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Abstract

Apparent molar volumes (¢,,) of glycine/L-alanine in water and in aqueous citric acid (CA)
solutions of varying concentrations, i.e. (0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) mol-kg_1
were determined from density measurements at temperatures 7=(288.15, 298.15, 308.15,
310.15 and 318.15) K and at atmospheric pressure. Limiting partial molar volumes (¢y,)
and their corresponding partial molar volumes of transfer (A,¢,) have been calculated
from the ¢, data. The negative A ¢, values obtained for glycine/L-alanine from water
to aqueous CA solutions indicate the dominance of hydrophilic—hydrophobic/hydropho-
bic-hydrophilic and hydrophobic—hydrophobic interactions over ion/hydrophilic—dipolar
interactions. Further, pair and triplet interaction coefficients, i.e. (V,5) and (V,pg) along
with hydration number (ny;) have also been calculated. The effect of temperature on the
volumetric properties of glycine/L-alanine in water and in aqueous CA solutions has been
determined from the limiting partial molar expansibilities (d¢y, / dT), and their second-
order derivative (()2(},’)“’/ /0T?)p. The apparent specific volumes (v,) for glycine and L-alanine
tend to approach sweet taste behavior both in the presence of water and in aqueous CA
solutions. The v, values for glycine/L-alanine increase with increase in concentration of CA
at all temperatures studied. This reveals that CA helps in enhancing the sweet taste behav-
ior of glycine/L-alanine which also supports the dominance of hydrophobic—hydrophobic
interactions.

Keywords Hydration number - Interaction coefficients - Partial molar expansibilities -
Partial molar volumes - Partial molar volumes of transfer - Apparent specific volumes
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1 Introduction

Amino acids are the building blocks of proteins, thus they are regarded as an ideal model
for the study of protein functioning and their complex structure [1, 2]. The functional prop-
erties of protein molecules depend upon their three dimensional structure which arises due
to a particular sequence of amino acids (hereafter written as AA) in a polypeptide chain.
All AAs exists as zwitterionic species in aqueous solutions [3], thus their thermodynamic
properties in a variety of media can provide valuable information about the stability and
denaturation of proteins [4—16]. Recently, Lomesh and Kumar [17, 18] have reported the
volumetric and acoustic properties of glycine, diglycine, L-alanine and L-phenylalanine in
water and in 0.1 mol-kg™! aqueous citric acid at different temperatures. Further, a literature
survey reveals that not much systematic data is available regarding the thermodynamic and
transport properties of AA as a function of concentration in citric acid solutions at different
temperatures.

Citric acid (CA) (2-hydroxy-1,2,3-propanetricarboxylic acid) is a tri-basic acid and
common metabolite of plants and animals. It is an environmentally acceptable organic
acid, used in food, beverages, pH adjustment in buffers, and pharmaceuticals (as an acidi-
fier) [19, 20], and is known to increase the stability of proteins [13]. The presence of one
hydroxyl and three carboxyl groups in CA provides effective chemical properties so that it
can act as an important metabolite in the citric acid cycle (CAC) of all aerobic organisms
[21]. It also acts as a precursor for the bio-synthesis of many compounds in CAC includ-
ing AA [22]. Therefore, it is of great interest to investigate the molecular interactions of
AA with CA which can influence the behavior and conformational stability of proteins. In
light of the above facts, presently we report the apparent molar volumes (¢y,) of glycine/L-
alanine (both are non-essential amino acids) in water and in aqueous CA solutions, m,
(molality of aqueous CA)=(0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) mol~kg‘l at tempera-
tures, T=(288.15, 298.15, 308.15, 310.15 and 318.15) K and at atmospheric pressure,
obtained from experimental densities. Partial molar volumes (¢y,) calculated from ¢, data
have been used to calculate partial molar volumes of transfer (A,¢, ), apparent specific
volumes (v,,), pair (V,p) and triplet (V,pp) interaction coefficients, partial molar expansi-
bilities (d¢y, / dT),, their second order derivatives (024)‘\’/ / aTZ)p and hydration number (ny).
The volumetric behavior of glycine in aqueous CA solutions (present work) are compared
with glycine in aqueous succinic acid (SA) solutions, reported earlier from our laboratory
[23].

2 Experimental Section
2.1 Chemicals Used

Glycine (C,HsNO,), L-alanine (C;H,;NO,) and citric acid (C¢HgO,) of analytical grade
with mass fraction purity >99% were procured from S. D. Fine Chemical Ltd. (SDFCL),
India. Specifications of the chemicals used are given in Table 1. All the chemicals were
used without any further purification; however, they were dried in a vacuum oven for 24 h
at T=318.15 K, and then kept in a vacuum desiccator over anhydrous CaCl, prior to their
use.
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Deionized, double distilled and degassed water with specific conductance <1 x 10~* S-m™!
was used to prepare all the solutions. The pHs of the experimental solutions were checked
using a pH meter (Systronics digital pH meter-335, India). The standard deviation obtained
for the whole set of experimental data is+0.02 pH unit. Accuracy in pH measurements was
checked by calibrating the pH meter using standard buffer solutions of pH 7.00 and pH 9.20.
The pHs of the stock solutions, i.e. at all concentrations of aqueous citric acid solutions, lie
between 2.08 and 2.44, in the case of glycine in aqueous citric acid solutions the pHs lie from
1.96 to 3.61 and for L-alanine in aqueous citric acid solutions it varies from 1.99 to 3.94. Solu-
tions were prepared on the molality basis using a Citizen CY-204 balance having a precision
of +0.1 mg. The overall uncertainty in molality was estimated to be<5 x 10~* mol-kg™".
Solution densities were measured using a vibrating-tube digital density meter (DMA 4500 M
from Anton Paar, Austria). The sensitivity of the instrument corresponds to a precision in den-
sity measurements of + 1 x 1072 kg:-m~> and accuracy of +5x 1072 kg-m~, respectively. The
density meter has a built in thermostat to maintain the desired temperatures within+0.01 K
and was calibrated with double distilled and degassed water before each series of experiments.
The performance of the density meter was checked by measuring the densities of aqueous
sodium chloride (NaCl) solutions, which agree well with the literature values [24] as shown
in Fig. 1.

3 Results and Discussion
3.1 Volumetric Properties

The apparent molar volumes (¢y,) of glycine and L-alanine in water and in varying concen-
trations of aqueous CA solutions were calculated from experimental solution densities (p) at
temperatures 7=(288.15, 298.15, 308.15, 310.15 and 318.15) K and at atmospheric pressure,
by employing the following equation:

¢y =M/p —[1000(p — p,)1/mypp, (1)
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Fig. 1 Representative plots of densities (p) versus molality (m): (blue filled square, present work; red filled
square, literature values [24] of NaCl solutions at 288.15 K (Color figure online)
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where M (kg-mol™") is the molar mass of the glycine/L-alanine, m A (mol-kg™!) is the molal-
ity of glycine/L-alanine, p, and p are the densities of the solvent (water or water + CA) and
solution (water +CA + glycine/L-alanine), respectively. The ¢, values of glycine/L-alanine
along with p, and p as a function of molality, in water and in aqueous CA solutions at dif-
ferent temperatures, are summarized in Table 2. The standard uncertainty in the apparent
molar volume due to molality u(m) and density u(p) has been calculated and is (<0.0960
and<1.611x 107° m®-mol™"), respectively. Representative plots of ¢, values for the pres-
ently studied systems (i.e. glycine, L-alanine and citric acid in water) at 7=288.15 K agree
well with earlier reported data [25-34] and are shown in Figs. 2, 3 and 4. The values
reported by the authors [25, 33] are higher (at lower concentrations) than to our present
results as well as with the other literature data. (The standard uncertainty in molality, u(rm)
and apparent molar volume, u(¢,) of (succinic acid+glycine) system are <2.21X 1074
mol-kg~! and (0.03-0.65) x 10~ m*> mol~!, respectively).

The variation of ¢, versus m, for glycine/L-alanine in water and in different concentrations
of aqueous CA solutions at 288.15 K are shown in Figs. 5 and 6, respectively (representative
plots only). It is observed from Figs. 5 and 6 that the ¢y, values of glycine/L-alanine in aqueous
CA solutions vary almost linearly with increases in AA concentration as well as with tempera-
ture, whereas these values decrease with increases in the concentration of aqueous CA in these
solutions. The higher ¢, values obtained for glycine/L-alanine in water indicate that strong
solute—solvent interactions exist between glycine/L-alanine and water. In fact, strong interac-
tions of the three carboxyl groups and one hydroxyl group of CA with water via hydrogen
bonds leads to the higher ¢, values, however the hydrophobic group in SA [23] reduces its
ability to form strong hydrogen bonds with water, thus resulting in smaller ¢, values (Fig. 7a).
The basic structures of citric acid (CA), succinic acid (SA), glycine and L-alanine are given in
Scheme 1.

Solute—solute interactions are eliminated at infinite dilution and hence the apparent molar
volume (¢y,) becomes equal to the limiting partial molar volume (gb“’/). The db;’/ values have
been evaluated by least-squares fitting of the following equation to the corresponding data:

by = @), +Symy )
where ¢}, provides a measure of solute-solvent interactions, and the experimental slope
S, provides information regarding solute-solute interactions [28]. ¢}, and Sy, values of
glycine/L-alanine in water and in aqueous CA solutions at different temperatures are listed
in Table 3. The standard uncertainty of the limiting partial molar volumes has been found
to be<0.07x107% m>mol~'. The ¢y, values of glycine/L-alanine in water agree well
with the literature values at different temperatures and are shown in Figs. 8 and 9 [8, 23,
26-28, 30, 35, 36]. Table 3 shows that the ¢§’/ values are higher for L-alanine in water and
in aqueous CA solutions compared to glycine, as expected, which is due to the increase
in the molar mass of L-alanine. The magnitude of the ¢y, values is higher than the S, val-
ues, which suggests that the extent of solute—solvent interactions is greater compared to
solute—solute interactions. Moreover, the q’)“} values decrease with increase in aqueous CA
concentration whereas they increase with increasing temperature. The decrease in ¢, val-
ues with increasing concentration of CA may be attributed to the disruption of side group
hydration by that of the charged end groups (a similar explanation has been given by Wang
et al. [37], which supports our results for the ¢, values), whereas the increase in ¢, values
of glycine/L-alanine in CA solutions with increase in temperature may lead to reduction of
the electrostriction around the zwitterions [38]. Also, at higher temperatures, solvent from
the secondary solvation layer of glycine/L-alanine is released into the bulk of solvent which
results in the expansion of the solution and leads to higher ¢, values [39].
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Fig.2 Representative plots of apparent molar volumes (¢, ) versus molality (m, ) of glycine in water at
288.15 K: (red filled square, present work and blue filled square, literature values [23, 25-32]) (Color figure
online)
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Fig.3 Representative plots of apparent molar volumes (qbv) versus molality (m A) of L-alanine in water at
288.15 K: red filled square, present work and blue filled square, literature values [26, 29, 32, 33] (Color
figure online)

Comparison of ¢y and ¢7, values of glycine in CA (present work) with previously
reported data of glycine in SA [23] reveals that the magnitudes of ¢, and ¢, values
for glycine—CA are higher than for glycine—SA (Figs. 7(a), (b), 10). As discussed ear-
lier, the higher magnitudes for glycine in CA solutions are again attributed to the pres-
ence of additional hydrophilic groups (-OH and —COOH in CA) which leads to stronger
interactions between glycine/L-alanine and CA, i.e. it is due to the formation of hydro-
gen bonds (Scheme 2) [40]. Further, the effect of pH on speciation and charge distribu-
tion of these systems involves the stronger interaction among citrate ion and the ion-
ized ammonium group. The amino and carboxyl groups of glycine/L-alanine dissociate

@ Springer
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Fig.4 Representative plots of apparent molar volumes (q.')v) versus molality (mc) of citric acid in water at
288.15 K: red filled square, Present work and blue filled square literature values [34] (Color figure online)
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Fig.5 Representative plots of apparent molar volumes (rj)v) versus molality (m A) of glycine in water and in
different concentrations of aqueous CA solutions at 288.15 K: (m_)=blue filled diamond, water; red filled
square, 0.05; Green filled triangle, 0.10; Violet multiply symbol, 0.20; blue open diamond, 0.30; orange
filled circle, 0.40; blue open triangle, 0.50 mol~kg‘1 (Color figure online)

in aqueous citric acid solutions and form negatively and positively charged ions (i.e.,
*NH;-(CH(H/CH,4)-COO"). Dissociation of citric acid in aqueous solutions [19], i.e. the
negatively and positively charged ions, results in the formation of new species in aque-
ous solutions as:

NH,RCOO~ = NH,RCOO™ + H*

H,Cit™ = H,Cit™ + H*

@ Springer
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Fig.6 Representative plots of apparent molar volumes (qbv) versus molality (mA) of L-alanine in water
and in different concentrations of aqueous CA solutions at 288.15 K: (mc):blue filled diamond, water;
red filled square, 0.05; Green filled triangle, 0.10; Violet multiply symbol, 0.20; blue open diamond, 0.30;
orange filled circle, 0.40; blue open triangle, 0.50 mol-kg™" (Color figure online)

H,Cit™ = H + HCit*~

H,0 = H* + OH"
Partial molar volumes of transfer (A, ¢y) of glycine/L-alanine from water to aqueous
CA solutions at infinite dilution have been calculated by using the following equation:

A, ¢, (water — aqueous CA solutions) = “),(in aqueous CA solutions) — (}’)“’,(in water)

3)
The A,¢, values reported in Table S1 (supplementary material) are negative and
decrease with increase in the concentration of aqueous CA solutions at the studied tem-
peratures (Figs. 11 and 12). The standard uncertainty in A ¢, values has been found to
be <0.07x 107 m*-mol~!. The possible interactions which may exist between ternary sys-
tem (i.e. glycine/L-alanine + aqueous CA) (Scheme 2) can be categorized as: (1) ion/hydro-
philic—dipolar interactions between (3COO~, -OH) of CA and (NH;*, COO") zwitterions
of glycine/L-alanine, (2) hydrophilic—hydrophobic interactions between the (3COO™~, -OH)
groups of CA with the non-ionic group of glycine/L-alanine, (3) hydrophobic—hydrophilic
interactions between the non-ionic group of CA and zwitterionic groups of glycine/L-
alanine, and (4) hydrophobic—hydrophobic group interactions between the alkyl chains of
glycine/L-alanine and CA. According to the co-sphere overlap model [41], the overlap of
the hydration co-spheres of hydrophilic and ionic parts (type 1) results in positive A, ¢y,
values, whereas interactions of type 2, 3 and 4 result in negative transfer volumes. The
presently observed negative A ¢, values for glycine/L-alanine in aqueous CA solutions at
different temperatures suggest the dominance of hydrophilic-hydrophobic and hydropho-
bic-hydrophobic interactions over ion/hydrophilic—dipolar interactions. The greater magni-
tude of A, ¢y observed in the case of L-alanine in CA may be attributed to the presence of
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Fig.7 (a) Representative plots of apparent molar volumes (¢V) versus molality (mA) of glycine in: blue
filled diamond, 0.10 mol-kg™' aqueous CA solutions and red filled square, 0.10 mol-kg™' in aqueous suc-
cinic acid (abbreviated as SA) solutions at 288.15 K. b Plots of apparent molar volumes (¢V) of glycine
versus molality (m A) in 0.10 mol-kg ™! aqueous succinic acid solutions (abbreviated as SA) at different tem-
peratures, 7=(288.15-328.15) K (Color figure online)

an alkyl group in L-alanine which further strengthens the view that hydrophobic—hydropho-
bic interactions are dominating in the case of L-alanine—-CA (i.e. type 4 interactions).

The magnitude of ¢, values of glycine/L-alanine in CA can also be explained by consider-
ing the modified equation of Shahidi and Farrell [42],

d)(\)/ = Vv,w + Vvoid - Vshrinkage (@)
where V, , is the van der Waal’s volume, V.4 is the volume associated with voids, and
Vihrinkage 18 the volume due to shrinkage that arises from electrostriction of solvent mol-
ecules caused by hydrophilic groups present in the solute. Assuming that V,,, and V4

are not significantly affected by the presence of CA, then the negative A ¢, values may
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Scheme 1 Basic structures of (a) citric acid, (b) succinic acid, (¢) glycine and (d) L-alanine

be attributed to enhanced electrostriction in the vicinity of charged centers of zwitterions
which results in an increase Of Vi i,g- Further, it is observed from Table S1 that the
A,y values for glycine in CA are higher in contrast to glycine in SA solutions [23], which
is attributed to the presence of additional hydrophilic groups in CA that leads to the forma-
tion of strong hydrogen bonding with glycine (Scheme 2).

The McMillan—Mayer theory of solutions [43, 44] permits the formal separation of the
effects due to the interactions between two or more solutes. According to this theory, the
pair and triplet interaction coefficients (V,5) and (V,gg) can be calculated from the partial
molar volumes of transfer (A, ¢y) by using the following equation:

Ay = 2Vapm + 3Vappm; + - &)
where A denotes glycine/L-alanine, B denotes CA and m, is the molality of CA. The Vg
and V,pp values of glycine/L-alanine in aqueous CA solutions are given in Table 4. The
Vg values for glycine (except at 298.15 K) and L-alanine in aqueous CA solutions are
found to be negative at different temperatures. On the other hand, the V, gy values are nega-
tive for glycine and positive for L-alanine over the entire temperature range. From Table 4
it is also observed that the magnitude of Vg and V,pp values for L-alanine are greater than
for glycine in CA, which suggest that L-alanine interacts more strongly with CA. Overall,
the higher magnitude of V5 values for L-alanine in CA at the studied temperatures indi-
cates the dominance of triplet interactions. Pair interactions dominate for glycine in the
presence of CA at lower temperatures (i.e. 288.15 and 298.15 K) whereas at higher temper-
atures (i.e. 308.15, 310.15 and 318.15 K) triplet interactions dominate. The reverse trend
of V,p5 and V,5p values has been observed for glycine in SA, i.e. V5 dominates at high
temperature whereas V,pp dominates at low temperature (no specific reason mentioned).
The observed behavior of Vg and V,zg values for glycine in CA may be attributed to the
presence of some cooperativity in the interaction of the alkyl group (hydrocarbon part), i.e.
when two hydrocarbon groups come in contact with each other then it is easier for the third
group to join the other two [45].
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Table 3 Limiting partial molar volumes (q.’)‘;,) of glycine/L-alanine in water and in aqueous CA solutions at
T=(288.15,298.15, 308.15, 310.15 and 318.15) K

me (molkg™)  10° x ¢, (m*-mol™")
288.15, T (K) 298.15,7(K)  308.15, T(K) 310.15,T(K) 318.15, T (K)
Glycine
0.00 42.37£0.02 43.16°+0.03  43.86°+0.02  43.87°x£0.03  44.16"+0.02
(1.01° (0.93) (0.66) (0.76) (0.75)
[0.99]° [0.99] [0.99] [0.99] [0.99]
42.69942.37°,42.38"  43.51%,43.27°, 43.77%,43.98°, 44.10° 44.43%, 44.16'
4228743165,  43.76743.87" 4417,
44.14
0.05 42.32+0.01 43.14+0.02  43.61+0.03  4380+0.02  44.10+0.02
(0.92) (0.92) (0.96) (0.81) (0.82)
[0.99] [0.99] [0.99] [0.99] [0.99]
0.10 42.18+0.01 43.07+£0.02  43.54+002  43.60+0.02  43.87+0.03
(0.82) (0.89) (0.95) (0.97) (1.02)
[0.99] [0.99] [0.98] [0.99] [0.99]
0.20 42.08+0.03 42694005  43.16+£0.04  4320+0.05  43.35+0.07
[0.99] (1.34) (1.39) (1.44) (1.59)
[0.99] [0.99] [0.99] [0.99] [0.99]
0.30 41.98+0.02 4246+0.04 42894005  43.10+0.05  43.29+0.04
(0.92) (1.48) (1.66) (1.48) (1.65)
[0.99] [0.99] [0.99] [0.99] [0.99]
0.40 41.43+0.03 41.82+0.02  4231+0.01  42.66+0.02  42.97+0.03
(1.35) (1.04) (0.54) 0.77) (0.74)
[0.99] [0.99] [0.99] [0.99] [0.99]
0.50 41.37+0.01 41.63£0.02 42264002 42464001  42.94:0.02
(1.18) (1.72) (0.73) 0.72) (1.42)
[0.99] [0.99] [0.99] [0.99] [0.99]
L-Alanine
0.00 59.66°+0.02 60.35°+0.02  60.84°+0.02  60.94°+0.02  61.15°+0.03
(0.76) (0.64) (0.62) (0.59) (0.74)
[0.99] [0.99] [0.99] [0.99] [0.99]
59.67¢ 60.42¢ 60.88¢
0.05 59.53+0.02 59.62+0.02 59714002  59.80+0.02  60.00+0.02
(0.97) (1.19) (1.18) (1.16) (1.04)
[0.99] [0.99] [0.99] [0.99] [0.99]
0.10 59.44+0.01 59.51+0.02  59.62+0.03  59.72+0.02  59.85+0.03
(0.96) (0.98) (1.01) (0.96) (1.09)
[0.99] [0.99] [0.99] [0.99] [0.99]
0.20 59.31+0.02 59.48+0.01  59.57+0.01  59.59+0.01  59.74+0.03
(1.01) (0.94) (0.95) (1.08) (1.14)
[0.99] [0.99] [0.99] [0.99] [0.99]
0.30 59.21+0.01 59.31£0.02 59424002  59.52+0.03  59.61+0.03
(0.90) (1.02) (0.95) 0.97) (1.05)
[0.99] [0.99] [0.99] [0.99] [0.99]
0.40 59.13+0.02 59.26+0.02  59.36+0.03  59.44+0.03  59.52+0.03
(0.92) (0.94) (0.98) (0.99) (1.09)
[0.99] [0.99] [0.99] [0.99] [0.99]
0.50 59.05+0.01 59.12+0.02  59.28+0.02  59.32+0.03  59.44+0.03
(1.00) (1.08) (0.95) (1.02) (1.00)
[0.99] [0.99] [0.99] [0.99] [0.99]
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Table 3 (continued)

*Present work

®S, x 10° (m?-kg-mol™2) values in parenthesis ()

“Regression coefficient values in square brackets []

dReference [23]

®Reference [26]

Reference [8]

gReference [27]

hReference [35]

iReference [36]

IReference [28]

The standard uncertainties in molality, u (m A) is <5.86 x1073 mol-kg™!
The standard uncertainty in temperature, u(7) is 0.03 K

The standard uncertainty in pressure, u(p) is 0.5 kPa

The standard uncertainty in partial molar volume, u (qS‘v’) is <0.07 x10~m3-mol ™!

+ Respective errors in ¢y, values
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Fig.8 Representative plots of limiting partial molar volumes ¢, versus molality (mc) of glycine in: blue
filled diamond, aqueous CA solutions and red filled square, in aqueous SA solutions at 288.15 K (Color
figure online)

To study the effect of temperature on ¢°, the limiting partial molar expansibilities
(0¢,/ 0T), and their second-order derivatives (62¢“’/ / 6T2)p have been calculated by fitting
the following equation to the corresponding data:

@) =a+bT +cT* (6)

where a, b and ¢ are constants and T is the absolute temperature. The (0, /0T)
and (0%¢9/0T%), values of glycine/L-alanine in water are (0.097 m3~mol‘l~K‘{,7
—0.0023 m*mol~"-K™?) and (0.079 m*-mol~"-K~!, —0.0019 m*-mol~"-K~2), respectively,
which agree well with the literature values [27, 28, 34] and are summarized in Table 5. The
(0? v/ ()Tz)p values of glycine in aqueous CA solutions decrease with increasing tempera-
ture except at m,=(0.4 and 0.5) mol-kg™" whereas the (0°¢?,/0T?), values for L-alanine

increase with increasing temperature.

@ Springer



2058 Journal of Solution Chemistry (2018) 47:2039-2067

45.00 -
44.50 A ;
¥ '|' T @ Present work
< 44.00 - : |
= $ 4 J_ = Reference [26]
= 43.50 - i I 4 Reference [30]
Eﬂ ? x Reference [35]
& 43.00 A
g l X Reference [8]
< 2504 | Reference [27]
42.00 1 I Reference [28]
Reference [23]
41.50 T T T T T T )
285.15 290.15 295.15 300.15 305.15 310.15 315.15 320.15

T/K

Fig.9 Comparative plots of limiting partial molar volumes (qﬁ%) of glycine in water versus temperature,
T=(288.15-318.15) K
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Fig. 10 Comparative plots of limiting partial molar volumes (q}“’/) of L-alanine in water versus temperature,
T=(288.15-318.15) K

Hepler [46] used the following thermodynamic relation by which qualitative informa-
tion regarding hydration of a solute can be evaluated from the thermal expansion:

0C/op)y = =T(0* ¢, /9T?), 7

where C? is the partial molar heat capacity. The sign of (6CZ /0p)y and its temperature
dependence should provide a distinction between the structure making or breaking abil-
ity of solutes in solution. According to Eq. 7, a structure-breaking solute should have
negative (9°¢,/0T*?), values whereas positive (0%¢,/dT?), values suggest that the solute
behaves as a structure maker. It can be seen from Table 5 that glycine predominantly acts
as a structure breaker whereas L-alanine acts as a structure maker. It is concluded that the
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Scheme 2 Different types of possible interactions (i) glycine—~CA and (ii) L-alanine—CA at pH 2.12 and at
T=310.15K

structure-breaking and structure-making behavior of glycine and L-alanine in CA may be
attributed to the absence of the caging effect [47]. Similar behavior for glycine in SA is
observed for the (62(]5“’/ / 0T2)p values. Overall, the structure breaking tendency of glycine
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Fig. 11 Plots of partial molar volumes of transfer (A,.¢, ) versus molalities (m, ) of CA of glycine at differ-
ent temperatures: 7=blue filled diamond, 288.15, red filled square, 298.15; Green filled triangle, 308.15;
Violet open diamond, 310.15; blue open square, 318.15 K (Color figure online)
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Fig. 12 Plots of partial molar volumes of transfer (A ¢, ) versus molalities (m, ) of CA of L-alanine at dif-
ferent temperatures: T=Dblue filled diamond, 288.15; red filled square, 298.15; Green filled triangle, 308.15;
Violet open diamond, 310.15; blue open square, 318.15 K (Color figure online)

in the presence of CA is higher than for glycine in SA [23]. This may be attributed due to
partial dissociation of CA which tends to destruct the hydrogen bonded structure of water,
and then water behaves as a normal (i.e. non associated) liquid. The equilibrium of dif-
ferent water species (i.e., a hydrogen bonded structure associated with a normal liquid) is
temperature dependent. Elevation in temperature leads to the expansion of volume with
increase in the fraction of non-associated water molecules. In addition, the water structure

@ Springer



Journal of Solution Chemistry (2018) 47:2039-2067 2061

Table 4 Pair (VAB) and triplet T(K)
(VABB ) interaction coefficients
of glycine/L-alanine in aqueous

100 x V,p (m*-mol™2kg)  10° X V,pp (m*-mol > kg?)

. Glycine

CA solutions at T=(288.15 to

318.15) K 288.15 —0.33 (—12.28)g, —1.62 (12.69)g,
298.15 0.19 (—11.68)g, —5.07 (3.82)g,
308.15 —1.40 (0.64)g, —1.69 (—33.95)g,
310.15 —1.40 (0.91)g, —0.22 (—35.34)g,
318.15 —1.64 (1.22)g, —0.59 (—=39.19)g,

L-Alanine

288.15 -1.32 1.75
298.15 -5.82 13.51
308.15 —8.35 19.42
310.15 -8.99 21.48
318.15 -9.25 21.58

()sa are the V5 and V,gg values of glycine in aqueous SA solutions
(23]

changes from the combined effects of increased temperature and with increase in the CA
concentration [19].

3.2 Hydration Number

The hydration number (nH) reflects the electrostriction effect of the charge centers of amino
acids on nearby water molecules. Millero et al. [48] reported a relationship between the
limiting electrostriction contribution to the partial molar volume and hydration number of
the non-electrolytes as:

by, etect = M@y, . — Py ) )
where ¢° is the limiting molar volume of electrostricted water and qb is the molar vol-
ume of bulk water. For every water molecule taken from the bulk phase to the region near
an AA, the ((;SVe - b) values are —2.9, —3.3 and —4.0)x 1072 m*-mol™" at 7=(288.15,
298.15 and 308.15) K respectively [48]. The ny values of glycine/L-alanine in water and
in aqueous CA solutions are summarized in Table 6. The ny; values of glycine/L-alanine in
water are in good agreement with the literature values and are shown in Figs. 13 and 14
[26-28, 49]. The ny values of glycine and L-alanine increase with increase in the concen-
tration of CA, which further suggests that water in the immediate vicinity of charged cent-
ers of glycine/L-alanine in aqueous CA solutions is highly electrostricted leading to higher
nyy values. The decrease in ny; values with increases in temperature may be attributed to the
weakening of the electrostriction effect of charged centers, which then leads to stronger
interactions between glycine—CA and L-alanine—CA. It also shows that CA exerts a dehy-
dration effect in the present systems.

Lower ny values for glycine/L-alanine in water than in CA indicate that glycine/L-ala-
nine are more hydrated in the presence of CA. Also, the higher ny values for glycine in SA
than in CA further suggests that SA has a strong dehydrating effect on glycine. This may be
due to the presence of hydrophilic groups (i.e., -OH and —COOH in CA) which leads to the
formation of hydrogen bonding.
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Table 5 Limiting partial molar expansibilities (d¢y,/0T), and their second-order derivatives (02¢“’//0T2)p
for glycine/L-alanine in water and in aqueous CA solutions at 7=(288.15 to 318.15) K

m, (mol-kg™") (3¢ /0T), (m*mol™" K™ (0*¢%,/0T?),
(m*mol "K™?)
T(K): 288.15  298.15 308.15 310.15 318.15
Glycine
0.00 0.096" 0.072* 0.049* 0.044* 0.025" -0.0024
(0.097)° 0.072) (0.047)° (0.022)° (—0.0025)°
(0.071)°¢
0.05 0.084 0.067 0.049 0.046 0.032 -0.0018
0.10 0.097 0.071 0.044 0.039 0.018 —0.0026
(0.125)5, 0.093)5,  (0.061)5,  (0.054)5,  (0.029)5,  (=0.0032)g,
0.20 0.075 0.054 0.033 0.029 0.012 -0.0021
0.30 0.056 0.048 0.041 0.040 0.034 -0.0007
(0.486)55 (0.416)s,  (0346)5,  (0.332)5,  (0.276)5,  (—0.0074)g,
0.40 0.041 0.049 0.057 0.058 0.065 0.0008
0.50 0.027 0.045 0.063 0.067 0.081 0.0018
(=0219)5,  (=0.149)5,  (=0.079)5, (=0.065)55 (—=0.009)55  (0.0075)s,
L-Alanine
0.00 0.079 0.060 0.040 0.036 0.021 -0.0019
(0.062)"
0.05 0.008 0.010 0.020 0.022 0.029 -0.0010
0.10 0.004 0.010 0.017 0.018 0.024 0.0007
0.20 0.012 0.013 0.014 0.014 0.015 0.0001
0.30 0.009 0.012 0.015 0.016 0.018 0.0003
0.40 0.010 0.013 0.015 0.015 0.017 0.0002
0.50 0.007 0.011 0.015 0.016 0.019 0.0004

Osa are the (¢, / dT), and (02¢‘\’, / 0T2),, values of glycine in aqueous SA solutions [23]
*Present work

PReference [27]

“Reference [28]

dReference [34]

3.3 Apparent Specific Volumes and Taste Quality

CA and inorganic citrates are active ingredients in many dosage forms. It is a natural pre-
servative which is used to add an acidic or sour taste to foods and drinks. The taste behav-
ior can be verified on the basis of the apparent specific volumes (v,,) which gives a direct
measure of the dislocation of water molecule by the solute and reflects its compatibility
with water. v, has been calculated by using the following equation [50]:

vy = b/M ©)
where ¢y, is the apparent molar volume and M is the molar mass of glycine/L-alanine and
Vg X 10-3m>-kg ™! bears a relationship to taste quality in the order salt < ~0.33, sour ~0.33

to~0.52, sweet~0.52 to~0.71, and bitter~0.71 to~0.93 [51]. The Ve values for CA in
water, glycine/L-alanine in water, in aqueous CA and glycine in aqueous SA solutions are
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Table 6 Hydration number (nH) of glycine/L-alanine in water and in aqueous CA solutions at 7'=(288.15,
298.15 and 308.15) K

m, (molkg™") ny
T(K): 288.15 298.15 308.15
Glycine
0.00 3.27° 2.64° 20042
(3.26° 3.27°, 3.28%) (2.58°,2.60°, 2.619) (2.02°¢, 1.97%
0.05 3.29 2.64 2.06
0.10 3.34 (3.97)gs 2.66 (3.20) g, 2.08 (2.55) g4
0.20 3.37 278 2.18
0.30 3.41 (5.83) g4 2.85 (4.37) u 2.24 (2.38) g4
0.40 3.60 3.04 2.39
0.50 3.62 (6.53) g4 3.10 (5.27) g4 2.40 (4.32) 44
L-Alanine
0.00 4.17* 3.45° 273
(4.17% (3.45"% (2.68%,2.72%)
0.05 421 3.68 3.01
0.10 4.24 3.71 3.03
0.20 4.29 3.72 3.05
0.30 432 3.77 3.08
0.40 435 3.78 3.10
0.50 438 3.83 3.12

()sa are the ny values of glycine in aqueous SA solutions [23]
*Present work

YReference [28]

“Reference [27]

dReference [49]

Fig. 13 Comparison plots of —o+— Present work
hydration number (ny;) of glycine 3.50 -
in water at different tempera- =— Reference [28]
tures, T=(288.15, 298.15 and Reference [27]
308.15) K 3.00
VAT —ea— Reference [48]
jon)
=
2.50 ~
2.00 ~
1.50 T T T T ]
285.15 290.15 295.15 300.15 305.15 310.15

T/K
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Fig. 14 Comparison plots 5.00 -
of hydration number (ny;) of
L-alanine in water at different 4.50
temperatures, 7=(288.15, 298.15
and 308.15) K 4.00 -
& 3.50
3.00
2.50 A
2004 ¢ Present work
—a— Reference [26]
1.50 T T T
280.15 290.15 300.15 310.15

T/K

given in Table S2. It is observed from Table S2 that the v, values of glycine/L-alanine in
water and in aqueous CA solutions (range from 0.55 to 0.69) fall in the sweet taste behav-
ior range (except for L-alanine at m,=0.05 mol-kg™"), which may be due to hydrophobic
interactions occurring in these ternary systems. The result obtained from the v values also
supports A, ¢y data, which further strengthens the view that hydrophobic interactions are
dominating in these systems. In the case of SA, the v values of glycine tend to show sour-
to-sweet taste behavior (ranges from 0.47 to 0.61) with increase in concentration and tem-
perature. The obtained trend in SA may due to the displacement of a large number of water
molecules by hydrophobic groups [52].

4 Conclusions

The negative A ¢, values obtained for glycine/L-alanine in aqueous CA solutions sug-
gest the dominance of hydrophilic-hydrophobic and hydrophobic-hydrophobic interac-
tions in these systems. Triplet interactions dominate over pair interactions in the case
of L-alanine compared to glycine in CA, which indicates that L-alanine interacts more
strongly with CA. At low concentrations of CA, glycine/L-alanine act as structure break-
ers whereas at high concentrations of CA, glycine/L-alanine act as structure makers.
Also, it is evident that CA has a dehydration effect on amino acids. The results obtained
for v, values suggest that CA enhances the sweet taste behavior of glycine/L-alanine
with rise in temperatures. Comparative studies of glycine in aqueous CA and aqueous
SA solutions show that the stronger interactions exist between glycine—CA than for gly-
cine—SA, which is attributed due to the presence of additional hydrophilic groups in CA
that leads to the formation of hydrogen bonds.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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