
Volumetric Properties of the {x1[C4mim][MeSO4] +
(1 2 x1)MeOH} System at Temperatures from (283.15
to 333.15) K and Pressures from (0.1 to 35) MPa

Dobrochna Matkowska • Tadeusz Hofman

Received: 12 June 2012 / Accepted: 3 October 2012 / Published online: 25 May 2013
� The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Densities of pure 1-butyl-3-methylimidazolium methylsulfate, [C4mim][MeSO4],

and its mixtures with methanol have been measured. Measurements were made with an

accuracy of ±0.2 kg�m-3, using a vibrating-tube densimeter, over the temperature and pressure

ranges (283.15–333.15) K and (0.1–35) MPa, respectively. The experimental densities for the

pure ionic liquid and alcohol have been correlated by the Tait equation. The results for the

{x1[C4mim][MeSO4] ? (1 - x1)MeOH} system have been correlated by a van Laar equation

involving parameters that are dependent on temperature and pressure. Excess volumes have

been obtained directly from the experimental densities, while isobaric expansivities, isothermal

compressibilities, and related excess properties were calculated from the correlation equation.

Exceptionally strong pressure and temperature influences on these properties were observed.

Keywords Ionic liquids � Density � Excess volume � Isothermal compressibility � Isobaric

expansivity

1 Introduction

Ionic liquids (ILs) are compounds with growing interest because of their unique properties

such as: negligible vapour pressure and excellent solvent power [1]. A large number of ILs

are possible because they are the combination of large organic cations and inorganic or
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organic anions. To understand the nature of ILs and reasonably expand their possible

applications, knowledge of their chemical and physical properties is required.

Thermodynamic properties of mixtures containing ILs and alcohols are very important

from technological and theoretical points of view. The p,q,T properties of IL ? organic

solvents are among the most important thermodynamic properties. They provide very

useful information on the intermolecular and structural interactions between the compo-

nents of mixtures that have different shapes, sizes, and chemical nature. Previous studies

have shown that addition of an alcohol into ILs significantly changes their phase behavior

[2–4]. It is well known that even small additions of a low molar mass solvent can markedly

increase or decrease the thermodynamic properties compared to the properties of the pure

ILs [4]. Although ILs have been extensively studied, this study was undertaken because of

the lack of experimental p,q,T data for IL ? organic solvent systems and difficulties in

understanding their peculiar properties.

Densities of pure [C4mim][MeSO4] as a function of temperature and under atmospheric

pressure have been determined in a number of laboratories covering the temperature range

(278.15–363.15) K [5–26]. As far as we know, we are the only group who has measured

the [C4mim][MeSO4] density under high pressure (0.1–35) MPa [27].

There exist publications reporting excess volumes of the 1-butanol-3-methylimidazo-

lium methylsulfate ? methanol system [12, 20]. Both studies concern measurements under

normal pressure and at temperatures of 298.15 K [12] and (298.15, 303.15, and 313.15) K

[20]. The most extensively studied system is [C4mim][MeSO4] ? ethanol [6, 7, 12, 15, 16,

20, 23]. Densities of multicomponent mixtures were obtained for systems consisting of

1-butanol-3-methylimidazolium methylsulfate and water [12, 16, 18, 26], propanol [20],

1-butanol [12], 1-hexanol [12], 1-octanol [12], 1-decanol [12], nitrometane [7, 8], 1,3-

dichloropropane [7], ethylene glycol [7, 25], diethylene glycol monoethyl ether [7], and

1-butyl-3-methylimidazoliumtetrafluoroborate [5].

2 Experimental Section

2.1 Materials

The 1-butyl-3-methylimidazolium methylsulfate (Solvent Innovation Co., Köln, Germany)

with mass fraction purity[99 %), and methanol (Aldrich, puriss[99.9 %), were dried and

degassed as previously described [2]. After this procedure, the water content determined by

Karl Fischer titration was about 200–400 ppm for the IL and about 20–100 ppm for the

methanol.

The water used in the calibration was deionized and next degassed in the same manner

as previously described [2]. The mixtures were prepared with a mole fraction uncertainty

of about 10-4 using a balance with an accuracy of 5 9 10-5 g.

2.2 Experimental Procedure and Apparatus

For the density measurements an Anton Paar vibrating-tube densimeter with measuring cell

for high pressures and high temperatures (DMA 512P) and the mPDS 2000 evaluation unit

were used. The density of a sample was determined by measuring the oscillation period of

the U-shaped tube. The pressure was measured with a maximum uncertainty of ±0.01 MPa

and the temperature was kept constant within ±0.01 K. A detailed description of the

apparatus can be found in a previous article [28].
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The densimeter was calibrated with an empty evacuated U-tube and water according to

the procedure described by Lagourette et al. [29]. Water densities were calculated from the

parameters proposed by the International Association for the properties of water and steam

[30].

The combined expanded uncertainty for the measured densities of pure compounds

should not exceed ±0.1 kg�m-3 at atmospheric pressure and about ±0.2 kg�m-3 at higher

pressures. The combined standard uncertainty for the mixture densities is estimated to be

±0.05 kg�m-3.

3 Results and Discussion

3.1 Densities and Mechanical Coefficients of Pure 1-Butyl-3-methylimidazolium

Methylsulfate and Methanol

Densities of the pure components, [C4mim][MeSO4] and MeOH, were measured at tem-

peratures (283.15–343.15) K under pressures of (0.1–35.0) MPa. 198 experimental den-

sities were obtained for both substances. A comparison between our results for this IL and

the literature data measured under atmospheric pressure is shown in Fig. 1. Densities of

[C4mim][MeSO4] presented in this work are about 0.2 % higher than the data reported by

Soriano et al. [9], Singh and Kumar [19], Sibiya and Deenadayalu [20], and Kumar et al.

[25] and are about 0.5 % lower than data reported by González et al. [16] and Shiflett et al.

[21]. The deviations between densities for methanol measured in our laboratory and lit-

erature data are shown in Fig. 2. The maximum relative deviations do not exceed
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Fig. 1 Fractional deviations 100(q - qlit)/qlit between the measured and literature density values of
[C4mim][MeSO4] under atmospheric pressures as a function of temperature. The literature data are taken
from: blue diamond Navia et al. [5]; black diamond Garcia-Miaja et al. [6]; dashed line Iglesias-Otero et al.
[7]; filled square Soriano et al. [9]; square Sánchez et al. [10], white diamond Tariq et al. [11]; triangle
Domańska et al. [12]; times Kumełan et al. [13]; blue circle Pereiro et al. [14]; red square González et al.
[16]; red circle Fernández et al. [17]; filled circle Singh and Kumar [19]; blue triangle Sibiya and
Deenadayalu [20]; asterisk Shiflett et al. [21]; black triangle Torrecilla et al. [22]; red diamond Iglesias-
Otero et al. [23]; plus Deenadayalu et al. [24]; red triangle Kumar et al. [25]; blue square Kumełan et al.
[26]; white circle Matkowska and Hofman [27] (Color figure online)
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±0.02 %. Good agreement with the densities calculated by the Gołdon et al. equation [28],

the NIST correlation [31] and Machado and Streett [32] is noted.

Experimental densities of pure compounds were correlated by the Tait equation in the

form

qðT ; pÞ ¼ q0ðT ; p0Þ
1� A ln

BðTÞþp
BðTÞþp0

ð1Þ

with the reference pressure p0 = 0.1 MPa. The q(T) and B(T) have the following functions

of temperature

q0ðT ; p0Þ ¼ q00 þ q01ðT=KÞ þ q02ðT=KÞ2 þ q03ðT=KÞ3 ð2Þ

BðTÞ ¼ B0 þ B1ðT=KÞ þ B2ðT=KÞ2 ð3Þ
The number of terms in the above equations and constancy of the A parameter was

determined by statistical analysis. The standard deviations and the fitted parameters of

these equations are reported in Table 1.

Equations 1–3 allowed us to calculate the related properties such as isothermal com-

pressibility j and isobaric expansivity a from the relations:

j ¼ ðo ln q=opÞT ð4Þ

and

a ¼ �ðo ln q=oTÞp ð5Þ
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Fig. 2 Fractional deviations 100(q–qlit)/qlit between the measured and literature density values of methanol
at 298.15 K as a function of pressure. The literature data are taken from: circle Gołdon et al. [28]; black
square NIST Chemistry WebBook [31]; black triangle Machado and Streett [32]; black circle Ledwig and
Würflinger [35]; white square Hrubỳ et al. [36]
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Figures 3 and 4 show calculated isothermal compressibility j and isobaric expansivities

a as a function of temperature and pressure for the IL and the alcohol. The temperature and

pressure influences on the expansivities and compressibilities are much weaker for IL than

for the alcohol. The calculated values of isobaric expansivities a for [C4mim][MeSO4] are

between (4.96 and 5.49) 9 10-4 K-1 while for methanol they are between (9.64 and

12.69) 9 10-4 K-1 in the range of p = (0.1–35) MPa and T = (283.15–333.15) K. The

values of isothermal compressibility j for [C4mim][MeSO4] are between (0.30 and

0.40) GPa-1 while for methanol they are between (0.81 and 1.60) GPa-1 over the same

pressure and temperature range. The isothermal compressibility slightly increases with

increasing temperature and decreasing pressure.

The overall accuracies of the isothermal compressibility j and isobaric expansivity a
are difficult to estimate exactly as they depend on the form of the equation chosen to

correlate experimental densities as a function of pressure and temperature. The maximum

error of these derived parameters do not exceed ±0.01 GPa-1 for the isothermal com-

pressibilities and ±0.1 9 10-4 K-1 for the isobaric expansivities.

3.2 Densities and Excess Volumes of the 1-Butyl-3-methylimidazolium

Methylsulfate ? Methanol System

The densities for the {x1[C4mim][MeSO4] ? (1 - x1)MeOH} system were measured at

eleven different concentrations x1, at temperatures T/K = (283.15, 293.15, 298.15, 303.15,

313.15, 323.15, 333.15, 343.15) and under pressures p/MPa = (0.1, 2.5, 5.0, 10.0, 15.0,

20.0, 25.0, 30.0, 35.0). The IL ? alcohol mixtures were prepared with an uncertainty in

mole fraction estimated as being less than 5 9 10-4. We obtained 1089 data points

excluding the densities of pure substances. These data, as well as the pure component data,

are given in Table S1 in the Electronic Supplementary Material. The densities of the

mixture were correlated by the following twelve-parameter equation in which the excess

volume was formally represented by a sum of van Laar terms in which two such terms

turned out to be suitable:

qðT ; p; x1Þ ¼
M1x1 þM2x2

M1x1=q0
1ðT ; pÞ þM2x2=q0

2ðT ; pÞ þ x1x2
a0 T ;pð Þ

b0 T ;pð Þx1þx2
þ a1 T ;pð Þ

b1 T ;pð Þx1þx2

� � ð6Þ

The ai(T,p) and bi(T,p) coefficient depend linearly on T and p according to the formulae:

Table 1 Coefficients of the Tait equations, Eqs. 1–3, fitted to the experimental densities of pure compo-
nents [C4mim][MeSO4] and MeOH, and the root-mean-square deviations r of the fit

T/K A 9 102 B (MPa) q0 (kg�m-3) ra (kg�m-3)

[C4mim] 8.50606 B0 (MPa) = 455.094 q00 (kg�m-3) = 1.39148 9 103 0.011

[MeSO4] B1 (MPa�K-1) = -0.72339 q01 (kg�m-3�K-1) = -0.58996

q02 (kg�m-3�K-2) = -9.13526 9 10-5

MeOH 9.22363 B0 (MPa = 345.679 q00 (kg�m-3) = 1038.81 0.009

B1 (MPa�K-1) = -1.30356 q01 (kg�m-3�K-1) = -7.57905

B2 (MPa�K-2) = 1.31682 q02 (kg�m-3�K-2) = -2.97068 9 10-4

a r ¼
Pn
i¼1

qexp
i � qcalc

i

� �2
=n

� �1=2
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½aiðT ; pÞ=cm3 �mol�1� ¼ ai0 þ ai1½ðp=MPaÞ � 0:1� þ ai2½ðT=KÞ � 283:15� ð7Þ

biðT ; pÞ ¼ bi0 þ bi1½ðp=MPaÞ � 0:1� þ bi2½ðT=KÞ � 283:15� ð8Þ
It was confirmed statistically that higher-order terms in the above expansions could be

disregarded. The equation requires twelve adjustable parameters that are given together

with the standard deviation of the fit in Table 2.

Experimental excess volumes VE were calculated according to the formula

VE ¼ M1x1ð1=q� 1=q0
1Þ þM2x2ð1=q� 1=q0

2Þ ð9Þ
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Fig. 3 Excess volume VE of the {x1[C4mim][MeSO4] ? (1 - x1)MeOH} system as a function of
concentration x1 at A constant temperature T and pressure p/MPa = 0.1 and b constant pressure p and
temperature T/K = 298.15. Lines are calculated from Eqs. 6–8 with the values of parameters given in
Tables 1 and 2. Each line is labeled by a letter corresponding to A T/K: a, 283.15; b, 298.15; c, 313.15; d,
333.15; and B p/MPa: a, 0.1; b, 15; c, 35. Symbols denote experimental data: filled circle this work; filled
triangle Domańska et al. [12]; circle Sibiya and Deenadayalu [20]; both measured at p/MPa = 0.1 and
T/K = 298.15
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where the Mi are molecular weights, xi are concentrations, q designates densities of the

solution and the q0
i are densities of pure ith components. The calculated excess volumes are

presented in Table S2 in the Electronic Supplementary Material.

The excess volumes are reproduced by the following equation

VEðT ; p; x1Þ ¼ x1x2

a0 T; pð Þ
b0 T ; pð Þx1 þ x2

þ a1 T; pð Þ
b1 T ; pð Þx1 þ x2

� 	
ð10Þ

with the parameter values given in Table 2.
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Fig. 4 Excess isothermal compressibility jE of the {x1[C4mim][MeSO4] ? (1 - x1)MeOH} system as a
function of concentration x1 at A constant temperature T and pressure p/MPa = 0.1 and B constant pressure
p and temperature T/K = 298.15. Lines are calculated from Eqs. 6–8 with the parameter values given in
Tables 1 and 2. Each line is labeled by a letter corresponding to A T/K: a, 283.15; b, 313.15; c, 333.15, and
B p/MPa: a, 0.1; b, 15; c, 35
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Figure 3 shows experimental and calculated excess volumes VE as a function of tem-

perature and pressure. The excess volumes are negative and highly asymmetric with the

minimum value at x1 = 0.28. They result from the differences among intermolecular

interactions occurring in solution and in pure components. Among them, the attractive

specific interactions (H-bonds) and repulsive ones (packing effects) are the most

significant.

A relatively strong temperature and pressure influence on the values of excess volumes

VE is observed. The excess volumes increase, i.e. become less negative, with decreases of

the temperature and with increases of the pressure as was previously noted [2, 3, 28]. Since

this former effect is strong it can be attributed to the presence of H-bonds. It is known that

hydrogen bonding is more temperature-dependent and becomes negligible at high tem-

peratures, compared with Coulombic interactions [33, 34]. However, the observed

dependence cannot be simply and qualitatively explained as it results from the superpo-

sition of opposite effects including self-association of pure components and cross-asso-

ciation. The pressure influence on the excess volume is rather typical—increasing the

pressure reduces differences in packing of the molecules.

Figure 3 also presents the data under atmospheric pressure and T/K = 298.15 K already

reported in the literature [12, 20]. They are different than our data, the maximum deviation

is ±50 % at high concentration of pure components and about 20 % lower at mole fraction

x1 = 0.5. Also, by comparing differences of VE values for systems consisting of an IL and

ethanol [6, 7, 12, 15, 16, 20, 23], we got the impression that such deviations are typical for

these kinds of mixtures. It is worth noting that an increase of alcohol chain length resulted

in an increase of the excess molar volumes.

3.3 Mechanical Coefficients and the Corresponding Excess Properties

of the 1-Butyl-3-methylimidazolium Methylsulfate ? Methanol System

Equations 6–8 enable us to calculate isothermal compressibilities j and isobaric expan-

sivities a of the mixtures. The mechanical coefficients fall nonlinearly from a high value

for pure methanol to the considerably lower one for pure IL. As the expansivities and

compressibilities of an alcohol strongly depend on pressure and temperature, it is easy to

predict that the {x1[C4mim][MeSO4] ? (1 - x1)MeOH} system will still possess the

above-mentioned relationship at alcohol concentrations higher than x1 = 0.35. Generally,

the mechanical coefficients increase with increasing temperature and decreasing pressure.

Table 2 Coefficients of the equation fitted to the experimental densities of the {x1[C4mim]
[MeSO4] ? (1 - x1) MeOH} system as a function of mole fraction concentration x1, temperature T and
pressure p, Eqs. 6–8, and the root-mean-square deviations r of the fit

i k aik (cm3�mol-1) bik ra (kg�m-3)

0 0 -11.7640 7.49182 0.58

0 1 7.74650 9 10-2 7.44898 9 10-2

0 2 -4.27044 9 10-2 1.62784 9 10-2

1 0 1.23238 17.1309

1 1 0.29067 0.22478

1 2 -0.10270 -0.14278

a r ¼
Pn
i¼1

qexp
i � qcalc

i

� �2
=n

� �1=2
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The excess magnitudes jE and aE were calculated by Eqs. 11 and 12, the uid
i are ideal

volume fractions given by Eq. 13, where V0
i represents the molar volume of a pure

substance.

jE ¼ j� uid
1 j0

1 � uid
2 j0

2 ð11Þ

aE ¼ a� uid
1 a0

1 � uid
2 a0

2 ð12Þ

uid
i ¼

xiV
0
i

x1V0
1 þ x2V0

2

ð13Þ
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Fig. 5 Excess isobaric expansivity aE of the {x1[C4mim][MeSO4] ? (1 - x1)MeOHl} system as a function
of concentration x1 at A constant temperature T and pressure p/MPa = 0.1, and B constant pressure p and
temperature T/K = 298.15. Lines are calculated from Eqs. 6–8 with the parameter values given in Tables 1
and 2. Each line is labeled by a letter corresponding to A T/K: a, 283.15; b, 313.15; c, 333.15 and B p/MPa:
a, 0.1; b, 15; c, 35
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Figures 4 and 5 present the excess compressibilities and excess expansivities against

mole fraction. The shape of the calculated curves is similar to those of previously measured

systems consisting of an IL and methanol [3, 28]. The curves of excess magnitudes are

unsymmetrical with the minimum located at a concentration of about x1 = 0.18, which is

almost the same as for the {x1[C2mim][EtSO4] ? (1 - x1)MeOH} system [3]. The

absolute maximum values of both functions are lower than for the systems {x1[C2mi-

m][EtSO4] ? (1 - x1)MeOH} [3] and {x1[C1mim][MeSO4] ? (1 - x1)MeOH} [28],

although they are relatively large.

4 Conclusions

Volumetric properties of pure 1-butyl-3-methylimidazolium methylsulfate and its mixtures

with methanol show some interesting features that can be attributed to the presence of the

ILs in the studied mixtures. Isobaric expansivities a and isothermal compressibilities j of

this IL have significantly lower values than for methanol. It was observed that the excess

volumes VE, excess isobaric expansivities aE. and excess isothermal compressibilities a are

significantly more dependent on temperature and pressure than for typical organic mix-

tures. The results from this study indicate that the negative VE values observed for the

{x1[C4mim][MeSO4] ? (1 - x1)MeOH} system can be explained by strong hydrogen

bonding effects between molecules. An increase of temperature and decrease of pressure

results in a decrease of the VE values.
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26. Kumełan, J., Perez-Salado Kamps, Á., Tuma, D., Maurer, G.: Solubility of carbon dioxide in liquid
mixtures of water ? [bmim[CH3SO4]. J. Chem. Eng. Data 56, 4505–4515 (2011)

27. Matkowska, D., Hofman, T.: High-pressure volumetric properties of ionic liquids: 1-butyl-3-methyl-
imidazolium tetrafluoroborate, [C4mim][BF4], 1-butyl-3-methylimidazolium methylsulfate [C4mim]
[MeSO4] and 1-ethyl-3-methylimidazolium ethylsulfate, [C2mim][EtSO4]. J. Mol. Liq. 165, 161–167
(2012)
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