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Abstract We have set out an equation for partition of 87 neutral molecules from water to

o-nitrophenyl octyl ether, NPOE, an equation for partition of the 87 neutral molecules and

21 ionic species from water to NPOE, and an equation for partition of 87 neutral molecules

from the gas phase to NPOE. Comparison with equations for partition into other solvents

shows that, as regards partition of neutral (nonelectrolyte) compounds, NPOE would be a

good model for 1,2-dichloroethane and for nitrobenzene. In terms of partition of ions and

ionic species, NPOE is quite similar to 1,2-dichloroethane and not far away from other

aprotic solvents such as nitrobenzene.
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1 Introduction

The partition of compounds from water to organic phases is of extreme importance in

extraction studies and in the purification of organic compounds. In particular, the inter-

actions between compounds and various possible solvents for extraction is of crucial

importance. We have set out equations that encode such interactions for the partition of

organic compounds from water to some 50 different solvents [1–6]. Inspection of these

equations then affords a simple and practical method for the choice of a solvent in order to

selectively extract a given compound from a mixture. More recently, we have extended this

work to include the extraction of permanent ions (K? or Cl- for example) and of ionic

species (specifically anions from the deprotonation of carboxylic acids and cations from

the protonation of nitrogen bases) [7]. The number of solvents for which we have an

equation for neutral molecules and ions is still quite small, although the method has been

used to obtain equations for partition from water to water–ethanol mixtures [8] and to

water–methanol mixtures [9] and extended into equations for permeation from saline

solutions into brains [10], microsomal binding [11], artificial membrane retention factors

[12], human intestinal absorption [13], partition into cerasome [14] and human skin per-

meability [15]. Quite recently, Davis and Di Toro [16] have examined partition of ionic

species into organic solvents using quantum chemically calculated parameters.

Some time ago we examined partition of neutral molecules and ionic species from water

into o-nitrophenyl octyl ether, NPOE [17], but could use only 55 out of the partition

coefficients for 88 neutral compounds that were reported [18], and could use only partition

coefficients for 15 ions and ionic species. Since then, we have determined descriptors for

all the 88 neutral compounds, and have collected partition coefficients for 23 ions [19–21].

In view of the comparatively small number of solvents for which we have equations for

neutral molecules and ions, we thought it useful to construct an up-to-date equation for the

water–NPOE system, and then to be able to compare this system more rigorously with the

other systems that we have studied. Such comparisons have in the past identified possible

safe solvent alternatives to replace several of the more hazardous organic solvents used in

industrial manufacturing processes, and have found organic partitioning systems that could

possibly mimic some of the biological responses. An equation describing transfer of both

neutral molecules and ions from water to NPOE could also be used to estimate the dis-

sociation constants of substituted benzoic acids and substituted phenols, as well as the

dissociation constants of substituted anilinium and substituted pyridinium cations, in

NPOE.

2 Methodology

For partition of neutral molecules from water to another solvent we use our well-known

linear free energy relationships, LFERs, Eqs. 1 and 2 [22, 23]:

log10 P ¼ cþ eEþ sSþ aAþ bBþ vV ð1Þ

log10 K ¼ cþ eEþ sSþ aAþ bBþ lL ð2Þ

In Eq. 1, the dependent variable is log10 P, where P is the water-to-solvent partition

coefficient for a series of nonelectrolytes in a given water to solvent system. In Eq. 2, the

dependent variable is log10 K, where K is the gas phase to solvent system partition
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coefficient. The independent variables are descriptors as described previously [20–23]. E is

the nonelectrolyte (or solute) excess molar refractivity in units of (cm3�mol-1)/10, S is the

solute dipolarity/polarizability, A and B are the overall or summation solute hydrogen bond

acidity and basicity, V is the solute McGowan characteristic volume in units of (cm3-

mol-1)/100, and L is log10 K16, where K16 is the gas to hexadecane partition coefficient at

298 K. The coefficients in Eq. 1 are given in Table 1.

The experimental determination of the descriptors for neutral compounds to use in

Eqs. 1 and 2 has been reviewed several times [20–25]. These experimental descriptors are

available both commercially [26] and in the public domain [27], and descriptors can also

be calculated for nonelectrolytes [26, 27]. It is very useful if we can calculate some of the

descriptors. The E-descriptor can be obtained from a refractive index at 293 K (for liquid

solutes), or can be calculated from an estimated refractive index [26]. Both available

software programs [26, 27] give calculated values of E. The V-descriptor can easily be

calculated from its molecular formula [22, 28] and is calculated by the two software

programs [26, 27]. A valuable ‘extra’ descriptor is log10 Kw where Kw is the gas-to-water

partition coefficient at 298 K; note that Kw is dimensionless. Descriptors for the 88 non-

electrolytes are in Table 2, together with values of the water–NPOE partition coefficient

[18], as log10 Pnpoe, values of log10 Kw and corresponding values of log10 Knpoe obtained

through Eq. 3.

log10 Pnpoe ¼ log10 Knpoe log10 Kw ð3Þ

The determination of equation coefficients in Eq. 1 is a prerequisite for obtaining the

corresponding equation for ion transfer, because we have deliberately used Eq. 1 as part of

our equation for ion transfer, Eq. 4. In this equation, the coefficients c, e, s, a, b and v are

set equal to the coefficients in Eq. 1 for the corresponding equation for nonelectrolytes.

The descriptors J? and J– and the equation coefficients j? and j– refer to cations and

anions. For anions j? = 0, for cations j– = 0 and for nonelectrolytes j? = j– = 0, and Eq. 4

then reverts to Eq. 1. The j? and j– coefficients in Eq. 4 are given in Table 1.

log10 P ¼ cþ eEþ sSþ aAþ bBþ vV þ jþ Jþ þ j� J� ð4Þ

Ionic partition coefficients from water to NPOE, or their equivalent as Gibbs energies of

transfer, have been determined by a number of workers [19–21]. As we have previously

pointed out, experimental values can only be obtained for neutral combinations of ions, e.g.

(K? ? Cl–), and single-ion values have to be referred to some particular convention.

Usually the TATB convention [29–31] is used, with log10 P(Ph4P
?) or log10 P(Ph4As

?) =

log10 P (Ph4B
–). The various conventions that have been put forward in order to obtain

single-ion values have been evaluated [30, 31] and the TATB convention selected as the

recommended one. All our studies have used this convention, and this is the convention

that Wilke and Zerihun [19] and Samec et al. [21] have used. Gulabowski et al. [20] in their

determination of partition coefficients of anions used the decamethylferrocene/de-

camethylferrocinium couple as a standard, and so for consistency all their ionic partition

coefficients had to be converted to the TATB convention. The descriptors for the ions [7]

are in Table 3, and the data on ionic partition coefficients [19–21] are in Table 4.
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Table 2 Descriptors for non-electrolytes and corresponding values of log10 Kw, log10 Pnpoe and log10 Knpoe

Solute E S A B V L log10Kw log10 P log10K
NPOE NPOE

4-Methylbenzylamine 0.829 0.79 0.15 0.68 1.0980 4.815 4.45 1.80 6.25

4-Methyl-N-
methylbenzylamine

0.800 0.74 0.14 0.73 1.2389 5.166 4.36 1.48 5.84

4-Methyl-N-
ethylbenzylamine

0.790 0.75 0.14 0.76 1.3798 5.660 4.41 1.86 6.27

4-Methyl-N-
propylbenzylamine

0.780 0.70 0.14 0.76 1.5207 6.086 4.20 2.36 6.56

4-Methyl-N-
butylbenzylamine

0.770 0.68 0.14 0.76 1.6616 6.455 4.01 2.90 6.91

4-Methyl-N-
pentylbenzylamine

0.760 0.68 0.14 0.75 1.8025 7.081 3.82 3.48 7.30

4-Methyl-N-
hexylbenzylamine

0.750 0.69 0.13 0.74 1.9434 7.608 3.64 4.07 7.71

4-Methyl-N-
heptylbenzylamine

0.740 0.69 0.14 0.76 2.0843 8.000 3.67 4.29 7.96

4-Bromobenzoic acida 1.000 1.02 0.63 0.27 1.1067 5.472 4.94 0.82 5.76

3-Chlorobenzoic acid 0.840 0.95 0.63 0.32 1.0541 5.197 5.15 0.94 6.09

4-Chlorobenzoic acid 0.840 1.02 0.63 0.27 1.0541 4.947 4.80 0.88 5.68

4-Iodobenzoic acid 1.310 1.27 0.63 0.30 1.1899 6.487 5.84 1.46 7.30

Carprofen 2.290 1.90 0.95 0.80 1.9349 10.923 11.03 3.01 14.04

Flurbiprofen 1.440 1.45 0.62 0.76 1.8389 8.975 7.95 2.94 10.89

a-Methyl-4-
isobutylphenylacetic acid

0.730 0.98 0.59 0.66 1.7771 7.568 5.86 2.72 8.58

Naproxen 1.510 2.02 0.60 0.67 1.7821 9.207 8.80 2.51 11.31

Pirprofen 1.480 1.47 0.60 0.81 1.8477 8.937 8.27 2.61 10.88

Suprofen 1.510 1.89 0.60 0.99 1.9026 9.673 10.17 1.76 11.93

Ketoprofen 1.650 2.26 0.55 0.89 1.9779 10.527 10.46 1.81 12.27

Indomethacin 2.236 1.47 0.58 1.43 2.5299 12.270 11.07 3.03 14.10

Benzoic acid 0.730 0.90 0.59 0.40 0.9317 4.657 5.10 0.50 5.60

Phenylacetic acid 0.730 1.08 0.66 0.57 1.0726 4.960 6.48 0.12 6.60

3-Phenylpropanoic acid 0.750 1.18 0.60 0.60 1.2135 5.616 6.60 0.51 7.11

4-Phenylbutanoic acid 0.760 1.29 0.61 0.57 1.3544 6.204 6.65 1.28 7.93

5-Phenylpentanoic acid 0.770 1.24 0.57 0.60 1.4953 6.589 6.36 1.77 8.13

7-Phenylheptanoic acid 0.790 1.27 0.57 0.62 1.7771 7.599 6.39 2.52 8.91

8-Phenyloctanoic acid 0.790 1.30 0.59 0.65 1.9180 8.132 6.58 2.97 9.55

Antipyrine 1.300 1.83 0.00 1.37 1.4846 7.764 9.74 - 0.03 9.71

Diazepam 2.170 1.78 0.00 1.27 2.0739 11.010 9.22 2.96 12.18

Homatropine 1.400 1.33 0.05 1.76 2.1411 9.689 10.11 1.10 11.21

Nicotine 0.865 0.88 0.00 1.09 1.3710 5.888 5.85 0.60 6.45

5-Ethyl-5-phenylbarbital 1.630 1.72 0.71 1.18 1.6999 8.956 11.32 0.02 11.34

5,5-Diphenylhydantoin 1.713 2.23 0.86 1.00 1.8693 10.236 12.22 0.80 13.02

3-Nitrobenzyl alcohol 1.064 1.44 0.40 0.59 1.0902 5.653 6.74 1.10 7.84

Sulfanilamide 1.500 1.82 0.41 1.19 1.1969 7.010 10.81 - 1.02 9.79

Sulfacetamide 1.480 2.73 0.42 1.30 1.4944 8.730 13.45 - 0.64 12.81
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Table 2 continued

Solute E S A B V L log10Kw log10 P log10K
NPOE NPOE

Sulfabenzamide 2.130 2.90 0.45 1.16 1.9613 11.639 13.28 1.05 14.33

Sulfapyridine 2.040 2.23 0.59 1.48 1.7636 10.270 13.74 - 0.21 13.53

Sulfamethazine 2.130 2.53 0.59 1.53 2.0043 11.504 14.63 0.12 14.75

Sulfisomidine 2.130 2.70 0.48 1.76 2.0043 11.470 16.02 - 1.22 14.80

Sulfamethoxypyridazine 2.120 2.95 0.48 1.56 1.9221 11.408 15.48 - 0.08 15.40

Sulfacytine 2.290 2.67 0.32 1.75 2.0630 11.280 15.14 - 0.45 14.69

Sulfadoxine 2.140 2.53 0.40 1.64 2.1217 11.740 14.35 0.69 15.04

Sulfadimethoxine 2.140 2.39 0.51 1.53 2.1217 11.780 13.86 1.34 15.20

Sulfathiazole 2.110 2.57 0.33 1.40 1.6883 10.010 13.38 - 0.38 13.00

Sulfamethoxazole 1.890 2.45 0.62 1.20 1.7244 10.040 13.03 0.52 13.55

Sulfamoxole 1.900 2.13 0.26 1.66 1.8653 9.840 13.00 0.12 13.12

Sulfamethizole 2.140 2.40 0.61 1.44 1.7881 10.530 14.13 - 0.48 13.65

Sulfaphenazole 2.700 2.62 0.52 1.70 2.2324 13.170 15.55 0.98 16.53

Methyl acetate 0.142 0.64 0.00 0.45 0.6057 1.911 2.30 0.28 2.58

Ethyl acetate 0.106 0.62 0.00 0.45 0.7466 2.314 2.16 0.91 3.07

Butyl acetate 0.071 0.60 0.00 0.45 1.0284 3.353 1.94 1.86 3.80

Acetonitrile 0.237 0.90 0.07 0.32 0.4042 1.739 2.85 - 0.22 2.63

Proprionitrile 0.162 0.90 0.02 0.36 0.5451 2.082 2.82 0.27 3.09

N,N-Dimethylacetamide 0.363 1.38 0.00 0.80 0.7877 3.639 6.04 - 0.64 5.40

Ethanol 0.246 0.42 0.37 0.48 0.4491 1.485 3.67 - 1.29 2.38

Propan-1-ol 0.236 0.42 0.37 0.48 0.5900 2.031 3.56 - 0.76 2.80

Pentan-1-ol 0.219 0.42 0.37 0.48 0.8718 3.106 3.35 0.39 3.74

Hexan-1-ol 0.210 0.42 0.37 0.48 1.0127 3.610 3.23 0.94 4.17

Pentanoic acid 0.205 0.63 0.62 0.45 0.8875 3.227 4.45 - 0.06 4.39

1-Nitrobutane 0.227 0.95 0.00 0.29 0.8464 3.415 2.27 1.99 4.26

Acetophenone 0.818 1.01 0.00 0.48 1.0139 4.501 3.36 2.00 5.36

Nitrobenzene 0.871 1.11 0.00 0.28 0.8906 4.557 3.02 2.44 5.46

1-Chloro-2-nitrobenzene 1.020 1.24 0.00 0.24 1.0130 5.121 3.10 2.88 5.98

Phenylacetonitrile 0.751 1.03 0.00 0.50 1.0120 4.649 3.70 2.12 5.82

Benzylmethylketone 0.748 0.90 0.00 0.70 1.1548 4.726 4.12 1.86 5.98

2-Phenylethyl acetate 0.788 1.10 0.00 0.60 1.3544 5.833 4.03 2.54 6.57

Pyridine 0.631 0.84 0.00 0.52 0.6753 3.022 3.44 0.26 3.70

Acridine 2.356 1.16 0.00 0.60 1.4133 7.814 4.95 3.61 8.56

1-Naphthoic acid 1.460 1.20 0.65 0.49 1.3007 6.910 6.63 1.81 8.44

1-Naphthylamine 1.670 1.27 0.19 0.51 1.1852 6.490 5.34 2.49 7.83

Aniline 0.955 0.96 0.26 0.41 0.8162 3.934 4.30 1.08 5.38

N-Ethylaniline 0.945 0.91 0.15 0.43 1.0980 4.865 3.58 2.36 5.94

2-Chloroaniline 1.033 0.92 0.25 0.31 0.9386 4.674 3.60 2.12 5.72

2-Aminobiphenyl 1.600 1.45 0.26 0.44 1.4240 7.516 5.33 3.20 8.53

4,4’-Diaminobiphenyl 1.880 1.96 0.20 1.00 1.5238 8.710 9.35 1.82 11.17

4-Nitroaniline 1.220 1.92 0.46 0.35 0.9904 6.042 7.18 1.52 8.70

Phenol 0.805 0.89 0.60 0.30 0.7751 3.766 4.85 0.58 5.43

3-Chlorophenol 0.909 1.06 0.69 0.15 0.8975 4.773 4.85 1.48 6.33
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3 Results

All the data that we need to construct Eq. 1 for the water-to-NPOE system are in Table 2.

One solute, 4-bromobenzoic acid, was an outlier, and for the remaining 87 solutes we

obtained Eq. 5:

log10 Pnpoe ¼ 0:182þ 0:631E� 0:447S� 2:254A� 3:973Bþ 3:559V

N ¼ 87; SD ¼ 0:282; R2 ¼ 0:955; F ¼ 343:8; PRESS ¼ 7:5528; Q2 ¼ 0:947; PSD ¼ 0:304

ð5Þ

The outlier, 4-bromobenzoic acid, had an observed value of log10 Pnpoe as 0.82;

observed values for 4-chlorobenzoic acid and 4-iodobenzoic acid are 0.88 and 1.46, and so

the observed value for 4-bromobenzoic acid does seem to be out of line. In Eq. 5, N is the

number of solutes, SD is the regression standard deviation, R is the correlation coefficient,

F is the F-statistic, PRESS and Q2 are the leave-one-out statistics and PSD is the predictive

standard deviation [32].

Values of the gas to NPOE partition coefficient were obtained through Eq. 3 and are

listed in Table 2. Application of the LFER Eq. 2 leads to Eq. 6. As before, the solute 4-

bromobenzoic acid was left out.

log10 Knpoe ¼ � 0:104þ 0:290Eþ 1:333Sþ 1:306Aþ 0:967Bþ 0:759L

N ¼ 87; SD ¼ 0:282; R2 ¼ 0:995; F ¼ 2977:2; PRESS ¼ 7:4639; Q2 ¼ 0:994; PSD ¼ 0:303

ð6Þ

Details of observed values of log10 Knpoe for ions and ionic species are in Table 4. There

are a number of discrepancies between the sets of data [19, 21], and so we took the values

of Wilke and Zerihun [19] for consistency, and supplemented these with data on anions

from Gulabowski et al. [20]. In Eq. 4 the coefficients c, e, s, a, b and v are taken as the

same as those for the equation for neutral species, Eq. 5, and so there are only two

coefficients to be determined. The full equation is shown as Eq. 7:

Table 2 continued

Solute E S A B V L log10Kw log10 P log10K
NPOE NPOE

3-Methylbenzoic acid 0.730 0.89 0.60 0.40 1.0726 4.819 4.98 1.01 5.99

3-Chlorophenylacetic acid 0.840 1.02 0.61 0.57 1.1950 5.561 6.15 0.93 7.08

Benzyl alcohol 0.803 0.87 0.39 0.56 0.9160 4.221 5.10 0.36 5.46

4-Methylbenzyl alcohol 0.810 0.88 0.39 0.60 1.0569 4.584 5.22 1.27 6.49

4-Nitrophenol 1.070 1.72 0.82 0.26 0.9493 5.876 7.81 0.94 8.75

Dimethylsulfoxide 0.522 1.72 0.00 0.97 0.6126 3.459 7.41 - 1.42 5.99

Triethylamine 0.101 0.15 0.00 0.79 1.0538 3.040 2.36 0.81 3.17

N,N-Dimethylbenzylamine 0.668 0.78 0.00 0.70 1.2389 5.046 3.70 1.64 5.34

Decanoic acid 0.124 0.64 0.62 0.45 1.5920 5.698 3.87 2.94 6.81

aNot used in the regressions
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log10 Pnpoe ¼ 0:182þ 0:631E� 0:447S� 2:254A� 3:973Bþ 3:559V � 2:342Jþ

þ 0:444J� ð7Þ

The usual statistics, as in Eqs. 5 and 6, do not apply to Eq. 7 because the coefficients c,

e, s, a, b and v are fixed. However, for the 21 ions, Eq. 7 fits values of log10 Pnpoe with an

SD of only 0.236 log10 units. The observed values that we used and the calculated values

are in Table 4. We left out data on the bromide anion, the perchlorate anion and the

benzoate anion, that were very considerably out of line. It is perhaps not surprising that we

find a number of values of log10 Pnpoe for ions and ionic species to be out of line,

considering the differences in some of the experimental values: 0.60 for Cs? and 0.50 for

Me4N
? (Table 4). The calculated values of log10 Pnpoe for the ions show no systematic

deviations, as can be seen from Fig. 1.

Table 3 Descriptors for the ions and ionic species

Ionic species E S A B V J? J-

Cs? 0.100 2.600 1.170 0.000 0.177 0.438 0.000

Me4N
? - 0.100 1.310 0.680 0.000 0.764 1.235 0.000

Et4N
? - 0.100 1.850 0.510 0.000 1.357 1.475 0.000

Pr4N
? - 0.100 2.020 0.420 0.000 1.921 1.552 0.000

Bu4N
? - 0.100 2.820 0.610 0.000 2.484 1.418 0.000

Ph4P
? 2.220 3.110 0.040 0.920 2.766 0.480 0.000

Ph4As
? 2.220 3.200 0.070 0.910 2.811 0.581 0.000

Cl- 0.100 3.520 0.000 2.320 0.228 0.000 2.363

Br- 0.170 2.740 0.000 1.820 0.307 0.000 1.567

I- 0.380 3.550 0.000 1.340 0.408 0.000 1.251

ClO4
- - 0.160 5.140 0.000 0.990 0.493 0.000 1.290

NO3
- 0.170 1.980 0.000 1.970 0.320 0.000 1.703

SCN- 0.400 3.380 0.000 1.240 0.365 0.000 1.242

Phenoxide- 0.955 2.80 0.00 2.12 0.7536 0.000 1.6760

2-Nitrophenoxide- 1.165 2.95 0.00 2.20 0.9278 0.000 1.7200

3-Nitrophenoxide- 1.200 3.80 0.00 2.25 0.9278 0.000 2.0600

4-Nitrophenoxide- 1.220 4.85 0.00 2.09 0.9278 0.000 2.2000

2,4-Dinitrophenoxide- 1.350 6.37 0.00 2.22 1.1020 0.000 2.3907

2,5-Dinitrophenoxide- 1.410 4.65 0.00 2.19 1.1020 0.000 1.9631

Picrate- 1.580 7.32 0.00 1.67 1.2762 0.000 2.6100

Benzoate- 0.880 3.64 0.00 2.88 0.9102 0.000 2.3950

3-Chlorobenzoate- 0.990 3.13 0.00 2.57 1.0326 0.000 2.0340

4-Chlorobenzoate- 0.990 3.18 0.00 2.58 1.0326 0.000 2.0990

4-Bromobenzoate- 1.150 3.43 0.00 2.62 1.0852 0.000 2.2203

4-Iodobenzoate- 1.460 3.29 0.00 2.61 1.1684 0.000 2.0590

BPh4
- 1.950 2.720 0.180 1.150 2.700 0.000 - 0.188
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4 Discussion

The equations for log10 Pnpoe and log10 Knpoe for 87 neutral species are consistent with

previous such equations for partition from water and the gas phase to solvents. The SD

values in both Eqs. 5 and 6 are rather larger than those we usually find, but the 87

compounds include a large number of drugs for which it is more difficult to obtain

descriptors. The values of the coefficients in Eqs. 5 and 6 are not particularly unusual,

although the b-coefficient in Eq. 6 (0.967) indicates that NPOE has some hydrogen bond

acidity. This can hardly be due to the presence of water in water-saturated NPOE because

the solubility of water in NPOE is only 0.046 mol�dm-3 [21], less than the water solubility

in nitrobenzene and in 1,2-dichloroethane.

Liu et al. [18] suggested that NPOE could replace 1,2-dichloroethane as regards sol-

vation and partition of nonelectrolytes. A simple way of analyzing the coefficients in Eq. 1

Table 4 Calculated and observed values of log10 Pnpoe for ions and ionic species

log10 Pnpoe (calc.) log10 Pnpoe (obs.)

Taken Ref. 19 Ref. 20 Ref. 21

Cs? - 3.950 - 4.280 - 4.280 - 3.680

Me4N
? - 2.175 - 2.370 - 2.370 - 1.870

Et4N
? - 0.482 - 0.440 - 0.440 - 0.460

Pr4N
? 1.470 1.560 1.590 1.520

Bu4N
? 3.004 4.080

Ph4P
? 5.167 5.310

Ph4As
? 5.023 5.340 5.340 5.480

Cl- - 8.688 - 8.690 - 8.690 - 9.220

Br- - 6.380 - 7.240

I- - 4.483 - 4.700 - 4.700 - 4.910

ClO4
- - 3.824 - 2.960 - 3.100 - 2.700

NO3
- - 6.530 - 6.290 - 6.290 - 6.580

SCN- - 4.154 - 4.400 - 4.400 - 4.600

Phenoxide- - 5.466 - 5.613 - 0.300 - 5.613

2-Nitrophenoxide- - 5.079 - 5.343 - 5.343

3-Nitrophenoxide- - 5.485 - 5.473 - 5.473

4-Nitrophenoxide- - 5.244 - 5.203 - 5.203

2,4-Dinitrophenoxide- - 5.653 - 5.478 - 5.478

2,5-Dinitrophenoxide- - 4.917 - 4.783 - 4.783

Picrate- - 3.031 - 2.803 - 0.300 - 2.803

Benzoate- - 8.032 - 5.510

3-Chlorobenzoate- - 6.228 - 6.368 - 6.368

4-Chlorobenzoate- - 6.261 - 6.118 - 6.118

4-Bromobenzoate- - 6.190 - 6.488 - 6.488

4-Iodobenzoate- - 5.667 - 5.548 - 5.548

BPh4
- 4.748 5.340 5.340 5.310
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is to regard the coefficients e, s, a, b and v as points in five-dimensional space. Then the

distance, D’, between a point for a particular system and the point for the NPOE system

will indicate how near the particular system is to the NPOE system in terms of solubility

related properties [33]. Results in terms of the distance parameter D’ [33] are in Table 5, in

order of the value of D’. We give also in Table 5, details of the nature of the various water–

solvent systems. For many of the water–aprotic solvent systems solubilities in the dry

solvent are effectively the same as those in the solvent equilibrated with water; we denote

these as w/d. The solvents for which data were obtained only using the dry solvent are

denoted as ‘d’. Wet octanol is an exception in that the solubility properties of water-

saturated octanol, ‘w’, are not the same as those of dry octanol. The solvent systems with

nitrobenzene or 1,2-dichloroethane are chemically the closest to the NPOE system.

Abraham and Martins [33] suggested that for two systems to be regarded as similar the

distance parameter should not be larger than about 0.5–0.8 units. The D’ values for

nitrobenzene and 1,2-dichloroethane are slightly outside this criterion, at 0.981 and 0.999

respectively, but the water–NPOE system is still closer to the nitrobenzene or 1,2-

dichloroethane systems than to any of the other systems in Table 5.

We can also calculate the D’ parameter using the coefficients e, s, a, b and l from Eq. 2.

These are also given in Table 5. Note that the entries are in order of the solvents—this is

not quite the same as the order of D’ from Eq. 1, although the order in terms of Eq. 2

follows very closely the order in terms of Eq. 1. Again, NPOE is a better model for

nitrobenzene and 1,2-dichloroethane than any of the other solvents listed, as regards

nonelectrolytes.

In order to analyze partition of ionic species, we could calculate D’ using the coeffi-

cients in Eq. 4. However, the results would be dominated by the ‘nonelectrolyte’ coeffi-

cients e, s, a, and b and would yield little direct information on partition of ionic species. A

direct method of assessing the various water–solvent systems in terms of ionic species is

simply to survey the actual ionic partition coefficients from water to the various solvents.

Unfortunately, there are very few ionic species for which partition coefficients are known

across any reasonable number of systems. We can circumvent this difficulty by using the

data in Tables 1 and 3 to calculate values of ionic partition coefficients for a number of

representative systems as shown in Table 6. We also give the SD for the values of log10

log10 Pnpoe(obs)
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Fig. 1 Plot of log10 Pnpoe(calc.) against log10 Pnpoe(obs.): s anions, d cations, the three outliers j. The
regression line for neutral solutes is shown as __________
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P against the NPOE system as the standard. From the SD values, it can be seen that NPOE

would be a good substitute for 1,2-dichloroethane and possibly for nitrobenzene as regards

partition of ionic species. This is a quite important result. Seip et al. [34] have set out a

classification of solvents in terms of their suitability as supported liquid membranes in

electromembrane extraction. NPOE was rated in the highest category, whereas nitroben-

zene was classed as unsuitable.

Davis and Di Toro [16] have approached the problem of descriptors for ionic species

rather differently from the methods we have employed. They use quantum calculated

partitions into a large number of solvents and define ionic species in terms of five

descriptors only. However, they then require different equations for partition of neutral

molecules, anions and cations from water into a given solvent. Davis and Di Toro [16] set

out equations for the partition of anions into propanone, acetonitrile, methanol and

dimethylsulfoxide with an RMSE in log10 P from 0.39 to 0.51, and an equation for partition

of cations from water to octanol with an SD of 1.16 in log10 P. At the moment the two

methods are independent of each other, although it would be useful if descriptors for ionic

species could somehow be interchanged.

Table 5 The five-dimensional
distance parameter, D’, of sys-
tems from the water–NPOE sys-
tem, Eq. 1, and the gas–NPOE
system, Eq. 2

Solvent system System D’ (Eq. 1) D’ (Eq. 2)

NPOE (this work) w/d 0.000 0.000

Nitrobenzene w/d 0.981 0.709

1,2-Dichloroethane w/d 0.999 0.939

Benzonitrile w/d 1.168 1.269

Acetonitrile d 1.261 1.722

Propylene carbonate d 1.506 1.773

Chlorobenzene w/d 1.604 1.484

Nitromethane w/d 1.687 1.782

Propanone d 1.916 2.154

Sulfolane d 2.340 2.204

Tetrahydrofuran d 2.419 2.309

Wet octan-1-ol w 2.436 2.325

Butan-1-ol d 2.438 2.536

Hexan-1-ol d 2.487 2.489

Methanol d 2.612 2.632

Propan-1-ol d 2.621 2.706

Ethanol d 2.694 2.692

t-Butanol d 2.731 2.893

Propan-2-ol d 2.787 2.870

Dimethylformamide d 3.095 3.005

1,2-Propylene glycol d 3.117 3.093

N-Methylpyrrolidinone d 3.285 3.402

Formamide d 3.303 3.151

Ethylene glycol d 3.368 3.467

Dmethylacetamide d 3.582 3.408

Dimethylsulfoxide d 3.786 4.193
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5 Conclusions

We have constructed LFERs for partition from water to NPOE and from the gas phase to

NPOE for 87 neutral solutes. The latter equation is new and has not been set out before.

The equations reveal that the solution properties of NPOE for nonelectrolyte solutes are

quite similar to solution properties of the typical aprotic solvents 1,2-dichloroethane and

nitrobenzene. Almost the same result is obtained by the examination of partition coeffi-

cients for ions and ionic species. The solution properties of NPOE for electrolytes are quite

close to those of 1,2-dichloroethane although a little way away from aprotic solvents such

as nitrobenzene and benzonitrile.
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