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Abstract
Examination timetabling is a problemwell known to the scheduling community. Its simplest version,which is the uncapacitated
examination timetabling problem, is easily described and comprehended. Nevertheless, proof of optimality is notoriously
difficult even for moderate size problems. In this paper, we describe the effort that our team exercised in finally proving
the optimality of the sta83 instance of Carter’s dataset. The problem was decomposed naturally in three parts and for each
part a different approach managed to prove optimality of the currently best known solution. This work also presents optimal
solutions to subproblems that exist in various public datasets problems and two best known solutions of such problems.

Keywords Examination timetabling · Mixed integer programming · Heuristics

1 Introduction

Timetabling problems arise in several domains including
health-care, education, call centers, airlines and others. Ros-
tering and scheduling are also commonly used terms to
describe timetabling problems. In this paper we study the
uncapacitated examination timetabling problem (UETP).
UETP is the problem of scheduling university examina-
tions to periods (time-slots) in such a way that no student
should be examined at the same period for more than one
course. Furthermore, the schedule of each student should
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allow enough time for studying between successive exami-
nations. The problem is uncapacitated in the sense that no
room capacities or availabilities are considered.

Our contribution to UETP is twofold. Firstly, we present
a way of decomposing and reducing the sizes of the prob-
lems that results in obtaining two new best known solutions
for benchmark instances. Secondly, and most noteworthy we
propose a novel way of approaching a certain known instance
of the Carter’s dataset (Carter et al., 1996) of the UETP that
results in actually proving the optimal value of the instance.

An outline of the paper follows. Section2 provides a
succinct description of the problem. Section3 presents a
glimpse of the broad bibliography for university examina-
tion problems capacitated or not. The next section describes
our efforts to cleanse and decompose the problem instances
so as to reduce their sizes, in an effort to feed various solu-
tion approaches with easier to digest problems. Section5 is
devoted to attacking the UETP problem instances with three
specific methods that are later used in Sect. 6 to prove opti-
mality for problem instance sta83 of the well-known Carter’s
dataset. Next, our conclusions follow.

2 Problem description

Each UETP instance contains information about the set of
examinations that each student is enrolled in. Each instance
has a specific number of periods that can be used to sched-
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ule the examinations to. The single hard constraint is that
no student is allowed to participate in more than one exam-
ination per period. To allow time for each student to study
between his examinations, for each student s, for each pair of
examinations taken by s, a penalty of 16 is imposed if the two
examinations occur in adjacent time slots (called distance 1),
penalty 8 is imposed for distance 2, 4 for distance 3, 2 for
distance 4, and 1 for distance 5.

The natural way to represent an instance is as a pair con-
sisting of the number of available periods P and an undirected
weighted graph G = (V,E) where each vertex in V is an
examination and each edge in E connects two examinations
with common students. The weight of each edge is the num-
ber of common students for the examinations it connects.

3 Related work

The field of educational timetabling is very active. Sev-
eral papers are typically published every year regarding
course timetabling (Babaei et al., 2015) (post-enrollment
and curriculum-based), examination timetabling (Carter et
al., 1996), high school timetabling (Schaerf, 1999), thesis
defense timetabling (Battistutta et al., 2020) and others. Sev-
eral surveys regarding the field have been published and
present the challenges that such problems pose (Schaerf,
1999; Kristiansen & Stidsen, 2013). The survey by Qu et al.
(2009) focuses on examination timetabling that is the sub-
ject of our work too. Recent surveys by Tan et al. (2021)
and Ceschia et al. (2022) demonstrate the strong interest of
the timetabling community for educational timetabling prob-
lems. In Ceschia et al. (2022) focus is given on “standard”
formulations and benchmark instances that are also used in
our work are presented. Another recent work, this time for
real world examination timetabling problems, is the paper
from Battistutta et al. (2020).

Members of our team are also active in educational
timetabling. In Gogos et al. (2021) a novel way of estimating
lower bounds for UETP instances was proposed. Ideas about
symmetry elimination, problem decomposition and cleans-
ing of the instances were also presented there. The current
paper serves as a follow-up and provides experimental results
based on those ideas.

4 Preprocessing

Before solving each problem, we perform a cleansing pro-
cess through which we remove problem components that are
irrelevant to the optimization. By solving the cleansed prob-
lem, we will still be able to find optimal solutions that will be
optimal for the original problem. Furthermore, we identify
independent subproblems that exist in each problem. Such

subproblems can be solved independently and the solution
to the original problem can be stitched by using the solu-
tions of the subproblems. The main ideas that we use for
cleansing and decomposing the problems are more exten-
sively described in Gogos et al. (2021).

Initially, we remove obvious noise students and exami-
nations (Alefragis et al., 2021). This occurs by removing
from the problem students enrolled in a single examination
since such students cannot contribute to the cost because
cost incurs for pairs of examinations for the same student.
Moreover, if all enrollments of an examination are students
enrolled only in this examination, then we can safely remove
the examination too. Then, we identify subgraphs of the
graph that can be handled independently. Note that a sub-
graph of a graph G is a connected component of G, and that
it can be handled independently because none of its examina-
tions and students appear anywhere outside the component.
The size of a subgraph refers to the number of its nodeswhich
is equal to the number of the corresponding subproblem’s
exams. Subgraphs of size lower than � P−1

6 � + 1, where P is
the number of periods, are identified as noise. This can be jus-
tified by the fact that we can spread the examinations of such
subgraphs to the P available periodswith zeropenalty.Exam-
inations with degree lower than P

11 are also noise since they
can be always positioned with zero penalty. Then, any stu-
dent that has a single non-noise examination and an arbitrary
amount of noise examinations is also considered as noise.
The process repeats until no more examinations or students
can be marked as noise. A description of the procedure is
given in Algorithm 1.

Another form of preprocessing involves the identifica-
tion of interchangeable examinations that was proposed in
Gogos et al. (2021). These examinations have the sameneigh-
borhoods, as defined in graph G, and the same number of
common students for each neighbor. As these examinations
are practically the same we can enforce them to either be in
the same period if they are not in conflict or to follow a spe-
cific sequence of appearance in the final schedule if they have
common students. By eliminating this type of symmetry of
the problem, MIP/CP solvers are able to better explore the
solution space.

4.1 Datasets

The standard benchmark dataset for UETP is Carter’s dataset
(a.k.a. Toronto dataset). Those instances were contributed in
Carter et al. (1996) back in 1996 and since then were used
in many papers. Recently, 20 new instances that are mod-
ified versions of other more complex formulations, were
added by Bellio et al. (2021) who proposed a new dataset
obtained by translating real instances from other examina-
tion timetabling problems (i.e., 12 instances of the Track 1,
ITC-2007 and 8 instances from various Italian universities)
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Algorithm 1: Remove noise examinations and students
from an examination timetabling problem
Input: An examination timetabling problem represented as a

graph G, the number of periods P
Output: Graph G with noise examinations and noise students

removed
1 Find students enrolled in a single exam, tag them as noise
2 Find examinations with only noise students, tag them as noise
3 Remove tagged examinations and students from G
4 do // loops until no more noise examinations
are found

5 done = True
6 Let S be the set of disconnected components (subgraphs) of G
7 while S �= ∅ do
8 Gi = next(S)
9 if |Gi | < � P−1

6 � + 1 then
10 Tag all examinations of Gi as noise
11 Tag all students enrolled in examinations of Gi as

noise
12 Remove tagged examinations and students from Gi

and G
13 done = False

14 do
15 more_noise = False
16 for each examination e in Gi do
17 if dege <

P
11 then

18 Tag e as a noise
19 Tag all students enrolled in e having only one

enrollment to another examination as noise
20 Remove tagged examinations and students

from Gi and G
21 more_noise = True
22 done = False

23 while more_noise
24 Remove Gi from S

25 while not done

into the uncapacitated formulation. All of them are publicly
available in https://opthub.uniud.it/ (OPTHUB) which is a
site that hosts definitions, datasets and solutions of several
timetabling problems that have attracted the interest of the
timetabling community.

The characteristics of the instances used in this paper
are shown in Table 1. Conflict density is a metric that is
computed by dividing the number of edges of the problem’s
corresponding graph by n(n − 1)/2, where n is the number
of vertices. Values for noise students and examinations are
computed based onAlgorithm1.Moreover, the table presents
the best known values that were obtained by solutions that
we have downloaded from OPTHUB in April 2022. Costs
assume integer values and since the problem is of minimiza-
tion nature, lower values are favored. Normalized costs are
shown in the rightmost column of the table and are computed
by dividing each integer cost by the corresponding number
of students. The star symbol (∗) in best known cost (95947)
of instance sta83 indicates that this cost is optimal. In Sect. 6,

we show that this is indeed the case. We consider it as the
highlight of our work, since it is the first instance among the
Carter’s dataset for which it is proven that an optimal solution
has been reached. It should be noted that the table has sym-
bol † for the best known costs of two instances, ITC2007_9
and ITC2007_10. These best known values were contributed
by our team and were obtained by exploiting the concept
of noise examinations and students and the decomposition
of problems to subproblems that enabled us to use optimal
solutions to independent subproblems and search for good
solutions using the Variable Neighborhood Search approach
described in Alefragis et al. (2021). Note that all other best
known values included in Table 1 are values from solutions
contributed by other researchers to OPTHUB.

4.2 Decomposed instances

After applying Algorithm 1, some problems are decom-
posed to subproblems. For most instances, a number of
examinations and students are removed since they are in
effect noise. The resulting subproblems are presented in
Table 2. The name of each subproblem follows the pattern
d_i_(Ex_Sy_IDz), where d is the name of the originating
instance, i is a number that assumes value 1 for the small-
est subproblem and is incremented by 1 for each subsequent
subproblem (subproblems are ordered by size = number of
exams), x is the number of examinations, y is the number
of students and z is the smallest examination number that
exists in the subproblem. Number z is needed in order to dif-
ferentiate among subproblems having the same number of
examinations and same number of students. This is indeed
the case for subproblems D1-2-17_1 and D1-2-17_2 that
both have 8 examinations and 1 student, but in the first case
the identifying examination is 217 while for the second case
the identifying examination is 257. Note that in Table 2 the
number of examinations and the number of students exclude
noise examinations and noise students, respectively. Again,
the presence of symbol ∗ denotes that the corresponding inte-
ger cost is optimal. It should be also noted that the normalized
cost is computed by dividing the integer cost by the number
of students (including noise ones) that exists in the origi-
nating instance. We opt to use two values for the cost (i.e.,
an exact integer one and an approximate decimal one) since
the values in the relevant bibliography are decimal, but the
integer cost is needed for precise results.

5 Optimality proving tools

We have identified three different approaches to prove opti-
mality for certain instances, and we present them below.
Under certain conditions (number of exams, conflict den-
sity, current best known solution, number of periods) these
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Table 2 Problems resulted by decomposed instances of Table 1—all noise examinations and noise students are removed

Instance id Exams Students Conflict Density Best known cost Best known normalized cost

car92_1(E533_S18328_ID1) 533 18328 0.143139 67084 3.6421

car91_1(E669_S16750_ID1) 669 16750 0.133375 71727 4.2379

ear83_1(E190_S1125_ID1) 190 1125 0.266945 36473 32.4204

hec92_1(E81_S2823_ID1) 81 2823 0.420679 28325 10.0337

kfu93_1(E428_S5194_ID1) 428 5194 0.064326 68462 12.7990

lse91_1(E378_S2724_ID1) 378 2724 0.063576 26643 9.7737

pur93_1(E2336_S29766_ID1) 2336 29766 0.031566 120144 4.0009

rye93_1(E485_S11425_ID1) 485 11425 0.075590 89999 7.8376

sta83_1(E30_S162_ID1) 30 162 0.717241 ∗16002 ∗26.1899
sta83_2(E47_S210_ID3) 47 210 0.351526 ∗47250 ∗77.3322
sta83_3(E62_S239_ID4) 62 239 0.364357 ∗32695 ∗53.5106
tre92_1(E258_S4355_ID1) 258 4355 0.184840 33094 7.5904

uta92_1(E617_S21264_ID1) 617 21264 0.127539 62675 2.9472

ute92_1(E7_S20_ID30) 7 20 0.904762 ∗645 ∗0.2346
ute92_2(E177_S2729_ID1) 177 2729 0.090588 67445 24.5344

yor83_1(E181_S941_ID1) 181 941 0.288889 32375 34.4049

ITC2007_1_1(E582_S7798_ID1) 582 7798 0.054563 5628 0.7139

ITC2007_2_1(E9_S33_ID396) 9 33 0.888889 ∗0 ∗0.0000
ITC2007_2_2(E623_S9636_ID1) 623 9636 0.020856 1538 0.1232

ITC2007_3_1(E810_S15726_ID1) 810 15726 0.034214 20768 1.2690

ITC2007_4_1(E273_S4421_ID1) 273 4421 0.149968 47869 10.8276

ITC2007_5_1(E11_S9_ID434) 11 9 0.690909 ∗0 ∗0.0000
ITC2007_5_2(E13_S41_ID206) 13 41 0.487179 ∗0 ∗0.0000
ITC2007_5_3(E14_S263_ID120) 14 263 0.989011 189 0.0217

ITC2007_5_4(E637_S7559_ID1) 637 7559 0.018236 1378 0.1580

ITC2007_6_1(E4_S12_ID5) 4 12 1.000000 ∗33 ∗0.0042
ITC2007_6_2(E7_S75_ID122) 7 75 0.666667 ∗7 ∗0.0009
ITC2007_6_3(E27_S210_ID9) 27 210 0.293447 146 0.0185

ITC2007_6_4(E189_S7386_ID3) 189 7386 0.093662 30157 3.8130

ITC2007_7_1(E18_S143_ID178) 18 143 0.732026 ∗0 ∗0.0000
ITC2007_7_2(E720_S10034_ID2) 720 10034 0.040604 262 0.0190

ITC2007_8_1(E497_S7388_ID1) 497 7388 0.062764 409 0.0530

ITC2007_9_1(E143_S603_ID2) 143 603 0.105683 2909 4.6619

ITC2007_10_1(E7_S81_ID1) 7 81 1.000000 ∗196 ∗0.1385
ITC2007_10_2(E9_S91_ID78) 9 91 0.888889 ∗14 ∗0.0099
ITC2007_10_3(E11_S29_ID87) 11 29 1.000000 ∗54 ∗0.0382
ITC2007_10_4(E12_S111_ID121) 12 111 0.984848 1021 0.7216

ITC2007_10_5(E15_S59_ID200) 15 59 0.857143 292 0.2064

ITC2007_10_6(E16_S220_ID133) 16 220 0.958333 878 0.6205

ITC2007_10_7(E16_S124_ID166) 16 124 0.800000 338 0.2389

ITC2007_10_8(E16_S56_ID51) 16 56 0.550000 76 0.0537

ITC2007_10_9(E17_S143_ID149) 17 143 0.757353 836 0.5908
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Table 2 continued

Instance id Exams Students Conflict Density Best known cost Best known normalized cost

ITC2007_10_10(E19_S208_ID13) 19 208 0.964912 2356 1.6650

ITC2007_10_11(E23_S215_ID98) 23 215 0.909091 6123 4.3272

ITC2007_11_1(E841_S15857_ID1) 841 15857 0.031989 54347 3.3209

ITC2007_12_1(E5_S62_ID35) 5 62 0.900000 ∗22 ∗0.0133
ITC2007_12_2(E69_S1464_ID1) 69 1464 0.232310 10609 6.4180

D1-2-17_1(E8_S1_ID217) 8 1 1.000000 ∗5 ∗0.1351
D1-2-17_2(E8_S1_ID257) 8 1 1.000000 ∗5 ∗0.1351
D1-2-17_3(E10_S1_ID119) 10 1 1.000000 ∗17 ∗0.4595
D1-2-17_4(E11_S1_ID218) 11 1 1.000000 ∗26 ∗0.7027
D1-2-17_5(E12_S1_ID189) 12 1 1.000000 ∗36 ∗0.9730
D1-2-17_6(E13_S2_ID100) 13 2 0.538462 ∗0 ∗0.0000
D1-2-17_7(E14_S1_ID173) 14 1 1.000000 ∗62 ∗1.6757
D1-2-17_8(E18_S1_ID1) 18 1 1.000000 ∗150 ∗4.0541
D1-2-17_9(E18_S1_ID51) 18 1 1.000000 ∗150 ∗4.0541
D1-2-17_10(E28_S2_ID7) 28 2 0.592593 ∗190 ∗5.1351
D1-2-17_11(E120_S18_ID44) 120 18 0.164286 1787 48.2973

D5-1-17_1(E11_S3_ID98) 11 3 1.000000 ∗48 ∗1.1163
D5-1-17_2(E13_S3_ID99) 13 3 0.846154 ∗12 ∗0.2791
D5-1-17_3(E200_S34_ID5) 200 34 0.158945 3593 83.5581

D5-1-18_1(E9_S2_ID263) 9 2 1.000000 ∗8 ∗0.1633
D5-1-18_2(E13_S3_ID88) 13 3 0.846154 ∗12 ∗0.2449
D5-1-18_3(E14_S2_ID200) 14 2 0.736264 ∗10 ∗0.2041
D5-1-18_4(E223_S41_ID1) 223 41 0.118046 3215 65.6122

D5-2-17_1(E18_S1_ID199) 18 1 1.000000 ∗108 ∗2.5116
D5-2-17_2(E324_S42_ID1) 324 42 0.101307 8254 191.9535

D5-2-18_1(E18_S1_ID97) 18 1 1.000000 54 1.1489

D5-2-18_2(E56_S5_ID94) 56 5 0.318182 140 2.9787

D5-2-18_3(E345_S41_ID1) 345 41 0.116144 6425 136.7021

D5-3-18_1(E5_S2_ID40) 5 2 1.000000 ∗6 ∗0.1395
D5-3-18_2(E7_S1_ID59) 7 1 1.000000 ∗18 ∗0.4186
D5-3-18_3(E118_S40_ID3) 118 40 0.097349 1382 32.1395

D6-1-18_1(E12_S1_ID470) 12 1 1.000000 ∗7 ∗0.1228
D6-1-18_2(E22_S2_ID85) 22 2 0.636364 ∗32 ∗0.5614
D6-1-18_3(E403_S52_ID1) 403 52 0.092947 9754 171.1228

D6-2-18_1(E14_S1_ID1) 14 1 1.000000 ∗1 ∗0.0175
D6-2-18_2(E22_S1_ID343) 22 1 1.000000 ∗56 ∗0.9825
D6-2-18_3(E493_S54_ID3) 493 54 0.077904 7826 137.2982

∗Solution for a problem or subproblem is optimal

approaches may be able to prove that a solution is indeed
optimal.

5.1 Mixed integer programming

As optimality is our main concern, the first thoughts that
come to mind are linear programming and mixed integer
programming. The mathematical model described below can

solve an UETP instance, provided that the instance size is
manageable. For a graphG = (V,E)where verticesV serve
as the exams, each edge in E means that two examinations
have common students. The weight of an edge Wv1,v2 con-
necting vertices v1 and v2 is equal to the number of common
students these examinations have. P is the number of avail-
able periods.
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The integer decision variables pv in Eq.1 denote the
period each examination v will take place while the derived
binary decision variables in Eq.2 help us to activate or deac-
tivate penalties in the objective function in Eq.3. In particular
variable, y16v1,v2 assumes value 1when examinations v1 and
v2 are positioned 1 period away from each other or 0 other-
wise. Likewise, y8v1,v2 , y4v1,v2 , y2v1,v2 and y1v1,v2 are for
distances of 2, 3, 4 and 5 periods correspondingly, between
examinations v1 and v2. The constraint in Eq.4 forces exam-
inations with common students to take place in different
periods. Equation5 forces binary decision variables in Eq.2
to indicate the distancebetween twoexams.Equations4 and5
are obviously nonlinear, so we used the logical constraints
feature of IBM ILOG CPLEX (IBM, 2022) to model both of
them. In particular, for Eq.4we directly used operator != hav-
ing meaning “different from”, while for Equation 5 we used
operator == meaning “equivalence”. IBM ILOG CPLEX
uses a method called logical constraints extraction that auto-
matically transforms logical constraints into equivalent linear
formulations. This transformation involves automatic cre-
ation of new variables and constraints. Note that for each
equality of Eq.5, the right part consists of adding two equiv-
alences that could not possible be both true at the same time
(i.e., the equivalences have the same left part but different
right parts). This ensures that the variable at the left part of
the equality assumes a binary value. Equation6 allows only
one of the penalty indicating variables in Eq.2 to be active at
any time. This constraint is redundant, but its presence seems
to help the solver in reaching better solutions.

pv ∈ [0, P) ∀v ∈ V (1)

y16v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E

y8v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E

y4v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E

y2v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E

y1v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E

(2)

min 16 ∗
∑

v1,v2∈E
Wv1,v2 ∗ y16v1,v2

+ 8 ∗
∑

v1,v2∈E
Wv1,v2 ∗ y8v1,v2

+ 4 ∗
∑

v1,v2∈E
Wv1,v2 ∗ y4v1,v2

+ 2 ∗
∑

v1,v2∈E
Wv1,v2 ∗ y2v1,v2

+
∑

v1,v2∈E
Wv1,v2 ∗ y1v1,v2

(3)

Subject to:
pv1 �= pv2 ∀(v1, v2) ∈ E (4)

y16v1,v2 = (pv1 − pv2 = 1) + (pv1 − pv2 = −1) ∀(v1, v2) ∈ E

y8v1,v2 = (pv1 − pv2 = 2) + (pv1 − pv2 = −2) ∀(v1, v2) ∈ E

y4v1,v2 = (pv1 − pv2 = 3) + (pv1 − pv2 = −3) ∀(v1, v2) ∈ E

y2v1,v2 = (pv1 − pv2 = 4) + (pv1 − pv2 = −4) ∀(v1, v2) ∈ E

y1v1,v2 = (pv1 − pv2 = 5) + (pv1 − pv2 = −5) ∀(v1, v2) ∈ E

(5)

y16v1,v2 + y8v1,v2 + y4v1,v2 + y2v1,v2 + y1v1,v2
≤ 1 ∀(v1, v2) ∈ E

(6)

Finally, let I+ be the set of sets of interchangeable exami-
nations as defined in Gogos et al. (2021). In order to break a
symmetry of the problem,we enforce an order over the exam-
inations belonging to each set. This is formulated in Eq.7,
where members of each set S of the sets in I

+ are ordered
among each other.

vi ≤ vi+1 ∀vi ∈ S : i ∈ 1 . . . S − 1, ∀S ∈ I
+ (7)

Other formulations of the mathematical model have been
proposed in the past. An example is the work in Bellio et
al. (2021) that uses the so-called channeling constraints that
were originally proposed inAardal et al. (2007). A difference
in ourmodel is thatwe employ the concept of interchangeable
examinations that are embedded in the formulation. More-
over, the objective function is constructed equivalently, but
differently, in our case.

5.2 Intelligent enumeration

Some of the instances have a comparatively small number
of available periods. It is noteworthy that even small sub-
problems with a few periods and a relatively low number of
examinations are hard to optimally solve by current state of
the art mixed integer programming solvers. A new method
was developed to handle such instances, and this method,
depending on the number of examinations, available periods
and the conflict density of the corresponding graph is able
to solve some problems to optimality. Moreover, the same
method can be exploited and reach good solutions for bigger
instances.

To best describe this process, we will use a toy example
with its graph representation pictured in Fig. 1. Let the avail-
able periods for this problem to be four. The problem consists
of five examinations with a varying number of common stu-
dents between certain pairs of exams. Note that exams 1, 2, 3
form a non-trivial clique, e.g., they are a complete sub-graph
of the graph. As no student is allowed to participate in more
than one examination per period, those three examinations
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Fig. 1 Toy example for demonstrating the intelligent enumeration
scheme

will end up in three different periods. Also, examination 5
with a weighted degree of just 2 does not seem to play a
major part in the grander scheme of things. Note that an
optimal solution puts examinations 1, 2, 3, 4, 5 at periods
2, 3, 0, 0, 3, respectively, and assumes a cost of 4008.

The method can be used to either search for a good solu-
tion or to prove optimality, based on characteristics of the
problem in question. The main idea remains the same for
both cases. Firstly, we reduce the problem size by remov-
ing some of its exams. Then, we generate partial solutions,
evaluate their cost and if it falls under some cutoff limit,
which could be the cost of the best known solution, we fill
the missing examinations to form a complete solution. This
process is expected to act as a filter and has the potential to
be computationally faster than a full enumeration.

The main idea of the method is to exploit a clique in the
graph. In selecting a clique, it usually makes sense to choose
themaximumclique. In the toy example, themaximumclique
is the set of examinations {1, 2, 3}. It is guaranteed that the
clique’s examinations will end up on different periods which,
for convenience, we name after them, {P1, P2, P3} corre-
spondingly. Since we have four available periods we will
name the period that will not be occupied by any of them as
PE . The remaining examinations {4, 5} can be easily checked
in this small example about their possible final positions.
So, examination 4 can be placed in any of {P2, P3, PE } and
examination 5 can join any period {P1, P2, P3, PE }.

Since examinations for the clique are fixed in periods
{P1, P2, P3} the possible assignments for examinations 4
and 5 are (4 : P2, 5 : P1), (4 : P2, 5 : P3), (4 : P2, 5 :
PE ), (4 : P3, 5 : P1), (4 : P3, 5 : P2), (4 : P3, 5 : PE ), (4 :
PE , 5 : P1), (4 : PE , 5 : P2), (4 : PE , 5 : P3) while
(4 : P2, 5 : P2), (4 : P3, 5 : P3), (4 : PE , 5 : PE ) are
infeasible as examinations 4 and 5 are in conflict. In total,
there are 9 feasible schedules. If we had opted to leave
examination 5 out, there would be just 3 feasible schedules
(4 : P2), (4 : P3), (4 : PE ).

Initially, we ignore examination 5 and we examine all
possible permutations of {P1, P2, P3, PE }. We complement
every permutation with each of the 3 possible partial sched-
ules (4 : P2), (4 : P3), (4 : PE ). Since each schedule and
its reverse have exactly the same objective value, we can

skip mirrored permutations, effectively cutting off half of the
search space, thus eliminating this kind of symmetry. Nev-
ertheless, for large numbers of periods, it is unrealistic to
traverse all possible permutations, even by considering half
of them. In the toy example, we evaluate 4!/2∗3 = 36 partial
solutions (i.e., 4!/2 equals the permutations of the available
periods after removing reverse symmetries, and 3 are the pos-
sible periods that examination 4 might end to) and we keep
those that have cost under a cutoff barrier. The unscheduled
examination 5 has a weighted degree of just 2, while other
examinations have weighted degrees ranging from 52 to 350.
So, most of the partial solutions should be filtered out.

Examination 5 of the toy example was initially ignored. A
similar decision must be taken for each problem, about the
examinations thatwill be initially ignored too.Unfortunately,
this is not a trivial task. We cannot remove examinations of
the chosen clique, should we wish to do so we should pick
another clique. Intuitively, we want to initially ignore exam-
inations with low degrees and weighted degrees, as they are
able to appear in more periods. Consequently, they allow for
more possible outcomes while at the same time their impact
on the objective function is minor. It should be noted that not
all partial solutions (solutionswith ignored examinations still
unscheduled) may lead to feasible solutions. So, for the case
that full enumeration is unrealistic, quick feasibility checks
can reveal unpromising partial solutions that aremeaningless
to be completed. The method is tuned by balancing the num-
ber of possible partial schedules generated with respect to the
impact that the selected examinations have on the objective.
The tuning is guided by selecting, through sampling, suitable
examinations that will hopefully result in cutting-off many
possible solutions. For the toy example, the costs of these
partial solutions are depicted in Table 3. Note that the table
contains only 12 rows, instead of 24, sincewe choose to apply
P1 < P2 to eliminate reverse timetable symmetry. Assuming
that we already have a schedule with cost 4008, the costs of
the partial schedules that are not cutoff are shown in bold in
Table 3. This means that only these partial solutions have the
potential to be completed to full ones having cost 4008.

To further augment our filter while keeping computa-
tional cost low, it is possible for partial solutions that are
under the cutoff barrier to calculate the minimum cost each
unscheduled examination can possibly introduce to the par-
tial solution. If the sum of those minimum costs plus our
partial solutions cost is under the cutoff barrier, the partial
solution may lead to a desired complete solution. This pro-
cess can be seen as a multi-layer filter like the one depicted
in Fig. 2.

Another way to view the process is as a carefully orga-
nized tree search, aiming at a solution of minimum cost.
During the process branches of the search space are pruned
based on cutoff values. Moreover, an A* style lookahead
search is employed that calculates the minimum cost each
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Table 3 Permutations and partial solutions costs for the toy example
in Fig. 1

P1 P2 P3 PE 4 : P2 4 : P3 4 : PE
0 1 2 3 6800 6400 6200

0 1 3 2 4600 4000 4200

0 2 1 3 6800 7200 6600

0 2 3 1 5000 4800 5400

0 3 1 2 4600 5200 4800

0 3 2 1 5000 5200 5600

1 2 0 3 6400 6400 6000

1 2 3 0 6800 6400 6800

1 3 0 2 4400 4800 4800

1 3 2 0 6800 7200 7200

2 3 0 1 4400 4000 4400

2 3 1 0 6400 6400 6000

Fig. 2 Filter process

unscheduled examination can possibly introduce to the par-
tial solution.

5.3 Estimating lower bounds

Each students schedule is also an UETP sub-problem where
his examinations are a complete graphwhere all edges have a
weight of 1. This problem can be solved optimally for almost
all instances, especially for those with a low number of peri-
ods.

Summing up those minimum penalties for all students can
provide us with a lower bound. In the rare occasion that a
solution’s objective function is equal to this bound then this
solution is optimal.

Fig. 3 Disconnected components of sta83. The weight of each edge is
indicated by its thickness

6 sta83 optimal solution

No optimality has ever been proven for any Carter’s dataset
instance until now. In this section, we show that the solu-
tion for sta83 having value 95947 (95947/611=157.0327 in
decimal value, where 611 is the total number of students for
sta83) which appears in many papers (e.g., (Burke & Bykov,
2006; Demeester et al., 2012; Leite et al., 2018) ) is indeed
optimal.

Instance sta83 consists of 139 exams, 13 periods and has
a relatively low conflict density of value 0.14. The instance
has no noise examinations and no noise students as defined
in Sect. 4. The instance is comprised of 3 disconnected com-
ponents as shown in Fig. 3.

The problem is divided into three independent subprob-
lems, since these components are disconnected. Provided
that we can optimally solve each one of them, joining these
solutions would result to an optimal solution for the whole
problem.Motivated by the prospect of proving optimality for
a Carter’s dataset instance, we focused our attention on this
task, and we managed to solve each subproblem to optimal-
ity using a different approach, resulting in a novel way of
handling high conflict-density components.

All experiments were run on a Windows 11 workstation
equipped with a i7-11700 - 8 cores CPU and 16GB RAM.
The version of the IBM ILOG CPLEX used was 22.1.1.
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6.1 Component sta83_62

This is the largest component of sta83, having 62 examina-
tions and a conflict density of 0.36. We tried to solve it using
themodel described in Sect. 5.1 using the IBMILOGCPLEX
IP solver. Unfortunately, after several hours the solver was
unable to prove optimality.We tried towarm start the solution
with the current best solution and have set the MIP empha-
sis parameter first to “emphasize optimality over feasibility”
and then to “emphasize moving best bound”. Both attempts
were unsuccessful.

We noticed that the component has a special structure. It
contains 10 sets of examinations with each set consisting of
exactly 5 interchangeable examinations. These examinations
amount for 50 of the 62 examinations that the component has
in total. Details of these sets are presented in Table 4. Since
interchangeable examinations can freely swap places with
each other while keeping the objective value unchanged, the
introduction of the symmetry breaking constraints of Eq.6
greatly improved the solver’s efficiency in proving the opti-
mal solution.

We also noticed that 3 examinations existed (72, 133, 136)
in the graph that had connectionswith all other exams. So, we
tried an approach that fixed these 3 examinations in specific
periods and then tried to solve the remaining problem using
IBM ILOG CPLEX. This time, the result was successful, the
solver was able to return a result, either optimal or infeasible
in a few minutes. It should be noted that infeasibility occurs
because the cost of the best known solution is used as a cut-
off constraint. So, we had only to try all possible places for
positioning the 3 examinations and then solve the resulting
problem. Since there are only 13 periods in instance sta83,
this would mean that only

(13
3

) = 286 configurations existed
that should be multiplied by 3!

2 since the 3 examinations can
occupy the fixed periods in any order (divided by 2 due to
the inherent symmetry of the problem).

By exploiting the above observations, IBM ILOGCPLEX
IP solver was able to solve each subproblem in a few min-
utes. After solving all subproblems, the optimal solution for
sta83_62 was proven to be 32695. This solution occurred
when examinations 72, 133 and 136 were fixed to periods 3,
6 and 8, respectively. The symmetric solution also exists and
is produced by fixing examinations 72, 133 and 136 to peri-
ods 9, 6 and 4. Of course, many more symmetric solutions
exist due to the interchangeable exams.

6.2 Component sta83_47

This component proved to be the easy part. It consists of 47
examinations and has a conflict density of 0.35. As described
in Sect. 5.3, we can estimate a lower bound by adding the
minimum cost each student’s schedule could possibly inflict.

Table 4 Component sta83_62, sets of interchangeable examinations
and their characteristics

Set Degree Weighted Degree

{17, 38, 58, 85, 120} 8 8

{18, 39, 59, 86, 121} 16 240

{19, 40, 60, 87, 122} 16 264

{20, 41, 61, 88, 123} 15 168

{21, 42, 62, 89, 124} 12 88

{22, 43, 63, 90, 125} 16 160

{23, 44, 64, 91, 126} 15 160

{24, 45, 65, 92, 127} 16 264

{25, 46, 66, 93, 128} 16 280

{26, 47, 67, 94, 129} 16 280

So, for each student in isolation, an IP model is formulated
that given only the number of periods and the number of
examinations that this student participates, decides about the
schedule that results to theminimumpossible cost.Of course,
since each student is considered in isolation if two students
share the same number of examinations then the problem
needs to be solved just once. In practice, this is the case
for several students. By adding minimum penalties of all
students we have a lower bound for this component, which is
47250. The best known solution turns out to have cost equal
to the lower bound obtained in this manner. Thus, the optimal
solution for this component is 47250.

6.3 Component sta83_30

This was the last component to solve. It is the smallest one
with just 30 examinations but a high conflict density of 0.72.
With high hopes since just the smallest piece of the puzzle
was missing, we were surprised to find out that to the best of
our ability our MIP models were not able to prove an opti-
mal solution. We have tried the same trick that we have used
successfully in component sta83_62. We noticed that in the
case of sta83_30 there is only one examination (134) that is
connected to every other one. So, we tried to fix this exami-
nation to each period in turn and then to solve the remaining
problems using IBM ILOG CPLEX. Unfortunately, this did
not helped the solver to prove the optimality of the solution.
Each subproblem seemed to run forever.

By observing closely the high density graph of this com-
ponent we came up with the idea of separating examinations
with high degrees and examinations with relatively low
degrees. A similar idea has been exploited by Rahman et al.
(2009) and others in constructing timetables giving prece-
dence to high degree examinations and leaving for a later
phase the low degree ones. In our approach, we isolated the
maximum clique, which for this particular instance contains
12 examinations and tried to arrange those examinations to
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Fig. 4 Scatter plot of sta83_30 that gives insight about the set of exam-
inations that should be scheduled last

the 13 periods leaving one period empty for each possible
arrangement.

A significant observation is that regardless of the peri-
ods that the clique occupies, the possible placements for the
remaining examinations will be the same because their pos-
sible positions are constrained by the examinations of the
clique. By multiplying the number of those possibilities with
the number of permutations of the periods we were able to
count all possible solutions to be 13! ∗ 109152 where 13!
is the number of possible period permutations and 109152
is the number of possible ways to schedule the remaining
examinations for the specific component. This number is still
quite large so we exploited the method described in Sect. 5.2.
We aim to find a set of examinations that has minor impact
on the cost but at the same time possible final positions
of the sets’ examinations might be disproportionate large.
Figure 4 which shows the degrees and weighted degrees of
examinations was used as a visual aid for identifying the
examinations needed. These examinations should reside at
the lower left corner and should have the desirable character-
istics. For sta83_30 a good set of examinations proven to be
{5, 131, 28, 48, 76} that manages to lower multiplier 109152
to just 47.

The unscheduled examinations weighted degree is com-
paratively low and so themethod has the potential of working
effectively. By keeping in the set of initially unscheduled
examinations, examinations that can easily move around the
schedule, the number of possible partial solutions becomes
quite low. Moreover, the low weighted degree that these
examinations have prohibits from heavy impacts on the
objective function. So, the filtering process is working. For
the case of sta83_30 this “intelligent” search resulted in 13
distinct optimal solutions (and their symmetric ones) all hav-
ing the same cost, 16002. The search was implemented in

Bezanson et al. (2017) using its parallel computing features
for theCPU. Five high endworkstationswere simultaneously
running the experiment and the time needed was about 12h.

7 Conclusions

Thisworkwas about the uncapacitated examination timetabling
problem. It continues previous work ofmembers of our team.
A key observation is that even for this rather simple schedul-
ing problem that is only an abstraction of the corresponding
real-life problem, the proof that a given solution is optimal
is definitely not trivial. Nevertheless, our team succeeded in
proving the optimality of a certain instance, namely sta83
of the Carter’s dataset. In order for this to happen we had
to decompose the problem into independent subproblems.
Having 3 problems of moderate size gave us the opportu-
nity of experimenting with various approaches. No method
was able to solve all three subproblems. After many exper-
iments and carefully analyzing the components, we finally
discovered three approaches that were able to prove opti-
mality. Each subproblem was solved by a different approach
and the optimal solution for sta83 was proven. The other
problem instances of Carter’s dataset and 20 more prob-
lem instances publicly available were unable to be solved
to optimality using the same approach. This likely occurred
because proving optimality becomes very challenging when
the number of periods is big and when the number of exam-
inations (i.e., nodes in the problem’s graph) are relatively
large. Nevertheless, by following the procedure of remov-
ing noise students, identifying and solving independently
connected components (subgraphs of the problem’s graph)
we were able to contribute two new best solutions to public
dataset problems, alongside with several optimal solutions to
subproblems that exist in various problem instances.
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