Skip to main content
Log in

Chemical Transfer Energies of Some Homologous Amino Acids and the –CH2– Group in Aqueous DMF: Solvent Effect on Hydrophobic Hydration and Three Dimensional Solvent Structure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Standard transfer Gibbs energies, \( \Updelta_{\text{tr}} G^{^\circ } \), of a series of homologues α-amino acids have been evaluated by determining the solubility of glycine, alanine, amino butyric acid and norvaline gravimetrically at 298.15 K. Standard entropies of transfer, \( \Updelta_{\text{tr}} S^{^\circ } \), of the amino acids have also been evaluated by extending the solubility measurement to five equidistant temperatures ranging from 288.15 to 308.15 K. The chemical contributions \( \Updelta_{\text{tr,ch}} G^{^\circ } (i) \) of α-amino acids, as obtained by subtracting theoretically computed contributions to \( \Updelta_{\text{tr}} G^{ \circ } \) due to cavity and dipole–dipole interaction effects from the corresponding experimental \( \Updelta_{\text{tr}} G^{ \circ } \), are indicative of the superimposed effect of increased basicity and dispersion and decreased hydrophobic hydration (hbh) in DMF–water solvent mixtures as compared to those in water, while, in addition, \( T\Updelta_{\text{tr,ch}} S^{^\circ } (i) \) is guided by structural effects. The computed chemical transfer energies of the –CH2– group, \( \Updelta_{\text{tr,ch}} P^{^\circ } \)(–CH2–) [P = G or S] as obtained by subtracting the value of lower homologue from that of immediately higher homologue, are found to change with composition indicating involvement of several opposing factors in the calculation of the chemical interactions. The \( \Updelta_{\text{tr,ch}} G^{^\circ } \)(–CH2–) values are found to be guided by the decreased hydrophobic effect in DMF–water mixtures, and are indicative of the nature of the three dimensional structure of the aquo-organic solvent system around each solute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scott, J.H., O’brien, D.M., Emerson, D., Sun, H., McDonald, G.D., Salgado, A., Fogel, M.L.: An examination of the carbon isotope effects associated with amino acid biosynthesis. Astrobiology 6, 867–880 (2006)

    Article  CAS  Google Scholar 

  2. Sinha, R., Bhattacharya, S.K., Kundu, K.K.: Chemical transfer energetics of the –CH2– group in aqueous glycerol: solvent effect on hydrophobic hydration and its three-dimensional structure. J. Mol. Liq. 122, 95–103 (2005)

    Article  CAS  Google Scholar 

  3. Talukdar, H., Rudra, S.P., Kundu, K.K.: Thermodynamics of transfer of glycine, diglycine and triglycine from water to aqueous solutions of urea, glycerol and sodium nitrate. Can. J. Chem. 66, 461–468 (1988)

    Article  CAS  Google Scholar 

  4. Royer, C.A.: Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies. Braz. J. Med. Res. 38(8), 1167–1173 (2005)

    CAS  Google Scholar 

  5. Macedo, E.A.: Solubilities of amino acids, sugars and proteins. Pure Appl. Chem. 77, 559–568 (2005)

    Article  CAS  Google Scholar 

  6. Ikura, T., Urakubo, Y., Nobutoshi, L.: Water mediated interaction of a protein interface. Chem. Phys. 307, 111–119 (2004)

    Article  CAS  Google Scholar 

  7. Bonetta, L.: Protein–protein interactions: interactome under construction. Nature 468, 851–854 (2010)

    Article  CAS  Google Scholar 

  8. Lapanje, S.: Physico-chemical aspects of proteins denaturation. Wiley Interscience, New York (1978)

    Google Scholar 

  9. Koseoglu, F., Kilicb, E., Dogan, A.: Studies on the protonation constants and solvation of α-amino acids in dioxan–water mixtures. Anal. Biochem. 277, 243–246 (2000)

    Article  CAS  Google Scholar 

  10. Das, P., Chatterjee, S., Basu Mallick, I.: Thermodynamic studies on amino acid solvation in some aqueous alcohols. J. Chin. Chem. Soc. 51, 1–6 (2004)

    CAS  Google Scholar 

  11. Islam, M.N., Wadi, R.K.: Thermodynamics of transfer of amino acids from water to aqueous sodium sulphate. Phys. Chem. Liq. 39, 77–84 (2001)

    Article  CAS  Google Scholar 

  12. Ji, P., Zou, J., Feng, W.: Effect of alcohol on the solubility of amino acid in water. J. Mol. Catal. B 56, 185–188 (2009)

    Article  CAS  Google Scholar 

  13. Roy, S., Mahali, K., Dolui, B.K.: Thermodynamic studies of solvation of a series of homologous α-amino acids in aqueous mixtures of protic ethylene glycol at 298.15 K. Biochem. Ind. 3, 63–68 (2009)

    Google Scholar 

  14. Roy, S., Mahali, K., Dolui, B.K.: Transfer entropies of solvation of a series of homologous α-amino acids in aqueous mixtures of protic ethylene glycol. Biochem. Ind. 3, 71–76 (2010)

    Google Scholar 

  15. Das, P., Chatterjee, S., Basu Mallick, I.: Thermodynamic studies on amino acid solvation in aqueous urea. J. Chin. Chem. Soc. 54, 1–6 (2007)

    Google Scholar 

  16. Mahali, K., Roy, S., Dolui, B.K.: Thermodynamic studies of solvation of a series of homologous α-amino acids in non-aqueous mixtures of ethylene glycol and N,N-dimethyl formamide. J. Biophys. Chem. 2, 185–193 (2011)

    Article  CAS  Google Scholar 

  17. Gekko, K., Timasheff, S.N.: Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20, 4677–4686 (1981)

    Article  CAS  Google Scholar 

  18. Ganguly, S., Kundu, K.K.: Transfer energetic of some DNA and RNA bases in aqueous mixtures of urea and glycerol. J. Phys. Chem. 97, 10862–10867 (1993)

    Article  CAS  Google Scholar 

  19. Sinha, R., Kundu, K.K.: Transfer energetic of a series of homologous α-amino acids and hence of –CH2– group-A possible probe for the solvent effect on hydrophobic hydration and the three dimensional structuredness of aqueous cosolvents. J. Mol. Liq. 111, 151–159 (2004)

    Article  CAS  Google Scholar 

  20. Talukdar, H., Kundu, K.K.: Chemical transfer energetic of the –CH2– group: a possible probe for the solvent effect on hydrophobic hydration and 3D-structuredness of solvents. J. Phys. Chem. 96, 970–975 (1992)

    Article  CAS  Google Scholar 

  21. Dolui, B.K., Bhattacharya, S.K., Kundu, K.K.: Single-ion transfer Gibbs energies in binary mixtures of isodielectric protic ethylene glycol and dipolar aprotic N,N-dimethyl formamide. Indian J. Chem. 45A, 2607–2614 (2006)

    CAS  Google Scholar 

  22. Dolui, B.K., Bhattacharya, S.K., Kundu, K.K.: Single-ion transfer entropies in binary mixtures of isodielectric protic ethylene glycol and dipolar aprotic N,N-dimethyl formamide vis-à-vis 3D-structuredness of aqueous cosolvents. Indian J. Chem. 48A, 504–511 (2009)

    CAS  Google Scholar 

  23. Marcus, Y.: Ion solvation. Wiley, New York (1985)

    Google Scholar 

  24. Nozaki, Y., Tanford, C.: The solubility of amino acids and related compounds in aqueous urea solutions. J. Biol. Chem. 238, 4074–4081 (1963)

    CAS  Google Scholar 

  25. Datta, J., Kundu, K.K.: Transfer thermodynamics of p-nitro aniline in aqueous solutions of some ionic and non-ionic cosolvents and structuredness of the solvents. Can. J. Chem. 61, 625–631 (1983)

    Article  CAS  Google Scholar 

  26. Datta, J., Kundu, K.K.: Transfer thermodynamics of benzoic acid in aqueous solutions of some ionic and non-ionic cosolvents and structuredness of the solvents. J. Phys. Chem. 86, 4055–4061 (1982)

    Article  CAS  Google Scholar 

  27. Dey, B.P., Dutta, S., Lahiri, S.C.: Studies on the dissociation constants of amino acids indioxane + water mxtures at 298 K. Indian J. Chem. 74, 382–386 (1997)

    Google Scholar 

  28. Dutta, S.C., Lahiri, S.C.: Studies on the dissociation constants and solubilities of amino acids in ethylene glycol + water mixtures. J. Indian Chem. Soc. 72, 315–322 (1995)

    CAS  Google Scholar 

  29. London, F.: The general theory of molecular forces. Trans Faraday Soc. 33, 8–26 (1937) and related references cited therein

    Google Scholar 

  30. Kundu, K.K.: Transfer entropies and structuredness of solvents. Pure Appl. Chem. 66, 411–417 (1994)

    Article  CAS  Google Scholar 

  31. Cohn, E.J., McMeekin, T.L., Edsall, J.T., Blanchard, M.H.: Studies in the physical chemistry of amino acids, peptides and related substances. J. Am. Chem. Soc. 56, 784–794 (1934)

    Article  CAS  Google Scholar 

  32. Cohn, E.J., McMeekin, T.L., Edsall, J.T., Weare, J.H.: Studies in the physical chemistry of amino acids, peptides and related substances. J. Am. Chem. Soc. 56, 2270–2282 (1934)

    Article  CAS  Google Scholar 

  33. Hill, N.E., Baughan, W.E., Price, A.H., Davics, M.: Dielectric properties and molecular behaviour. Van Nostrand Reinhold Co., London (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Kumar Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, A., Bhattacharya, S.K. Chemical Transfer Energies of Some Homologous Amino Acids and the –CH2– Group in Aqueous DMF: Solvent Effect on Hydrophobic Hydration and Three Dimensional Solvent Structure. J Solution Chem 42, 2149–2167 (2013). https://doi.org/10.1007/s10953-013-0103-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0103-x

Keywords

Navigation