
temperature at constant pressure and constant composition yields

and

The dimensionless coefficients ai depend, of course, on pressure and composi-
tion; they are related to the corresponding molar excess quantities at 

{
T = Tref,P,

{
xi
}}

 
as follows: CE

P

(
Tref

)/
R = a3 + a4 + a5 , HE

(
Tref

)/
RTref = a2 , SE

(
Tref

)/
R = a1 , and 

GE
(
Tref

)/
RTref = −a1 + a2 . Analogous expressions may be derived if the temperature 

dependence of CE
P
 , at constant pressure and composition, is described by a polynomial in T 

instead of T−1 . Global studies of this kind are, however, quite rare, with some of the most 
careful investigations being those of Ziegler and colleagues [186, 187].

Classical thermodynamics does not constrain the signs of particular excess proper-
ties, that is, GE, HE and SE can each be positive or negative, and quite a few systems are 
known where the sign changes with composition (sigmoidal composition dependence: one 
maximum, one minimum). Very rarely so-called M-shaped excess enthalpies have been 
reported: for the binary liquid mixture {benzonitrile + benzene}, at 298.15 K, 308.15 K, 
and 318.15 K and ambient pressure, HE changes its sign with composition two times, that 
is, it exhibits two maxima and one minimum [188]. Thermodynamics restricts, however, 
the admissible combinations of signs for these three excess properties: Eq.  249 clearly 

(268)CE
P

/
R = a3 + a4� + a5�

2,

(269)HE
/
RT = a3 +

(
a2 − a3 + a5

)
� − a5�

2 − a4� ln �,

(270)SE
/
R = a1 + a4 + a5

/
2 − a4� − a5�

2
/
2 − a3 ln �,

(271)
GE∕RT = −a1 + a3 − a4 − a5∕2 +

(
a2 − a3 + a4 + a5

)
� − a5�

2∕2 + a3 ln � − a4� ln �.
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shows that a positive GE with a negative HE and a positive SE is not possible, nor a negative 
GE with a positive HE and a negative SE . In passing I note that our research group in France 
was the first to report (in 1982) W-shaped excess heat capacities CE

P
vs. x1 for {1,4-diox-

ane + n-CnH2n+2} at 298.15 K, n = 7, 10, 14 [189]: CE
P
 exhibits two minima and one maxi-

mum, see Fig. 1.

2.6 � Excess Molar Gibbs Energy and Lewis–Randall Activity Coefficients (in 
Particular at Infinite Dilution)

Activity coefficients �LR,∞
i

 at infinite dilution characterize the thermodynamic behavior 
of a single solute molecule completely surrounded by solvent molecules, hence it usually 
indicates maximum non-ideality and—in the absence of i ⇔ i interactions—it provides 
important information on solute–solvent interactions i ⇔ j . Thus, they are of great value in 
chemical engineering and are key parameters in the discussion of dilute solutions encoun-
tered in environmental studies [190–192]. In fact, given the infinite-dilution activity coef-
ficients of each component in the other in a binary mixture, values of parameters in popu-
lar two-parameter activity coefficient models can be easily obtained; in turn, these can be 
used for phase equilibrium predictions over the entire composition range [193]. However, 
prediction quality depends strongly on the model used, and whether the mixture is only 
slightly or strongly nonideal. With improved experimental techniques [170, 171, 194], pre-
cise measurements at low concentrations can be made with less effort compared to conven-
tional VLE measurements, and with greater accuracy since extrapolation of activity coef-
ficients obtained at higher mole fractions to infinite dilution is quite demanding.

For the prediction of the composition dependence of LR-based GE , many empirical 
equations have been proposed, and for binary mixtures, some of the simpler ones are spe-
cial cases of one of the following power series expansions in the mole fractions:

see Eq. 259 (Redlich–Kister expansion), or

(272)
GE

x1x2RT
= B� + C�

(
x1 − x2

)
+ D�

(
x1 − x2

)2
+ E�

(
x1 − x2

)3
+⋯ ,

Fig. 1   W-shaped molar excess 
heat capacities CE

P
 at constant 

pressure of three binary liquid 
mixtures of type {1,4-diox-
ane + n-alkane}, i.e. {x11,4-
C4H8O2 + (1 − x1) CnH2n+2}, 
n = 7, 10 and 14, at 298.15 K and 
ambient pressure. The circles 
and triangles represent our 
experimental results [189]. The 
figure was  reproduced from E. 
Wilhelm, J. Solution Chem. 43, 
525–576 (2014) [157]
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With restriction to two parameters and on rearrangement, i.e., B� + C� = A�
21

 and 
B� − C� = A�

12
 , Eq. 272 yields the equivalent (two-parameter) 3-suffix Margules3 equation

with the following expressions for the LR activity coefficients:

With restriction to two parameters and on rearrangement, i.e., 1∕(B − C) = A12 , and 
1∕(B + C) = A21 , Eq.  273 yields the equivalent two-parameter van Laar equation [188, 
189]

with the following expressions for the LR activity coefficients:

(273)
x1x2RT

GE
= B + C

(
x1 − x2

)
+ D

(
x1 − x2

)2
+ E

(
x1 − x2

)3
+⋯ .

(274)
GE

x1x2RT
= A�

21
x1 + A�

12
x2,

(275)
GE

1

RT
= ln �LR

1
= x2

2

[
A�

12
+ 2x1

(
A�

21
− A�

12

)]
, and ln�

LR,∞

1
= A�

12
= B� − C�,

(276)
GE

2

RT
= ln �LR

2
= x2

1

[
A�

21
+ 2x2

(
A�

12
− A�

21

)]
, and ln�

LR,∞

2
= A�

21
= B� + C�.

(277)
GE

x1x2RT
=

A12A21

A12x1 + A21x2
,

(278)
GE

1

RT
= ln �LR

1
= A12

(
1 +

A12

A21

x1

x2

)−2

, and ln�
LR,∞

1
= A12 =

1

B − C
,

(279)
GE

2

RT
= ln �LR

2
= A21

(
1 +

A21

A12

x2

x1

)−2

, and ln�
LR,∞

2
= A21 =

1

B + C
.

3  Max Margules was an Austrian physicist. Born in Brody, Galicia, a former crownland of the Austro-
Hungarian Empire, on April 23, 1856, he started his studies in mathematics, physics and chemistry at the 
University of Wien (Vienna), Austria, in 1872. Among his teachers were Ludwig Boltzmann and Josef 
Loschmidt. After a few years as Assistant at the Central Institute of Meteorology in Wien, he went to Berlin 
for additional studies in mathematical physics (1879/1880) and was habilitated at the University of Wien 
after his return. However, in 1882 Margules resigned from this academic position and rejoined the Central 
Institute of Meteorology. During the first years at this institution, he continued to pursue physical and physi-
cal–chemical research parallel to his work on theoretical meteorology. In 1906 he voluntarily retired at the 
age of fifty on a very modest pension. This was also the year of his last meteorological publication, dedi-
cated to the theory of storms:
  Margules, M.: Zur Sturmtheorie. Meteorolog. Z. 23, 481–497 (1906).
  His small pension and the inflation after the end of World War I led to a life in poverty, which was com-
pounded by the general state of malnutrition of the Austrian population and his refusal to accept help 
from colleagues and/or the Austrian Meteorological Society (he was awarded the Hann Medal in 1919 
but declined the associated honorarium). Max Margules died of starvation in Perchtoldsdorf near Wien 
(Vienna), Austria, on October 4, 1920. He contributed significantly and lastingly to meteorology and ther-
modynamics [195]. Obituaries were prepared by F. M. Exner (Meteorolog. Z. 37, 322–324 (1920)) and E. 
Gold (Nature 106, 286–287 (1920)).
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If for a binary system precise and plentiful data are available, the use of a 3-parameter 
Redlich–Kister equation (see Eqs. 259 or 272) is frequently indicated, i.e.,

with the following expressions for the LR activity coefficients:

Combining the results for ln �LR,∞
1

 and ln �LR,∞
2

 with the value of GE
/
RT  at x1 = x2 = 0.5 

yields.

Note that the Redlich–Kister equation, Eq. 280, may also be transformed into an alterna-
tive, equivalent polynomial known as the 4-suffix Margules equation [1, 17]

In 1964 Wilson suggested a novel equation for GE by introducing the local mole fraction 
of component i in a mixture {i + j} [198], a concept which has been developed impressively 
since then [137, 199–209]. For a binary mixture, the molar excess Gibbs energy is given by

and the activity coefficients are

Thus, at infinite dilution we obtain

An iterative procedure is required to evaluate the adjustable parameters Λ12 and Λ21 . In 
Wilson’s derivation, they are related to the pure-component molar volumes and to charac-
teristic interaction energy differences, i.e.,

(280)
GE

x1x2RT
= A� + B�

(
x1 − x2

)
+ C�

(
x1 − x2

)2
,

(281)
ln �LR

1
= x2

2

[
A� + 3B� + 5C� −

(
4B� + 16C�

)
x2 + 12C�x2

2

]
, and ln�

LR,∞

1
= A� − B� + C�,

(282)
ln �LR

2
= x2

1

[
A� − 3B� + 5C� +

(
4B� − 16C�

)
x2 + 12C�x2

2

]
, and ln�

LR,∞

2
= A� + B� + C�.

(283)
A� = 4GE

(
x1 = 0.5

)/
RT ,B� =

(
ln �

LR,∞

2
− ln �

LR,∞

1

)/
2,

C� =
(
ln �

LR,∞

2
+ ln �

LR,∞

1

)/
2 − A�.

(284)
GE

x1x2RT
= A�

21
x1 + A�

12
x2 − C�x1x2.

(285)
GE

RT
= −x1 ln

(
x1 + x2Λ12

)

− x2 ln
(
x2 + x1Λ21

)
,

(286)ln �LR
1

= − ln
(
x1 + x2Λ12

)
+ x2Γ,

(287)ln �LR
2

= − ln
(
x2 + x1Λ21

)
− x1Γ,

(288)Γ =
Λ12

x1 + x2Λ12

−
Λ21

x2 + x1Λ21

.

(289)ln �
LR,∞

1
= − lnΛ12 + 1 − Λ21 and ln �

LR,∞

2
= − lnΛ21 + 1 − Λ12.
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Numerical values of the parameters �ij − �ii can only be found through reduction of 
experimental VLE data. The Wilson equation is a very flexible equation with a built-in 
temperature dependence; it is able to represent mixtures exhibiting strong deviations from 
ideality and is easily generalized to describe multicomponent behavior using only binary 
parameters. However, Wilson’s equation is unable to predict limited miscibility, and should 
therefore be used only for liquid systems where the components are completely miscible.

Enormous research efforts have been invested in developing the local composition con-
cept, for instance in developing the NRTL equation, the UNIQUAC and UNIFAC formal-
ism, and the DISQUAC model [137, 199–209]. This topic definitely deserves a review of 
its own.

2.7 � Henry’s Law: An Alternative Ideal‑Solution Model for Liquid Systems

In Sect. 2.4, I presented an ideal-solution model derived from the Lewis–Randall rule, that 
serves as the basis of the excess property formalism. This approach for the discussion of 
liquid solution properties is entirely appropriate as long as the constituent components are 
stable as pure liquids at T and P of the solution. However, solutions of gases in liquids 
pose a problem, since the dissolved gas does not exist in the pure state as a liquid at T and 
P of the solution, thereby precluding any measurements of its properties in this state. In 
addition, the solubility of gases in liquids is usually quite small, hence experimental data 
are usually collected only over a rather small part of the composition range [70, 115, 116, 
210–215].

Consider a binary system of solute 2 dissolved in solvent 1. A general criterion for 
phase equilibrium at T and P is the equality of the fugacity f π

i
 of each one of the compo-

nents in the coexisting phases. Thus, for the specific case of VLE, where π = V or L,

The link with experiment may be formally established by expressing the component 
fugacities in the vapor phase in terms of the respective fugacity coefficients �V

i
,

while the liquid-phase fugacities of the components are expressed with the help of 
appropriately normalized liquid-phase activity coefficients. Two entirely equivalent 
approaches are in use: the symmetric convention is based on the Lewis–Randall rule, 
Eq. 196, and leads to (i.e., for both solvent and solute)

where

denotes the fugacity of pure component i in either a real or a hypothetical liquid state at 
T and P of the liquid solution, and �L,∗

i
(T .P) is the corresponding pure-substance fugacity 

(290)Λij =
V
L,∗

i

V
L,∗

j

exp

(
−
�ij − �ii

RT

)
.

(291)fV
i

(
T ,P, xV

i

)
= f L

i

(
T ,P, xL

i

)
, i = 1 or 2.

(292)fV
i

(
T ,P, xV

i

)
= �

V
i

(
T ,P, xV

i

)
xV
i
P, i = 1 or 2, valid for 0 ≤ xV

i
≤ 1,

(293)f L
i

(
T ,P, xL

i

)
= �

LR
i

(
T ,P, xL

i

)
xL
i
f
L,∗

i
(T ,P), i = 1 or 2, valid for 0 ≤ xL

i
≤ 1,

(294)f
L,∗

i
(T ,P) = P�

L,∗

i
(T .P)
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coefficient (see Eqs. 131–133). As I have already indicated, �LR
i

 is predominantly used for 
the thermodynamic description of liquid mixtures when all components are considered sta-
ble as pure liquids at T and P of interest, and

applies to all components of the solution: the activity coefficients are said to be normal-
ized symmetrically. At all other compositions xL

i
≠ 1 , deviations of �LR

i
 from unity measure 

deviations of real solution behavior from ideal LR behavior (ratio measure). This (�, �)
-approach is also known, somewhat imprecisely, as being based on Raoult’s law.

Alternatively, ideal-solution behavior may be based on Henry’s law (HL), that is, the 
validity of the linear relation

over the entire composition range 0 ≤ xL
i
≤ 1 is assumed, where hi,j(T ,P) denotes the 

Henry fugacity (also known as Henry’s law constant) as defined below by Eq. 300a. Tradi-
tionally, for compact notation, no superscript L is attached to the Henry fugacity. The cor-
responding activity coefficient �HL

i
 measures how much the component fugacity of i in the 

real solution differs from the component fugacity of i corresponding to the HL-idealization 
Eq. 296 (ratio measure) [17, 66, 169]. Thus,

The value of the Henry fugacity depends on T and P and also on the identity of the 
solvent (the other component), hence the double subscript i, j has been added; and hi,j(T ,P) 
has to be determined for each binary system. HL-based activity coefficients are predomi-
nantly used for the thermodynamic description of dilute liquid solutions and, in particular, 
if the experimental temperature is above the critical temperature of one component of the 
solution (gas solubility). From Eqs. 297 and 300a (presented below), it follows that

That is, at nonzero compositions, xL
i
≠ 0 , deviations of �HL

i
 from unity quantify real 

solution behavior vis-à-vis ideal HL behavior.
The activity coefficients are said to be normalized unsymmetrically, when for the sol-

vent (i = 1) the LR convention Eq. 295 applies, and for the (frequently supercritical) solute 
(i = 2) the HL convention Eq. 298 is used. The limiting behavior of the activity coefficients 
characterizing such a binary liquid solution is thus given by

For obvious reasons, this approach is also called a (�, �)-method. For details, see Refs. 
1, 17, 66, 169 and 216–219.

Figure 2 presents schematically the composition dependence of the component fugac-
ity f2

(
T ,P, x2

)
 , at constant temperature and pressure, in a binary liquid solution (solid 

curve) exhibiting a positive deviation from the Lewis–Randall rule, Eq. 196. f ∗
2
(T ,P) is 

the fugacity of pure liquid component 2, and h2,1(T ,P) is the Henry fugacity (also known 
as Henry’s law constant) of solute 2 dissolved in solvent 1. For the sake of simplicity, the 

(295)�
LR
i

→ 1 as xL
i
→ 1, constant T ,P,

(296)f id
i

(
T ,P,

{
xi
}) ≡ fHL

i

(
T ,P, xL

i

)
= xL

i
hi,j(T ,P), i = 1 or 2,

(297)f L
i

(
T ,P, xL

i

)
= �

HL
i

(
T ,P, xL

i

)
xL
i
hi,j(T ,P).

(298)�
HL
i

→ 1 as xL
i
→ 0, constant T ,P.

(299)
�
LR
1

→ 1 as xL
1
→ 1,

�
HL
2

→ 1 as xL
2
→ 0

}
, constant T ,P.
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superscripts L have been omitted. The dashed lines represent the two most popular ideal-
solution models discussed in this review: the one labeled LR corresponds to Eq. 196, and 
the other, labeled HL, corresponds to Eq. 296. As shown below via Eq. 300a, the HL line 
becomes a tangent to f2

(
T ,P, x2

)
 in the limit x2 → 0 , while according to Eq. 300b, the LR 

line becomes a tangent to f2
(
T ,P, x2

)
 in the limit x2 → 1 . 

Since the limiting value of the ratio f π
i

/
xπ
i
 for xπ

i
→ 0 at constant T and P is known from 

experiment to be finite, f π
i
 must also become zero at xπ

i
= 0 , and by de l’Hôpital’s rule

Fig. 2   Composition dependence (schematic) of the component fugacity f
2

(
T ,P, x

2

)
 in a binary liquid solu-

tion (solid curve) at constant T and P showing a positive deviation from the Lewis–Randall rule, Eq. 196. 
f
∗
2
(T ,P) is the fugacity of pure liquid component 2, h

2,1(T ,P) is the Henry fugacity (also known as Henry’s 
law constant) of solute 2 dissolved in solvent 1, and x

2
= 1 − x

1
 is the mole fraction of component 2 in the 

solution. For compact notation, the superscripts L have been omitted. The dashed lines represent two popu-
lar ideal-solution models: the one based on the Lewis–Randall rule, i.e. Equation 196, is labeled LR, and 
the one based on Henry’s law, i.e. Equation 296, is labeled HL The corresponding activity coefficients that 
are used to quantitatively characterize reality in a binary solution are defined by Eqs.  293 (LR) and 297 
(HL), respectively. For the solute i = 2 , the activity coefficients (at any selected composition x

2
 ), are thus 

given geometrically by 𝛾LR
2

(
T ,P, x

2

)
= f

2

(
T ,P, x

2

)/
f
LR

2

(
T ,P, x

2

)
=f

2

(
T ,P, x

2

)/
x
2
f
∗
2

(
T ,P, x

2

)
= �⃖���⃗AB

/
�⃖���⃗AC , 

or 𝛾HL
2

(
T ,P, x

2

)
= f

2

(
T ,P, x

2

)/
f
HL

2

(
T ,P, x

2

)
=f

2

(
T ,P, x

2

)/
x
2
h
2,1

(
T ,P, x

2

)
= �⃖���⃗AB

/
�⃖���⃗AD . Because of the 

intercept theorem, their ratio is independent of the composition (see also Eq.  307): 
𝛾
LR

2

(
T ,P, x

2

)/
𝛾
HL

2

(
T ,P, x

2

)
= �⃖���⃗AD

/
�⃖���⃗AC = h

2,1(T ,P)
/
f
∗
2
(T ,P) . Evidently, for positive deviations from LR-

ideality (which are more common than negative deviations) �LR
i

 > 1 and �HL
i

 < 1, and conversely, for nega-
tive deviations from LR-ideality �LR

i
 < 1 and �HL

i
 > 1. However, when the focus is on solutions of a supercrit-

ical solute 2 (a gas) in a liquid solvent 1, the pure solute does not exist as a liquid at the experimental 
conditions. In addition, the solubility of such a gas is limited at given T and P, hence experimental results 
provide the composition dependence of f

2

(
T ,P, x

2

)
 for only a part of the composition range, i.e. for 

0 ≤ x
2
< 1 . In this case, the unsymmetric convention is usually selected: it has the advantage that Henry 

fugacities and hence activity coefficients �HL
2

(
T ,P, x

2

)
 are unambiguously accessible via an experimental 

procedure (cf. Equation 301) [17, 66, 169, 216, 219]. The figure was  reproduced from E. Wilhelm, J. Solu-
tion Chem. 44, 1004–1061 (2015) [66]
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is obtained. Equation 300a summarizes Henry’s law; it defines the Henry fugacity hπ
i,j
(T ,P) 

of component i dissolved in component j for any phase π (L or V) and identifies the limit-
ing slope of the curve f π

i
 vs. xπ

i
 at constant T and P as hπ

i,j
(T ,P) . Henry’s law is a limiting 

law, and for real solutions it is approximately valid for small values of xπ
i
 , with the experi-

mental precision determining the observed apparent validity range [17, 66, 169, 216, 219].
As shown in Refs. 17, 66, 169 and 219, at the other end of the composition range, that 

is, for xπ
i
→ 1, at constant temperature and pressure we obtain

where f �,∗
i

(T ,P) denotes the fugacity of pure component i at T and P of the solution and 
in the same physical state. Equation 300b summarizes the Lewis–Randall rule; it is valid 
in any phase � (L or V) and shows that in the limit xπ

i
→ 1 both f �

i
 and the limiting slope 

of the curve f π
i
 vs. xπ

i
 at constant T and P become equal to the fugacity of pure i in phase 

� . The Lewis–Randall rule is a limiting law, and for real solutions it is approximately 
valid for values of xπ

i
 near unity, with the experimental precision determining the observed 

apparent validity range [17, 66, 169, 216, 219].
Focusing now on gas solubilities, the Henry fugacity of supercritical solute 2 dissolved 

in liquid solvent 1 is defined by Eq. 300a, with π = L. Because of vapor–liquid phase equi-
librium, see Eq. 291, in conjunction with Eqs. 292, 297 and 298, and adopting the widely 
used notation xV

i
≡ yi and xL

i
≡ xi, we arrive at the classical experimental prescription for 

the determination of h2,1
(
T ,Pσ,1

)
 from isothermal VLE experiments (measurement of P, 

x2 and y2) at decreasing total pressures P → Pσ,1(T) and concomitantly decreasing x2 → 0 
and y2P → 0:

That is to say, the Henry fugacity referring to solute 2 dissolved in the liquid phase 
(consisting essentially of solvent 1) is obtained as the intercept of a plot, at constant T, 
of �V

2

(
T ,P, y2

)
y2P

/
x2 against x2 or y2P . Entirely equivalent expressions relating the 

Henry fugacity to limiting slopes (see Eq. 300a) may be derived. When applying Eq. 301 
to experimental data, the vapor-phase fugacity coefficient �V

2

(
T ,P, y2

)
 must be calculated 

with a suitable vapor-phase EOS. Since the majority of gas-solubility measurements is per-
formed in the low to moderate pressure domain, the virial equation of state is the equation 
of choice: it has a sound theoretical basis, and it is superior to cubic equations of state. The 
computational convenience associated with a volume-explicit version leads to the excellent, 
widely used approximation

where B
(
T ,

{
yi
})

 is the second mixture virial coefficient [49, 220–223] (note that B 
refers to the virial equation in amount density and is usually the quantity listed in data 
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xπ
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f π
i

xπ
i

)
=

(
df π

i

dxπ
i

)

xπ
i
=0

= hπ
i,j
(T ,P), constant T ,P,
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xπ
i
→1

(
f π
i

xπ
i

)
=

(
df π

i

dxπ
i

)

xπ
i
=1

= f
�,∗

i
(T ,P), constant T ,P,
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T ,P, x2
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x2
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2
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)
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)
, constant T .

(302)ZV
(
T ,P,

{
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})

= 1 + B
(
T ,

{
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P
/
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compilations). In turn, for the calculation of the fugacity coefficient of the gas in the binary 
vapor mixture Eq. 153a is used, yielding (see Eq. 153b)

where �12 is defined by Eq. 248.
The temperature dependence of the Henry fugacity is given by [17, 66, 169, 216, 219]

and its pressure dependence is given by [17, 66, 169, 216, 219]

Here, HL,∞

2
 is the partial molar enthalpy of solute 2 at infinite dilution in liquid sol-

vent 1, Hpg,∗

2
 denotes the molar enthalpy of the pure solute in the perfect-gas state, and 

ΔH∞
2
(T ,P) is the partial molar enthalpy change on solution (this notation is generally pre-

ferred over HR,L,∞

2
 , the partial molar residual enthalpy at infinite dilution [66, 169]). VL,∞

2
 is 

the partial molar volume of the solute at infinite dilution in the liquid solvent. Equation 304 
provides the basis for obtaining partial molar enthalpy changes on solution via van’t Hoff 
analysis of high-precision solubility data of gases in liquids (see below).

For the reduction, correlation, and further use of high-precision gas solubility data, as 
suggested by Eq. 301, it is advantageous to select at each temperature the vapor pressure 
Pσ,1(T) of the solvent as reference pressure. With this convention, the Henry fugacity of 
solute 2 dissolved in solvent 1 at any other pressure is obtained via integration of Eq. 305:

The exponential in Eq.  306 is known as Poynting correction factor; its evalua-
tion requires reliable data on the partial molar volume of the solute at infinite dilution 
[224–236].

Since the approaches to the thermodynamic description of VLE introduced above are 
equivalent, various key quantities associated with them are, of course, connected with each 
other by exact relations [66, 169, 216–219, 237–239]. For instance, focusing on binary liq-
uid mixtures, comparison of Eq. 293 with Eq. 297 yields (i = 1 or 2, j = 1 or 2, i ≠ j)

independent of composition. Thus, for the LR activity coefficient at infinite dilution one 
obtains

(303)ln�V
2
=

P

RT

(
B22 + y2

1
�12

)
,

(304)
(
� ln h2,1(T ,P)

�T

)

P

= −
H

L,∞

2
− H

pg,∗

2

RT2
= −

ΔH∞
2
(T ,P)

RT2
,

(305)
(
� ln h2,1(T ,P)

�P

)

T

=
V
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2

RT
.

(306)h2,1(T ,P) = h2,1
�
T ,Pσ,1(T)

�
exp

⎡⎢⎢⎢⎣

P
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V
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2
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RT
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⎤⎥⎥⎥⎦
.
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T ,P, xi

)

�
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(
T ,P, xi

) =
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,
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i
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/
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and hence

For compact notation, the specifications 
(
T ,P, xi

)
 , etc. have been omitted.

From the definitions Eqs. 129 and  300a follows the important, generally valid relation 
[66, 169], here specified to apply to the liquid solution phase (that is, π = L):

�
L,∞

i
(T ,P) denotes the fugacity coefficient of component i at infinite dilution in solvent 

j, GR,L,∞

i
(T ,P) denotes the partial molar isobaric residual Gibbs energy of component i at 

infinite dilution, and �R,L,∞

i
(T ,P) is its isobaric residual chemical potential at infinite dilu-

tion. Equation 310 provides an exact link between the thermodynamic description of any 
solution based on Henry’s law and a description based on fugacity coefficients and thus on 
an equation of state: for solute 2 we have.

In addition, using Eqs. 129, 132, 293, 297 and 310 as needed, the following rigorous 
relations between quantities used in a description based on activity coefficients and one 
based on fugacity coefficients (and hence on an EOS), are obtained (all quantities refer to 
the same temperature and pressure):

and in the limit xi → 0 , for the LR activity coefficient at infinite dilution we have

For the sake of a more compact notation, the specifications 
(
T ,P, xi

)
 etc., have been 

omitted. Equations  310–314 allow straightforward transition of system description from 
one using fugacity coefficients to one using activity coefficients, and vice versa.

The last topic I shall discuss briefly in this review concerns the determination of partial 
molar enthalpy changes on solution ΔH∞

2
 and partial molar heat capacity changes on solu-

tion ΔC∞
P,2

 of sparingly soluble gases in liquids. The latter quantity is defined by

(309a)�
HL
i
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i

/
�
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i
,
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�
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/
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P
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where CL,∞

P,2
 is the partial molar heat capacity at constant pressure of the solute at infinite 

dilution in the liquid solvent, and Cpg,∗

P,2
 is the molar heat capacity at constant pressure of the 

pure solute in the perfect-gas state. The notation ΔC∞
P,2

 is generally preferred over CR,L,∞

P,2
 , 

the partial molar residual isobaric heat capacity at infinite dilution [66, 169].
In fact, until quite recently high-precision measurements of Henry fugacities over tem-

perature ranges large enough to permit van’t Hoff analysis of the solubility data, consti-
tuted the only reliable source of information on these quantities [211, 214, 240, 241]. Once 
experimental Henry fugacities h2,1

(
T ,Pσ,1(T)

)
 for a binary solution have been determined 

over a reasonably large temperature range (but not too close to the critical temperature of 
solvent 1), the most popular correlating equations are either the Clarke-Glew (CG) equa-
tion [242–244]

or the Benson-Krause (BK) equation [245–247], conventionally expressed as

Based on the ability to fit high-precision Henry fugacity data over fairly large tempera-
ture ranges, and of simplicity, the BK power series in 1/T appears to be superior. In passing 
I note that the 3-term version of Eq. 316 is the well-known Valentiner equation [248].

At this juncture I would like to emphasize once more that the frequently found sweep-
ing statement “the solubility of a gas in a liquid decreases with increasing temperature” 
is misleading/incorrect when the entire liquid range of the solvent between its triple point 
temperature and its critical temperature is considered. For many binary solutions of gases 
in liquids, the following behavior is well documented [1,  66, 157, 169, 216, 249–251]: 
at low temperatures, the Henry fugacity h2,1

(
T ,Pσ,1

)
 typically increases with increasing 

temperature, passes through a maximum, and then decreases towards its limiting value at 
the solvent’s critical point (with critical temperature Tc,1 and critical pressure Pc,1 ), which, 
according to Eq. 311, is given by [66, 157, 169, 216–219]

Figure  3 provides two examples of such a solubility behavior: Henry fugacities, 
i.e. ln

[
h2,1

(
T ,Pσ,1

)/
GPa

]
 , of methane dissolved in liquid water, and of krypton dis-

solved in liquid water, are plotted against temperature [249, 252]. Note that the system 
{x1H2O + x2CH4} is important in the discussion of hydrophobic effects [253–262].

While the Henry fugacity remains finite at Tc,1 , for volatile solutes the limiting slope 
approaches −∞ when the critical point of the solvent is approached along the coexistence 
curve [263]:

Since the experimental Henry fugacities at different temperatures refer to different vapor 
pressures Pσ,1(T) , we obtain with Eqs. 304 and 305 [66, 157, 169, 216, 219, 237–239]

(316)ln
[
h2,1

(
T ,Pσ,1(T)

)/
Pa
]
= A0 + A1(T∕K)

−1
+ A2ln(T∕K) +

n∑
i=3

Ai(T∕K)
i−2,

(317)ln
[
h2,1

(
T ,Pσ,1(T)

)/
Pa
]
=

n∑
i=0

ai(T∕K)
−i.

(318)
lim

T→Tc,1

Pσ,1→Pc,1

h2,1
(
T ,Pσ,1

)
= Pc,1�

L,∞

2

(
Tc,1,Pc,1

)
= Pc,1�

V,∞

2

(
Tc,1,Pc,1

)
.

(319)lim
T→Tc,1

P→Pc,1

d ln
[
h2,1

(
T ,Pσ,1

)/
Pa
]

dT
= −∞.
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and by analogous arguments

The second term on the right-hand side of Eq. 320 and the third, fourth and fifth term 
on the right-hand side of Eq. 321, respectively, containing the partial molar volume of the 
solute at infinite dilution VL,∞

2
 and its derivatives with respect to T and P, together with 

dPσ,1

/
dT  , 

(
dPσ,1

/
dT

)2 and d2Pσ,1

/
dT2 , are referred to in the literature as Wilhelm terms 

(320)

ΔH∞
2

(
T ,Pσ,1

)
RT

= −T
dln

[
h2,1

(
T ,Pσ,1

)/
Pa
]

dT

+
V
L,∞

2

R

dPσ,1

dT
,

(321)

ΔC∞
P,2

�
T ,Pσ,1

�

R
= −2T

dln
�
h2,1

�
T ,Pσ,1

��
Pa
�

dT
− T2

d2ln
�
h2,1

�
T ,Pσ,1

��
Pa
�

dT2

+ 2
T

R

�
�V

L,∞

2

�T

�

P

dPσ,1

dT
+

T

R

�
�V

L,∞

2

�P

�

T

�
dPσ,1

dT

�2

+
TV

L,∞

2

R

d2Pσ,1

dT2

⎫
⎪⎪⎬⎪⎪⎭

.

Fig. 3   Plot of ln
[
h
2,1

(
T ,Pσ,1

)/
GPa

]
 against temperature T for krypton and methane dissolved in liquid 

water: h
2,1

(
T ,Pσ,1

)
 denotes the Henry fugacity (Henry’s law constant) at temperature T and corresponding 

pressure Pσ,1(T) , the vapor pressure of water [108]. Open circles represent experimental results of Crovetto 
et al. [249]: the average percentage deviation of the Henry fugacities from the values calculated via BK-
type fitting equations is about ± 2%. Filled circles represent experimental results of Rettich et al. [252]: the 
average percentage deviation of the Henry fugacities from the values calculated via a correlating BK func-
tion, Eq. 317, is about ± 0.05%. The temperature where the Henry fugacity exhibits a maximum is about 
382  K for {H2O + Kr}, and about 363  K for {H2O + CH4}. The limiting values of the respective Henry 
fugacities h

2,1

(
T ,Pσ,1

)
 as T → T

c,1
 and Pσ,1 → P

c,1
 are finite and are given by Eq. 318, the limiting slope of 

the curves is −∞ , see Eq. 319. The figure was reproduced from E. Wilhelm, J. Solution Chem. 43, 525–576 
(2014) [157]
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[247, 263, 264]. For aqueous solutions, say, of the rare gases below 373 K, their contribu-
tions are small [247], usually smaller than the experimental error associated with current 
high-precision measurements, though they become more important in the critical region. 
World-wide, there were essentially only two groups that could provide the necessary high-
precision experimental data on h2,1

(
T ,Pσ,1

)
 with an imprecision of, say, ± 0.05%, that 

allow reliable van ’t Hoff-type analysis: the group of B. B. Benson and D. Krause, Jr. (BK), 
Department of Physics, Amherst College, Amherst, MA, USA, and the group of R. Bat-
tino, E. Wilhelm and T. R. Rettich (BWR), Department of Chemistry, Wright State Univer-
sity, Dayton, OH, USA.

Direct calorimetric determinations of the high-dilution molar enthalpy change on solu-
tion ΔsolH of a gas in a liquid have been carried out by only a very limited number of 
researchers [265–277], simply because of the experimental difficulties associated with 
accurate measurements of very small heat effects in very dilute solutions (typically, aque-
ous mole fraction solubilities at ambient temperature and 0.1 MPa gas pressure are about 
10−5 to 10−4). Recently, various calorimeter designs used in this field were discussed in 
detail by Wilhelm and Battino [241]. The most prominent methodological step forward in 
measuring enthalpies of solution of gases in liquids with a precision high enough to allow 
reliable determination of the corresponding molar heat capacity changes on solution

is closely connected with the development of microcalorimeters in the Thermochemis-
try Laboratory of the University of Lund, Sweden (I. Wadsö’s group), and in the Chemistry 
Department of the University of Colorado in Boulder, CO, USA (S. J. Gill’s group), respec-
tively. A fortiori, because of the formidable experimental difficulties encountered in the 
case of direct measurements of the molar heat capacity changes on solution of nonreacting 
gases dissolved in water at very low concentration, there exist only five sets of such data, 
all originating from the laboratory of R. H. Wood at the University of Delaware in Newark, 
DE, USA. Wood and collaborators determined the apparent molar isobaric heat capacities 
at very small solute mole fractions of the following four gaseous solutes in water: argon 
[278, 279], xenon [279], methane [280] and ethene [279]; in addition, they measured the 
apparent molar isobaric heat capacities at small mole fractions of aqueous solutions of 
CO2, H2S and NH3 [280]. The sophisticatedly constructed flow calorimeter developed by 
Wood and his collaborators was used over very large temperature ranges from about 305 K 
to well into the supercritical region of water up to T ≈ 720 K. Measurements of the appar-
ent molar heat capacities of acid gases in liquid water near ambient conditions using a 
commercial Picker calorimeter [281] were reported by Barbero et al.: aqueous solutions of 
hydrogen sulfide at 10 °C, 25 °C and 40 °C [282]; aqueous solutions of carbon dioxide and 
sulfur dioxide at 25 °C [283]; note that T/K = t/°C + 273.15.

Although the measurements of Wood et  al. were all performed at somewhat elevated 
pressures between, roughly, 17 MPa and 32 MPa, the mole fractions of the dissolved gases 
are still small enough to make the apparent molar heat capacities to a good approximation, 
that is, within experimental error, equal to the partial molar isobaric heat capacities at infi-
nite dilution (this statement is valid at temperatures below ca. 500 K). At constant T and P 
we have

(322)ΔsolCP =

(
�ΔsolH

�T

)

P

,
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hence

Since

we obtain

Except for the few sets of direct heat capacity data on aqueous solutions of nonreact-
ing gases as reported by Wood et al., all other calorimetry-based determinations of molar 
heat capacity changes on solution were obtained from the temperature dependence of the 
enthalpies of solution via Eq. 322.

Evidently, comparing van’t Hoff derived enthalpy changes (one differentiation level, see 
Eq. 320) and heat capacity changes (two differentiation levels, see Eq. 321) with directly 
obtained high-precision calorimetric results constitutes a particularly severe test of solubil-
ity data. Recently, Wilhelm [169], Wilhelm and Battino [240, 241], and Battino [284] pre-
sented essentially comprehensive compilations of van ’t Hoff-based partial molar enthalpy 
changes on solution ΔH∞

2
 and partial molar heat capacity changes on solution ΔC∞

P,2
 for 

gases dissolved in liquid water at T = 298.15 K and Pσ,1

(
H2O; 298.15 K

)
 = 3.1691  kPa, 

and compared them with calorimetrically determined results for ΔsolH and ΔsolCP at high 
dilution and ambient pressure. Note that high-precision solubility data for nitrogen and car-
bon monoxide dissolved in water [285, 286] are available, but somewhat surprisingly no 
calorimetric results have been reported so far. For the sake of brevity, in Table 5 I have 
limited such a comparison to a few representative systems at 298.15 K, though essentially 
the same overall picture emerges for other systems at other temperatures too: agreement 
between these two approaches is highly satisfactory, i.e., it is usually within the combined 
experimental error: what a credit to experimental ingenuity and to the skills of solution 
thermodynamicists!

3 � Concluding Remarks, Future Directions and Acknowledgments

By common consent, the liquid state of matter houses by far the largest group of unsolved/
crudely solved problems in modern physical chemistry, especially when bio-physical 
chemistry is included: indeed, molecular thermodynamics of aqueous solutions of bio-
relevance is an exciting, dynamically evolving field. With increasingly sophisticated com-
puter simulations, new insights at microscopic, mesoscopic, and macroscopic levels are 
obtained, providing stimulating connections with a growing number of neighboring fields, 
in particular with bio-medical research. Another major driving force is the unabated pro-
gress in instrumentation: increasing the applicability range, that is, larger temperature 

(323)CL
P,2,app

≡ nCL
P
− n1C

L,∗

P,1

n2
,

(324)CL
P,2

= CL
P,2,app

+ n2

(
�CL

P,2,app

�n2

)

T ,P,n1

,

(325)lim
n2→0

CL
P,2,app

= C
L,∞

P,2
,

(326)ΔC∞

P,2
(T ,P) ≅ CL

P,2,app
(T ,P) − C

pg,∗

P,2
(T) = ΔC∞

P,2
(Wood).
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and pressure ranges, ever smaller concentrations, improving precision and accuracy, and 
increasing the speed of measurements together with facilitating application and data trans-
fer now allows tackling problems which, say, twenty years ago would have been considered 
to be quite impossible tasks. In this review, I have focused on the rigorous and concise 
presentation of the thermodynamic formalism relevant for the study of liquid solutions of 
nonelectrolytes, in particular of dilute liquid solutions, and I have tried to cover, in a coher-
ent fashion, the most important aspects of its practical implementation, indicating areas 
where more and/or more detailed experimental work would be desirable. Special empha-
sis was placed on binary aqueous solutions of supercritical solutes (gases), a field I have 
worked in with Rubin Battino for more than 50 years. Two closely related areas have been 
dealt with prominently:

•	 discussion of solution behavior in terms of the Henry fugacity h2,1
(
T ,Pσ,1

)
 (also known 

as Henry’s law constant) and related quantities, such as fugacity coefficients and activ-
ity coefficients, and exposing some frequently encountered misconceptions;

•	 discussion of the equivalency of results for caloric quantities (e.g., ΔH∞
2

 and ΔC∞
P,2

 ) 
derived from solubility measurements via van’t Hoff analysis with those measured 
directly with calorimeters.

These two topics present the state of the art for the (potential) experimentalist. Results 
obtained for aqueous systems by the BK and BWR groups (VLE), by Wadsö et al. and by 
Gill et.al. (calorimetry), have greatly contributed to our understanding and appreciation of 
hydrophobic effects. They are thought to play an important role in biology, though in many 
complex biochemical processes hydrophilic effects may be more important [290, 291]. A 
rich research field lies ahead, as evidenced by the increasing number of investigations with 
a strong biophysical and/or biomedical flavor. The research of Wood et al., based on the 
instruments he developed, made possible pioneering measurements of the density and the 
heat capacity of dilute aqueous solutions of nonelectrolytes as well as electrolytes from 
ambient temperatures to the critical temperature of water, Tc = 647.1 K , and beyond, well 
into the single fluid region, yielding novel, spectacular results [292].

Table 5   Comparison of partial molar enthalpy changes on solution ΔH∞
2

(
T ,Pσ,1

)
 and partial molar heat 

capacity changes on solution ΔC∞
P,2

(
T ,Pσ,1

)
 determined via van’t Hoff-type data treatment of solubilities 

of gases in liquid water (that is, Henry fugacities) with molar enthalpies of solution Δ
sol
H and molar heat 

capacity changes on solution Δ
sol
C
P
 determined via calorimetry at high dilution and ambient pressure, and 

with partial molar heat capacity changes on solution ΔC∞
P,2

(Wood) , obtained calorimetrically by Wood et al. 
[278–280] via Eq. 326: selected literature values for five representative gases dissolved in water at 298.15 K

At this temperature, the vapor pressure of water is Pσ,1 = 3.1691 kPa [108]

Gas From the solubility of gases in water:
van’t Hoff analysis

From calorimetry

ΔH∞
2
(T ,Pσ,1)

kJ⋅mol
−1

ΔC∞
P,2
(T ,Pσ,1)

J⋅K
−1
⋅mol

−1

Δ
sol
H

kJ⋅mol
−1

Δ
sol
C
P

J⋅K
−1
⋅mol

−1

ΔC∞
P,2

(Wood)

J⋅K
−1
⋅mol

−1

Ar − 11.96 [287] 192 [287] − 12.01 [269] 200 [269] 185 [278]
O2 − 11.97 [288] 200 [288] − 12.00 [269] 205 [269]
CH4 − 13.19 [252] 237 [252] − 13.12 [273] 209 [273] 212 [280]
C2H6 − 19.50 [252] 270 [252] − 19.43 [274] 273 [274]
C2H4 − 16.40 [289] 239 [289] − 16.46 [270] 237 [272] 221 [279]
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What I hope to have also communicated is my conviction that advances in science inevi-
tably lead to a broadening and merging of neighboring areas of research, and that cross-
disciplinary fundamental research is always a potent stimulus in science as well as for tech-
nological innovation.

Studies on solubility in general, and on solubility in liquid water in particular, have 
come a long way. The field has grown too big to be covered in one modest review article, 
but for the foundations and the few subsections covered I hope to have succeeded in pro-
viding a feeling for their scope, current position in physical chemistry, and future potential. 
Related to these aspects I find the statement by Gilbert Newton Lewis (1875–1946) on the 
practical philosophy of science most appropriate and encouraging. In fact, it is one of my 
favorite quotes, and although I’ve cited it before, the insight contained makes it appropriate 
to repeat it here:

The scientist is a practical man and his are practical aims. He does not seek the ulti-
mate but the proximate. He does not speak of the last analysis but rather of the next 
approximation....On the whole, he is satisfied with his work, for while science may 
never be wholly right it certainly is never wholly wrong; and it seems to be improv-
ing from decade to decade.

My view of chemical thermodynamics has evolved over the years, and I have benefitted 
from collaborations as well as discussions with many friends and colleagues. Quite early 
in my career I was asked to participate at various IUPAC activities, and I did indeed devote 
an appreciable part of my “scientific life” to further the Union’s goals, both nationally and 
internationally (see Appendix). Thus, I was particularly pleased to participate, as an Invited 
Lecturer, at the 47th IUPAC World Chemistry Congress: Frontiers in Chemistry, celebrat-
ing 100 Years with IUPAC, in Paris, France, 7–12 July 2019. This Invited Lecture was part 
of a Special Symposium dedicated to Professor Eduard Hála (1919–1989), who was one of 
the great pioneers of modern vapor–liquid experimental science and theory. Incidentally, 
Professor Hála and I were both founding members of the editorial board of Fluid Phase 
Equilibria, one of the internationally leading journals in this field. This Special Sympo-
sium was admirably organized by M. Bendova, ICPF/CAS, Prague, Czech Republic, and J. 
Jacquemin, Université de Tours, Tours, France.

Chemical thermodynamics is a vast field of science with many applications to real-
world problems (hence many advances originated from work of chemical engineers). For 
me it is a great pleasure to acknowledge here (a) the initiation to this topic, many dec-
ades ago, by Professor Friedrich Kohler (†), my PhD advisor (on adiabatic calorimetry 
and applied statistical mechanics) at the University of Wien, Austria, via his courses and 
seminars [293]; (b) the more than 50 years of fruitful scientific collaboration with Rubin 
Battino, now Emeritus Professor at Wright State University (WSU), Dayton, Ohio, USA, 
who introduced me to the fascinating field of the solubility of gases in liquids; (c) the work 
with Jean-Pierre E. Grolier, now Emeritus Professor at Université Blaise Pascal, Clermont-
Ferrand, France, with whom I enjoyed about 45 years of exciting scientific collaboration 
with more than 25 years of continuously funded research in solution thermodynamics (that 
is, research on HE,CE

P
and VE ), and many memorable first-class dinners; (d) the coopera-

tion with Henry V. Kehiaian (†) [294, 295], former Directeur de Recherches at ITODYS 
(CNRS), Paris, France, and an old friend since 1967 (since his first visit from Warsaw, 
Poland, to the”west”, that is, to the Institute of Physical Chemistry, University of Wien, 
Vienna, Austria), on group contribution theory and many enjoyable dinners (often together 
with Jean-Pierre Grolier); (e) the research (since 1981) with Augustinus Asenbaum, now 
Retired Professor of Experimental Physics at the University of Salzburg, Salzburg, Austria, 
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who opened the doors to the fascinating extra-thermodynamic field of Brillouin scattering 
at ambient and elevated pressures; and (f) the satisfying and frequently stimulating work 
with about 80 colleagues, post-doctoral fellows and students from 17 countries. Without 
them, many projects would have been difficult to carry out. Fortunately, over the years the 
University of Wien (Vienna), Austria, was generous enough to grant repeatedly extended 
Leaves of Absence for scientific research abroad, and in the present context, the most 
important were two extended stays in the United States of America at WSU, Dayton, Ohio 
(first as a Senior Fulbright Research Associate, then as Visiting Associate Professor: about 
four years altogether), which I greatly enjoyed. In fact, most of the experimental work on 
gas solubility was supported by the Public Health Service of the United States of America 
via grants from the National Institute of General Medical Sciences, and a smaller part was 
supported by the Petroleum Research Fund, administered by the American Chemical Soci-
ety. Research on fluid phase chemical thermodynamics funded within the frame of the Aus-
trian-French Program on Scientific and Technical Cooperation also led to many extended 
stays in France, altogether for more than five years: first at the CRMT/CNRS in Marseille 
(Tian-Calvet Institute), and then at the Université Blaise Pascal in Clermont-Ferrand and 
at ITODYS in Paris, all of which I also greatly enjoyed. When visiting Jean-Pierre Grolier 
in Clermont-Ferrand, I frequently had also the pleasure to meet Robert H. Wood on leave 
from the University of Delaware, Newark, DE, USA, to whom a Special Issue of The Jour-
nal of Solution Chemistry (Volume 44, Number 5), a Festschrift to celebrate his eightieth 
birthday, was dedicated in May 2015. These joint stays provided a welcome opportunity 
to discuss molecular thermodynamics problems in general, and hot topics in solution ther-
modynamics in particular. In appreciation of our scientific research activities at the Uni-
versité Blaise Pascal, Bob Wood and I were recipients of honorary doctorates. Besides sci-
ence, for me those years in Marseille, Clermont-Ferrand and Paris provided unforgettable 
experiences associated with France: indeed, these were the years of St. Nectair and Bleu 
d’Auvergne, of Saint-Emilion and Pomerol!

Appendix: Some of My IUPAC‑Related Activities

IUPAC Solubility Data Series	� founding Member of the Editorial Board 
and Topic Editor, 1976–1981.

IUPAC Commission V.8 (Solubility Data)	� Associate Member, and/or National Repre-
sentative, and/or Member of Subcommittee 
on Gas Solubilities, 1977–2001.

IUPAC Commission I.2 (Thermodynamics)	� Associate Member, 1985–1993.
IUPAC Committee on Legendre Transforms	� Member (with R. A. Alberty (†), Chair-

man, J. M. G. Barthel (†), E. R. Cohen, M. 
B. Ewing (†), and R. N. Goldberg), 1994–
2001. Recommendations published as: 
IUPAC Technical Report: Use of Legendre 
Transforms in Chemical Thermodynamics, 
Pure Appl. Chem. 73, 1349–1380 (2001).

IUPAC-CODATA Commission IUCOSPED	� Member, 1999–2003.
IUPAC Fellow	� Since 2010
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Co-organizer of:›

3rd ICCT​	� Baden near Vienna, Austria, 1973.
12th ICCT​	� Snowbird, Utah, USA, 1992.
17th ICCT​	� Rostock, Germany, 2002.
19th ICCT (THERMO International, + 61st CALCON + 16th STP)	� Boulder, CO, 

USA, 2006.
21st ICCT​	� Tsukuba Science City, Ibaraki, Japan, 2010.

Plenary Lectures/Invited Lectures:

6th ICCT​	� Merseburg, GDR, 1980.
8th ICCT + 39th CALCON	� Hamilton, Ontario, Canada, 1984.
1st International Symposium on Solubility Phenomena	� London, Ontario, Canada, 1984.
Journées d’étude sur les capacités calorifiques des systèmes condensés (Societé Française 
de Chimie & IUPAC)	� Cadarache, France, 1986.
11th ICCT​	� Como, Italy, 1990.
13th ICCT​	� Laudatory Speech in honor of Prof. H. C. 

Van Ness at the occasion of his Rossini Lec-
ture/Award, Clermont-Ferrand, France, 1994.

14th ICCT​	� Osaka, Japan, 1996.
26th International Conference on Solution Chemistry	� Fukuoka, Japan, 1999.
IUPAC-CODATA Meeting IUCOSPED	� Berlin, Germany, 1999.
IUPAC-CODATA Meeting IUCOSPED	� Paris, France, 2001.
18th ICCT​	� Beijing, China, 2004.
25th ICCT + 73rd CALCON	� Granlibakken/Lake Tahoe, CA, USA, 2018.
47th IUPAC World Chemistry Congress/100 years with IUPAC	� Paris, France, 2019.

Co-editor, with Prof. Trevor M. Letcher, of Four Books:

Heat Capacities	� Liquids, Solutions and Vapours. The Royal Society 
of Chemistry/IUPAC & IACT, Cambridge (2010).

Volume Properties	� Liquids, Solutions and Vapours. The Royal Society 
of Chemistry/IUPAC & IACT, Cambridge (2015).

Enthalpy and Internal Energy	� Liquids, Solutions and Vapours. The Royal Society 
of Chemistry/IACT, London (2018).

Gibbs Energy and Helmholtz Energy	� Liquids, Solutions and Vapours. The Royal Society 
of Chemistry/IACT, London (2021).

Glossary of Symbols

In most cases I have adhered to the nomenclature/symbols suggested by the International 
Union of Pure and Applied Chemistry, IUPAC (see Quantities, Units and Symbols in 
Physical Chemistry [296], commonly known as the Green Book). Deviations from a few of 
these suggestions are due to my desire to present a concise, unequivocal and logically con-
sistent notation in compliance with usage preferred by the scientific community interested 
in this review’s topics, that is, by physical chemists, physicists and chemical engineers. 
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Such an approach is in accord with the spirit of the Green Book expressed so admirably 
by Martin Quack in his Historical Introduction on p. XII of its 3rd edition, 2007: It is not 
the aim to present a list of recommendations in form of commandments. Rather we have 
always followed the principle that this manual should help the user in what may be called 
“good practice of scientific language”. However, IUPAC suggestions differing from those 
used here I have included in 5.1 List of Symbols.

A few quantities I would like to single out to comment on are: the pressure P, the 
mechanical coefficients, i.e., the isobaric expansivity �P , the isothermal compressibility �T , 
and the isochoric thermal pressure coefficient �V , and the Henry fugacity hi,j(T ,P) , also 
known as Henry’s law constant.

The symbol P for pressure is now accepted by IUPAC as an alternative to p, as indicated 
in Tables 2.2 and 2.10 of the Green Book. The reason why I (and many others) prefer P is 
the following: temperature and pressure are both intensive quantities, and together with the 
composition expressed by the set of mole fractions 

{
xi
}
 , or by the set of amounts of sub-

stance 
{
ni
}
 , they form a group of basic thermodynamic variables advantageously used in 

solution chemistry. They are not perceived primarily as properties of the fluids but as con-
ditions imposed on/exhibited by them with the valuable bonus of being (in principle) easily 
measured and controlled. In other words, temperature and pressure are quantities of “equal 
rank”, which fact should be reflected in the symbols we use, that is, capital T and capi-
tal P. For heterogeneous PVTx systems consisting of several phases in equilibrium with 
each other, temperature and pressure are identical in the coexisting phases. Griffiths and 
Wheeler [297] call such variables fields (in contradistinction to variables that are in general 
not equal in coexisting phases, such as molar volume, molar enthalpy, and molar entropy, 
which they call densities). For the isothermal compressibility, Rowlinson and Swinton 
[29], amongst many others, use the symbol �T ≡ −V−1(�V∕�P)T ,{xi} . Together with the 
isobaric expansivity �P ≡ V−1(�V∕�T)P,{xi} and the isochoric thermal pressure coefficient 
�V ≡ (�P∕�T)V ,{xi} , for a constant-composition fluid, and thus also for pure fluids, these 
mechanical coefficients form a mnemonic triple:

Writing them this way, i.e., by indicating via subscript what quantity is to be held con-
stant, is advantageous in general, and particularly so when discussing the related isentropic 
and orthobaric quantities [298]. The Henry fugacity hi,j(T ,P) depends on T and P, and also 
on the chemical identities of solute i and solvent j (the other component), hence the double 
subscript i, j has been added to the symbol h. The Henry fugacity (hence the lower-case let-
ter h ) is a material property [66, 169], which fact is clearly indicated by Eq. 310.

Some of the symbols listed below may be modified further, with obvious meaning, by 
adding appropriate subscripts, such as σ (saturation or orthobaric condition), and/or super-
scripts, such as ∗ (pure substance), ∞ (infinite dilution), and L (liquid) or V (vapor). The 
capital superscript letters are used because (I) they are easy to read, (II) they are frequently 
used in the chemical engineering literature, including important monographs (for instance, 
Prausnitz et  al. [1], Poling et  al. [49]) and volumes published under the auspices of the 
International Union of Pure and Applied Chemistry (IUPAC) [155, 158, 160, 169, 172], 
and (III) vapor–liquid equilibrium is usually abbreviated by VLE, and not by vle.

Finally, a very recent important development that has already been pointed out in foot-
note 2: please note that the values for some fundamental physical constants listed in the 
glossary below, such as the Avogadro constant NA , and the Boltzmann constant kB , are now 
exactly defined [44, 45].

(327)�P

/
�T = �V .
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List of Symbols

Variables and Constants

a	� Attractive interaction parameter, vdW-type equations of state, Eqs. 2, 162, 163, 
165, 179

ai	� i = 0, 1, 2,… Dimensionless coefficients used to describe the temperature 
dependence of the Henry fugacity, i.e., of ln

[
h2,1

(
T ,Pσ,1(T)

)/
Pa
]
 , Eq.  317 

(BK); or the temperature dependence of GE
/
RT  etc., Eqs. 268–271

aii, ajj	� Attractive interaction parameters, pure fluids (vdW-type equation of state): 
Eqs. 177 and 181

aij	� Cross-interaction parameter (vdW-type equation of state): Eqs. 177 and 181
A0,Am	� Redlich–Kister parameters, Eq. 259, or Padé parameters, Eq. 261
A12,A21	� van Laar parameters, Eq. 277
A′
12
,A′

21
	� Margules parameters, Eq. 274

Ai	� i = 0, 1, 2,... Dimensionless coefficients used to describe the temperature 
dependence of the Henry fugacity, i.e., of ln

[
h2,1

(
T ,Pσ,1(T)

)/
Pa
]
 , Eq.  316 

(CG)
b	� Covolume, vdW-type equations of state, Eqs. 2, 162, 163, 165, 179
bii, bjj	� Repulsive interaction parameters, pure fluids (vdW-type equation of state): 

Eqs. 178 and 182
bij	� Cross repulsive interaction parameter (vdW-type equation of state): Eqs. 178 

and 182
B	� Second virial coefficient of a gaseous mixture, associated with an amount-den-

sity expansion of the compression factor Z, Eq. 184
B, C, D	� Parameters of Eq. 273
B′,C′,D′	� Redlich–Kister parameters, Eqs. 272 and 280
Bn	� Padé parameters, Eq. 261
B11,B22	� Second virial coefficients of the pure components 1 and 2 in the gas phase/

vapor phase (corresponding to the amount-density expansion of the com-
pression factor Z), respectively, Eqs.  153b, 153c and 248. They are used 
in the truncated volume-explicit two-term virial equation in pressure 
Z
V,∗

i
≡ PV

V,∗

i

/
RT = 1 + BiiP

/
RT  , i = 1 or 2

B12	� Vapor-phase interaction virial coefficient (cross-coefficient), associated with a 
binary gas phase/vapor phase, Eqs. 153b, 153c and 248

c	� Number of components in a multi-component solution
cPT	� Parameter, Patel–Teja equation of state, Eq. 179
cPTii, cPTjj	� Parameter, pure fluids (Patel–Teja equation of state): Eqs. 180 and 183
cPTij	� Cross-parameter, Patel–Teja equation of state, Eqs. 180 and 183

C
p
c	� =

(
p

c

)
 , Combinations without repetition (order is not important), Eq. 1

CP	� Molar heat capacity at constant pressure (molar isobaric heat capacity)
C∗
P,i

	� Molar heat capacity at constant pressure of pure substance i
C
pg,∗

P,i
(T)	� Molar heat capacity at constant pressure of pure substance i in the perfect-gas 

(ideal-gas) state
CP,i	� Partial molar heat capacity at constant pressure of component i of a mixture/

solution
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CE
P
	� Molar excess heat capacity at constant pressure of a mixture/solution

CE
P,i

	� Partial molar excess heat capacity at constant pressure of component i of a 
mixture/solution

C
L,∞

P,2
	� Partial molar heat capacity at constant pressure of solute 2 at infinite dilution 

in a liquid (L) mixture/solution
CL
P,2,app

	� Apparent molar isobaric heat capacity of solute 2 in a liquid (L) mixture/solu-
tion, see Eq. 323

ΔCP	� Molar heat capacity change of mixing
ΔC∞

P.2
	� Partial molar heat capacity change on solution of a gas (2) in a liquid (1) at 

infinite dilution
ΔsolCP	� Molar heat capacity change on solution, calorimetrically determined
CV	� Molar heat capacity at constant volume (molar isochoric heat capacity)
f	� Fugacity
f π
i
	� Fugacity of component i in solution in phase π (L or V)

f
L,∗

i
	� = �

L,∗

i
P , Fugacity of pure substance i in the liquid phase

f
V,∗

i
	� = �

V,∗

i
P , Fugacity of pure substance i in the vapor phase

f (1), f (2)	� First-order partial Legendre transform, second-order partial Legendre 
transform

F	� Molar Helmholtz energy, see Table 1; the Green Book [296] suggests F and A
G	� Molar Gibbs energy, see Table 1
G∗

i
	� Molar Gibbs energy of pure substance i

Gi	� = �i , Partial molar Gibbs energy of component i of a mixture/solution, chemi-
cal potential of component i

GE	� Molar excess Gibbs energy of a mixture/solution, Eqs. 214 and 220
GE

i
	� = �

E
i
 , Partial molar excess Gibbs energy of component i of a mixture/solution, 

excess chemical potential of component i, Eqs. 219 and 237
ΔG	� Molar Gibbs energy change of mixing
hi,j	� = hi,j(T ,P) , Henry fugacity (or Henry’s law constant) of component i dis-

solved in liquid solvent j. Usually, experimental data obtained via extrapolation 
xi → 0 are reported at pressures P = Pσ,j , the vapor pressure of the solvent, that 
is, hi,j

(
T ,Pσ,1

)
 is reported, see Eq. 301. This nomenclature has been adopted in 

Volume VII of IUPAC’s Experimental Thermodynamics Series, Measurement 
of the Thermodynamic Properties of Multiple Phases [169]. Prausnitz et al. [1] 
use the symbol Hi,j , and the Green Book of IUPAC [296] suggests kH,B, where 
the definition applies to entities B which should be specified.

H	� Molar enthalpy, see Table 1
H∗

i
	� Molar enthalpy of pure substance i

Hi	� Partial molar enthalpy of component i of a mixture/solution
HE	� Molar excess enthalpy of a mixture/solution, Eqs. 217 and 223
HE

i
	� Partial molar excess enthalpy of component i of a mixture/solution

ΔH	� Molar enthalpy change of mixing
ΔH∞

2
	� Partial molar enthalpy change on solution when dissolving a gas (2) in a liquid 

(1), at infinite dilution
ΔsolH	� Molar enthalpy change on solution, calorimetrically determined
J	� ≡ U − TS −

c∑
i

�ixi = −PV  , Molar grand canonical potential, see Table 1; not 

mentioned in the Green Book [296]
kB	� = 1.380 649 × 10−23 J·K−1 = R/NA, Exactly, Boltzmann constant [44, 45]
kij	� Binary interaction parameter, Eq. 181
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lij	� Binary interaction parameter, Eq. 182
Lp
(
z12

)
	� Legendre polynomial, Eq. 262, z12 ≡ x1 − x2

m	� Mass
mm	� = m∕n , Molar mass; n denotes the total amount of substance
mij	� Binary interaction parameter, Eq. 183
M	� Molar thermodynamic property of a single-phase multicomponent equilibrium 

solution
Mt	� ≡ nM , Total thermodynamic property of a single-phase multicomponent solu-

tion (extensive property)
M∗

i
	� Molar thermodynamic property of pure homogeneous fluid i

Mi	� Partial molar property of component i of a mixture/solution
ME	� Molar excess property of a mixture/solution, Eq. 211
ME

i
	� Partial molar excess property of component i of a mixture/solution, Eq. 212

ΔM	� Molar property change on mixing, Eq. 189
ΔMi	� Partial molar property change on mixing, Eq. 190
Δ1→2M	� Property change for 1 mol of a thermodynamic property M of a homogeneous 

fluid when going from 
{
T1,P1

}
 to 

{
T2,P2

}
 , Eq. 156

n	� =
c∑
i

ni , Total amount (of substance) of a mixture/solution with c components

ni	� Amount (of substance) of component i of a mixture/solution
N	� = nNA , Number of molecules
NA	�  = 6.022 140 76 × 1023 mol−1, Exactly, Avogadro constant [44, 45]; the Green 

Book [296] suggests L and NA

NLe,p	� Total number of partial Legendre transforms, Eq. 49
N t
Le

	� Total number of Legendre transforms (includes the complete Legendre trans-
form that vanishes identically), Eq. 50

P	� Pressure
Pc	� Critical pressure
Pr	� ≡ P∕Pc , Reduced pressure
Pσ	� Vapor pressure
Pref	� Suitably selected reference pressure, frequently 105 Pa
R	� = NA kB = 8.314 462 618 J·K−1·mol−1, (molar) gas constant [44, 45]
S	� Molar entropy, see Table 3
S∗
i
	� Molar entropy of pure substance i

Si	� Partial molar entropy of component i of a mixture/solution
SE	� Molar excess entropy of a mixture/solution, Eqs. 215 and 221
SE
i
	� Partial molar excess entropy of component i of a mixture/solution

ΔS	� Molar entropy change of mixing
ΔS∞

2
	� Partial molar entropy change on solution when dissolving a gas (2) in a liquid 

(1), at infinite dilution
t	� Celsius temperature, t∕◦C = T/K − 273.15

T	� Thermodynamic temperature
Tc	� Critical temperature
Tr	� ≡ T∕Tc , Reduced temperature
Tref	� Suitably selected reference temperature
Ttr	� Triple point temperature
u(r)	� Intermolecular pair-potential energy function, Eq. 82
U	� Molar internal energy, see Table 1
V	� Molar volume
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V∗
i
	� Molar volume of pure substance i

Vc	� Critical molar volume
Vr	� ≡ V∕Vc , Reduced molar volume
Vi	� Partial molar volume of component i of a mixture/solution
VE	� Molar excess volume of a mixture/solution, Eqs. 216 and 222
VE
i
	� Partial molar excess volume of component i of a mixture/solution

V
L,∞

2
	� Partial molar volume of solute 2 at infinite dilution in a liquid (L) mixture/

solution
xi	� ≡ nL

i

/
nL = xL

i
 , Liquid-phase mole fraction of component i of a mixture/solu-

tion, nL =
∑
i

nL
i
 ; 
∑
i

xi = 1

x′
i
	� ≡ xi

/(
xi + xj

)
 , Scaled mole fraction of component i of a binary subsystem of a 

ternary mixture, Eq. 264
X	� ≡ U −

c∑
i

�ixi =TS − PV  , Molar unnamed primary function, see Table 1; not 

mentioned in the Green Book [296]
yi	� ≡ nV

i

/
nV = xV

i
 , Vapor-phase mole fraction of component i of a mixture/solu-

tion, nV =
∑
i

nV
i
 ; 
∑
i

yi = 1

Y	� ≡ U + PV −
c∑
i

�ixi = TS , Molar unnamed primary function, see Table 1; not 

mentioned in the Green Book [296]
z12	� ≡ x1 − x2
Z	� ≡ PV∕RT  , Compression factor, Eq. 5
Z∗	� Compression factor of a pure fluid
Zc	� Critical compression factor
Z(0)	� Simple-fluid contribution to Z∗ , Eq. 94
Z(1)	� Non-simple fluid contribution to Z∗ , Eq. 94

Greek letters

�(�, �)	� = F
(
T , �n

)/
RT = �

r(�, �) + �
pg(�, �) , Empirical fundamental equation, 

Eq. 187
�P	� ≡ V−1(�V∕�T)P,{xi} = −�−1(��∕�T)P,{xi} , Isobaric expansivity (coefficient 

of thermal expansion), as suggested by Rowlinson and Swinton [29]. The 
Green Book [296] suggests either � , or �V , or �

�S(T ,�)	� Empirical α-function (Soave EOS), Eq. 170
�PR(T ,�)	� Empirical α-function (Peng–Robinson EOS), Eq. 176
�T	� ≡ −V−1(�V∕�P)T ,{xi} = �

−1(��∕�P)T ,{xi} , Isothermal compressibility, as 
suggested by Rowlinson and Swinton [29]. The Green Book [296] suggests �T

�V	� ≡ (�P∕�T)V ,{xi} = �P∕�T , Isochoric thermal pressure coefficient, as sug-
gested by Rowlinson and Swinton [29]. The Green Book [296] suggests �

�σ	� ≡ (�P∕�T)σ , Slope of the vapor pressure curve, dPσ

/
dT  , as suggested by 

Rowlinson and Swinton [29]; not mentioned in the Green Book [296]
�
LR
i

	� = �
LR
i

(
T ,P, xi

)
 , Activity coefficient of component i of a binary mixture/solu-

tion based on the Lewis–Randall (LR) convention. The Green Book [296] 
suggests fi (same symbol as for fugacity!)
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�
HL
i

	� = �
HL
i

(
T ,P, xi

)
 , Activity coefficient of component i of a binary mixture/solu-

tion based on the Henry’s law (HL) convention. The Green Book [296] sug-
gests �x,i

� 	� ≡ S −
P

T
V +

c∑
i

�i

T
xi =

1

T
U , molar unnamed primary function, see Table 3; not 

mentioned in the Green Book [296]
Γ	� Parameter used in Eqs. 286–288
�	� Parameter in a generalized vdW EOS, Eq. 161
�	� ≡ �n

/
�n,c = Vc∕V  , Reduced amount density,  i.e. inverse reduced molar vol-

ume, used in the fundamental equation Eq. 187
�ij	� ≡ 2Bij −

(
Bii + Bjj

)
 , Eq. 248

�	� Parameter in a general vdW EOS, Eq. 161
�	� Parameter in a general vdW EOS, Eq. 161
�	� Parameter in a general vdW EOS, Eq. 161
�	� ≡ S −

P

T
V =

1

T
U −

c∑
i

�i

T
xi , Molar unnamed primary function, see Table 3; not 

mentioned in the Green Book [296]
�ij − �ii	� Characteristic interaction energy difference, related to the Wilson parameter 

Λij via Eq. 290
�	� ≡ S +

c∑
i

�i

T
xi =

1

T
U +

P

T
V  , Molar unnamed primary function, see Table 3; not 

mentioned in the Green Book [296]
Λ12, Λ21	� Adjustable Wilson parameters, Eqs. 285 and 290
�i	� Chemical potential of component i of a mixture/solution, Eqs.  11, 52a and 

52b
�
E
i
	� = GE

i
= RTln�LR

i
 , Excess chemical potential of component i of a mixture/

solution, LR convention, Eq. 237
�	� ≡ m∕(nV) = mm∕V  , Mass density
�n	� ≡ n∕(nV) = 1∕V = �∕mm , Amount(-of-substance) density
�N	� ≡ N∕(nV) =NA∕V = NA�n = NA�∕mm , Number density. The Green Book 

[296] suggests C or n
�	� ≡ Tc∕T = 1∕Tr , Dimensionless parameter,  i.e. inverse reduced temperature, 

used in the fundamental equation Eq. 187
�	� ≡ Tref∕T  , Dimensionless parameter, Eqs. 268–271
�
π	� Overall fugacity coefficient of a solution in phase π, Eqs. 135 and 136

�
L
i
, �V

i
	� Fugacity coefficient of component i in solution, liquid (L) phase or vapor (V) 

phase, Eqs. 129 and 130
�
L,∗

i
, �

V,∗

i
	� Fugacity coefficient of pure substance i in the liquid (L) phase or the vapor 

(V) phase, Eqs. 132 and 133
�
L,∞

i
(T ,P)	� Fugacity coefficient of component i at infinite dilution in a binary liquid (L) 

phase, Eq. 310
�
V,∞

2
(T ,P)	� Fugacity coefficient of component 2 at infinite dilution in a binary vapor (V) 

phase, Eq. 153c
�	� ≡ S −

1

T
U −

P

T
V = −

c∑
i

�i

T
xi , Molar Planck function, Table  3. The Green 

Book [296] suggests Y
Φi	� Correction term in the VLE relation, Eq. 246
�	� ≡ S −

1

T
U =

P

T
V −

c∑
i

�i

T
xi , Molar Massieu function, see Table 3. The Green 

Book [296] suggests J
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�	� Pitzer’s acentric factor, Eq. 93
�p	� Pseudo-acentric factor referring to a mixture, Eq. 97
�	� ≡ S −

1

T
U +

c∑
i

�i

T
xi =

P

T
V  , Molar Kramers function, see Table  3; not men-

tioned in the Green Book [296]

Subscripts

app	� Indicates an apparent molar property
c	� Indicates a critical property
i, j, k	� General indices; usually i or j denote components in a mixture/solution; double 

indices ii and jj frequently indicate pure-substance properties, or characterize inter-
action between like molecules; in contradistinction, ij frequently indicates a mix-
ture quantity, or characterizes interaction between unlike molecules (cross proper-
ties) in a mixture/solution

PR	� Peng–Robinson
PT	� Patel–Teja
r	� Indicates a reduced quantity
RK	� Redlich–Kwong
vdW	� van der Waals
σ	� Indicates saturation (orthobaric) condition
S	� Soave

Superscripts

E	� Excess property
HL	� Indicates ideal-solution behavior based on Henry’s law, Eq. 296
id	� Ideal solution, see Eqs. 196 and 197, or, alternatively, see Eq. 296
L	� Liquid phase
LR	� Indicates ideal-solution behavior based on the Lewis–Randall rule, Eq. 196
pg	� Indicates perfect-gas state (ideal-gas state)
r	� Indicates a residual property in 

(
T ,V ,

{
xi
})

-space
R	� Indicates a residual property in 

(
T ,P,

{
xi
})

-space
t	� Indicates a total property Mt = nM

V	� Vapor phase
*	� Indicates a pure-substance property
∞	� Indicates infinite dilution
π	� Indicates a phase, say, liquid (L) or vapor (V)

Funding  Open access funding provided by University of Vienna.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 



699Journal of Solution Chemistry (2022) 51:626–710	

1 3

licence, and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid Phase 
Equilibria, 3rd edn. Prentice Hall PTR, New York (1999)

	 2.	 Kister, H.Z.: Distillation Operation. McGraw-Hill, New York (1990)
	 3.	 Kister, H.Z.: Distillation Design. McGraw-Hill, New York (1992)
	 4.	 Kister, H.Z.: Distillation Troubleshooting. McGraw-Hill, New York (2006)
	 5.	 McCabe, W.L., Smith, J.C., Harriott, P.: Unit Operations of Chemical Engineering, 7th edn. McGraw-

Hill, New York (2006)
	 6.	 Letcher, T.M. (ed.): Developments and Applications in Solubility. The Royal Society of Chemistry/

IUPAC, Cambridge (2007)
	 7.	 Seader, J.D., Henley, E.J., Roper, D.K.: Separation Process Principles with Applications Using Pro-

cess Simulators, 4th edn. Wiley, New York (2016)
	 8.	 Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry: Part I: The Conformation of Biological Macro-

molecules. W.H. Freeman and Company, San Francisco (1980)
	 9.	 Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry: Part II: Techniques for the Study of Biological 

Structure and Function. W.H. Freeman and Company, San Francisco (1980)
	 10.	 Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry: Part III: The Behavior of Biological Macro-

molecules. W.H. Freeman and Company, San Francisco (1980)
	 11.	 Barrat, J.-L., Hansen, J.-P.: Basic Concepts for Simple and Complex Liquids. Cambridge University 

Press, Cambridge (2003)
	 12.	 Ben-Naim, A.: Molecular Theory of Solutions. Oxford University Press, Oxford (2006)
	 13.	 Ben-Naim, A.: Molecular Theory of Water and Aqueous Solutions: Part I: Understanding Water. 

World Scientific Publishing, Singapore (2009)
	 14.	 Ben-Naim, A.: Molecular Theory of Water and Aqueous Solutions: Part II: The Role of Water in 

Protein Folding. Self-Assembly and Molecular Recognition. World Scientific Publishing, Singapore 
(2011)

	 15.	 Marcus, Y.: Ions in Water and Biophysical Implications: From Chaos to Cosmos. Springer, Dordrecht 
(2012)

	 16.	 Sandler, S.I.: Chemical, Biochemical, and Engineering Thermodynamics, 5th edn. Wiley, New York 
(2017)

	 17.	 Van Ness, H.C., Abbott, M.M.: Classical Thermodynamics of Nonelectrolyte Solutions: With Appli-
cations to Phase Equilibria. McGraw-Hill Book Company, New York (1982)

	 18.	 Smith, J.M., Van Ness, H.C., Abbott, M.M., Swihart, M.T.: Introduction to Chemical Engineering 
Thermodynamics, 8th edn. McGraw-Hill Education, New York (2018)

	 19.	 Brochard-Wyart, F., Nassoy, P., Puech, P.-H.: Essentials of Soft Matter Science. CRC Press, Boca 
Raton (2020)

	 20.	 Hála, E., Pick, J., Fried, V., Vilím, O.: Vapour-Liquid Equilibrium, 2nd edn. Pergamon Press, New 
York (1968)

	 21.	 Marcus, Y.: Supercritical Water: A Green Solvent: Properties and Uses. Wiley, Hoboken (2012)
	 22.	 Manahan, S.E.: Environmental Chemistry, 10th edn. CRC Press, Boca Raton (2017)
	 23.	 Popper, K.R.: The Logic of Scientific Discovery. Routledge, London (2002)
	 24.	 van der Waals, J.D.: Over de continuiteit van den gas- en vloeistoftoestand. Doctoral thesis in wis- en 

natuurkunde. University of Leiden, The Netherlands (1873)
	 25.	 Kipnis, A.Y., Yavelov, B.E., Rowlinson, J.S.: Van der Waals and Molecular Science. Clarendon Press, 

Oxford (1996)
	 26.	 Rowlinson, J.S.: Cohesion. A Scientific History of Intermolecular Forces. Cambridge University 

Press, Cambridge (2002)
	 27.	 van der Waals, J.D.: Molekulartheorie eines Körpers, der aus zwei verschiedenen Stoffen besteht. Z. 

Physik. Chem. 5, 133–173 (1890)
	 28.	 Rowlinson, J.S.: Legacy of van der Waals. Nature 244, 414–417 (1973)

http://creativecommons.org/licenses/by/4.0/


700	 Journal of Solution Chemistry (2022) 51:626–710

1 3

	 29.	 Rowlinson, J.S., Swinton, F.L.: Liquids and Liquid Mixtures, 3rd edn. Butterworth Scientific, London 
(1982)

	 30.	 Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, New York 
(1985)

	 31.	 Domb, C.: The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenom-
ena. CRC Press, Boca Raton (2017)

	 32.	 Moldover, M.R., Sengers, J.V., Gammon, R.W., Hocken, R.J.: Gravity effects in fluids near the gas-
liquid critical point. Rev. Mod. Phys. 51, 79–99 (1979)

	 33.	 Jany, P.: Thermophysical property measurements near the critical point. Exp. Therm. Fluid Sci. 3, 
124–137 (1990)

	 34.	 Carlès, P.: A brief review of the thermophysical properties of supercritical fluids. J. Supercrit. Fluids 
53, 2–11 (2010)

	 35.	 Barmatz, M., Hahn, I., Lipa, J.A., Duncan, R.V.: Critical phenomena in microgravity: past, present, 
and future. Rev. Mod. Phys. 79, 1–52 (2007)

	 36.	 Pitzer, K.S.: Corresponding states for perfect liquids. J. Chem. Phys. 7, 583–590 (1939)
	 37.	 Wilhelm, E.: Internal energy and enthalpy: introduction, concepts and selected applications. In: Wil-

helm, E., Letcher, T.M. (eds.) Enthalpy and Internal Energy: Liquids, Solutions and Vapours, pp. 
1–61. The Royal Society of Chemistry/IACT, Cambridge (2018)

	 38.	 Alberty, R.A.: Legendre transforms in chemical thermodynamics. Chem. Rev. 94, 1457–1482 (1994)
	 39.	 Alberty, R.A., Barthel, J.M.G., Cohen, E.R., Ewing, M.B., Goldberg, R.N., Wilhelm, E.: Use of Leg-

endre transforms in chemical thermodynamics (IUPAC Technical Report, IUPAC Committee on Leg-
endre Transforms in Chemical Thermodynamics). Pure Appl. Chem. 73, 1349–1380 (2001)

	 40.	 Zia, R.K.P., Redish, E.F., McKay, S.R.: Making sense of the Legendre transform. Am. J. Phys. 77, 
614–622 (2009)

	 41.	 Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A.: Intermolecular Forces: Their Origin and 
Determination. Clarendon Press, Oxford (1981)

	 42.	 Gray, C.G., Gubbins, K.E.: Theory of Molecular Fluids: Volume 1: Fundamentals. Clarendon Press, 
Oxford (1984)

	 43.	 Gray, C.G., Gubbins, K.E., Joslin, C.G.: Theory of Molecular Fluids: Volume 2: Applications. Oxford 
University Press, Oxford (2011)

	 44.	 Mohr, J.P., Newell, D.B., Taylor, B.N., Tiesinga, E.: Data and analysis for the CODATA 2017 special 
fundamental constants adjustment. Metrologia 55, 125–146 (2018)

	 45.	 Newell, D.B., Cabiati, F., Fischer, J., Fujii, K., Karshenboim, S.G., Margolis, H.S., de Mirandés, E., 
Mohr, J.P., Nez, F., Pachucki, K., Quinn, T.J., Taylor, B.N., Wang, M., Wood, B.M., Zhang, Z.: The 
CODATA 2017 values of h, e, k, and NA for the revision of the SI. Metrologia 55, L13–L16 (2018)

	 46.	 Wilhelm, E.: Mitigating complexity: cohesion parameters and related topics. I: the Hildebrand solu-
bility parameter. J. Solution Chem. 47, 1626–1709 (2018)

	 47.	 Guggenheim, E.A.: The principle of corresponding states. J. Chem. Phys. 13, 253–261 (1945)
	 48.	 Sterbacek, A., Biskup, B., Tausk, P.: Calculation of Properties Using Corresponding States Methods. 

Elsevier, Amsterdam (1979)
	 49.	 Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-

Hill, New York (2001)
	 50.	 Ely, J.F.: The corresponding-states principle. In: Goodwin, A.R.H., Sengers, J.V., Peters, C.J. (eds.) 

Applied Thermodynamics of Fluids, pp. 135–171. The Royal Society of Chemistry/IUPAC & IACT, 
Cambridge (2010)

	 51.	 Pitzer, K.S.: The volumetric and thermodynamic properties of fluids: I: theoretical basis and virial 
coefficients. J. Am. Chem. Soc. 77, 3427–3433 (1955)

	 52.	 Pitzer, K.S., Lippmann, D.Z., Curl, R.F., Jr., Huggins, C.M., Peterson, D.E.: The volumetric and ther-
modynamic properties of fluids: II: compressibility factor, vapor pressure and entropy of vaporiza-
tion. J. Am. Chem. Soc. 77, 3433–3440 (1955)

	 53.	 Pitzer, K.S., Curl, R.F., Jr.: The volumetric and thermodynamic properties of fluids: III: empirical 
equation for the second virial coefficient. J. Am. Chem. Soc. 79, 2369–2370 (1957)

	 54.	 Curl, R.F., Jr., Pitzer, K.S.: Volumetric and thermodynamic properties of fluids: enthalpy, free energy, 
and entropy. Ind. Eng. Chem. 50, 265–274 (1958)

	 55.	 Pitzer, K.S.: Origin of the acentric factor. In: Storvick, T.S., Sandler, S.I. (eds.) Phase Equilibria and 
Fluid Properties in the Chemical Industry: Estimation and Correlation, ACS Symposium Series 60, 
pp. 1–10. American Chemical Society, Washington, DC (1977)

	 56.	 Lee, B.I., Kesler, M.G.: A generalized thermodynamic correlation based on three-parameter corre-
sponding states. AIChE J. 21, 510–527 (1975)

	 57.	 Lee, B.I., Kesler, M.G.: Erratum. AIChE J. 21, 1040 (1975)



701Journal of Solution Chemistry (2022) 51:626–710	

1 3

	 58.	 Lee, B.I., Kesler, M.G.: Erratum. AIChE J. 21, 1237 (1975)
	 59.	 Kay, W.B.: Densities of hydrocarbon gases and vapors. Ind. Eng. Chem. 28, 1014–1019 (1936)
	 60.	 Kontogeorgis, G.M., Folas, G.K.: Thermodynamic Models for Industrial Applications: From Classi-

cal and Advanced Mixing Rules to Association Theories. Wiley, Chichester (2010)
	 61.	 Economou, I.E.: Cubic and generalized van der Waals equations of state. In: Goodwin, A.R.H., Sen-

gers, J.V., Peters, C.J. (eds.) Applied Thermodynamics of Fluids, pp. 53–83. The Royal Society of 
Chemistry/IUPAC & IACT, Cambridge (2010)

	 62.	 McCabe, C., Galindo, A.: SAFT associating fluids and fluid mixtures. In: Goodwin, A.R.H., Sen-
gers, J.V., Peters, C.J. (eds.) Applied Thermodynamics of Fluids, pp. 215–279. The Royal Society of 
Chemistry/IUPAC & IACT, Cambridge (2010)

	 63.	 Lemmon, E.W., Span, R.: Multi-parameter equations of state for pure fluids and mixtures. In: Good-
win, A.R.H., Sengers, J.V., Peters, C.J. (eds.) Applied Thermodynamics of Fluids, pp. 394–432. The 
Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)

	 64.	 Span, R., Lemmon, E.W.: Volumetric properties from multiparameter equations of state. In: Wilhelm, 
E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 135–151. The Royal 
Society of Chemistry/IUPAC & IACT, Cambridge (2015)

	 65.	 Novák, J.P., Růžička, K., Fulem, M.: Calculation of thermodynamic functions from volumetric prop-
erties. In: Wilhelm, E., Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 
476–492. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2015)

	 66.	 Wilhelm, E.: Solubilities, fugacities and all that in solution chemistry. J. Solution Chem. 44, 1004–
1061 (2015)

	 67.	 Lewis, G.N.: The law of physico-chemical change. Proc. Am. Acad. Arts Sci. 37, 49–69 (1901)
	 68.	 Wilhelm, E.: What you always wanted to know about heat capacities, but were afraid to ask. J. Solu-

tion Chem. 39, 1777–1818 (2010)
	 69.	 Frenkel, M., Marsh, K.N., Kabo, K.J., Wilhoit, A.C., Roganov, G.N.: Thermodynamics of Organic 

Compounds in the Gas State, Vols. I and II. Thermodynamics Research Center, The Texas A&M Sys-
tem, College Station (1994)

	 70.	 Dortmund Data Bank Software and Separation Technology. http://​www.​ddbst.​de
	 71.	 Schäfer, K., Lax, E. (eds.): Kalorische Zustandsgrößen. Landolt-Börnstein, 6. Auflage, II. Band, 4. 

Teil. Springer, Berlin (1961)
	 72.	 Shimanouchi, T.: Tables of molecular vibrational frequencies: consolidated volume I. Nat. Stand. Ref. 

Data Ser., Nat. Bur. Stand. 39, 48 (1972)
	 73.	 Shimanouchi, T.: Tables of molecular vibrational frequencies: consolidated volume II. J. Phys. Chem. 

Ref. Data 6, 993–1102 (1977)
	 74.	 Shimanouchi, T., Matsuura, H., Ogawa, Y., Harada, I.: Tables of molecular vibrational frequencies: 

part 10. J. Phys. Chem. Ref. Data 9, 1149–1254 (1980)
	 75.	 Benson, S.W., Cruickshank, F.R., Golden, D.M., Haugen, G.R., O’Neal, H.E., Rodgers, A.S., Shaw, 

R., Walsh, R.: Additivity rules for the estimation of thermochemical properties. Chem. Rev. 69, 279–
324 (1969)

	 76.	 Joback, K.G., Reid, R.C.: Estimation of pure-component properties from group-contributions. Chem. 
Eng. Commun. 57, 223–243 (1987)

	 77.	 Constantinou, L., Gani, R.: New group contribution method for estimating properties of pure com-
pounds. AIChE J. 40, 1697–1710 (1994)

	 78.	 Valderrama, J.O.: The state of the cubic equation of state. Ind. Eng. Chem. Res. 42, 1603–1618 
(2003)

	 79.	 Redlich, O., Kwong, J.N.S.: On the thermodynamics of solutions: V: an equation of state. Fugacities 
of gaseous solutions. Chem. Rev. 44, 233–244 (1949)

	 80.	 Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 
59–64 (1976)

	 81.	 Tsonopoulos, C., Heidman, J.L.: From Redlich-Kwong to the present. Fluid Phase Equilib. 24, 1–23 
(1985)

	 82.	 Soave, G.: Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 
27, 1197–1203 (1972)

	 83.	 Soave, G.: Improvement of the van der Waals equation of state. Chem. Eng. Sci. 39, 343–355 (1984)
	 84.	 Graboski, M.S., Daubert, T.E.: A modified Soave equation of state for phase equilibrium calculations: 

1: hydrocarbon systems. Ind. Eng. Chem. Process Des. Dev. 17, 443–448 (1978)
	 85.	 Graboski, M.S., Daubert, T.E.: A modified Soave equation of state for phase equilibrium calculations: 

2: systems containing CO2, H2S, N2, and CO. Ind. Eng. Chem. Process Des. Dev. 17, 448–454 (1978)
	 86.	 Graboski, M.S., Daubert, T.E.: A modified Soave equation of state for phase equilibrium calculations. 

3: systems containing hydrogen. Ind. Eng. Chem. Process Des. Dev. 18, 300–306 (1979)

http://www.ddbst.de


702	 Journal of Solution Chemistry (2022) 51:626–710

1 3

	 87.	 Soave, G.: Improving the treatment of heavy hydrocarbons by the SRK EOS. Fluid Phase Equilib. 84, 
339–342 (1983)

	 88.	 Privat, R., Visvonte, M., Zazoua-Khames, A., Jaubert, J.-N., Gani, R.: Analysis and prediction of the 
alpha-function parameters used in cubic equations of state. Chem. Eng. Sci. 126, 584–603 (2015)

	 89.	 Le Guennec, Y., Lasala, S., Privat, R., Jaubert, J.-N.: A consistency test for α-functions of cubic equa-
tions of state. Fluid Phase Equilib. 427, 513–538 (2016)

	 90.	 Le Guennec, Y., Privat, R., Lasala, S., Jaubert, J.-N.: On the imperative need to use a consistent 
α-function for the prediction pure-compound supercritical properties with a cubic equation of state. 
Fluid Phase Equilib. 445, 45–53 (2017)

	 91.	 Wilhelm, E.: Recent advances in molecular thermodynamics of fluid mixtures. Progr. Chem. Eng. A, 
Fundam. Chem. Eng. 21, 45–93 (1983)

	 92.	 Patel, N.C., Teja, A.S.: A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 
37, 463–473 (1982)

	 93.	 Kohler, F., Fischer, J., Wilhelm, E.: Intermolecular force parameters for unlike pairs. J. Molec. Struct. 
84, 245–250 (1982)

	 94.	 Goodwin, A.R.H., Sandler, S.I.: Mixing and combining rules. In: Goodwin, A.R.H., Sengers, J.V., 
Peters, C.J. (eds.) Applied Thermodynamics of Fluids, pp. 84–134. The Royal Society of Chemistry/
IUPAC & IACT, Cambridge (2010)

	 95.	 Galitzine, B.: Über das Dalton‘sche Gesetz: III. Theil: Theoretische Untersuchungen. Ann. Physik u. 
Chem., Neue Folge 41, 770–800 (1890)

	 96.	 Berthelot, D.: Sur le mélange des gaz. C. R. Seances Acad. Sci. 126, 1703–1706 (1898)
	 97.	 Berthelot, D.: Sur le mélange des gaz. C. R. Seances Acad. Sci. 126, 1857–1858 (1898)
	 98.	 Trusler, J.P.M.: The virial equation of state. In: Goodwin, A.R.H., Sengers, J.V., Peters, C.J. (eds.) 

Applied Thermodynamics of Fluids, pp. 33–52. The Royal Society of Chemistry/IUPAC & IACT, 
Cambridge (2010)

	 99.	 Benedict, M., Webb, G.B., Rubin, L.C.: An empirical equation for thermodynamic properties of light 
hydrocarbons and their mixtures: I: methane, ethane, propane and butane. J. Chem. Phys. 8, 334–345 
(1940)

	100.	 Benedict, M., Webb, G.B., Rubin, L.C.: An empirical equation for thermodynamic properties of light 
hydrocarbons and their mixtures: II: mixtures of methane, ethane, propane and butane. J. Chem. Phys. 
10, 747–758 (1942)

	101.	 Benedict, M., Webb, G.B., Rubin, L.C.: An empirical equation for thermodynamic properties of light 
hydrocarbons and their mixtures: fugacities and liquid-vapor equilibria. Chem. Eng. Progress 47, 
449–454 (1951)

	102.	 Jacobson, R.T., Stewart, R.B.: Thermodynamic properties of nitrogen including liquid and vapor 
phases from 63 K to 2000 K with pressures to 10 000 bar. J. Phys. Chem. Ref. Data 2, 757–922 
(1973)

	103.	 Bender, E.: Die Berechnung der Verdampfungsgleichgewichte von Mehrstoffsystemen bei hohen 
Drücken. Chemie-Ing.-Techn. 44, 576–582 (1972)

	104.	 Bender, E.: An equation of state for predicting vapour-liquid equilibria of the system N2 -Ar-O2. Cry-
ogenics 13, 11–18 (1973)

	105.	 Bender, E.: Equations of state for ethylene and propylene. Cryogenics 15, 667–673 (1975)
	106.	 Span, R., Lemmon, E.W., Jacobsen, R.T., Wagner, W., Yokozeki, A.: A reference equation of state for 

the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 
2200 MPa. J. Phys. Chem. Ref. Data 29, 1361–1433 (2000)

	107.	 Span, R., Wagner, W., Lemmon, E.W., Jacobsen, R.T.: Multiparameter equations of state—recent 
trends and future challenges. Fluid Phase Equilib. 183–184, 1–20 (2001)

	108.	 Wagner, W., Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of the ordi-
nary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)

	109.	 Lemmon, E.W., Tillner-Roth, R.: A Helmholtz energy equation of state for calculating the thermody-
namic properties of fluid mixtures. Fluid Phase Equilib. 165, 1–21 (1999)

	110.	 Lemmon, E.W., Jacobsen, R.T.: A generalized model for the thermodynamic properties of mixtures. 
Int. J. Thermophys. 20, 825–835 (1999)

	111.	 Lemmon, E.W., Jacobsen, R.T.: Equations of state for mixtures of R-32, R-125, R-134a, R-143a, and 
R-152a. J. Phys. Chem. Ref. Data 33, 593–620 (2004)

	112.	 Gernert, J., Jäger, A., Span, R.: Calculation of phase equilibria for multi-component mixtures using 
highly accurate Helmholtz energy equations of state. Fluid Phase Equilib. 375, 209–318 (2014)

	113.	 Kunz, O., Wagner, W.: The GERG-2008 wide-range equation of state for natural gases and other mix-
tures: an expansion of GERG-2004. J. Chem. Eng. Data 57, 3032–3091 (2012)



703Journal of Solution Chemistry (2022) 51:626–710	

1 3

	114.	 Deiters, U.K., Bell, I.H.: Unphysical critical curves of binary mixtures predicted with GERG models. 
Int. J. Thermophys. 41, 169/1–19 (2020)

	115.	 Solubility Data Series (IUPAC): Volume 1: Clever, H.L.: Helium and Neon - Volume 53: Young, 
C.L.: Cummulative Index (for Vols. 40–52), published by Pergamon Press, Oxford; Volume 54: 
Acree, W.E., Jr.: Polycyclic Aromatic Hydrocarbons in Pure and Binary Solvents - Volume 65: Fritz, 
J.J., Königsberger, E.: Copper(I) Halides and Pseudohalides, published by Oxford University Press, 
Oxford

	116.	 Solubility Data Series (IUPAC-NIST): Volume 66: Eysseltová, J., Dirkse, T.P.: Ammonium Phos-
phates. J. Phys. Chem. Ref. Data 27, 1289–1470 (1998) - and volumes above published in the Journal 
of Physical and Chemical Refence Data by the American Institute of Physics for the National Institute 
of Standards and Technology, Melville, NY

	117.	 NIST SDR 4. NIST Thermophysical Properties of Hydrocarbon Mixtures Database: Version 3.2, 
NIST, Boulder, Colorado. http://​www.​nist.​gov/​srd/​nist4.​cfm

	118.	 NIST SDR 10. NIST/ASME Steam Properties Database: Version 2.22, NIST, Boulder. http://​www.​
nist.​gov/​srd/​nist10.​cfm

	119.	 NIST SDR 103b: NIST ThermoData Engine Version 7.0 – Pure Compounds, Binary Mixtures, Ter-
nary Mixtures, and Chemical Reactions, NIST, Boulder. http://​www.​nist.​gov/​srd/​nist1​03b.​cfm

	120.	 NIST SDR 203. NIST Web Thermo Tables (WTT) – Professional Edition, NIST, Boulder. http://​
www.​nist.​gov/​srd/​nistw​ebsub3.​cfm

	121.	 Wilhoit, R.C., Marsh, K.N., Hong, X. Gadalla N., Frenkel, M.: Densities of aliphatic hydrocarbons: 
alkanes. In: Marsh, K.N. (ed.) Landolt-Börnstein, Numerical Data and Functional Relationships in 
Science and Technology, New Series: Group IV: Physical Chemistry, Volume 8: Thermodynamic 
Properties of Organic Compounds and their Mixtures, Subvolume B. Springer, Berlin (1996)

	122.	 Grolier, J.-P.E., Wormald, C.J., Fontaine, J.-C., Sosnkowska-Kehiaian, K., Kehiaian, H.V.: Heats of 
mixing and solution: binary liquid systems of nonelectrolytes. In: Kehiaian, H.V. (ed.) Landolt-Börn-
stein, Numerical Data and Functional Relationships in Science and Technology, New Series: Group 
IV: Physical Chemistry, Volume 10: Heats of Mixing, Subvolume A. Springer, Berlin (2004)

	123.	 Wormald, C.J., Grolier, J.-P.E., Fontaine, J.-C., Sosnkowska-Kehiaian, K., Kehiaian, H.V.: Heats of 
mixing and solution: binary gaseous, liquid, near-critical, and supercritical fluid systems of nonelec-
trolytes. In: Kehiaian, H.V. (ed.) Landolt-Börnstein, Numerical Data and Functional Relationships in 
Science and Technology, New Series: Group IV: Physical Chemistry, Volume 10: Heats of Mixing 
and Solution, Subvolume B. Springer, Berlin (2005)

	124.	 Cibulka, I., Fontaine, J.-C., Sosnkowska-Kehiaian, K., Kehiaian, H.V.: Binary liquid systems of none-
lectrolytes I. Chapter 1. In: Kehiaian, H.V. (ed.) Landolt-Börnstein, Numerical Data and Functional 
Relationships in Science and Technology, New Series: Group IV: Physical Chemistry, Volume 26A: 
Binary Liquid Systems of Nonelectrolytes I. Springer, Berlin (2011)

	125.	 Cibulka, I., Fontaine, J.-C., Sosnkowska-Kehiaian, K., Kehiaian, H.V.: Binary liquid systems of none-
lectrolytes II. Introduction. In: Kehiaian, H.V. (ed.) Landolt-Börnstein, Numerical Data and Func-
tional Relationships in Science and Technology, New Series: Group IV: Physical Chemistry, Volume 
26B: Binary Liquid Systems of Nonelectrolytes II. Springer, Berlin (2012)

	126.	 Cibulka, I., Fontaine, J.-C., Sosnkowska-Kehiaian, K., Kehiaian, H.V.: Binary liquid systems of none-
lectrolytes III. Introduction. In: Kehiaian, H.V. (ed.) Landolt-Börnstein, Numerical Data and Func-
tional Relationships in Science and Technology, New Series: Group IV: Physical Chemistry, Volume 
26C: Binary Liquid Systems of Nonelectrolytes III. Springer, Berlin (2012)

	127.	 Wichterle, I., Linek, J., Wagner, Z., Fontaine, J.-C., Sosnkowska-Kehiaian, K., Kehiaian, H.V.: Binary 
liquid systems of nonelectrolytes. Part 1. In: Kehiaian, H.V. (ed.) Landolt-Börnstein, Numerical Data 
and Functional Relationships in Science and Technology, New Series: Group IV: Physical Chemistry, 
Volume 13: Vapor-Liquid Equilibrium in Mixtures and Solutions, Subvolume A1. Springer, Berlin 
(2007)

	128.	 Wichterle, I., Linek, J., Wagner, Z., Fontaine, J.-C., Sosnkowska-Kehiaian, K., Kehiaian, H.V.: Binary 
liquid systems of nonelectrolytes. Part 2. In: Kehiaian, H.V. (ed.) Landolt-Börnstein, Numerical Data 
and Functional Relationships in Science and Technology, New Series: Group IV: Physical Chemistry, 
Volume 13: Vapor-Liquid Equilibrium in Mixtures and Solutions, Subvolume A2. Springer, Berlin 
(2008)

	129.	 Lacmann, R., Synowietz, C.: Nonaqueous Systems and Ternary Aqueous Systems. In: Schäfer, Kl. 
(ed.) Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, 
New Series: Group IV: Macroscopic and Technical Properties of Matter, Volume 1: Densities of Liq-
uid Systems, Part a. Springer, Berlin (1974)

	130.	 Fredenslund, A., Rasmussen, P.: From UNIFAC to SUPERFAC – and back? Fluid Phase Equilib. 24, 
115–150 (1985)

http://www.nist.gov/srd/nist4.cfm
http://www.nist.gov/srd/nist10.cfm
http://www.nist.gov/srd/nist10.cfm
http://www.nist.gov/srd/nist103b.cfm
http://www.nist.gov/srd/nistwebsub3.cfm
http://www.nist.gov/srd/nistwebsub3.cfm


704	 Journal of Solution Chemistry (2022) 51:626–710

1 3

	131.	 Gmehling, J.: Present status and potential of group contribution methods for process development. J. 
Chem. Thermodyn. 41, 731–747 (2009)

	132.	 Kang, J.W., Diky, V., Chirico, A.D., Magee, J.W., Muzny, C.D., Abdulagatov, L., Kazakov, A.F., 
Frenkel, M.: A new method for evaluation of UNIFAC interaction parameters. Fluid Phase Equilib. 
309, 68–75 (2011)

	133.	 Hector, D., Gmehling, J.: Present status of the modified UNIFAC model for the prediction of phase 
equilibria and excess enthalpies for systems with ionic liquids. Fluid Phase Equilib. 371, 82–92 
(2014)

	134.	 Kang, J.W., Diky, V., Frenkel, M.: New modified UNIFAC parameters using critically evaluated 
phase equilibrium data. Fluid Phase Equilib. 388, 128–141 (2015)

	135.	 Constantinescu, D., Gmehling, J.: Further Development of modified UNIFAC (Dortmund): revision 
and extension. J. Chem. Eng. Data 61, 2738–2748 (2016)

	136.	 Krooshof, G.J.P., Tuinier, R., de With, G.: On the calculation of nearest neighbors in activity coef-
ficient models. Fluid Phase Equilib. 465, 10–23 (2018)

	137.	 Kehiaian, H.V., Grolier, J.-P.E., Benson, G.C.: Thermodynamics of organic mixtures. A generalized 
quasichemical theory in terms of group surface interactions. J. Chim. Phys. 75, 1031–1048 (1978)

	138.	 Kehiaian, H.V., Marongiu, B.: A comparative study of thermodynamic properties and molecu-
lar interactions in mono- and polychloroalkane + n-alkane or + cyclohexane mixtures. Fluid Phase 
Equilib. 40, 23–78 (1988)

	139.	 Marongiu, B., Piras, A., Porcedda, S., Tuveri, E.: Excess enthalpies of aromatic ether or aromatic 
ketone (1) + n-heptane (2) mixtures. J. Therm. Anal. Calorim. 92, 137–144 (2008)

	140.	 Duce, C., Tiné, M.R., Lepori, L., Matteoli, E., Marongiu, B., Piras, A.: A comparative study of ther-
modynamic properties of binary mixtures containing perfluoroalkanes. J. Therm. Anal. Calorim. 92, 
145–154 (2008)

	141.	 Bronneberg, R., Pfennig, A.: MOQUAC, a new expression for the excess Gibbs energy based on 
molecular orientations. Fluid Phase Equilib. 338, 63–77 (2013)

	142.	 Bouillot, B., Teychené, S., Biscans, B.: An evaluation of thermodynamic models for the prediction of 
drug and drug-like molecule solubility in organic solvents. Fluid Phase Equilib. 309, 36–52 (2011)

	143.	 Grensemann, H., Gmehling, J.: Performance of a conductor-like screening model for real solvents 
model in comparison to classical group contribution methods. Ind. Eng. Chem. Res. 44, 1610–1624 
(2005)

	144.	 Hsieh, C.-M., Sandler, S.I., Lin, S.-T.: Improvements of COSMO-SAC for vapor–liquid and liquid-
liquid equilibrium predictions. Fluid Phase Equilib. 297, 90–97 (2010)

	145.	 Panayiotou, C.: Toward a COSMO equation-of-state model of fluids and their mixtures. Pure Appl. 
Chem. 83, 1221–1242 (2011)

	146.	 Dong, Y., Huang, S., Guo, Y., Lei, Z.: COSMO-UNIFAC model for ionic liquids. AIChE J. 66, 
e16787/1–5 (2020)

	147.	 Zhu, R., Taheri, M., Zhang, J., Lei, Z.: Extension of the COSMO-UNIFAC thermodynamic model. 
Ind. Eng. Chem. Res. 59, 1693–1701 (2020)

	148.	 Prigogine, I., Defay, R., translated by Everett, D.H.: Chemical Thermodynamics. Longmans, Green 
and Co, London (1954)

	149.	 Haase, R.: Thermodynamik der Mischphasen; mit einer Einführung in die Grundlagen der Thermo-
dynamik. Springer, Berlin (1956)

	150.	 Kortüm, G., Lachmann, H.: Einführung in die chemische Thermodynamik: Phänomenologische und 
statistische Behandlung, 7th edn. Verlag Chemie, Weinheim (1981)

	151.	 Lewis, G.N., Randall, M.: Thermodynamics, 2nd edn.; revised by Pitzer. K.S., Brewer, L. McGraw-
Hill, New York (1961)

	152.	 Marsh, K.N., O’Hare, P.A.G. (eds.): Solution Calorimetry; Experimental Thermodynamics, Volume 
IV. Blackwell Scientific Publications/IUPAC, Oxford (1994)

	153.	 Goodwin, A.R.H., Marsh, K.N. (eds.): Measurement of the Thermodynamic Properties of Single 
Phases; Experimental Thermodynamics, Volume VI. Elsevier/IUPAC, Amsterdam (2003)

	154.	 Höhne, G., Hemminger, W., Flammersheim, H.-J.: Differential Scanning Calorimetry, 2nd edn. 
Springer, Berlin (2003)

	155.	 Wilhelm, E., Letcher, T.M. (eds.): Heat Capacities: Liquids, Solutions and Vapours. The Royal Soci-
ety of Chemistry/IUPAC & IACT, Cambridge (2010)

	156.	 Sarge, S.M., Höhne, G.W.H., Hemminger, W.: Calorimetry: Fundamentals, Instrumentation and 
Applications. Wiley-VCH, Weinheim (2014)

	157.	 Wilhelm, E.: Chemical thermodynamics: a journey of many vistas. J. Solution Chem. 43, 525–576 
(2014)



705Journal of Solution Chemistry (2022) 51:626–710	

1 3

	158.	 Wilhelm, E., Letcher, T.M. (eds.): Volume Properties: Liquids, Solutions and Vapours. The Royal 
Society of Chemistry/IUPAC & IACT, Cambridge (2015)

	159.	 Wilhelm, E., Grolier, J.-P.E.: Excess volumes of liquid nonelectrolyte mixtures. In: Wilhelm, E., 
Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 163–245. The Royal 
Society of Chemistry/IUPAC & IACT, Cambridge (2015)

	160.	 Wilhelm, E., Letcher, T.M. (eds.): Enthalpy and Internal Energy: Liquids, Solutions and Vapours. The 
Royal Society of Chemistry/IACT, London (2018)

	161.	 Conder, J.R., Young, C.L.: Physicochemical Measurements by Gas Chromatography. Wiley, New 
York (1979)

	162.	 Deiters, U.K., Schneider, G.M.: High pressure phase equilibria: experimental methods. Fluid Phase 
Equilib. 29, 145–160 (1986)

	163.	 Fornari, R.E., Alessi, P., Kikic, I.: High pressure fluid phase equilibria: experimental methods and 
systems investigated (1978–1987). Fluid Phase Equilib. 57, 1–33 (1990)

	164.	 Dohrn, R., Brunner, G.: High-pressure fluid-phase equilibria: experimental methods and systems 
investigated (1988–1993). Fluid Phase Equilib. 106, 213–282 (1995)

	165.	 Kolb, B., Ettre, L.S.: Static Headspace-Gas Chromatography. Theory and Practice. Wiley, New York 
(1997)

	166.	 Raal, J.D., Mühlbauer, A.L.: Phase Equilibria: Measurement and Computation. Taylor & Francis, 
Washington, DC (1998)

	167.	 Raal, J.D., Ramjugernath, D.: Vapour-liquid equilibrium at low pressure. In: Weir, A.D., de Loos, 
Th.W. (eds.) Measurement of the Thermodynamic Properties of Multiple Phases; Experimental Ther-
modynamics, Volume VII, pp. 71–87. Elsevier/IUPAC, Amsterdam (2005)

	168.	 Richon, D., de Loos, Th.W.: Vapour-liquid equilibrium at high pressure. In: Weir, A.D., de Loos, 
Th.W. (eds.) Measurement of the Thermodynamic Properties of Multiple Phases; Experimental Ther-
modynamics, Volume VII, pp. 89–136. Elsevier/IUPAC, Amsterdam (2005)

	169.	 Wilhelm, E.: Low-pressure solubility of gases in liquids. In: Weir, A.D., de Loos, Th.W. (eds.) Meas-
urement of the Thermodynamic Properties of Multiple Phases; Experimental Thermodynamics, Vol-
ume VII, pp. 137–176. Elsevier/IUPAC, Amsterdam (2005)

	170.	 Raal, J.D., Ramjugernath, D.: Measurement of limiting activity coefficients: non-analytical tools. 
In: Weir, A.D., de Loos, Th.W. (eds.) Measurement of the Thermodynamic Properties of Multiple 
Phases; Experimental Thermodynamics, Volume VII, pp. 339–357. Elsevier/IUPAC, Amsterdam 
(2005)

	171.	 Dohnal, V.: Measurement of limiting activity coefficients using analytical tools. In: Weir, A.D., de 
Loos, Th.W. (eds.) Measurement of the Thermodynamic Properties of Multiple Phases; Experimental 
Thermodynamics, Volume VII, pp. 359–381. Elsevier/IUPAC, Amsterdam (2005)

	172.	 Wilhelm, E., Letcher, T.M. (eds.): Gibbs Energy and Helmholtz Energy: Liquids, Solutions and 
Vapours. The Royal Society of Chemistry/IACT, London (2021)

	173.	 Redlich, O., Kister, A.T.: Algebraic representation of properties and the classification of solutions. 
Ind. Eng. Chem. 40, 345–348 (1948)

	174.	 Scatchard, G.: Equilibrium in non-electrolyte mixtures. Chem. Rev. 44, 7–35 (1949)
	175.	 Wilson, G.M.: From Redlich-Kister to local composition models, group solutions, and electrolytes. 

Fluid Phase Equilib. 24, 77–85 (1985)
	176.	 Myers, D.B., Scott, R.L.: Thermodynamic functions for nonelectrolyte solutions. Ind. Eng. Chem. 55, 

43–46 (1963)
	177.	 Marsh, K.N.: A general method for calculating the excess Gibbs free energy from isothermal vapour-

liquid equilibria. J. Chem. Thermodyn. 9, 719–724 (1977)
	178.	 Baker, G.A., Graves-Morris, P.R.: Padé Approximants. Addison-Wesley, Reading (1981)
	179.	 Klaus, R.L., Van Ness, H.C.: The orthogonal polynomial representation of thermodynamic excess 

functions. Chem. Eng. Prog. Symp. Ser. 63(81), 88–104 (1967)
	180.	 Bale, C.W., Pelton, A.D.: Mathematical representation of thermodynamic properties in binary sys-

tems and solution of Gibbs-Duhem equation. Metall. Trans. 5, 2323–2337 (1974)
	181.	 Pelton, A.D., Bale, C.W.: Legendre polynomial expansions of thermodynamic properties of binary 

solutions. Metall. Trans. A 17A, 1057–1063 (1986)
	182.	 Kaptay, G.: A new equation for the temperature dependence of the excess Gibbs energy of solution 

phases. Calphad 28, 115–124 (2004)
	183.	 Howald, R.A., Eliezer, I.: Comparison of the Bale-Pelton and Redlich-Kister representations of ther-

modynamic properties of binary systems. Metall. Trans. B 8B, 190–191 (1977)
	184.	 Tomiska, J.: Zur Konversion der Anpassungen thermodynamischer Funktionen mittels einer Reihe 

Legendre’scher Polynome und der Potenzreihe. Calphad 5, 93–102 (1981)



706	 Journal of Solution Chemistry (2022) 51:626–710

1 3

	185.	 Kohler, F.: Zur Berechnung der thermodynamischen Daten eines ternären Systems aus den zuge-
hörigen binären Systemen. Monatsh. Chem. 91, 738–740 (1960)

	186.	 Hwa, S.C.P., Ziegler, W.T.: Temperature dependence of excess thermodynamic properties of ethanol-
methylcyclohexane and ethanol-toluene systems. J. Phys. Chem. 70, 2572–2593 (1966)

	187.	 Holzhauer, J.K., Ziegler, W.T.: Temperature dependence of excess thermodynamic properties of 
n-heptane-toluene, methylcyclohexane-toluene, and n-heptane-methylcyclohexane systems. J. Phys. 
Chem. 79, 590–604 (1975)

	188.	 Wilhelm, E., Egger, W., Vencour, M., Roux, A.H., Polednicek, M., Grolier, J.-P.E.: Thermodynamics 
of liquid mixtures of a very polar and a non-polar aromatic: (benzonitrile + benzene, or toluene). J. 
Chem. Thermodyn. 30, 1509–1532 (1998)

	189.	 Grolier, J.-P.E., Inglese, A., Wilhelm, E.: Excess molar heat capacities of (1,4-dioxane + an n-alkane): 
an unusual composition dependence. J. Chem. Thermodyn. 16, 67–71 (1984); the experimental 
results, that is, W-shaped curves at 298.15 K and atmospheric pressure, were already communicated 
at the 37th Calorimetry Conference in Snowbird, Utah, 20 to 23 July, 1982, Paper No. 54

	190.	 Sandler, S.I.: Infinite dilution activity coefficients in environmental and biochemical engineering. 
Fluid Phase Equilib. 116, 343–353 (1996)

	191.	 Turner, L.H., Chiew, Y.C., Ahlert, R.C., Kosson, D.S.: Measuring vapor–liquid equilibrium for aque-
ous-organic systems: review and a new technique. AIChE J. 42, 1772–1788 (1996)

	192.	 Kojima, K., Zhang, S., Hiaki, T.: Measuring methods of infinite dilution activity coefficients and a 
database for systems including water. Fluid Phase Equilib. 131, 145–179 (1997)

	193.	 Schreiber, L.B., Eckert, C.A.: Use of infinite dilution activity coefficients with Wilson’s equation. Ind. 
Eng. Chem. Process Des. Dev. 10, 572–576 (1971)

	194.	 Letcher, T.M.: Activity coefficients at infinite dilution from gas-liquid chromatography. In: 
McGlashan, M.L. (ed.) Chemical Thermodynamics, Volume 2, A Specialist Periodical Report, pp. 
46–70. The Chemical Society, London (1978)

	195.	 Wisniak, J.: Max Margules - a cocktail of meteorology and thermodynamics. J. Phase Equilib. 24, 
103–109 (2003)

	196.	 van Klooster, H.S.: J. J. van Laar, pioneer in chemical thermodynamics. J. Chem. Educ. 39, 74–76 
(1962)

	197.	 Wisniak, J.: Johannes Jacobus van Laar: unappreciated scientist. Chem. Educ. 5, 335–339 (2000)
	198.	 Wilson, G.M.: Vapor–liquid equilibrium XI: a new expression for the excess free energy of mixing. J. 

Am. Chem. Soc. 86, 127–130 (1964)
	199.	 Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mix-

tures. AIChE J. 14, 135–144 (1968)
	200.	 Renon, H., Prausnitz, J.M.: Estimation of parameters for the NRTL equation for excess Gibbs ener-

gies of strongly nonideal liquid mixtures. Ind. Eng. Chem. Process Des. Dev. 8, 413–419 (1969)
	201.	 Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for 

the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)
	202.	 Maurer, G., Prausnitz, J.M.: On the derivation and extension of the UNIQUAC equation. Fluid Phase 

Equilib. 2, 91–99 (1978)
	203.	 Anderson, T.F., Prausnitz, J.M.: Application of the UNIQUAC equation to calculation of multicom-

ponent phase equilibria 1: vapor–liquid equilibria. Ind. Eng. Chem. Process Des. Dev. 17, 552–560 
(1978)

	204.	 Anderson, T.F., Prausnitz, J.M.: Application of the UNIQUAC equation to calculation of multicom-
ponent phase equilibria 2: liquid-liquid equilibria. Ind. Eng. Chem. Process Des. Dev. 17, 561–567 
(1978)

	205.	 Kemény, S., Rasmussen, P.: A derivation of local composition expressions from partition functions. 
Fluid Phase Equilib. 7, 197–203 (1981)

	206.	 Kehiaian, H.V.: Thermodynamik flüssiger Mischungen von Kohlenwasserstoffen mit verwandten 
Substanzen. Ber. Bunsenges. Physik. Chem. 81, 908–921 (1977)

	207.	 Kehiaian, H.V.: Group contribution methods for liquid mixtures: A critical review. Fluid Phase 
Equilib. 13, 243–252 (1983)

	208.	 Kehiaian, H.V.: Thermodynamics of binary liquid organic mixtures. Pure Appl. Chem. 57, 15–30 
(1985)

	209.	 Marongiu, B., Porcedda, S., Piras, A., Falconieri, D., Tiné, M.R.: The DISQUAC model. Rev. Roum. 
Chim. 56, 453–464 (2011)

	210.	 Battino, R., Clever, H.L.: The solubility of gases in liquids. Chem. Rev. 66, 395–463 (1966)
	211.	 Wilhelm, E., Battino, R.: Thermodynamic functions of the solubilities of gases in liquids at 25 °C. 

Chem. Rev. 73, 1–9 (1973)



707Journal of Solution Chemistry (2022) 51:626–710	

1 3

	212.	 Kruis, A.: Gleichgewicht der Absorption von Gasen in Flüssigkeiten: Absorption in Flüssigkeiten 
von niedrigem Dampfdruck. In: Hausen, H. (ed.)   Landolt-Börnstein, Zahlenwerte und Funktionen 
aus Physik, Chemie, Astronomie, Geophysik und Technik, 6. Auflage: IV. Band: Technik, 4. Teil: 
Wärmetechnik, Bandteil c1. Springer, Berlin (1976)

	213.	 Kruis, A.: Gleichgewicht der Absorption von Gasen in Flüssigkeiten: Absorption in Flüssigkeiten von 
hohem Dampfdruck. In: Hausen, H. (ed.) Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, 
Chemie, Astronomie, Geophysik und Technik, 6. Aufllage: IV. Band: Technik, 4. Teil: Wärmetechnik, 
Bandteil c2. Springer, Berlin (1980)

	214.	 Wilhelm, E., Battino, R., Wilcock, R.J.: Low-pressure solubility of gases in liquid water. Chem. Rev. 
77, 219–262 (1977)

	215.	 Mackay, D., Shiu, W.Y.: A critical review of Henry’s law constants for chemicals of environmental 
interest. J. Phys. Chem. Ref. Data 10, 1175–1199 (1981)

	216.	 Wilhelm, E.: Precision methods for the determination of the solubility of gases in liquids. CRC Crit. 
Rev. Analyt. Chem. 16, 129–175 (1985)

	217.	 Wilhelm, E.: Dilute solutions of gases in liquids. Fluid Phase Equilib. 27, 233–261 (1986)
	218.	 Wilhelm, E.: Thermodynamics of solutions, especially dilute solutions of nonelectrolytes. In: Teix-

eira-Dias, J.J.C. (ed.) Molecular Liquids: New Perspectives in Physics and Chemistry, pp. 175–206. 
Kluwer Academic Publishers, Dordrecht (1992)

	219.	 Wilhelm, E.: The art and science of solubility measurements: what do we learn? Netsu Sokutai 39(2), 
61–86 (2012)

	220.	 Dymond, J.H., Marsh, K.N., Wilhoit, R.C., Wong, K.C.: Virial coefficients of pure gases. In: Frenkel, 
M., Marsh, K.N. (eds.) Landolt-Börnstein, Numerical Data and Functional Relationships in Science 
and Technology, New Series: Group IV: Physical Chemistry, Volume 21: Virial Coefficients of Pure 
Gases and Mixtures, Subvolume A. Springer, Heidelberg (2002)

	221.	 Dymond, J.H., Marsh, K.N., Wilhoit, R.C.: Virial coefficients of mixtures. In: Frenkel, M., Marsh, 
K.N. (eds.) Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technol-
ogy, New Series: Group IV: Physical Chemistry, Volume 21: Virial Coefficients of Pure Gases and 
Mixtures, Subvolume B. Springer, Heidelberg (2003)

	222.	 Harvey, A.H., Lemmon, E.W.: Correlation for the second virial coefficient of water. J. Phys. Chem. 
Ref. Data 33, 369–376 (2004)

	223.	 Tsonopoulos, C., Dymond, J.H.: Second virial coefficients of normal alkanes, linear 1-alkanols (and 
water), alkyl ethers, and their mixtures. Fluid Phase Equilib. 133, 11–34 (1997)

	224.	 Moore, J.C., Battino, R., Rettich, T.R., Handa, Y.P., Wilhelm, E.: Partial molar volumes of “gases” at 
infinite dilution in water at 298.15 K. J. Chem. Eng. Data 27, 22–24 (1982)

	225.	 Zhou, T., Battino, R.: Partial molar volumes of 13 gases in water at 298.15 K and 303.15 K. J. Chem. 
Eng. Data 46, 331–332 (2001)

	226.	 Wilhelm, E., Battino, R.: Partial molar volumes of gases dissolved in liquids. In: Wilhelm, E., 
Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 273–306. The Royal 
Society of Chemistry/IUPAC & IACT, Cambridge (2015)

	227.	 Cibulka, I., Heintz, A.: Partial molar volumes of air-component gases in binary liquid mixtures with 
n-alkanes and 1-alkanols at 298.15 K. Fluid Phase Equilib. 107, 235–255 (1995)

	228.	 Izák, P., Cibulka, I., Heintz, A.: Partial molar volumes of air-component gases in several liquid 
n-alkanes and 1-alkanols at 31315 K. Fluid Phase Equilib. 109, 227–234 (1995)

	229.	 Ashcroft, S.J., Ben Isa, M.: Effect of dissolved gases on the densities of hydrocarbons. J. Chem. Eng. 
Data 42, 1244–1248 (1997)

	230.	 Albert, H.J., Wood, R.H.: High-precision flow densimeter for fluids at temperatures to 700 K and 
pressures to 40 MPa. Rev. Sci. Instrum. 55, 589–593 (1984)

	231.	 Biggerstaff, D.R., Wood, R.H.: Apparent molar volumes of aqueous argon, ethylene, and xenon from 
300 to 716 K. J. Phys. Chem. 92, 1988–1994 (1988)

	232.	 Hnedkovský, L., Wood, R.H., Majer, V.: Volumes of aqueous solutions of CH4, CO2, H2S, and NH3 
at temperatures from 298.15 K to 705 K and pressures to 35 MPa. J. Chem. Thermodyn. 28, 125–142 
(1996)

	233.	 Handa, Y.P., D’Arcy, P.J., Benson, G.C.: Partial molar volumes of gases dissolved in liquids: part II: 
a dilatometer for measuring infinite-dilution partial molar volumes, and results for 40 liquid-gas sys-
tems. Fluid Phase Equilib. 8, 181–196 (1982)

	234.	 Bignell, N.: Partial molar volumes of atmospheric gases in water. J. Phys. Chem. 88, 5409–5412 
(1984)

	235.	 Bignell, N.: Precise density measurements of aqueous solutions of mixed nonpolar gases. J. Phys. 
Chem. 91, 1687–1690 (1987)



708	 Journal of Solution Chemistry (2022) 51:626–710

1 3

	236.	 Harvey, A.H., Kaplan, S.G., Burnett, J.H.: Effect of dissolved air on the density and refractive index 
of water. Int. J. Thermophys. 26, 1495–1514 (2005)

	237.	 Wilhelm, E.: Caloric properties of dilute nonelectrolyte solutions. Thermochim. Acta 300, 159–168 
(1997)

	238.	 Wilhelm, E.: Thermodynamics of nonelectrolyte solubility. In: Letcher, T.M. (ed.) Developments and 
Applications in Solubility, pp. 3–18. The Royal Society of Chemistry/IUPAC, Cambridge (2007)

	239.	 Wilhelm, E.: Aqueous solutions of nonelectrolytes: a molecular thermodynamics perspective. J. 
Therm. Anal. Calorim. 108, 547–558 (2012)

	240.	 Wilhelm, E., Battino, R.: Partial molar heat capacity changes of gases in liquids. In: Wilhelm, E., 
Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 457–471. The Royal Soci-
ety of Chemistry/IUPAC & IACT, Cambridge (2010)

	241.	 Wilhelm, E., Battino, R.: Enthalpy changes on solution of gases in liquids. In: Wilhelm, E., Letcher, 
T.M. (eds.) Enthalpy and Internal Energy: Liquids, Solutions and Vapours, pp. 269–298. The Royal 
Society of Chemistry/IACT, Cambridge (2018)

	242.	 Clarke, E.C.W., Glew, D.N.: Evaluation of thermodynamic functions from equilibrium constants. 
Trans. Faraday Soc. 62, 539–547 (1966)

	243.	 Bolton, P.D.: Calculation of thermodynamic functions from equilibrium data. J. Chem. Educ. 47, 
638–641 (1970)

	244.	 Wauchope, R.D., Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects. Can. 
J. Chem. 50, 133–138 (1972)

	245.	 Benson, B.B., Krause, D., Jr.: Empirical laws for dilute aqueous solutions of nonpolar gases. J. Chem. 
Phys. 64, 689–709 (1976)

	246.	 Benson, B.B., Krause, D., Jr., Peterson, M.A.: The solubility and isotope fractionation of gases in 
dilute aqueous solutions I. Oxygen. J. Solution Chem. 8, 655–690 (1979)

	247.	 Krause, D., Jr., Benson, B.B.: The solubility and isotopic fractionation of gases in dilute aqueous 
solutions. IIa: solubilities of the noble gases. J. Solution Chem. 18, 823–873 (1989)

	248.	 Valentiner, S.: Über die Löslichkeit der Edelgase in Wasser. Z. Phys. 42, 253–264 (1927)
	249.	 Crovetto, R., Fernández-Prini, R., Japas, M.L.: Solubilities of inert gases and methane in H2O and in 

D2O in the temperature range of 300 to 600 K. J. Chem. Phys. 76, 1077–1086 (1982)
	250.	 Harvey, A.H.: Semiempirical correlation for Henry’s constants over large temperature ranges. AIChE 

J. 42, 1491–1494 (1996)
	251.	 Fernández-Prini, R., Alvarez, J.L., Harvey, A.H.: Henry’s constants and vapor–liquid distribution 

constants for gaseous solutes in H2O and in D2O at high temperatures. J. Phys. Chem. Ref. Data 32, 
903–916 (2003)

	252.	 Rettich, T.R., Handa, Y.P., Battino, R., Wilhelm, E.: Solubility of gases in liquids 13. High-precision 
determination of Henry’s constants for methane and ethane in liquid water at 275 to 328 K. J. Phys. 
Chem. 85, 3230–3237 (1981)

	253.	 Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd edn. 
Wiley, New York (1980)

	254.	 Ben-Naim, A.: Hydrophobic Interactions. Plenum Press, New York (1980)
	255.	 Pratt, L.R.: Molecular theory of hydrophobic effects: “She is too mean to have her name repeated.” 

Ann. Rev. Phys. Chem. 53, 409–436 (2002)
	256.	 Southall, N.T., Dill, K.A., Haymet, A.D.J.: A view of the hydrophobic effect. J. Phys. Chem. B 106, 

521–533 (2002)
	257.	 Ben-Amotz, D., Underwood, R.: Unraveling water’s entropic mysteries: a unified view of nonpolar, 

polar and ionic hydration. Acc. Chem. Res. 41, 957–967 (2008)
	258.	 Ball, P.: Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008)
	259.	 Paschek, D., Ludwig, R., Holzmann, J.: Computer simulation studies of heat capacity effects associ-

ated with hydrophobic effects. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solu-
tions and Vapours, pp. 436–456. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)

	260.	 Hillyer, M.B., Gibb, B.C.: Molecular shape and the hydrophobic effect. Ann. Rev. Phys. Chem. 67, 
307–329 (2016)

	261.	 Ben-Amotz, D.: Water-mediated hydrophobic interactions. Ann. Rev. Phys. Chem. 67, 617–638 
(2016)

	262.	 Silverstein, T.P.: The hydrophobic effect: is water afraid or just not that interested? ChemTexts 6, 
26/1–26 (2020)

	263.	 Japas, M.L., Levelt Sengers, J.M.H.: Gas solubility and Henry’s law near the solvent’s critical point. 
AIChE J. 35, 705–713 (1989)

	264.	 Benson, B.B., Krause, D., Jr.: A thermodynamic treatment of dilute solutions of gases in liquids. J. 
Solution Chem. 18, 803–821 (1989)



709Journal of Solution Chemistry (2022) 51:626–710	

1 3

	265.	 Alexander, D.M.: A calorimetric measurement of the heats of solution of the inert gases in water. J. 
Phys. Chem. 63, 994–996 (1959)

	266.	 Battino, R., Marsh, K.N.: An isothermal displacement calorimeter for the measurement of the 
enthalpy of solution of gases. Aust. J. Chem. 33, 1997–2003 (1980)

	267.	 Gill, S.J., Wadsö, I.: Flow-microcalorimetric techniques for solution of slightly soluble gases. 
Enthalpy of solution of oxygen in water at 298.15 K. J. Chem. Thermodyn. 14, 905–919 (1982)

	268.	 Dec, S.F., Gill, S.J.: Steady-state gas dissolution flow microcalorimeter for determination of heats of 
solution of slightly soluble gases in water. Rev. Sci. Instrum. 55, 765–772 (1984)

	269.	 Olofsson, G., Oshodj, A.A., Qvarnström, E., Wadsö, I.: Calorimetric measurements on slightly solu-
ble gases in water. Enthalpies of solution of helium, neon, argon, krypton, xenon, methane, ethane, 
propane, n-butane, and oxygen at 288.15, 298.15, and 308.15 K. J. Chem. Thermodyn. 16, 1041–
1052 (1984)

	270.	 Dec, S.F., Gill, S.J.: Heats of solution of gaseous hydrocarbons in water at 25 °C. J. Solution Chem. 
13, 27–41 (1984)

	271.	 Dec, S.F., Gill, S.J.: Enthalpies of aqueous solutions of noble gases at 25 °C. J. Solution Chem. 14, 
417–429 (1985)

	272.	 Dec, S.F., Gill, S.J.: Heats of solution of gaseous hydrocarbons in water at 15, 25, and 35 °C. J. Solu-
tion Chem. 14, 827–836 (1985)

	273.	 Naghibi, H., Dec, S.F., Gill, S.J.: Heat of solution of methane in water from 0 to 50 °C. J. Phys. 
Chem. 90, 4621–4623 (1986)

	274.	 Naghibi, H., Dec, S.F., Gill, S.J.: Heats of solution of ethane and propane in water from 0 to 50 °C. J. 
Phys. Chem. 91, 245–248 (1987)

	275.	 Naghibi, H., Ownby, D.W., Gill, S.J.: Enthalpies of solution of butanes in water from 5 to 45 °C. J. 
Chem. Eng. Data 32, 422–425 (1987)

	276.	 Naghibi, H., Ownby, D.W., Gill, S.J.: Heats of solution of several freons in water from 5 to 45 °C. J. 
Solution Chem. 16, 171–179 (1987)

	277.	 Hallén, D., Wadsö, I.: A new microcalorimetric vessel for dissolution of slightly soluble gases. 
Enthalpies of solution in water of carbon tetrafluoride and sulphur hexafluoride at 288.15, 298.15, and 
308.15 K. J. Chem. Thermodyn. 21, 519–528 (1989)

	278.	 Biggerstaff, D.R., White, D.E., Wood, R.H.: Heat capacities of aqueous argon from 306 to 578 K. J. 
Phys. Chem. 89, 4378–4381 (1985)

	279.	 Biggerstaff, D.R., Wood, R.H.: Apparent molar heat capacities of aqueous argon, ethylene, and xenon 
at temperatures up to 720 K and pressures to 33 MPa. J. Phys. Chem. 92, 1994–2000 (1988)

	280.	 Hnedkovský, L., Wood, R.H.: Apparent molar heat capacities of aqueous solutions of CH4, CO2, H2S, 
and NH3 at temperatures from 304 K to 704 K at a pressure of 28 MPa. J. Chem. Thermodyn. 29, 
731–747 (1997)

	281.	 Picker, P., Leduc, P.-A., Philip, P.R., Desnoyers, J.E.: Heat capacity of solutions by flow microcalo-
rimetry. J. Chem. Thermodyn. 3, 631–642 (1971)

	282.	 Barbero, J.A., McCurdy, K.G., Tremaine, P.R.: Apparent molal heat capacities and volumes of aque-
ous hydrogen sulfide and sodium hydrogen sulfide near 25 °C: the temperature dependence of H2S 
ionization. Can. J. Chem. 60, 1872–1880 (1982)

	283.	 Barbero, J.A., Hepler, L.G., McCurdy, K.G., Tremaine, P.R.: Thermodynamics of aqueous carbon 
dioxide and sulfur dioxide: heat capacities, volumes, and the temperature dependence of ionization. 
Can. J. Chem. 61, 2509–2519 (1983)

	284.	 Battino, R.: Thermodynamics works! Enthalpy and heat capacity changes on solution from gas solu-
bility data. J. Chem. Eng. Data 54, 301–304 (2009)

	285.	 Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids 15: high-precision determination 
of Henry coefficients for carbon monoxide in liquid water at 278 to 323 K. Ber. Bunsenges. Phys. 
Chem. 86, 1128–1132 (1982)

	286.	 Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids 16: Henry’s law coefficients for 
nitrogen in liquid water at 5 to 50 °C. J. Solution Chem. 13, 335–348 (1984)

	287.	 Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids 18: high-precision determination 
of Henry fugacities for argon in liquid water at 2 to 40°C. J. Solution Chem. 21, 987–1004 (1992)

	288.	 Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids 22: high-precision determination 
of Henry’s law constants of oxygen in liquid water from T = 274 K to T = 328 K. J. Chem. Thermo-
dyn. 32, 1145–1156 (2000)

	289.	 Rettich, T.R., Battino, R., Wilhelm, E.: in preparation; communicated by E. W. at the 20th ICCT, 
Warsaw, Poland, August 3 – 8, 2008: p. 127, paper ES-RS-O-8

	290.	 Ben-Naim, A.: Hydrophobic hydrophilic phenomena in biochemical processes. Biophys. Chem. 105, 
183–193 (2003)



710	 Journal of Solution Chemistry (2022) 51:626–710

1 3

	291.	 Ben-Naim, A.: The rise and fall of the hydrophobic effect in protein folding and protein-protein asso-
ciation and molecular recognition. Open J. Biophys. 1, 1–7 (2011)

	292.	 Wilhelm, E.: In appreciation of Professor Robert H. Wood. J. Solution Chem. 44, 908–911 (2015)
	293.	 Wilhelm, E., Fischer, J.: In appreciation of Professor Friedrich Kohler. Fluid Phase Equilib. 48, VII–

VIII (1989)
	294.	 Grolier, J.-P.E., Wilhelm, E.: Obituary: Henry Vartan Kehiaian (1929–2009). Fluid Phase Equilib. 

293, 261 (2010)
	295.	 Grolier, J.-P.E., Wilhelm, E.: Obituary: Henry Vartan Kehiaian (1929–2009). J. Chem. Eng. Data 55, 

1467 (2010)
	296.	 International Union of Pure and Applied Chemistry: Quantities, Units and Symbols in Physical 

Chemistry, 3rd edn. RSC Publishing, Cambridge (2007)
	297.	 Griffiths, R.B., Wheeler, J.C.: Critical points in multicomponent systems. Phys. Rev. A 2, 1047–1064 

(1970)
	298.	 Wilhelm, E.: Volumetric properties: introduction, concepts and selected applications. In: Wilhelm, E., 

Letcher, T.M. (eds.) Volume Properties: Liquids, Solutions and Vapours, pp. 1–72. The Royal Society 
of Chemistry/ IUPAC & IACT, Cambridge (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Emmerich Wilhelm1 

 *	 Emmerich Wilhelm 
	 emmerich.wilhelm@univie.ac.at

1	 Institute of Materials Chemistry & Research, University of Wien (Vienna), Währinger Straße 42, 
1090 Wien (Vienna), Austria

http://orcid.org/0000-0002-4346-0133

	Solutions, in Particular Dilute Solutions of Nonelectrolytes: A Review
	Abstract
	1 Introduction
	1.1 Preliminaries
	1.2 Thermodynamic Fundamentals

	2 Thermodynamic Properties of Fluids
	2.1 Residual Properties
	2.2 Isobaric Residual Properties, Fugacities and Fugacity Coefficients
	2.3 Empirical Equations of State: Selected Comments
	2.4 Property Changes on Mixing and Excess Properties
	2.5 Correlation of Experimental Data
	2.6 Excess Molar Gibbs Energy and Lewis–Randall Activity Coefficients (in Particular at Infinite Dilution)
	2.7 Henry’s Law: An Alternative Ideal-Solution Model for Liquid Systems

	3 Concluding Remarks, Future Directions and Acknowledgments
	References




