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Abstract The precise control of crystallization is a key issue in providing a high quality

crystalline product. It has to be achieved by, among other means, a proper choice of the

solution processing temperature, which is determined on the basis of the metastable zone

width and type of solubility curve. In this article experimental data for potassium chloride

solution density, as a function of temperature and its correlation in the range from under- to

supersaturation, are reported for solution concentrations between 24.62 % w/w and 31.84 %

w/w. As could be expected in the case of undersaturated solutions and low supersaturation,

the temperature dependence of density for solutions of different saturation may be described

by a linear equation within the investigated range of concentrations. It was also proved that for

the undersaturation range there exists a pole point, which allows calculation of the saturation

temperature, based on the density measured at any temperature.

Keywords Densimetry � Potassium chloride � Saturation temperature � Crystallization

1 Introduction

In order to control the crystallization process adequately, knowledge about physical

properties of concentrated aqueous solutions is required. The main problem with the

determination of concentration during the process is paradoxically the high concentrations
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of saturated solutions, which makes it difficult to use most of the simple analytical methods

(e.g. titration [1]). However, many concentration measurement techniques have been

successfully used, such as density [2–4], conductivity [5], ATR–FTIR spectroscopy [6],

ultrasonic velocity [4], microcalorimetry [7], refractive index [8] or gravimetry [9].

Precise concentration control during crystallization is crucial for achieving a high

quality product. One of the key elements of successful process design is the proper choice

of solution processing temperature, which is determined on the basis of the metastable zone

width (MZW) and type of solubility curve [10–12]. The MZW can be measured by the

difference between saturation temperature and the temperature of the first detected crystals

during cooling at a constant rate. Therefore, it is limited by the metastable supersaturation

and saturation curves. The MZW may be determined on the basis of turbidity, electric

conductivity, particle count number [13], heat effect of nucleation [14].

Many process factors influence the crystallization kinetics including the cooling rate,

thermal history [15, 16], mixing intensity [14, 15], impurities [15], sample volume as well

as the stochastic nature of nucleation [17]. As a result, it is difficult to scale-up crystal-

lization processes [18].

In this work experimental data on density versus temperature and concentration of

potassium chloride are reported. The results are in good agreement with fragmentary data

available in [19]. The densimetry technique applied in this paper is a simple, fast, precise and

reliable method that could be successfully used to monitor the concentrations of solutions in

the saturation, undersaturation and supersaturation range (before nucleation). Similar results

for ammonium oxalate solutions were published by Frej et al. [20] and for fluoranthene in

trichloroethylene by Marciniak [4]. Moreover, this work proposes a calculational method,

which allows determination of the saturation temperatures of an aqueous potassium chloride

solution on the basis of density measurements at any temperature. A single experimental data

point permits calculation of the saturation concentration with use of the saturation curve [20].

The approach is simple, fast, reliable and allows one to obtain high precision results with no

need to perform extensive experimental research.

2 Experimental Section

The experiments were performed using a thermostated 1.2 9 10-3 m3 crystallizer

equipped with four baffles and a Lightnin A200 mechanical propeller. The experimental

saturation temperature range from 289.15 to 333.15 K was investigated at concentrations

ranging from 24.62 % w/w to 31.84 % w/w.

The saturated solutions of potassium chloride were prepared by dissolving an excess

amount of the salt (min. 99.5 % w/w, Avantor Performance Materials Poland S.A) in water

purified by reverse osmosis (conductivity equal to 0.06 lS�cm-1, Hydrolab, Poland). The

suspension was mixed for 2 h at a given temperature to obtain equilibrium between the

solution and suspended crystals. In order to verify consistency of the results with the literature

data [21], the concentration of selected samples were measured by gravimetrically.

Density measurements were carried out in an oscillation densimeter (Anton Paar DMA

4500) with precision of ±5910-5 g�cm-3, and a resolution of ±1 9 10-5 g�cm-3, the

temperature was controlled to ±0.01 K.

The sample was taken using syringe with filter (pore size 0.2 lm), which was preheated

to 5 K above the sample temperature to prevent crystallization during the sampling, and

injected into the densimeter. The temperature of measuring cell upon sample injection was
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exactly the same as the temperature of solution in the reservoir. After the first density

measurement at the temperature of saturation. The sample inside the cell was cooled and its

density was measured again. The temperature was set to decrease to 5 K below saturation

curve by 1 K. Further cooling led to sample crystallization resulting in a substantial

deviation of density measurement. In the undersaturated range the measurement procedure

was similar, but the final temperature was 20 K above the saturation temperature. The

density data were derived from the average values of three independent measurements,

which were almost identical (maximum standard deviation is equal to 2.16 9 10-5

g�cm-3).

3 Results and Discussion

In the table attached as supplementary material the experimental density data for under-

saturated, saturated and supersaturated potassium chloride solutions are listed. The values

for saturated solutions are distinguished. Based on data from the table a graph presenting

density versus temperature of concentrated KCl solutions was obtained (Fig. 1).

The experimental data can be approximated by a linear equation with high accuracy. In

Table 1 there are presented linear equation coefficients (a, b) and the square of the Pearson

correlation coefficients (R2) for the undersaturated and supersaturated regions and for the

whole concentration range. Moreover, the same type of linear correlation was obtained by

Frej et al. [20] and Marciniak [4].

It can be observed that for the undersaturated solutions the correlation slopes decrease

with solubility temperature. Moreover, all functions intersect in one pole point, whose

coordinates are (701.19 K, 0.98356 g�cm-3) (Fig. 1). It is important to emphasize that

obtained pole point has no physical meaning, it is used only for calculations. Based on this

point and any other density measurement of undersaturated potassium chloride solutions at

Fig. 1 Density versus temperature of concentrated KCl solutions
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any temperature, it is possible to calculate the saturation temperature of this solution. It

results from the intersection of the linear function connecting those two points and the

solubility curve. The solubility density (g�cm-3) curve can be calculated from the

table attached as supplementary material by the 2nd order polynomial approximation.

qs ¼ �5:29005 � 10�3 Ts � 273:15ð Þ2þ1:01215 Ts � 273:15ð Þ þ 1155:96: ð1Þ

Example calculations are shown in Table 2.

4 Conclusions

In this article experimental data on potassium chloride solution density as function of

temperature and concentration as well as its correlation in the range of under- and

supersaturation are reported for solution concentrations, cs, between 2.82 and

3.57 mol�dm-3. It was found that the temperature dependence of solution density for

different saturation concentrations may be described by a linear equation in the whole

investigated range of concentrations. Moreover, it was proved that for the undersaturation

range there exists a pole point which allows calculation of the saturation temperature based

on a single density measurement at any temperature. The proposed method is simple,

reliable, fast and accurate. It may be used successfully both in industrial and laboratory

practice. For the readers’ convenience a very simple program to determine the KCl sat-

uration temperature based on a single density measurement is given in Supplementary

Materials.

Acknowledgments This paper was prepared in cooperation with the Public Authority for Applied Edu-
cation and Training in Kuwait (PAAET-TS-14-07).

Table 2 Example calculations

Description Formulas

Density measured at
arbitrarily chosen
temperature (from the
table attached as
supplementary
materials)

qm = 1.18261 g�cm-3

Tm = 315.15 K

Pole point qp = 0.98356 g�cm-3

Tp = 701.19 K

Using these two points a
linear function is
determined

1:18261 ¼ a� 315:15 þ b

0:98356 ¼ a� 701:19 þ b

�

a = -5.1562 9 10-4 g�cm-3�K-1

b = 1.34511 g�cm-3

Solubility density curve qs = -5.29005 9 10-6 (Ts - 273.15)2 ? 1.01215 9 B 10-3

(Ts - 273.15) ? 1.15596

Determined Intersection
of above two functions

qs Tsð Þ ¼ �5:29005 � 10�3 Ts � 273:15ð Þ2þ1:01215 Ts � 273:15ð Þ þ 1155:96

qs Tsð Þ ¼ �5:1562 � 10�4Ts þ 1:34511

�

Density and temperature
of saturated solution

qs = 1.18563 g�cm-3

Ts = 309.29 K
Experimental value (from the

table attached as
supplementary materials)

qs = 1.18566 g�cm-3

Ts = 309.15 K
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