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Abstract The density of 15-crown-5 ether (15C5) solutions in the mixtures of N,N-

dimethylformamide (DMF) and water (H2O) was measured within the temperature range

293.15–308.15 K using an Anton Paar oscillatory U-tube densimeter. The results were

used to calculate the apparent molar volumes (VU) of 15C5 in the mixtures of DMF ? H2O

over the whole concentration range. Using the apparent molar volumes and Redlich and

Mayer equation, the standard partial molar volumes of 15-crown-5 were calculated at

infinite dilution (V
�

m). The limiting apparent molar expansibilities (a) were also calculated.

The data are discussed from the point of view of the effect of concentration changes on

interactions in solution.

Keywords N,N-Dimethylformamide–water mixture � 15-Crown-5 � Density �
Partial molar volume � Hydrophobic hydration

1 Introduction

Studies of the properties of solutions connected with their density within a wide range of

concentration and temperatures are a valuable source of information. The volumetric

functions and the temperature coefficient of expansion make it possible to know not only

the physical properties of the solute and solvent under investigation, but they can also be

used to verify changes occurring in the solution structure brought about by intermolecular

interactions [1–7].

In our measurements solutions of 15C5 in DMF ? H2O mixtures were used. The

special properties of water can be changed under the influence of a substance dissolved in

it. Depending on the hydrophobic–hydrophilic properties of the solute, the three-dimen-

sional network of hydrogen bonds can be reinforced or weakened, which may show itself
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in changes in the density of aqueous solutions (molar volume) and changes in chemical

potential [8].

The investigation of changes in the interactions among the components of mixed solvent

and solute with hydrophobic–hydrophilic properties requires one to choose an organic

solvent that does not specifically react with water. This will allow one to observe changes

in the interactions among the mixture components and solute, brought about by the process

of preferential solvation including the hydrophobic hydration of the solute. This require-

ment is met by N,N-dimethylformamide (DMF). Its molecules have groups with hydro-

philic and hydrophobic properties that are almost mutually compensated, which makes

them a convenient object for investigations in a mixture with water [9]. DMF is used as

model substance for investigation the interactions of small biological molecules serving as

a model compound for protein [10]. The amide group can serve as a model of the peptide

bond, and interactions between hydroxyl and amide groups play an important role in the

solvation of peptides in aqueous solutions [11].

Crown ethers constitute a very interesting class of compounds characterized by

hydrophilic–hydrophobic properties resulting from their structure. Therefore they are

capable of selective complexation of ions and small organic molecules; thus, for example,

they are used to make ion selective electrodes [12].

One can find many studies more or less successfully describing the effect of crown ether

molecules on the interactions in mixed aqueous–organic and organic–organic solvents.

Such studies have been carried out by means of various experimental techniques [13–19].

In the literature, there are few papers on the volumetric properties of crown ethers in water

or in mixtures of water with an organic solvent [16, 20].

In this paper we present the effect of the mixed solvent composition and temperature on

the volumetric properties of the system 15C5 ? DMF ? H2O. The data are compared with

analogous results previously obtained for the solutions of urea (a hydrophilic compound) in

the mixtures of DMF and water [21].

2 Experimental and Method

2.1 Materials

15-crown-5 (Aldrich, w = 0.98) was used as received. DMF (Aldrich, mass frac-

tion = 0.99) was purified and dried according to the procedures described in the literature

[22, 23] and distilled under vacuum. Water content, determined by the Karl Fisher method,

was lower than 0.01 %. To prepare aqueous solutions, triple-distilled and degassed water

was used.

2.2 Measurements

The densities of the 15C5 solutions within the whole concentration range of mixed solvent,

at temperatures T/K = 293.15, 298.15, 303.15 and 308.15, were measured with the use of

an Anton Paar densimeter, model DMA 5000 with an oscillatory U-tube, whose uncer-

tainty of density and temperature measurements are ±5 9 10-3 kg�m-3 and ±0.01 K,

respectively, and the temperature stability is ±0.005 K. The densimeter was calibrated

with the use of pure water. The obtained value of water density equal to 997.046 kg�m-3 at

a temperature of 298.15 K is in agreement with the literature data [24]. The mixed solvent

DMF ? H2O and solutions of 15-crown-5 in DMF ? H2O were prepared by weight using
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electronic balances with an accuracy of ±1 9 10-2 and ±1 9 10-5 g, respectively. The

values of experimental densities of pure N,N-dimethylformamide are compared with lit-

erature data and collected in Table 1. The values of the solution densities obtained as a

function of molality, m (m expressed as moles of 15-crown-5 per kilogram of solvent) at

investigated temperatures, are presented in Table 2.

3 Results and Discussion

Using the density values of 15-crown-5 (15C5) in DMF ? H2O mixtures (Table 2), the

apparent molar volume of 15C5 in DMF ? H2O mixtures was calculated using Eq. 1:

VU ¼ M=q� 1000 � ðq� qoÞ=m � q � qo ð1Þ

where M is a molar mass of 15C5, qo is the density of DMF ? H2O mixtures, q indicates

the density of the 15C5 ? DMF ? H2O system and m is the concentration of 15C5 in

moles per kilogram of solvent. The dependence of VU on the solute molality, VU = f(m),

can be described by Eq. 2:

VU ¼ V
�

U þ bVm ð2Þ

Equation 2 is a special case of the dependence proposed by Redlich and Meyer [33]:

VU ¼ V
�

U þ SV

ffiffiffiffi

m
p
þ bVm ð3Þ

where SV and bV are empirical parameters. The parameter SV is connected with the

interaction of ions in solution, which can be calculated from Debye–Hückel’s limiting law.

For solutions of nonelectrolytes, SV = 0 [34]. The parameter bV provides information

about the character of interactions of solute molecules between themselves.

Table 1 Experimental density of N,N-dimethylformamide and literature data

Substance q 9 103 (kg�m-3)

T = 293.15 K T = 298.15 K T = 303.15 K T = 308.15 K

DMF 0.948737 0.943971 0.939196 0.934420

0.94939a 0.94460a 0.93983a 0.93505a

0.95045b 0.94559b 0.94069b 0.93561b

0.948051c 0.942915c 0.938876c 0.933964c

0.94917d 0.944e 0.9386h 0.9344h

0.94381f

0.94403g

a Berna-Garcı́a et al. [25]
b Marchetti et al. [26]
c Sharlin et al. [27]
d Tôrres et al. [28]
e Bakshi et al. [29]
f Bendová et al. [30]
g Tong-Chun et al. [31]
h Akhtar et al. [32]
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Table 2 Experimental densities, q, of 15-crown-5 in the DMF ? H2O mixtures at temperatures
T = (293.15, 298.15, 303.15 and 308.15) K

x2 m (mol�kg-1) q 9 103 (kg�m-3)

T = 293.15 K T = 298.15 K T = 303.15 K T = 308.15 K

0.00 0 0.948737 0.943971 0.939196 0.934420

0.02548 0.949612 0.944847 0.940074 0.935300

0.05941 0.950756 0.945992 0.941221 0.936447

0.08622 0.951640 0.946877 0.942114 0.937343

0.11692 0.952642 0.947884 0.943125 0.938359

0.13341 0.953166 0.948402 0.943644 0.938876

0.17510 0.954477 0.949715 0.944959 0.940197

0.20937 0.955535 0.950789 0.946034 0.941275

0.24408 0.956576 0.951832 0.947081 0.942326

0.10 0 0.953731 0.948879 0.944216 0.939439

0.03367 0.954840 0.949990 0.945328 0.940554

0.06351 0.955807 0.950958 0.946296 0.941523

0.09159 0.956705 0.951856 0.947199 0.942428

0.12396 0.957723 0.952879 0.948218 0.943453

0.15189 0.958575 0.953736 0.949088 0.944310

0.18502 0.959590 0.954751 0.950095 0.945334

0.20868 0.960304 0.955451 0.950810 0.946049

0.25199 0.961562 0.956728 0.952086 0.947332

0.20 0 0.959310 0.954573 0.949823 0.945045

0.04255 0.960655 0.955919 0.951171 0.946398

0.07195 0.961569 0.956833 0.952086 0.947314

0.09842 0.962382 0.957646 0.952903 0.948136

0.12857 0.963288 0.958561 0.953820 0.949060

0.15401 0.964054 0.959321 0.954584 0.949819

0.18505 0.964960 0.960245 0.955506 0.950752

0.21101 0.965727 0.961002 0.956267 0.951517

0.25734 0.967045 0.962328 0.957596 0.952839

0.30 0 0.965705 0.960992 0.956253 0.951493

0.02471 0.966441 0.961730 0.956994 0.952236

0.05485 0.967328 0.962619 0.957884 0.953130

0.08073 0.968082 0.963374 0.958637 0.953883

0.10921 0.968901 0.964195 0.959466 0.954715

0.13379 0.969599 0.964897 0.960160 0.955410

0.16111 0.970369 0.965665 0.960939 0.956192

0.17732 0.970821 0.966119 0.961394 0.956647

0.21842 0.971953 0.967254 0.962534 0.957787
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Table 2 continued

x2 m (mol�kg-1) q 9 103 (kg�m-3)

T = 293.15 K T = 298.15 K T = 303.15 K T = 308.15 K

0.40 0 0.972987 0.968296 0.963577 0.958796

0.02690 0.973758 0.969067 0.964349 0.959571

0.05893 0.974663 0.969974 0.965259 0.960484

0.07837 0.975204 0.970517 0.965806 0.961031

0.11204 0.976138 0.971452 0.966740 0.961967

0.13346 0.976713 0.972038 0.967327 0.962556

0.16708 0.977630 0.972948 0.968239 0.963471

0.19964 0.978498 0.973818 0.969110 0.964344

0.23028 0.979305 0.974627 0.969920 0.965157

0.50 0 0.980849 0.976200 0.971517 0.966802

0.02234 0.981473 0.976823 0.972141 0.967426

0.05427 0.982354 0.977704 0.973025 0.968309

0.07937 0.983037 0.978387 0.973710 0.968992

0.10775 0.983803 0.979151 0.974479 0.969758

0.12484 0.984258 0.979608 0.974936 0.970217

0.16227 0.985245 0.980597 0.975928 0.971207

0.19826 0.986181 0.981530 0.976867 0.972146

0.22877 0.986960 0.982314 0.977652 0.972930

0.60 0 0.988582 0.984016 0.979419 0.974785

0.02030 0.989155 0.984587 0.979990 0.975354

0.03362 0.989529 0.984960 0.980362 0.975726

0.06490 0.990396 0.985826 0.981225 0.976588

0.09303 0.991169 0.986597 0.981997 0.977360

0.12367 0.992000 0.987427 0.982827 0.978187

0.15369 0.992802 0.988226 0.983625 0.978984

0.18395 0.993600 0.989023 0.984420 0.979780

0.25543 0.995445 0.990865 0.986260 0.981619

0.70 0 0.995521 0.991167 0.986768 0.982319

0.03136 0.996464 0.992101 0.987695 0.983239

0.06435 0.997443 0.993070 0.988659 0.984194

0.09125 0.998224 0.993844 0.989431 0.984956

0.11435 0.998893 0.994508 0.990088 0.985616

0.15157 0.999956 0.995565 0.991137 0.986646

0.18098 1.000785 0.996387 0.991953 0.987424

0.20196 1.001369 0.996967 0.992529 0.988026

0.23981 1.002417 0.998008 0.993562 0.989070
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Table 2 continued

x2 m (mol�kg-1) q 9 103 (kg�m-3)

T = 293.15 K T = 298.15 K T = 303.15 K T = 308.15 K

0.80 0 0.999822 0.995938 0.991999 0.987998

0.03182 1.000884 0.996986 0.993035 0.989021

0.06761 1.002061 0.998150 0.994180 0.990158

0.10137 1.003158 0.999234 0.995264 0.991212

0.13026 1.004090 1.000146 0.996151 0.992096

0.15750 1.004958 1.001001 0.996994 0.992930

0.19474 1.006118 1.002143 0.998121 0.994039

0.20937 1.006572 1.002591 0.998563 0.994478

0.26742 1.008344 1.004339 1.000287 0.996181

0.90 0 0.999747 0.996896 0.993931 0.990857

0.02425 1.000667 0.997792 0.994803 0.991718

0.06077 1.002037 0.999125 0.996102 0.993000

0.10132 1.003533 1.000583 0.997525 0.994401

0.11740 1.004122 1.001160 0.998083 0.994952

0.13681 1.004826 1.001846 0.998748 0.995613

0.17294 1.006122 1.003106 0.999979 0.996827

0.20232 1.007166 1.004121 1.000967 0.997804

0.23732 1.008391 1.005317 1.002131 0.998952

0.92 0 0.999213 0.996655 0.993967 0.991148

0.03136 1.000408 0.997816 0.995106 0.992268

0.06265 1.001589 0.998962 0.996231 0.993374

0.09774 1.002895 1.000233 0.997477 0.994599

0.12799 1.004011 1.001315 0.998539 0.995644

0.15895 1.005139 1.002411 0.999614 0.996700

0.19205 1.006334 1.003571 1.000751 0.997819

0.21136 1.007023 1.004239 1.001408 0.998464

0.26014 1.008749 1.005912 1.003051 1.000078

0.94 0 0.998613 0.996383 0.993997 0.991465

0.03717 1.000020 0.997759 0.995345 0.992788

0.06953 1.001232 0.998944 0.996502 0.993923

0.09583 1.002213 0.999904 0.997433 0.994832

0.13217 1.003545 1.001207 0.998721 0.996094

0.16474 1.004731 1.002368 0.999851 0.997212

0.20262 1.006084 1.003694 1.001159 0.998491

0.22400 1.006831 1.004423 1.001871 0.999187

0.27371 1.008583 1.006135 1.003547 1.000829
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The values of bV obtained as a function of the molar fraction of water are listed in

Table 3. Considering the considerable standard deviations of the values of bV, these values

will be discussed in qualitative terms. Up to x2 = 0.9 the values of bV are positive. In the

mixture with high water content, i.e. x2 [ 0.9, these values are negative. The negative sign

of coefficient bV reflects the hydrophobic properties of 15C5 molecules [35, 36]. As can be

seen the values of bV decrease with increasing water content in the mixtures. This means

that the interactions between the molecules of solute are becoming stronger [37, 38]. This

is consistent with hydrophobic hydration of 15C5 molecules in aqueous medium and their

enclosure in clathrate-like water structures.

For urea [21] the decreasing values of VU with increasing urea content in the mixture

testify to the existence of increasing short range attractions between urea molecules [37].

In the case of the DMF ? H2O ? urea system, the values of bV are negative but they

Table 2 continued

x2 m (mol�kg-1) q 9 103 (kg�m-3)

T = 293.15 K T = 298.15 K T = 303.15 K T = 308.15 K

0.96 0 0.998064 0.996186 0.994128 0.991899

0.02961 0.999179 0.997277 0.995195 0.992944

0.06577 1.000529 0.998597 0.996484 0.994206

0.09853 1.001742 0.999775 0.997638 0.995337

0.12369 1.002660 1.000674 0.998517 0.996199

0.15178 1.003682 1.001671 0.999488 0.997147

0.18196 1.004770 1.002731 1.000525 0.998162

0.21265 1.005857 1.003794 1.001564 0.999177

0.25315 1.007279 1.005182 1.002920 1.000502

0.98 0 0.997773 0.996269 0.994553 0.992644

0.02909 0.998855 0.997327 0.995588 0.993659

0.06203 1.000069 0.998512 0.996751 0.994798

0.09171 1.001153 0.999570 0.997786 0.995811

0.12209 1.002250 1.000647 0.998833 0.996846

0.15501 1.003428 1.001796 0.999969 0.997943

0.18354 1.004440 1.002784 1.000930 0.998902

0.20860 1.005323 1.003649 1.001774 0.999726

0.24953 1.006746 1.005039 1.003135 1.001057

1.00 0 0.998199 0.997043 0.995649 0.994041

0.02470 0.999077 0.997898 0.996488 0.994859

0.06100 1.000348 0.999145 0.997711 0.996065

0.09177 1.001429 1.000189 0.998745 0.997078

0.11536 1.002244 1.000985 0.999524 0.997845

0.13029 1.002753 1.001488 1.000020 0.998329

0.17530 1.004282 1.002977 1.001491 0.999777

0.20216 1.005193 1.003866 1.002358 1.000628

0.23731 1.006360 1.005023 1.003489 1.001745

x2 is the mole fraction of water in the mixture
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become less negative with increasing water content in the mixtures, which indicates

hydrophilic properties of urea and that the solute–solute interactions have become weaker

[21].

The values of the standard partial molar volume, V
�

m (V
�

U = V
�

m), of 15C5 obtained by

the extrapolation of VU data are presented in Table 4 and in Fig. 1 as a function of the

molar fraction of water. The same figure also shows the values of the standard partial molar

volume of urea with hydrophilic properties within the same range of concentrations and

temperatures that were published in our previous paper [21]. As is seen in Fig. 1, for 15C5

showing hydrophobic properties, the values of the standard partial molar volume in the

mixture of DMF and water are considerably higher than those of urea. This difference also

directly results from the considerable differences in the molecular sizes of the compounds.

Analyzing the dependence V
�
m ¼ f x2ð Þ for 15C5, we observe an increase in the partial

molar volume with increasing water content in the mixtures up to x2 & 0.4. This is

probably due to the interactions between the polar groups of DMF and water. In a solution

with low water content, the interactions between DMF and water molecules dominate.

Some authors [11, 42–50] proposed the possibility of clathrate or complex formation

(DMF•(H2O)n, n = 1–4). This would be the reason that the molecules of 15C5 are mainly

solvated by the organic co-solvent.

The ordering of the mixed solvent structure and the presence of 15C5 molecules sol-

vated by DMF most probably cause an increase in the values of V
�
m within the concen-

tration range from x2 = 0 to 0.4. Further increase in the water content in the mixture

probably causes the organic solvent molecules to be replaced by water molecules in the

solvation shell. Taking into account the fact that the addition of water, which is a polar

molecule, is a highly disadvantageous process, it may be expected that the system will tend

to minimize the disadvantageous interactions between solute and water molecules. As a

Table 3 Coefficient bV of Eq. 2

x2 bV 9 106 (m3�kg�mol-2)

T = 293.15 K T = 298.15 K T = 303.15 K T = 308.15 K

0.00 4.71 ± 0.10 4.48 ± 0.24 4.46 ± 0.22 4.32 ± 0.30

0.10 2.99 ± 0.18 3.04 ± 0.14 2.69 ± 0.13 2.71 ± 0.18

0.20 1.81 ± 0.15 1.43 ± 0.07 1.30 ± 0.07 1.34 ± 0.22

0.30 0.76 ± 0.03 0.82 ± 0.04 0.88 ± 0.23 1.06 ± 0.24

0.40 0.79 ± 0.18 0.56 ± 0.04 0.61 ± 0.09 0.75 ± 0.06

0.50 0.80 ± 0.05 0.59 ± 0.04 0.35 ± 0.08 0.47 ± 0.05

0.60 0.64 ± 0.06 0.52 ± 0.09 0.57 ± 0.11 0.36 ± 0.12

0.70 0.91 ± 0.14 0.62 ± 0.16 0.68 ± 0.10 0.85 ± 0.51

0.80 0.42 ± 0.12 0.68 ± 0.10 0.96 ± 0.28 1.06 ± 0.13

0.90 0.51 ± 0.04 0.41 ± 0.09 0.34 ± 0.08 0.27 ± 0.04

0.92 -0.25 ± 0.04 -0.17 ± 0.02 -0.19 ± 0.02 -0.19 ± 0.02

0.94 -0.42 ± 0.18 -0.51 ± 0.20 -0.72 ± 0.19 -0.68 ± 0.25

0.96 -0.97 ± 0.15 -0.60 ± 0.08 -0.55 ± 0.03 -0.38 ± 0.08

0.98 -0.90 ± 0.04 -0.96 ± 0.06 -0.86 ± 0.12 -0.92 ± 0.12

1.00 -1.71 ± 0.29 -1.65 ± 0.15 -1.59 ± 0.14 -1.44 ± 0.10

± is the standard deviation
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result of this, nonpolar molecules tend to interact among themselves, thereby reducing the

number of contacts with water, which results in the superposition of solvation sheaths and

the release of water molecules from the solvation shell into the bulk solvent [20]. The

outcome of this phenomenon is the dissolution of 15C5 showing a considerable decrease in

the value of V
�

m up to x2 & 0.92. In a water-rich mixture, when x2 [ 0.92, one can observe

an increase in the standard partial molar volume of 15C5, which is directly caused by the

phenomenon of hydrophobic hydration [39, 40]. Frank and Evans [51] have suggested that

water forms cages around nonpolar solutes. The resultant structures are the cause of the

formation of new or reinforcement of existing hydrogen bonds between water molecules.

The aqueous medium is hostile to organic compounds, isolating them in clathrate-like

cavities formed in an energetically favorable, exothermic process consisting in strength-

ening of hydrogen bonds among water molecules that form the hydration sheath [52].

Forming hydrogen bonds with its other molecules, water causes a geometric distribution of

the hydrophobic interactions of organic molecules dissolved in it, causing the hydrophobic

hydration to become a factor determining the increase in the V
�

m values of 15C5 within this

concentration range of mixed solvent. In this process of solvent structure reconstruction,

the exothermic enthalpic effect increases at the expense of decrease in entropy (entropy

Table 4 Partial molar volume of 15-crown-5, V
�

m, in the DMF ? H2O mixtures

x2 V
�
m 9 106 (m3�mol-1)

T = 293.15 K T = 298.15 K T = 303.15 K T = 308.15 K

0.00 193.72 ± 0.01 194.49 ± 0.04 195.16 ± 0.03 195.90 ± 0.04

0.10 194.39 ± 0.03 195.13 ± 0.02 195.90 ± 0.20 196.63 ± 0.09

0.20 194.90 ± 0.02 195.70 ± 0.01 196.45 ± 0.01 197.13 ± 0.04

0.30 195.97 ± 0.01 196.70 ± 0.01 197.42 ± 0.03 198.14 ± 0.03

0.40 195.96 ± 0.03 196.73 ± 0.01 197.47 ± 0.01 198.19 ± 0.01

0.50 195.39 ± 0.01 196.23 ± 0.01 196.97 ± 0.01 197.80 ± 0.01

0.60 193.79 ± 0.01 194.64 ± 0.01 195.44 ± 0.01 196.31 ± 0.02

0.70 190.72 ± 0.02 191.74 ± 0.02 192.65 ± 0.02 193.64 ± 0.08

0.80 186.70 ± 0.20 187.71 ± 0.02 188.71 ± 0.04 189.75 ± 0.02

0.90 182.18 ± 0.01 183.59 ± 0.01 185.02 ± 0.01 185.96 ± 0.01

0.92 182.05 ± 0.01 183.51 ± 0.01 184.62 ± 0.01 185.66 ± 0.01

0.94 182.33 ± 0.03 183.50 ± 0.03 184.68 ± 0.03 185.76 ± 0.04

0.96 182.67 ± 0.02 183.78 ± 0.01 184.91 ± 0.01 185.99 ± 0.01

0.98 183.21 ± 0.01 184.29 ± 0.01 185.30 ± 0.02 186.31 ± 0.02

1.00 185.02 ± 0.04 186.02 ± 0.02
186.4a

186.2b

186.06c

186.46d

186.79 ± 0.02 187.59 ± 0.01

x2 is the mole fraction of water in the mixture

± is the standard deviation
a Dagade et al. [20]
b Bernal et al. [39]
c Høiland [40]
d Zielenkiewicz et al. [41]
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becomes more negative). Using literature data for the enthalpy of solution and enthalpy of

sublimation or evaporation of 15C5 and urea in the mixtures of DMF ? H2O [53–56], we

calculated the solvation enthalpy (DsolvH�) of these compounds in the solvent mixtures of

DMF and H2O at 298.15 K. The results are shown in Fig. 2. As is seen, the shape or course

of the curve of solvation enthalphy is similar to the course of partial molar volume for

15C5. The increase of both values within the DMF-rich region (0 B x2 & 0.4) indicates

difficulties in incorporating crown ether molecules into the mixed solvent structure. The

increase in the exothermic enthalpic effect, above 0.92 water fraction, as it occurs in the

process of crystallization, indicates an increase in the number of hydrogen bonds around

the hydrophobic substance [51, 53]. This is the reason for the increasing values of V
�

m of

15C5.

Figure 1 shows a clear effect of temperature on the standard partial molar volumes of

15C5 within the whole mixture composition range. This value increases with increasing

temperature as is expected. The increase in temperature weakens the interactions among

molecules, through which the values of the standard partial molar volume of 15C5 are

increased. In the system of DMF ? H2O ? urea, the course of the function V
�
m = f(x2) is

different. As is seen in Fig. 1, the values of V
�
m for urea increase with increasing water
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Fig. 1 Standard partial molar volume (V
�
m) of 15-crown-5 (full symbol) and urea [21] (open symbol) in the

DMF ? H2O mixtures for various temperatures: filled square 293.15 K, filled circle 298.15 K, filled
triangle 303.15 K, filled tilled triangle 308.15 K as a function of the mole fraction of water
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content up to x2 & 0.7, and then decrease [21]. Only within the area of x2 [ 0.6 one can

observe changes in the structure of mixed solvent brought about by the presence of urea

molecules that form hydrogen bonds with water. Hydrophilic molecules of urea destroy the

structure of the mixed solvent, within the water-rich region, which results in a decrease in

the value of the standard partial molar volume of urea [21].

The linear temperature dependence of the partial molar volume of 15C5 allows cal-

culation of the limiting apparent molar expansibilities (a) using Eq. 4:

a ¼ oV
�

m=oT ð4Þ

The results are presented in Table 5 and Fig. 3. The values of limiting apparent molar

expansibilities in water is in good agreement with literature data [57]. For comparison, in

the same figure, data for the hydrophile urea are presented. These values were calculated

using the data of the partial molar volumes of urea presented in our previous paper [21]. As

in other cases, we can observe significant differences in the courses of the functions in the

region x2 [ 0.9. This reflects the differences in the hydrophobic and hydrophilic properties

of molecules of 15C5 and urea.

In the low and medium water content mixtures no significant changes are observed in

the course of the functions DsolvH� = f(x2), V
�
m = f(x2) and a = f(x2) for 15C5 and urea.
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Fig. 2 Standard solvation enthalpy (DsolvH�) (see the text) of: filled circle, 15-crown-5; and filled square,
urea in the solvent mixture (DMF ? H2O) at 298.15 K as a function of the mole fraction of water
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Worthy of attention is the behavior of those functions in the mixtures with high water

content. In this area the courses of all functions for 15C5 are completely opposite to that

which we observed for urea. This is due to the differences in hydrophilic and hyrophobic

properties of both investigated compounds. The exothermic process of hydrophobic

hydration is the reason for increasing V
�
m values and decreasing of DsolvH� and a. In the

water-rich region the interaction between the urea molecules weakens, and the interaction

between them and water molecules becomes important. Completely reversed behavior of

all functions for urea are caused by the destruction of the mixed solvent structure [21].

4 Conclusion

The analysis of apparent (VU) and partial molar volumes (V
�
m) of 15C5 in DMF ? H2O

mixtures made it possible to verify the changes in the mixed solvent structure occurring

under the influence of dissolved hydrophobic 15C5. The analysis of the function

V
�
m = f(x2) for 15C5 in DMF ? H2O mixtures gives conclusions that the 15C5 molecules

are hydrophobic hydrated at high water content of the mixture. The decreasing values of

the virial coefficient bV with increase of water content in the mixture indicate an increasing

effect of hydrophobic hydration of 15C5 molecules in aqueous medium. The results for

hydrophobic 15C5 were compared with analogous results for urea showing hydrophilic

properties. The obtained conclusions concerning partial molar volume and expansibility of

15-crown-5 and urea in mixed solvent have been confirmed by the results of the solvation

enthalpy of 15C5 and urea in the mixtures of DMF ? H2O.

Table 5 Limiting apparent molar expansibilities of 15C5 in the DMF ? H2O mixtures

x2 a (cm3�mol-1�K-1) R2

0.00 0.144 ± 0.003 0.99936

0.10 0.150 ± 0.001 0.99990

0.20 0.149 ± 0.003 0.99870

0.30 0.145 ± 0.001 0.99998

0.40 0.149 ± 0.002 0.99978

0.50 0.159 ± 0.003 0.99942

0.60 0.167 ± 0.002 0.99976

0.70 0.193 ± 0.003 0.99956

0.80 0.203 ± 0.001 0.99994

0.90 0.255 ± 0.017 0.99170

0.92 0.239 ± 0.014 0.99331

0.94 0.229 ± 0.003 0.99960

0.96 0.222 ± 0.001 0.99992

0.98 0.206 ± 0.002 0.99972

1.00 0.170 ± 0.007
0.18a

0.99628

x2 is the mole fraction of water in the mixture

± is the standard deviation

R is the regression coefficient
a Bernal et al. [57]
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