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Abstract
We consider the medical student scheduling (MSS) problem, which consists of assigning medical students to internships of
different disciplines in various hospitals during the academic year to fulfill their educational and clinical training. The MSS
problem takes into account, among other constraints and objectives, precedences between disciplines, student preferences,
waiting periods, and hospital changes. We developed a local search technique, based on a combination of two different
neighborhood relations and guided by a simulated annealing procedure. Our search method has been able to find the optimal
solution for all instances of the dataset proposed by Akbarzadeh and Maenhout (Comput Oper Res 129: 105209, 2021b), in
a much shorter runtime than their technique. In addition, we propose a novel dataset in order to test our technique on a more
challenging ground. For this new dataset, which is publicly available along with our source code for inspection and future
comparisons, we report the experimental results and a sensitivity analysis.

Keywords Medical student scheduling · Local search · Simulated annealing

1 Introduction

The medical student scheduling (MSS) problem regards the
assignment of medical students in subsequent periods to
wards in designated hospitals for internships on the vari-
ous disciplines, as the final task to get their degree. On the
one hand, the students perfect their preparation learning from
senior doctors; on the other hand, they are useful to the hos-
pitals to provide actual assistance to patients.

The constraints of the problem regard the capacities of
the wards, service levels, abilities, availabilities, precedences
among disciplines, student preferences, waiting periods, and
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student rotations between hospitals. The typical horizon con-
sidered is one year, split into either 12 periods of one month
or 24 periods of about two weeks.

The objective of the problem is to design a roster that
simultaneouslymaximizes students’ preferences and fairness
between students, satisfying rules, regulations, and require-
ments of the medical school and the hosting hospitals.

Our research aim is to design and evaluate an efficient,
effective, and robust solution technique for the MSS prob-
lem, able to address large instances. In addition, we aim to
validate and revise formulations of theMSS problem already
available in scientific literature, with the longer-term objec-
tive of defining a general and flexible version of the problem.

As a starting point, we consider theMSS formulation pro-
posed by Akbarzadeh and Maenhout (2021b), which is a
simplified version of the more general problem previously
proposed by the same authors Akbarzadeh and Maenhout
(2021a).

For this problem, we used a metaheuristic approach, and
in particular we developed a local search technique based on
a combination of two different neighborhood relations and
guided by a simulated annealing procedure. The procedure
has been tuned using rigorous statistical tests on a set of
training instances, distinct from the validation ones.
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The outcome is that our solution method has been able to
consistently find the optimal solution for all instances of the
dataset proposed by Akbarzadeh andMaenhout (2021b), in a
much shorter runtime on average than their exact technique.

In order to test our search method on harder benchmarks,
we implemented a generator thatwe used to createmore chal-
lenging instances including up to 320 students. Such number
of students represents a realistic size and is much larger than
those in the original dataset (max 80 students). In addition,
as explained in Sect. 4, the generated instances also activate
various constraints not used in the original dataset. In fact,
some constraints that are present in the mathematical model
are never actually binding in the original dataset, given that
they are always satisfied. In particular, the constraint on the
minimum number of students in a ward, which makes the
instances particularly difficult to solve, is redundant as the
corresponding value is always equal to zero.

In addition, we revised the MIP model proposed by
Akbarzadeh and Maenhout (2021b) and we implemented
it using CPLEX. The CPLEX solver, suitably warm-started
with feasible solutions coming from our local searchmethod,
has been run for comparison and for obtaining lower bounds.

Finally, we propose a sensitivity analysis on the weight of
the fairness component, which highlights the need for more
advanced ways to define and compute fairness.

All instances and solutions are publicly available at https://
bitbucket.org/satt/mss_data. The source code is also avail-
able in the same repository for future comparisons and
possible extensions by other researchers.

The remainder of the paper is organized as follows:
In Sect. 2, we review the related literature; in Sect. 3, we
describe the problem through a mathematical formulation;
in Sect. 4, we introduce the available instances; in Sect. 5, we
describe the solution techniques thatwe implemented; Sect. 6
reports the computational results, and lastly, Sect. 7 provides
some concluding remarks and possible future directions.

2 Related work

The problem of scheduling the training program for medical
residentswas firstly introduced by Franz andMiller (1993) as
a special case of the multiperiod staff assignment problem.
In particular, they studied the situation of family practice
physicians whose training program is particularly complex
because it must ensure sufficient experience in a variety of
disciplines, given that they are non-specialists. The objec-
tive of the schedule was to maximize the student preferences
related to disciplines and period unavailabilities, while meet-
ing the hospital coverage requirements and some specific
rules about the design of the program. Franz andMiller affirm
that the main issue in practice is to obtain feasible solutions
and propose a rounding heuristic applied to the solution of

the corresponding linear programming problem, which runs
quickly so that it can be used iteratively and in an interactive
way by the decision maker.

Beliën and Demeulemeester (2007) addressed the prob-
lem of constructing the trainee scheduling for medical
students who want to specialize in a specific discipline using
decomposition and column generation techniques. In their
formulation, the training program is composed of activities
that have to be assigned to trainees to guarantee the staff
coverage, ensuring that each trainee performs each activity
between a minimum and a maximum number of periods, and
respecting students’ unavailability constraints. As a conse-
quence, in their model there is no possibility to customize
the individual training schedule.

A similar problem, where each student must follow
the same set of disciplines (but in different periods), was
proposed by Goodman et al. (2012). In their case, the objec-
tive function penalizes multiple assignments to the same
ward/hospital in order to get experience in a variety of clini-
cal environments. As a solution technique, they implemented
Greedy Randomized Adaptive Search Procedures (GRASP)
(Resende&Ribeiro, 2016) using several construction heuris-
tics and a random descent local search for the improvement
phase.

Guo et al. (2014) defined the resident scheduling problem
for a one-year training program,which includes somegeneral
constraints on staff coverage, teaching demands and educa-
tional requirements. Comparative results are reported for a
greedy assignment heuristic and for an IP model implemen-
tation on a set of artificial instances. In addition, the authors
extended the mathematical model to simultaneously deter-
mine the training schedule and the daily working schedule
for residents.

The notion of rotation, i.e. a period of training to spend
in a ward, was employed in different problem formulations.
Zheng et al. (2016) studied the trainee scheduling problem in
the context of nursing schools; it differs from themedical stu-
dent problem since all trainees must follow the same training
program composed of different rotations that must be per-
formed consecutively. The problem is solved by a two-phase
heuristic algorithm that first solves a simplified version of the
problem by a random search procedure and then applies spe-
cific neighborhood operators to further explore the solution
space.

Proano and Agarwal (2018) studied the problem of
scheduling resident rotations for a three-year internal medici
ne residency program: students rotate in different units and
have to complete a minimum number of rotations in each
unit during the training program. The duration of a rotation
can vary across different units. For this problem, the authors
formulated amulti-objectivemathematical model that is sub-
sequently solved with a goal programming framework.
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Similarly, Cire et al. (2019) tackled the rotation assign-
ment and scheduling problem arising typically in North
American medical schools. They formulate a network-flow-
basedmodel where the objective functionminimizes the sum
of fixed and variable costs associated with the assignment of
students to hospitals and rotations.

Several other works tackled the problem at the operational
level and studied the rostering problem formedical residents,
i.e. assigning working shifts for a planning horizon taking
into account staff requirements, on-call duties, working rules
and preferences (White & White, 2003; Topaloglu, 2006;
Cohn et al., 2009; Topaloglu & Ozkarahan, 2011; Güler et
al., 2013; Bard et al., 2016; Smalley & Keskinocak, 2016;
Lemay et al., 2017; Brech et al., 2019).

On the contrary, Kraul et al. (2019) studied the strategic
problem of defining how many residents of a given specialty
a hospital can timely train taking into account uncertainty
about the number of medical procedures. They developed a
column generation heuristic which is applied to a real-world
case study of aGerman university hospital. Subsequently, the
same problem is tackled at the tactical level by generating
the annual schedule for residents using a genetic algorithm
(Kraul, 2020).

Recently, Seizinger and Brunner (2023) investigated the
problem of planning the apprenticeship program of pro-
fessional nurses in dual vocational systems, that arises in
German-speaking countries. The peculiarity of this system
is that it combines theoretical education and practical train-
ing: the first one can take place in professional schools, while
the practical subjects at any employer (e.g. a hospital). The
authors propose a two-stage approach: in thefirst stage blocks
of practical and theoretical education are defined and sched-
uled for each class (school schedule); in the second stage,
individual students are assigned to hospital units during their
work block (unit assignment). Two corresponding IP models
have been developed that are used in a hierarchical approach.
In addition, a matheuristic that decomposes the unit assign-
ment model by students is presented and tested on real-world
data.

The MSS problem was introduced by Akbarzadeh and
Maenhout (2021a) as the tactical problem of assigning med-
ical students to disciplines over one year consideringmedical
schools’ requirements, hospitals’ availabilities and students’
preferences. The authors propose a rich formulation inspired
by the real-life practices at Ghent University, taking into
account many complex constraints, such as different training
programs consisting of mandatory and elective disciplines,
precedence relationship between disciplines, students’ past
studies, reserve and emergency capacities of wards, possi-
bility of attending a discipline abroad, and utilization of
accommodations. The objective function is theweighted sum
of six components: maximize total student preferences and
worst student desire score, and minimize the use of reserve

and emergency capacity, the number of students below the
minimum demand threshold, and the under-utilization of
the accommodations. For this problem, Akbarzadeh and
Maenhout (2021a) developed a solution method that uses
a constructive heuristic to obtain an initial solution and then
applies local search operators. It was tested on two datasets
of generated instances: one of small size instances (20/40
students and 12/24 time periods) and the other of real-life
dimension instances (320 students and 24 time periods). The
problem formulation proposed in Akbarzadeh andMaenhout
(2021b) and presented in Sect. 3 simplifies the one previously
presented by the same authors, preserving the essential and
more common features of the medical student scheduling
problem. They proposed an exact branch and price algorithm
that is able to obtain optimal solutions for instances up to 80
students and 12 periods within less than 500s of running time
(see Table 7 for detailed results). Lastly, theMSSwas further
investigated in Akbarzadeh et al. (2022) where the heuristic
approach developed in Akbarzadeh and Maenhout (2021a)
was improved, adapted to the specific real-life situation of the
Faculty of Medicine and Health Sciences at Ghent Univer-
sity, and integrated in the information system of the faculty
as the resident scheduling module.

3 Problem definition

In this section, we introduce the mathematical model of
the problem, which is the one presented in the work
by Akbarzadeh and Maenhout (2021b, Section 3.2), with
some minor corrections (the detailed list is reported in the
Appendix).

In the MSS problem, the curriculum manager creates
the individual training schedule of each medical student by
assigning disciplines, wards and hospitals over the schedul-
ing horizon, considering the student’s characteristics and
preferences, the hospitals’ availabilities and the training
program. Table 1 shows the notation employed in the multi-
objectivemixed integer programmingmodel (MIP) proposed
for the problem.

The main decision variables for the MIP model are: the
assignment variable vsdth, which is equal to 1 if student s
starts discipline d at period t in hospital h, 0 otherwise; the
network-flow variable ysddh , which is equal to 1 if student s
attends discipline d directly after discipline d in hospital h,
0 otherwise. The latter is used as in a multi-commodity flow
model where nodes represent disciplines, that are connected
if they are attended one directly after the other. As a conse-
quence, it is necessary to define a dummy source node where
all flows originate. The dummy start node corresponds to the
dummy discipline 0 that cannot be preceded by any other
discipline. Obviously, the duration of the dummy discipline
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Table 1 Notation of the input data

Symbol Description

S set of students

D set of disciplines

D0 set of disciplines without the dummy discipline
(D0 = D \ {0})

G set of groups

T set of time periods

W set of wards

H set of hospitals

ksg total number of disciplines student s must attend
from group g

ϕsdg 1 if student s has discipline d in group g; 0 other-
wise

Dud duration of discipline d

Skdd if discipline d must be completed before discipline
d

λ maximum number of disciplines for a student in a
hospital

ξdwh 1, if discipline d can be assigned to ward w in
hospital h

DemMin
wht minimum student requirements for wardw in hos-

pital h in period t

DemMax
wht maximum student requirements for wardw in hos-

pital h in period t

Avst 1, if student s is available in period t ; 0 otherwise

Absdh 1, if student s is qualified for discipline d in hos-
pital h; 0 otherwise

Prdiscsd preference of student s about discipline d

Prhospsh preference of student s about hospital h

PrtrPrd preference of the curriculummanager about disci-
pline d

α weight of student desires objective

β weight of fairness between students objective

M big number

is zero. All decision variables are listed in Table 2, including
the auxiliary ones used to express the objectives.

The objective function (1) is a weighted sum of two com-
ponents to maximize: the total student desire score and the
fairness between students. In the first objective, the students’
desires relate to discipline preferences, hospital preferences,
discipline preferences of the curriculum manager (if stu-
dents have not expressed an explicit preference), hospital
changes, and possible waiting time between two consecutive
disciplines. The fairness objective is pursued by a max–min
approach, i.e., by maximizing the worst student schedule,
that is the one with the minimum desire score Desmin.

max z = α
∑

s∈S
Dess + βDesmin (1)

The problem involves three main stakeholders that have
different and sometimes conflicting requirements, i.e. the
medical school, local hospitals, and medical students. The
medical school is responsible for the training program,which
concerns different disciplines divided into groups. For each
of these groups, each studentmust carry out aminimumnum-
ber of disciplines ksg.

∑

d∈D
ϕsdg

∑

t∈T

∑

h∈H
vsdth ≥ ksg ∀s ∈ S,∀g ∈ G (2)

For each student, the total number of assigned disciplines
is equal to the sum of the number of disciplines to be selected
from each group.

∑

d∈D0

∑

t∈T

∑

h∈H
vsdth =

∑

g∈G
ksg ∀s ∈ S (3)

Constraints (4–7) regulate the flow in the network. In par-
ticular, each discipline can be directly preceded by another
discipline at most.

∑

d∈D

∑

h∈H
ysddh ≤ 1 ∀s ∈ S,∀d ∈ D0 (4)

For each student, the flow starts from a dummy source
node which corresponds to the dummy discipline 0.

∑

d∈D0

∑

h∈H
ys0dh = 1 ∀s ∈ S (5)

A discipline cannot be followed by the dummy one or by
itself.

∑

s∈S

∑

d∈D

∑

h∈H
(ysddh + ysd0h) = 0 (6)

The flow conservation constraints ensure that for each
selected discipline d, a preceding path d → d → d must
exist.

∑

d∈D0

∑

h∈H
ysddh ≤

∑

d∈D

∑

h∈H
y
sddh

∀s ∈ S,∀d ∈ D0 (7)

The flowvariable is activewhen the corresponding assign-
ment variable is selected.

∑

t∈T
vsdth =

∑

d∈D
ysddh ∀s ∈ S,∀d ∈ D0,∀h ∈ H (8)

Precedence constraints between pairs of disciplines (d, d)

are imposed using the Big M method, where M can be fixed
as the total number of time periods |T |. In detail, if the
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Table 2 Decision variables

Symbol Domain Description

vsdth ∈ {0, 1} 1, if student s starts discipline d at period t in hospital h; 0 otherwise

ysddh ∈ {0, 1} 1, if student s attends discipline d directly after discipline d in hospital h; 0 otherwise

Chsd ∈ {0, 1} 1, if student s changes hospital for discipline d; 0 otherwise

Wsd ≥ 0 number of periods student s has to wait idle before starting discipline d

Dess free aggregated desire score for student s

Desmin free worst aggregated desire score across all students

parameter Skdd is equal to one, discipline d is a mandatory
propaedeutic discipline for d.

∑

t∈T

∑

h∈H
t · vsdth + M

(
1 −

∑

t∈T

∑

h∈H
vsdth

)

≥ Skdd

(
∑

t∈T

∑

h∈H
vsdth

)

+Skdd · M
(
1 −

∑

t∈T

∑

h∈H
vsdth

)

∀s ∈ S,∀d ∈ D0,∀d ∈ D0 (9)

There is a maximum limit Λ on the total number of disci-
plines that can be carried out in the same hospital.

∑

d∈D\0

∑

d∈D
ysddh ≤ Λ ∀s ∈ S,∀h ∈ H (10)

Local hospitals define requirements in terms of mini-
mum (Constraint 11) and maximum (Constraint 12) student
staff necessary in each ward for each period, and the
characteristics and competencies that students must fulfill
(Constraint 13).

∑

s∈S

∑

d∈D0

t∑

t=max(0,t−Dud+1)

ξdwh · vsdth ≥ DemMax
wht

∀t ∈ T ,∀w ∈ W,∀h ∈ H (11)

∑

s∈S

∑

d∈D0

t∑

t=max(0,t−Dud+1)

ξdwh · vsdth ≤ DemMax
wht

∀t ∈ T ,∀w ∈ W,∀h ∈ H (12)∑

t∈T
vsdth ≤ Absdh ∀s ∈ S,∀d ∈ D0,∀h ∈ H (13)

The matrix Av stores the availability of students during
the scheduling horizon, such that a student can be assigned
to any discipline in period t only if Avst = 1.

∑

h∈H
Dud · vsdth ≤

t+Dud−1∑

t=t

Avst

∀s ∈ S,∀t ∈ T ,∀d ∈ D0 (14)

Constraints (15–17) are used to evaluate the different com-
ponents of the objective function. In Constraint (15), the
variable Chsd representing the number of hospital changes
is constrained to be larger than or equal to hospital changes
induced by the flow variables for consecutive disciplines.

Chsd ≥ ysddh

−
∑

d∈D
y
sddh

∀s ∈ S,∀d, d ∈ D0,∀h ∈ H (15)

The time Wsd that a student has to wait before starting a
discipline is set through Constraints (16-17). We recall that
we assume that the duration Dud of the dummy discipline is
zero.

∑

t∈T

∑

h∈H
t · vsdth ≥ Wsd +

∑

t∈T

∑

h∈H
t · vsdth

+Dud − M

(
1 −

∑

h∈H
ysddh

)

∀s ∈ S, d ∈ D0, d ∈ D (16)∑

t∈T

∑

h∈H
t · vsdth ≤ Wsd +

∑

t∈T

∑

h∈H
t · vsdth

+Dud + M

(
1 −

∑

h∈H
ysddh

)

∀s ∈ S, d ∈ D0, d ∈ D (17)

The aggregated desire score of a student Dess takes into
account five aspects. The first three are positive ones, i.e., the
student preference related to a specific discipline Prdiscsd , the

student preference related to a specific hospital Prhospsh , and a
general preference of all students toward a specific discipline
PrtrPrd .On the contrary, the last twocomponents are undesired,
and therefore, they are negative in order to be minimized: the
waiting timebetween twoconsecutive discipline assignments
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Wsd, and the total number of hospital changes for a student
Chsd. Notice that all the weights ω∗

s (except ω
trPr) are set by

each student in order to represent their individual preferences.

Dess ≤
∑

d∈D

∑

d∈D

∑

h∈H

(
ωdisc
s · Prdiscsd · ysddh

)

+
∑

d∈D

∑

d∈D

∑

h∈H

(
ω
hosp
s · Prhospsh · ysddh

)

+
∑

d∈D

∑

d∈D

∑

h∈H

(
ωtrPr · PrtrPrd · ysddh

)

−
∑

d∈D

(
ωwait
s · Wsd

)
−

∑

d∈D

(
ω
chng
s · Chsd

)

∀s ∈ S (18)

The fairness objective is obtainedbymaximizing theworst
desire score Desmin acquired by a student.

Desmin ≤ Dess ∀s ∈ S (19)

In addition, we introduced two constraints that were miss-
ing in the original model by Akbarzadeh and Maenhout
(2021b). In the first one, we force the dummy discipline to
start at time period 0 to take into account also the possible
waiting time before the first discipline assignment.

∑

h∈H
vs00h = 1 ∀s ∈ S (20)

Finally, the dummy discipline is assigned to only one
period and hospital for each student.

∑

h∈H

∑

t∈T
vs0th = 1 ∀s ∈ S (21)

The domains of the decision variables are reported in
Table 2.

Notice that variables Dess and Desmin are unconstrained
as the aggregated desire can assume also negative values if
the disadvantageous measures related to the hospital changes
and waiting times are dominant.

4 Instances

We consider two sets of instances, that we name Dataset 1
andDataset 2. The first is composed of one hundred synthetic
instances generated byAkbarzadeh andMaenhout (2021b) to
test their solution method (Sect. 4.1). The second one is cre-
ated by our new generator, which activates more constraints
and exhibits more variability in terms of size and feature
values (Sect. 4.2).

4.1 Dataset 1

The instances of the dataset by Akbarzadeh and Maenhout
(2021b) have a number of students equal to either 40 or 80 and
a number of disciplines of either 12 or 24. This dataset refers
to a version of the problem simpler than the one presented in
Sect. 3, as it includes the following simplifications:

A there are no requirements on the minimum number of
students per ward/period, i.e., all values DemMin

wht are set
to 0;

B each student can followan arbitrary number of disciplines
in any of the hospitals, i.e., Λ is set to an arbitrarily high
value (e.g., to the number of disciplines |D|);

C every student has the ability to work in any ward, i.e.,
Absdh = 1 for all students for all disciplines and hospi-
tals;

D the preferences of the manager are fixed, i.e., PrtrPrd = 1
for all disciplines;

E groups of disciplines are fixed, not depending on the spe-
cific student; in addition there are no mutual disciplines,
i.e., every discipline belongs to at most one group;

F the duration of the disciplines is equal for all disciplines
in each instance, and the fixed duration in the various
instances is equal to 1, 2, or 4 periods;

G each discipline can be assigned to exactly one ward in
each hospital, i.e., for each hospital h the matrix ξh is the
identity matrix.

In addition, in all instances the weights of the objectives
are fixed to α = 1 and β = 1.

4.2 Dataset 2

To create the new dataset we developed a parameterized gen-
erator that takes as input the number of students, the number
of disciplines, and the duration of the disciplines, and delivers
a random instance.

We now briefly explain the design choices we made in the
development of the generator. In particular, we discuss which
of the assumptions A–G we keep and which we remove.

First, we assume that the duration is equal for all disci-
plines in an instance and that the length of the horizon is equal
to the number of disciplines times the duration, so that a stu-
dent, if needed, has the possibility to follow all the disciplines
available.

As was previously done by Akbarzadeh and Maenhout
(2021b), we assume that each hospital has a number of wards
equal to the number of disciplines and that each ward covers,
exclusively, only one discipline. This implies that, notwith-
standing other constraints, a student can attend a discipline
in any of the hospitals available.
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The number of hospitals is randomly chosen in the inter-
val [2, 5], while the maximum number of disciplines that a
student can follow in a single hospital is a random number
in the range [� |D|

|H|+1	, |D|].
The number of disciplines that each student has to fol-

low in a group g is randomly chosen in the interval [0, |Dg|]
where Dg is the set of disciplines belonging to group g; each
student is guaranteed to follow at least one discipline (regard-
less of the group). In this definition of the problem, it is
assumed that the partition of disciplines into groups is the
same for each student.

The precedences between the disciplines are generated
as follows. Given an enumeration, ordered by group, of the
disciplines available, a discipline i , belonging to group g,
will be required to be preceded by a number of disciplines
k in the range [0, i − j] where j is the index of the first
discipline in group g. Then, the k indexes, representing the
disciplines that must be completed before starting discipline
i , will be chosen in the range [ j, i − 1]. In principle, there is
no limit to the depth of the direct acyclic graph representing
the precedences.

Moreover, a student can be unavailable only for at most
a number of periods that still allows them to complete all
the disciplines required. The probability that a student does
not possess the ability to work at a certain ward is set at 5%;
however, by design, each student has to be able to attend each
of the disciplines in at least one hospital.

To generate the minimum number of students requested
by the hospitals, at first a number in [1, |H|] is randomly
chosen, and it represents the number of hospitals that will
require, at some point, a minimum number of students. Then,
the number of students required for each pair (ward, period)
is, in principle, a random number in the range [0, k] where
k is a raw estimate of the mean number of slots that can be
filled without exceeding the number of slots that the students
can cover according to their internship plan. However, if a
ward covers a discipline that needs to be preceded by one or
more disciplines, then no minimum requirement can be set
until a number of periods sufficient to complete the preceding
discipline(s) have passed.

Similarly, the maximum number of students allowed in
a ward in a given period is a random number in the range
[k/2, k + 1] where k is a raw estimate of the mean number
of students that have to be allowed so that each student can
fulfill his/her internship requirements within the end of the
horizon.

For the generation of both hospital and discipline prefer-
ences, first a random number representing the weight of the
student preferences is drawn in the range [1, 3] then for each
hospital and each discipline the preference expressed by a
student is simulated by choosing a random number in the
range [1, 5]. On the other hand, to generate the preferences
that a student expresses relating to the presence of waiting

Table 3 Generated instances cardinality

Parameters Cardinality

Students (|S|) 40, 80, 160, 240, 320

Disciplines (|D|) 12, 24

Duration (Dud ) 1, 2, 4

times and hospital changes in the schedule a random number
in the range [1, 3] is selected. The manager’s preferences are
produced by randomly choosing a number in the range [0, 5]
for each of the disciplines involved in the internship, while
the weight of the manager’s preferences is assumed to be 1.

According to the design choices described above, we
removed the simplifications introduced in Sect. 4.1, except
for the last three (points E, F, and G). The reason is that
these latter limitations are the most realistic ones and they
do not prejudice the complexity of the problem. The most
important limitation that we removed is the one on the mini-
mum students per ward (point A), which makes the instances
more constrained, and consequently the feasibility harder to
be obtained.

Using the generator we produced Dataset 2 composed of
30 instances, one for each combination of the parameters in
Table 3. In addition, 5 instances for each combination (150
in total) have been generated for the tuning procedure.

While the design choices of the generator aim to produce
realistic and satisfiable instances, the satisfiability of a gener-
ated instance is not guaranteed. In order to have only feasible
instances, for each instance (including tuning ones) the gen-
eration process is repeated until it shows to be satisfiable.

4.3 Instance features

For both Datasets 1 and 2, several features were computed.
The first type of features are the scalars corresponding to
the number of students |S|, the number of disciplines |D|,
the (fixed) duration of each discipline Dud , the length of the
horizon |T |, and the number of hospitals |H|.

The second type of features are real-valued indicators
computed starting from the input data. With the term pack-
ing (P), we indicate the maximum number of disciplines to
be followed in a single hospital divided by the number of
disciplines. On the other hand, the feature stiffness (St) is
computed by dividing the sum of the minimum number of
students required in any of the hospitals throughout the entire
horizon by the number of slots to be filled.With busyness (B)
we refer to the number of slots to be filled in the schedule
divided by the total number of available slots in the schedule.

The last two features are related to the precedences’ direct
acyclic graph (DAG), calculated as the length of the longest
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path between two disciplines. Specifically, Ds and Dp show,
respectively, the density and depth of the DAG.

Tables 4 and 5 recap the features for Datasets 1 and 2,
respectively. For Dataset 1, instances that are homogeneous
in terms of the scalar values are grouped. For featureB,which
changes among instances, the table reports min and max val-
ues. For Dataset 2, each row of the table represents a single
instance.

First, we see that Dataset 2 includes instances that are
much bigger in terms of number of students and periods. We
also see that forDataset 1, P is always equal to 1,meaning that
there are no limits on the number of assignments of a student
to the same hospital, whereas for Dataset 2 we have diverse
values for P ranging from 0.292 to 1. Similarly, St is always 0
for Dataset 1, given that there are no minimum requirements,
while it has a wide range (from 0.022 to 0.81) for Dataset 2.
Finally, we can observe that the values of B found in Dataset
1 are higher than those recorded in Dataset 2. Moreover, the
values recorded on Dataset 1 are on many occasions close to
1, meaning that the number of slots to be filled is very close
to the number of slots available in the schedule. As a conse-
quence, the students’ schedule is very dense and the waiting
component in the objective function has very little impact
on the solution of those instances because it is essentially a
constant. In contrast, the values found in Dataset 2 allow for
a higher degree of freedom in building the schedule, while
still ensuring that the number of disciplines followed by a
student is high enough.

We designed a new format (extension .dzn) to store the
instances, based on the data file format of MiniZinc (Stuckey
et al., 2022). This choice is motivated by the will of making
the instances easily readable by any class of users as well as
highly structured and standardized to facilitate their parsing
with respect to the original text-only format.

5 Solutionmethod

In this section,we introduce the key features of local search in
stages. In Sect. 5.1, we discuss the search space and the initial
solution generation. In Sect. 5.2, we describe our neighbor-
hood relation. In Sects. 5.3 and 5.4, we present the simulated
annealing procedure and its integration with the MIP model,
respectively.

5.1 Search space and initial solution

Our local search technique uses, for the search space, an
integer-valued matrix of size |S| × |T | that assigns to each
student s ∈ S in each period t ∈ T an index that represents
a specific ward of a specific hospital. That is, we use a single
value that encodes a pair 〈hospital, ward〉.

According to the simplification G discussed in Sect. 4,
only one discipline can be undertaken in any specific ward,
so the elements of the matrix also specify the discipline. The
conventional value -1 is usedwhen the student is not assigned
to any internship in a specific period.

Given that finding a feasible solution is difficult in some
instances,we decided to also include in our search space solu-
tions that may violate the three hard constraints that turned
out to be the most difficult to satisfy, namely the minimum
(Constraints 11) and maximum (Constraints 12) number of
students per ward per period and the precedences among
disciplines (Constraints 9). These constraints are taken care
of by the cost function along with the objectives (to be
maximized). As customary, the minimization of the hard
constraint violations (also called distance to feasibility) is
assigned a higher weight, in order to favor feasibility over
optimality.

The initial solution is generated at random. In detail, for
each student the procedure iterates on all groups of disci-
plines selecting the necessary number within the group. For
each selected discipline, it selects the hospital and the period,
among the student’s free ones. Each selection is repeated until
all constraints, but 9, 11, and 12 are satisfied. These three con-
straints are not checked given that, as mentioned above, they
can be violated.

5.2 Neighborhood relations

We consider two distinct neighborhood relations, that will
be used in combination as explained below. In detail, the
first one considers a student and changes their assignment of
one discipline, whereas the second one swaps two distinct
assignments of a student. They are defined as follows:

– Change (C). The move C〈s, p, w, p′, w′〉 reassigns the
student s from the period p at ward w to a new period
p′ and a new ward w′. The move has the precondition
that s is currently idle in p′, unless p = p′; in the latter
case the move represents a reassignment of the ward in
the current period p. It is also possible that w = w′,
so that the student remains in the same ward, but at a
different time. Conversely, it is not possible that p = p′
and w = w′, which would result in a null move.

– Swap (S). The move S〈s, p, w, p′, w′〉 swaps the assign-
ments w and w′ of student s in the two distinct periods
p and p′. The precondition here is that the student is
assigned in both periods, i.e., w = −1 and w′ = −1.

The neighborhood relation employed is the set union of
Change and Swap, and the randommove selection is guided
by a parameter σ (called swap rate), such that a Swapmove
is drawn with probability σ and a Change move with prob-
ability 1 − σ .
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Table 4 Instances features of
Dataset 1

Instances |S| |D| Dud |T | |H| P St B Ds Dp

Instance_10–14 40 12 1 12 3 1 0.000 0.796–0.863 0.136 3

Instance_20–24 80 12 1 12 6 1 0.000 0.790–0.849 0.136 3

Instance_30–34 40 12 1 12 3 1 0.000 0.879–0.921 0.106 2

Instance_40–44 80 12 1 12 6 1 0.000 0.889–0.923 0.106 2

Instance_50–54 40 12 1 12 3 1 0.000 0.794–0.878 0.091 2

Instance_60–64 80 12 1 12 6 1 0.000 0.837–0.862 0.091 2

Instance_70–74 40 12 1 12 3 1 0.000 0.808–0.851 0.136 3

Instance_80–84 80 12 1 12 5 1 0.000 0.816–0.851 0.136 3

Instance_90–94 40 12 1 12 3 1 0.000 0.869–0.942 0.106 2

Instance_100–104 80 12 1 12 5 1 0.000 0.900–0.906 0.106 2

Instance_110–114 40 12 1 12 3 1 0.000 0.841–0.909 0.091 2

Instance_120–124 80 12 1 12 5 1 0.000 0.860–0.902 0.091 2

Instance_L10–14 40 12 2 12 4 1 0.000 0.948–0.970 0.136 3

Instance_L20–24 40 12 4 24 4 1 0.000 0.933–0.971 0.136 3

Instance_L30–34 40 24 2 24 2 1 0.000 0.977–0.986 0.047 3

Instance_L40–44 40 24 4 48 2 1 0.000 0.970–0.985 0.047 3

Instance_L50–54 80 12 2 12 8 1 0.000 0.942–0.956 0.136 3

Instance_L60–64 80 12 4 24 8 1 0.000 0.938–0.957 0.136 3

Instance_L70–74 80 24 2 24 4 1 0.000 0.977–0.981 0.047 3

Instance_L80–84 80 24 4 48 5 1 0.000 0.971–0.985 0.047 3

Note that the Swap neighborhood alone would not be suit-
able as it does not allow for introducing new disciplines in a
student’s schedule, meaning that the search space is not con-
nected under such neighborhood. On the other hand, Change
alone has problems traversing the search space effectively
when the schedule of a student is particularly dense because
it does not have enough empty spots to move the disciplines.
For these reasons, the use of the combined neighborhood is
more effective for this problem.

We use several auxiliary data structures in order to accel-
erate the computation of the difference of cost between two
neighbor states (the so-called delta costs). In detail, we
employ redundancy within the data to represent both the
information stored in the input and the state. This redundancy
enables us to choose themost appropriate data representation
for each situation.

As an example, we define an integer-valued matrix that
stores the number of students working in a particular ward
during a specific period. This specific representation enables
us to calculate the delta costs associated with the viola-
tions of Constraints 11 and 12 using a constant number of
operations. More specifically, since both neighborhood rela-
tionships change at most two assignments at a time, the effect
of a potential move can be measured by performing four
lookups of thismatrix.Without this representation, wewould
need to scan an entire column of the state representation to
compute the number of students available in a particularward

during a specific period, leading to a number O(|S|) of oper-
ations for each delta cost computation.

The presence of redundancy in data structures results in
an increased number of operations required when moving
to a new state, as well as greater memory usage. However,
considering that the frequency of state updating is signifi-
cantly lower compared to the overall number of evaluated
delta costs, this trade-off is advantageous.

5.3 Simulated Annealing

As the guiding metaheuristic, we use simulated annealing
(SA), which already turned out quite effective in several
timetabling problems (see, e.g., Bellio et al., 2021).

Our SA procedure starts from a random initial solution
and draws, at each iteration, a random move. As custom-
ary for SA, the move is always accepted if it is improving
or sideways (i.e., same cost), whereas when worsening it is
accepted based on time-decreasing exponential distribution.

The temperature starts from a high value T0 and is
decreased according to the classical geometric cooling
scheme Ti+1 ← αTi . However, in order to speed up the
early stages of the SA procedure, we use the cut-off mecha-
nism: The temperature is decreased when either the number
of sampledmoves reaches its threshold (Ns) or the number of
accepted moves is reached. This latter number is expressed
as a ratio of Ns , i.e. equal to Nsρ with 0 ≤ ρ < 1 as a new
parameter.
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Table 5 Instances features of
Dataset 2

Instance |S| |D| Dud |T | |H| P St B Ds Dp

40_12_1 40 12 1 12 3 0.917 0.221 0.602 0.076 1

40_12_2 40 12 2 24 2 0.583 0.267 0.653 0.182 2

40_12_4 40 12 4 48 3 1.000 0.074 0.563 0.121 2

40_24_1 40 24 1 24 4 0.875 0.810 0.642 0.018 1

40_24_2 40 24 2 48 3 0.792 0.488 0.639 0.018 1

40_24_4 40 24 4 96 5 0.500 0.180 0.640 0.014 1

80_12_1 80 12 1 12 4 0.750 0.176 0.609 0.121 2

80_12_2 80 12 2 24 2 0.917 0.069 0.606 0.136 2

80_12_4 80 12 4 48 4 0.500 0.165 0.651 0.121 2

80_24_1 80 24 1 24 3 0.792 0.188 0.648 0.011 1

80_24_2 80 24 2 48 4 0.292 0.387 0.633 0.004 1

80_24_4 80 24 4 96 3 0.458 0.299 0.681 0.014 1

160_12_1 160 12 1 12 4 0.750 0.056 0.640 0.167 3

160_12_2 160 12 2 24 2 0.917 0.102 0.635 0.091 2

160_12_4 160 12 4 48 2 0.583 0.023 0.638 0.212 4

160_24_1 160 24 1 24 2 0.583 0.396 0.602 0.004 1

160_24_2 160 24 2 48 4 0.792 0.092 0.654 0.007 1

160_24_4 160 24 4 96 2 0.542 0.173 0.633 0.011 1

240_12_1 240 12 1 12 2 0.917 0.731 0.603 0.061 2

240_12_2 240 12 2 24 4 1.000 0.107 0.599 0.076 3

240_12_4 240 12 4 48 2 0.583 0.070 0.666 0.076 2

240_24_1 240 24 1 24 3 0.583 0.390 0.618 0.011 1

240_24_2 240 24 2 48 3 0.625 0.178 0.623 0.007 1

240_24_4 240 24 4 96 5 0.583 0.052 0.623 0.004 1

320_12_1 320 12 1 12 3 0.917 0.382 0.632 0.152 2

320_12_2 320 12 2 24 2 0.750 0.022 0.663 0.212 2

320_12_4 320 12 4 48 3 0.833 0.056 0.645 0.152 2

320_24_1 320 24 1 24 3 0.833 0.064 0.625 0.007 1

320_24_2 320 24 2 48 4 0.667 0.063 0.641 0.014 1

320_24_4 320 24 4 96 4 0.875 0.062 0.665 0.014 1

The search is stopped when a total number of iterations I
has been performed, which guarantees that the running time
is the same for all configurations of the parameters. To this
aim, we compute Ns from I and the other parameters, using
the following formulawhere T f is the parameter representing
the final temperature.

Ns = I
/(

log
(
T f /T0

)

logα

)

5.4 Integration with theMIPmodel

The MIP model shown in Sect. 3 has been implemented in
CPLEX, using the Concert Technology which provides a
C++ interface. This interface has been used to warm-start the
CPLEX solver with the solutions provided by local search.
We could not use the models developed by Akbarzadeh and

Maenhout (2021b) because their source code unfortunately
has not been made available to us.

The integration between theMIP solver andSA is obtained
by executing a short run of SA to obtain a feasible solution,
which is supplied to CPLEX as the initial solution. This has
the twofold aim to speed up the CPLEX solver with respect
to solving from scratch, and to obtain some lower bounds for
assessing the quality of our SA solutions.

6 Experimental results

The software was implemented in C++ and compiled using
g++ (v. 9.4). The experiments were run on an AMD Ryzen
Threadripper PRO 3975WX 32-Cores (3.50 GHz, 64GB
RAM) with Ubuntu Linux 20.4. One single core was ded-
icated to each experiment.
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Table 6 Parameter tuning

Parameter Description Range Winning

T0 Start temperature [10 – 80] 18.64

T f Final temperature [0.5 – 1.5] 0.87

α Cooling rate [0.985 – 0.995] 0.99

ρ Accepted moves ratio [0.05 – 0.15] 0.08

σ swap rate [0.1 – 0.3] 0.11

Table 7 Comparative results on Dataset 1 between different solution
methods and time limits

CPU [s] Gap (%) Opt (%)

MIP 8054 9 50

CP 2630 1 88

DP 166 0 100

SA5 2.5 0.09 98.1

SA10 4.9 0.07 99.3

SA20 9.7 0.07 99.8

SA50 24.1 0.06 99.9

SA100 48.2 0.00 100.0

The source code is available at https://bitbucket.org/satt/
mss_data, along with all instances (in.dzn format) and their
best solutions. The repository also contains a Constraint Pro-
gramming (CP)model inMiniZinc, that, as customary for CP
also makes use of integer-value variables rather than only the
binary ones of the MIP.

6.1 Parameter tuning

The tuning procedure was performed on dedicated instances
of various sizes, created by our generator specifically for this
purpose.We used the tool json2run (Urli, 2013), which per-
forms the F-Race procedure (Birattari et al., 2010) to select
the best configuration. The winning configuration is shown
in Table 6, which also reports the initial ranges, set based on
preliminary experiments.

6.2 Comparative results

Table 7 shows the comparison between the methods pre-
sented by Akbarzadeh and Maenhout (2021b, Table 8), i.e. a
mixed integer programming (MIP) formulation, a constraint
programming (CP) formulation and a dynamic programming
(DP) method, and our method based on simulated anneal-
ing with increasing number of iterations (I = 106k with
k ∈ [5, 10, 20, 50, 100]), denoted by SAk . The table reports
for each method the average results obtained on all original
instances in terms of computational time in seconds (CPU),

final optimality gap (Gap) and percentage of instances solved
to optimality (Opt) within the time limit.1

6.3 Results on larger instances

The instances of the Dataset 2 were solved using both Simu-
lated Annealing with a number of iterations I equal to 500M
(SA500M ) and the integrated approach (SA50M+MIP) dis-
cussed in Sect. 5.4 that combines simulated annealing with
I = 50M and mixed integer programming with timeout set
to 1h.

We run 30 repetitions for SA500M , andwe report in Table 8
best and average values of the objective function (all runs
ended with feasible solutions). We made one single run of
SA50M+MIP1h , and we report the initial value obtained by
SA50M , thefinal value of the integratedmethod, and the upper
bound (UB) computed by CPLEX. Column MIPgap reports
the percentage gap between the best result of SA500M and
the value of SA50M+MIP1h , and column UBgap reports the
gap between the best result of SA500M and the UB.

The table shows thatMIP improves compared to the result
reached by SA50M in only three instances, and it never
improves the best results found by SA500 in any of the exe-
cution (see that MIPgap is never negative). Moreover, the
longest executionofSA500M requires 739s, considerably less
than the 3600s time limit set for the combined search.

We also notice that the average gap with the upper bound
UBgap is less than 10%, for the instances in which a UB is
reached. This can be considered a good achievement, given
that the upper bounds are obtained by the standard procedure
of CPLEX, without any guarantee of being tight.

We do not include the results obtained by the MIP model
starting from scratch, given that it was not able to produce
any feasible solution within 1h of computation.

6.4 Analyses and insights

In this section, we analyze the importance of the objective
component related to the fairness. To this aim, we run exper-
iments with β = 0, i.e., without considering the fairness
component in the objective function, and we compare the
results with the ones obtained with the standard configura-
tion (β = 1).

In Dataset 1, it turned out that the values of both Dess
and Desmin remain unchanged regardless of whether the fair-
ness component is included in the objective or not. This
means that there is no actual trade-off between satisfying the

1 Themethods byAkbarzadeh andMaenhout (2021b) are implemented
in the ILOG-OPL IBM (v. 12.9) environment and the time limit imposed
is 5760s for instances with 40 students and 11520s for those with 80
students (on a Windows i7 PC at 3.40GHz with 8GB RAM). Their
source code is not available so we could not run it on our environment.
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Table 8 Results on Dataset 2.
The — means that CPLEX has
run out of memory, the × is
used when the ratio cannot be
computed

Instance SA500M SA50M+MIP1h MIPgap UBgap
best (max) avg time [s] zSA zSA+MIP UB (%) (%)

40_12_1 4127 4126.7 243 4127 4127 4237 0.00 2.60

40_12_2 3920 3908.1 379 3899 3899 4236 0.54 7.46

40_12_4 2862 2856.1 383 2850 2850 3361 0.42 14.85

40_24_1 7799 7776.6 289 7698 7698 8377 1.31 6.90

40_24_2 7303 7264.8 410 7129 7129 8700 2.44 16.06

40_24_4 7096 7061.3 574 6984 6984 8680 1.60 18.25

80_12_1 8614 8612 254 8608 8608 8884 0.07 3.04

80_12_2 7206 7205 307 7206 7206 7634 0.00 5.61

80_12_4 8097 8075.8 478 8006 8006 9306 1.14 12.99

80_24_1 16453 16447.1 275 16437 16437 17087 0.10 3.71

80_24_2 15906 15874.1 466 15716 15716 17581 1.21 9.53

80_24_4 12704 12616.7 730 12069 12069 17327 5.26 26.68

160_12_1 17748 17742.2 266 17726 17728 18316 0.11 3.10

160_12_2 15085 15073 331 15057 15057 16200 0.19 6.88

160_12_4 14002 13989.3 477 13940 13942 15995 0.43 12.46

160_24_1 31470 31446.5 304 31381 31381 32824 0.28 4.13

160_24_2 35579 35561 359 35486 35486 37631 0.26 5.45

160_24_4 28412 28329.4 704 27943 27943 34138 1.68 16.77

240_12_1 20099 20059 275 19822 19829 21842 1.36 7.98

240_12_2 23183 23167.4 321 23144 23144 24552 0.17 5.58

240_12_4 21167 21150.7 529 21060 21060 24337 0.51 13.03

240_24_1 50278 50241.2 305 50066 50066 52642 0.42 4.49

240_24_2 45864 45840.4 382 45701 45701 > 106 0.36 ×
240_24_4 48471 48421.1 481 — — — × ×
320_12_1 31897 31869.9 284 31789 31789 33763 0.34 5.53

320_12_2 29895 29885.4 359 29873 29873 32261 0.07 7.33

320_12_4 32281 32259.6 447 32201 32201 36006 0.25 10.35

320_24_1 65943 65937.7 294 65920 65920 68011 0.03 3.04

320_24_2 67772 67740.5 375 — — — × ×
320_24_4 66372 66333.9 519 — — — × ×

general preferences and obtaining a fair distribution. This
phenomenon is explained by the fact that the value of Desmin

reflects the score achievable by a specific student that has a
lownumber of disciplines to attend and has given lowweights
to their preferences.

These observations are also confirmed by the results
obtained on Dataset 2, in which, however, as shown by Table
9, there are some exceptions. While the differences between
Desmin values are relatively limited on most instances there
are a few of them for which it is remarkable. Notice also that
there are some negative fairness values due to the predom-
inance of the subtractive components (hospital changes and
waiting times) in the objective function.

In conclusion, we believe that the notion of fairness pro-
posed byAkbarzadeh andMaenhout (2021b) and used in this
work, which is based on the minimization of the maximum

discomfort (min–max), needs to be refined or replaced by
more complex definitions of fairness (see, e.g., Bertsimas et
al., 2011).

Finally, we analyzed the impact of minimum require-
ments (constraint 11). To this aim, we performed additional
experiments with SA on Dataset 2 only, given that minimum
requirements are absent inDataset 1. In particular, we investi-
gated the hardness of instances and the quality of the solution
with and without such constraints. We do not report the full
results here, but the general output is that the time to obtain a
feasible solution is on average 6 times shorter removing the
constraint, going from 0.49s to 0.08s, with a maximum time
that drops from 12.2s to 0.47s. On the contrary, the effect
on the objective function of removing constraint 11 is rather
limited, and we record an average improvement of just 2.8%.
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Table 9 Average results on Dataset 2 with and without the fairness
component

Instance β = 1 β = 0 Desmin gap
Dess Desmin Dess Desmin

40_12_1 4114.5 12.0 4115.0 12.0 0.0

40_12_2 3903.5 3.0 3906.4 3.0 0.0

40_12_4 2850.8 4.0 2851.2 4.0 0.0

40_24_1 7754.9 40.0 7757.7 37.7 2.3

40_24_2 7306.7 −17.3 7311.3 −20.4 3.1

40_24_4 7060.8 3.5 7065.9 −17.5 21.0

80_12_1 8598.2 14.0 8597.5 14.0 0.0

80_12_2 7196.6 9.0 7195.9 9.0 0.0

80_12_4 8076.4 −2.0 8073.9 −2.0 0.0

80_24_1 16411.1 35.0 16412.8 35.0 0.0

80_24_2 15859.6 12.0 15864.8 12.0 0.0

80_24_4 12663.4 14.5 12670.6 −15.7 30.2

160_12_1 17735.4 8.0 17733.4 8.0 0.0

160_12_2 15076.8 −3.0 15078.4 −3.0 0.0

160_12_4 14011.4 −14.0 1412.4 −14.0 0.0

160_24_1 31415.9 30.0 31418.3 30.0 0.0

160_24_2 35538.3 25.0 35539.6 25.0 0.0

160_24_4 28349.5 −29.0 28348.9 −29.0 0.0

240_12_1 20077.7 9.0 20095.3 7.8 16.8

240_12_2 23155.7 11.0 23153.3 11.0 0.0

240_12_4 21198.1 −47.0 21196.2 −47.0 0.0

240_24_1 50230.4 12.0 50245.9 12.0 0.0

240_24_2 45834.2 9.0 45830.9 9.0 0.0

240_24_4 48495.0 −54.0 48492.6 −54.0 0.0

320_12_1 31871.8 9.8 31865.2 6.5 16.3

320_12_2 29882.8 1.0 29889.2 1.0 0.0

320_12_4 32299.9 −40.0 32303.4 −40.0 0.0

320_24_1 65924.2 15.0 65922.6 15.0 0.0

320_24_2 67740.0 10.0 67728.0 10.0 0.0

320_24_4 66387.2 −47.0 66382.4 −47.0 0.0

7 Conclusions

Wehave developed a local search approach for theMSSprob-
lem, which turned out to be able to find the optimal solution
for all publicly available instances. To test it onmore compet-
itive ground, we have developed an instance generator and
have created challenging instances. These novel instances are
more difficult not only because they are considerably larger,
but also because they activate constraints that are not used in
the original dataset. Both for verification and for hybridiza-
tion purposes, we have also implemented the mathematical
model in CPLEX, which provided some interesting upper
bounds.

As a by-product of this work, we have designed a new
data format based on MiniZinc, which is both more robust

and more human-readable than the original (text-only) one.
All instances and solutions are available in the new format on
BitBucket, alongwith the source code of our searchmethods.

Our future work will followmainly three directions. First,
we plan to improve the efficacy of our local search approach
by designing additional neighborhood relations, that could
potentially improve the exploration of the search space.

Secondly, we plan to design new forms of hybridiza-
tion between metaheuristic and exact search method, more
sophisticated than the simple warm-start of MIP experi-
mented in this paper.

Finally, we plan to extend our approach to other versions
of the problem, in order to enlarge the set of real-world cases
that our search method can solve. For example, we plan to
consider the case in which the durations of the internships
differ from each other. Similarly, we plan to scale to a larger
(regional) level, in which traveling and accommodation of
students in different regions need to be taken into account.
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Appendix

In this section, we report the detailed list of all corrections we
made to the mathematical model formulated in Akbarzadeh
and Maenhout (2021b, Section 3.2).

– The domain of the decision variables Dess and Desmin is
notR+, indeedDess andDesmin can also assumenegative
values given that in Constraint (18) the last two compo-
nents related to waiting times and hospital changes are
negative.

– In Constraints (3, 5, 7, 10, 11, 12), in the first summation
on the set of disciplines, the dummy discipline must be
excluded (i.e.,

∑
d∈D → ∑

d∈D0 ).
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– Similarly, Constraints (8, 9, 14, 16, 17) must be imposed
∀d ∈ D0 (excluding the dummy discipline) instead of
∀d ∈ D. For Constraint (15), the same correction must
be done on d.

– The RHS part of Constraint (9) has been extended with
the term Skdd · M (

1 − ∑
t∈T

∑
h∈H vsdth

)
, which was

missing.
– In Constraints (11–12), the summation on time peri-
ods has been modified as follows

∑t
t=t−Dud+1 →∑t

t=max(0,t−Dud+1) to avoid negative values of t .
– Constraint (20) has been added to the model to force the

dummy discipline to start at time period 0.
– Constraint (21) has been added to guarantee that the
dummy discipline is assigned to only one period and hos-
pital for each student.
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