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Abstract
Preventive maintenance (PM) is performed so that failure is avoided while corrective maintenance is performed after a failure
has occurred in order to restore the system back to an operational state. This research aims at scheduling PM activities
for a multi-component system within a finite time horizon. We consider a setting with two stakeholders, being the system
operator and themaintenanceworkshop, and two different contract types governing their joint activities, namely an availability
contract and a turn-around time contract. Components in the systems that are to be maintained are sent to the maintenance
workshop, which needs to schedule and perform all maintenance activities while at the same time satisfying the contract
and not exceeding the workshop capacity. Our modelling is based on a mixed-binary linear optimization model of a PM
scheduling problem with so-called interval costs over a finite and discretized time horizon. We enhance this scheduling model
with the flow of individual components through the maintenance workshop, including stocks of spare components, both those
components that need repair and the repaired ones. The resulting scheduling model is then utilized in the optimization of
two main contracts, namely maximizing the availability of repaired (or new) components and minimizing the deviation from
the contracted turn-around times for the components in the maintenance loop. Each of these objectives is combined with the
objective to minimize the costs for maintenance of the operating system, leading to two bi-objective optimization problems.
We analyse the two contracting forms between the stakeholders by studying and comparing the Pareto fronts resulting from
different parameter settings, regarding minimum allowed stock levels and investments in repair capacity of the workshop. Our
bi-objective mixed-binary linear optimization model is able to capture important properties of the results from the contracting
forms as well as to show that, in our setting, an availability contract performs better than a turn-around time contract in terms
of tractability.

Keywords System maintenance · Workshop scheduling · Mixed-binary linear optimization model · Optimization of
contracting forms · Simultaneous scheduling · Bi-objective optimization

1 Introduction

When planning maintenance for a system, the decisions
to be made concern when each of its components should
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be maintained (i.e. repaired or serviced) and what kind of
maintenance should then be performed, with respect to the
operational schedule of the system (i.e. maintenance can
be done only when the system is not operational). To keep
the system functioning, the maintenance of its components
has to be planned and performed in good time. Preventive
maintenance (PM) can often be planned well in advance,
while corrective maintenance (CM) is done after a failure
has occurred, to restore a system into operational state, which
may come on very short notice and usually higher cost. How-
ever, a CM action may provide an opportunity for PM at
which the maintenance actions can be rescheduled, starting
from the system’s current state. We model PM scheduling,
while CM is implicitly included by an additional cost which
increases with the time between PM occasions. That means
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that the longer time in between two PM occasions, the more
costly it becomes to domaintenance. This cost structure leads
to decreasing risk of unexpected failures (and need for CM).
Yu and Strömberg (2021) present a model that uses failure
time distributions to model such additional costs.

We consider a setting with one system operator and one
maintenance workshop, which are typically two separate
stakeholders, and a contract regulating their collaboration.
Components that are to be maintained are sent to a mainte-
nance workshop, which needs to schedule and perform all
maintenance activities while satisfying the contract, which
may define conditions on delivery dates for and/or require-
ments on the availability of components for the system
operator. The workshop’s ability to fulfil the contract is
dependent on its capacity, in terms of the number of parallel
repair lines.

For the case of a contracted delivery date, there is normally
a fee to be paid by themaintenanceworkshop at a late or early
delivery. For the case of an availability contract, theworkshop
normally has to pay a finewhen(ever) the number of available
(i.e. repaired) components goes below the contracted limit.

We formulate a bi-objective optimization model of the
following system of systems: (i) scheduling the PM occa-
sions for the components of the system(s) and (ii) scheduling
the repair activities in the maintenance workshop. The main
contract types to be analysed are (iii) a component repair
turn-around time based contract and (iv) a contract aimed
at regulating the availability of components. The objectives
considered are (v) minimizing the preventive maintenance
costs for the system operator (i.e. set-up costs for the main-
tenance occasions as well as component replacement costs
related to the maintenance intervals), (vi) maximizing the
availability (to the system operator) of components repaired
by the maintenance workshop and (vii) minimizing the
penalty costs (paid by the maintenance workshop) for late
or early deliveries of repaired components.

The main contributions of this work are a mathemati-
cal model of the simultaneous scheduling of replacement
and repair of individual components used in multiple sys-
tems,mathematicalmodels of twocontracting formsbetween
stakeholders and a comparison of the contracting forms by
means of two bi-objective optimization problems.

It is important to understand the operational difference in
performance (e.g. in terms of minimal cost) of the different
contracts, as defined in (iii) and (iv), respectively. Most sup-
ply chain research (see, for example, Akyuz & Erkan 2010)
and its industrial understanding focus on how to set up the
supply chain in terms of initial stock levels, machine capac-
ities and personnel rostering based on a predicted flow of
material, goods or services. There is, however, little under-
standing of how contracting forms affect the dynamical
and/or combinatorial aspects in a supply chain with two or
more stakeholders.

Our model can be applied to any system that performs
some sort of operations and whose components/parts have
to be maintained. Some of many examples are railway and
air traffic, and manufacturing machines in industry (see, for
example, Robert et al., 2018; Verhoeff et al., 2015; Boliang et
al., 2019; Papakostas et al., 2010). Therefore, the motivation
behind this research lies in real-world applications.

The result of our model and computations—for a specific
application and instance—is amaintenance schedule for indi-
vidual components, which takes into account the operational
requirements on and schedules for the systems, the mainte-
nance requirements for the components of the systems and
the capacity of the maintenance workshop.

The assumption we make is that the maintenance work-
shop and the preventive maintenance scheduling are tightly
integrated (i.e. the information is transparent in between the
two stakeholders), and we do so because of three reasons.
Firstly, it provides a useful planning tool for the case when
the workshop is actually integrated with the operating sys-
tems (i.e. when there is only one stakeholder). Secondly,
when the workshop is controlled by another stakeholder, our
tightly integrated model will provide optimistic estimates of
achievable results which can be used as benchmarks for com-
paringwith the current results. Lastly, our integration enables
an investigation of schedules resulting from different types
of contracts between the stakeholders as well as to differ-
ent capacity levels of the workshop. In Sect. 4, we compare
the two contract types, which are based on the availability
of components and the turn-around times for the repaired
components, respectively. We also study the load level of the
workshop for different capacity levels. Results can be used
as decision support for the stakeholders/operations manage-
ment when setting up a contract as well as when making
investment decisions (i.e. capacity in the maintenance work-
shop).

The model of the maintenance scheduling problem pre-
sented in this article is partly based on the preventive main-
tenance scheduling problem with interval costs (PMSPIC)
model presented in Gustavsson et al. (2014). The PMSPIC
considers one system with multiple component types and
for which the costs for replacement of components take into
account the interval between any two consecutive replace-
ments/maintenance occasions; we generalize this model in
the sense that also the individual components are consid-
ered and can be placed in any of the systems, as well as
allowing for multiple systems. To reduce the probability of
unexpected failures, which will reduce the need for CM, we
enforce the PM activities to be scheduled before the end of
the component’s expected life. We also take into account
the operational schedules for the systems which lead to time
windows in which the different maintenance activities may
or must be performed.
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One way of generating the operational schedules (e.g.
timetables) for the systems considered is presented in Gavra-
nis andKozanidis (2015), inwhich the availability of a fleet of
aircraft ismaximized subject to requirements on the transport
missions and maintenance of the aircraft and their compo-
nents. The results obtained include a tool for deciding which
aircraft to fly when and for how long, and at what times the
aircraft may and/or must undergo maintenance. The goal is
to maximize the fleet availability over the planning horizon
while ensuring that the operational and maintenance require-
ments are met. Methods suggested in that article are used to
generate timetables that are input to our model.

The remainder of this article is organized as follows.
In Sect. 2, we define the generalized PMSPIC, the mainte-
nance workshop, the stock dynamics modelling and their
integration with the operational demand on the systems. We
define several objectives in relation to the two stakeholders.
In Sect. 3, we present our bi-objective modelling. Tests and
results are presented in Sect. 4, and in Sect. 5, we give con-
clusions and present ideas for future research.

2 Definition of themaintenance scheduling
problem

The problem studied in this article is described as follows.
A number of systems are operating to fulfil a common pro-
duction demand; their operating schedules are assumed to be
predefined, resulting in certain time windows during which
maintenance of the systems’ components may be performed.
The systems operate their components degrade, which leads
to need for maintenance (i.e. service, replacement or repair).
At a maintenance occasion, one or several components are
taken out of the system, sent to the maintenance workshop
for repair and returned back to the stock of repaired com-
ponents, ready to be used again. The components that are
sent for repair are instantly replaced by components that
are currently on the stock of repaired components. There-
fore, replacement can only be done if there is at least one
component (of the same type as components to be replaced)
available. Hence, there is a circulating flow of individual
components, being used and degraded, replaced, repaired or
serviced, and then put back in a system to be used again. This
structure of the system of systems is illustrated in Fig. 1. We
model this systemof systems such that (i) the individual com-
ponents are tracked, (ii) the operating systems are preserved
operational (if possible) and (iii) the capacity of the mainte-
nance workshop is respected. The time is discretized, and we
employ a so-called time-indexed modelling. Depending on
the length of the planning horizon, the individual components
will undergo repair a different number of times.

We start by making a formal definition of the general-
ized PMSPIC—which models the replacement scheduling

Fig. 1 Operating systems and the maintenance workshop, with the
operational demand as input and the scheduling of component replace-
ment and repair as output

for the components of the systems considered—along with
a mixed-binary linear optimization formulation. Then, we
model the scheduling of the maintenance workshop using
mixed-binary linear optimization. These systems are then
integrated through the dynamics of the stocks of components
waiting to be maintained and those that have finished main-
tenance and are available to be used again by the systems.
The section is concluded with a summary of the combined
mixed-integer linear optimization formulation.

2.1 The generalized preventivemaintenance
scheduling problemwith interval costs

The generalized preventive maintenance scheduling prob-
lem with interval costs (GPMSPIC) is defined as follows; cf.
Gustavsson et al. (2014).

Definition 1 (GPMSPIC) Consider K systems k ∈ K :=
{1, . . . , K } with component types i ∈ I := {1, . . . , I }, the
set of individual components of type i defined as Ji :=
{1, . . . , Ji }, and a set T := {1, . . . , T } of time steps at which
maintenance of the systems can be performed, where T rep-
resents the planning horizon. A PM schedule consists of a
set of scheduled replacement times in T for each system k
and component type i . A maintenance occasion for system
k at time t generates the maintenance occasion cost dkt . If
PM of an individual component j of type i , denoted with
(i, j), in system k is scheduled at the times s ∈ T ∪ {0}
and t ∈ {s + 1, . . . , T + 1}, but not in the (possibly empty)
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time interval {s + 1, . . . , t − 1}, then the maintenance inter-
val, denoted (s, t), generates the interval cost cist . Find a PM
schedule that minimizes the sum of maintenance occasion
costs and interval costs. ��

Any special case of the GPMSPIC such that K = Ji = 1
coincides with the PMSPIC. According to Gustavsson et
al. (2014)—see also Arkin et al. (1989) and Boctor et al.
(2004)—the PMSPIC is NP-hard1 which implies that the
GPMSPIC is also NP-hard. The main practical implication
of this property is that the optimal scheduling of the PM
occasions for the components of the system(s) is a computa-
tionally demanding problem.

We next model the GPMSPIC as a binary linear optimiza-
tion problem. With the decision variables being defined as

xi jkst =

⎧
⎪⎪⎨

⎪⎪⎩

1, if individual component j of type i in system k

receives PM at times s and t, but not in between,

0, otherwise,

j ∈ Ji , i ∈ I, k ∈ K,

0 ≤ s < t ≤ T + 1,

zkt =
{
1, if maintenance of system k occurs at time t,

0, otherwise,
k ∈ K, t ∈ T ,

the feasible set is modelled by the equality and inequality
constraints

∑

j∈Ji

t−1∑

s=0

xi jkst =
∑

j∈Ji

T+1∑

r=t+1

xi jktr , i ∈ I, t ∈ T , k ∈ K, (1a)

∑

j∈Ji

T+1∑

r=1

xi jk0r = 1, i ∈ I, k ∈ K, (1b)

∑

j∈Ji

t−1∑

s=0

xi jkst ≤ zkt , i ∈ I, t ∈ T , k ∈ K, (1c)

∑

k∈K

t−1∑

s=0

xi jkst ≤ 1, j ∈ Ji , i ∈ I, t ∈ T , (1d)

xi jkst = 0, t̄i ≤ s+ t̄i < t ≤ T+1,

j ∈ Ji , i ∈ I, k ∈ K. (1e)

For each system k and component type i , a maintenance
interval starts at time 0, which is modelled by (1b), while
the constraints (1a) ensure that the same number (i.e. 0 or
1) of maintenance intervals ends and starts at time t . The
constraints (1c) ensure that if a maintenance interval of com-
ponent type i in system k ends at time t , then maintenance of
system kmust occur at time t . The constraints (1d) ensure that
each component (i, j) is in at most one system k at each time
t . The constraints (1e) prevent any maintenance interval for
component type i ∈ I from being longer than t̄i ≤ T , which
prevents from having to perform corrective maintenance.

1 A decision problem is in NP if the answer “yes” can be verified in
polynomial time. A decision problem is NP-hard if any NP problem can
be reduced to it in polynomial time. A decision problem is NP-complete
if it is in NP and NP-hard (Conforti et al., 2014, Ch. 1.3)

2.2 Themaintenance workshop scheduling problem

Components that should be maintained are sent to the main-
tenance workshop, which contains a number of (identical)
parallel machines for component repair, each of which has
a repair capacity of one unit while each component repair
requires one unit of this capacity per time step during a pre-
specified and consecutive (i.e. preemption is not allowed)
number of time steps. When a component arrives at the
workshop, it is available for repair and assigned a due date,
at which the repair should be finished, and the component
be returned back to the system operator. This problem is
identified as an identical parallel machines scheduling prob-
lem (IPMSP; commonly denoted P‖∑

C j ); see Brucker
and Knust (2012, Ch. 1.2.2). A solution to the maintenance
workshop scheduling problem specifies at which time each
component arriving at the workshop should start mainte-
nance. If a component is delivered after its due date, the
maintenance workshop has to pay a fee to the system opera-
tor.

Definition 2 (IPMSP) Consider a set L := {1, . . . , L} of
identical component repairmachines and the individual com-
ponents j ∈ Ji of types i ∈ I that arrive at the workshop
at given time points t i j ∈ T . Each component (i, j) has a
repair time pi > 0 (number of time steps it takes for repair)
and a due date di j ≥ t i j + pi (number of time steps within
which a component should be repaired and returned).Atmost
L ≥ 1 machines can operate simultaneously. A component
that finishes repair prior to or after its due date generates a
non-negative penalty cost. Find a schedule for the mainte-
nance workshop such that the sum of the penalty costs for
late and early deliveries of the repaired components is mini-
mized. ��

The IPMSP with a (weighted) sum objective is polynomi-
ally solvable (Lawler & Lenstra, 1993, Ch. 8.0), whereas its
version with a minimax, i.e. makespan, objective is NP-hard
(Brucker & Knust, 2012, Ch. 2.1).

To model this as a mixed-integer optimization problem,
we define for each j ∈ Ji , i ∈ I, and t ∈ T , the decision
variables as

ui jt =
{
1, if component (i, j) starts repair at time t,

0, otherwise.

Then, the number �t of active parallel machines at time t
should fulfil the constraints

0 ≤ �t = �t−1 +
∑

i∈I

∑

j∈Ji

(
ui jt − ui j

t−pi

)
≤ L, t ∈ T , (2)

where �0 and u
i j
t , t ≤ 0, are initial (fixed) values that consti-

tute input to the model; see (6). The constraints (2) state that
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the number of active parallel machines at time t equals the
number of activemachines in the previous time step (i.e. t−1)
plus the difference between the numbers of components start-
ing and finishing repair (i.e. the number of parallel machines
being activated and deactivated, respectively) at time step t ;
they also state that the number of activated machines at any
time step must be in the interval [0, L]. In our study, we also
vary the number, L , of parallel machines, to enable decision
support for capacity investments in the maintenance work-
shop.

Our model assumes deterministic processing times, pi , in
the maintenance workshop. In practical maintenance appli-
cations, however, the real processing times are occasionally
revealed only after the component has arrived at the main-
tenance workshop, which we denote as unexpected events.
In Sect. 4.4, we suggest a rescheduling procedure that takes
such unexpected events into account.

To connect themathematical models of the IPMSP and the
GPMSPIC, we next introduce the stock dynamics modelling.

2.3 The stock dynamics

When an individual component (i, j) is taken out of system
k it is sent—with no time delay—to the stock of damaged
components, where it stays until it is scheduled for repair.
The transport time between the stock of damaged compo-
nents and the maintenance workshop is denoted δia . Upon
being repaired, it goes to the stock of repaired (i.e. as good
as new) components—with a transport time denoted δib—
where it is kept until its scheduled time for placement into
a(nother) system k ∈ K. We assume that all transport times
are represented by non-negative integers.

The integration of the models of the GPMSPIC and the
IPMSP requires the modelling of the two stocks of damaged
and repaired components, respectively. We introduce the fol-
lowing variables for all j ∈ Ji and i ∈ I:

ai jt (bi jt ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if individual component j of type

i is on the stock of damaged (repaired)

components at time t ∈ T ∪ {0},
0, otherwise,

α
i j
t (β

i j
t ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if individual component j of type i is taken

out of (placed in) one of the systems k ∈ K
at timet ∈ T ,

0, otherwise.

The stock of damaged components is then modelled by
the constraints

α
i j
t =

∑

k∈K

t−1∑

s=0

xi jkst , j ∈ Ji , i ∈ I, t ∈ T , (3a)

ai jt = ai jt−1 + α
i j
t − ui j

t+δia
∈ {0, 1},

t ∈ {1 − δia , . . . , T + 1}, j ∈ Ji , i ∈ I. (3b)

The constraints (3a) connect the variables from the GPM-
SPIC with the stocks: if a component (i, j) is taken out of
any of the systems k ∈ K at time t , αi j

t will take the value 1;
otherwise, α

i j
t takes the value 0.2 The constraints (3b) pro-

vide the state of component (i, j) at time t : whether it is on
the stock of damaged components (i.e. ai jt = 1) or not (i.e.
ai jt = 0). The state of a component at time t depends on
its state in the previous time step t − 1, whether it is taken
out of any system k and placed on the stock at time step t ,
and whether it is starting maintenance at time step t + δia .

We let α
i j
t := 0, t ∈ {1 − δia, . . . , 0}, while the variable ai j0

constitutes (fixed) input data and must fulfil (6).
The stock of repaired components is modelled analo-

gously, as

β
i j
t =

∑

k∈K

T+1∑

r=t+1

xi jktr , j ∈ Ji , i ∈ I, t ∈ T

(4a)

bi jt = bi jt−1 − β
i j
t + ui j

t−δib−pi
∈ {0, 1},

j ∈ Ji , i ∈ I, t ∈ T
(4b)

∑

j∈Ji

bi jt ≥ bi , i ∈ I, t ∈ T . (4c)

The constraints (4a) represent the connection between the
stocks of repaired components and the GPMSPIC. If com-
ponent (i, j) is placed into any system k at time t , β

i j
t will

take the value 1; otherwise, β i j
t takes the value 0. In (4b), the

individual states of the components at time t are updated: a
component is either on the stock (i.e. bi jt = 1) or it is not
(i.e. bi jt = 0). A component’s state on the stock of repaired
components at time t is affected by its state in the previous
time step t − 1, whether it is placed in some system k at time
t , and whether it will arrive to the stock at time t after being
repaired (i.e. if ui j

t−δib−pi
= 1, meaning that component (i, j)

started maintenance at time t−δib− pi and thus arrives to the
stock of repaired components at time t).3 Then, in (4c) it is
expressed that the sum of the variables bi jt over the individual
components, i.e. the stock level of repaired components per

2 Note that the constraints (3a) combined with the binary requirements
on the variables α

i j
t make the constraints (1d) redundant.

3 The variables bi j0 , β
i j
0 and ui jt , t ∈ {1 − δib − pi , . . . , 0}, comprise

(fixed) input data, which must fulfil the constraints (6).
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component type i at time t , may not fall short of the lower
stock limit bi .

The constraints (3) and (4) control the stocks/inventory of
damaged and repaired components, respectively, and enable
the control of the levels of these stocks subject to relevant
constraints.

2.4 Integration with the operational demand of the
systems

What drives the need for maintenance of components, and
constitutes the input to our modelling, is the operational
demand: we assume that operational schedules are given for
the systems k ∈ Kwhich are such that the demand for opera-
tions can be fulfilled. For ourmaintenance planning problem,
these schedules are represented in terms of time intervals
when the system is either operating—at which times mainte-
nance cannot be performed—or accessible for maintenance.
In other words, PM may not be scheduled while a system is
operating. In the case of railway systems (Lidén, 2020), each
trainwould be assigned time slots when it should operate (i.e.
perform transports of goods or passengers); hence, PM may
be scheduled only in between these time slots. In the case of
offshore wind turbine maintenance (Shafiee et al., 2013), the
operational demand is fulfilled by wind energy production,
while maintenance work can be done only during time peri-
ods of not too harsh weather conditions. When planning any
PM occasion the (predicted or planned) operational sched-
ules for the systems provide time windows during which
maintenance may be performed. As input to the integrated
GPMSPIC and IPMSP model, for all t ∈ T and all k ∈ K
we thus let the parameters

zkt =
{
1, if PM is allowed to be scheduled for system k at time t,

0, otherwise,

define upper limits on the variables representing the mainte-
nance occasions, as

zkt ≤ zkt , t ∈ T , k ∈ K, (5)

the fulfilment of which implies that the timewindows for PM
are respected.

2.5 Initialization

In our modelling, the planning horizon is assumed to start at
time step 0. The events and states of the systems, in terms of
variables xi jk0r , ai j0 and bi j0 , and u

i j
t for a number of preceding

time steps, thus need to be initialized such that the constraints
(1d), (3b) and (4b) are fulfilled for the initial indices. The nec-

essary and sufficient initializations of variables are expressed
by the constraints

∑

k∈K

T+1∑

r=1

xi jk0r + ai j0 + bi j0 +
0∑

t=1−pi−δib

ui jt = 1, j ∈ Ji , i ∈ I, (6)

implying that each component individual is at exactly one
place at time 0, i.e. either in one of the systems k ∈ K, in one
of the two stocks or in the maintenance workshop.

2.6 The complete model of the system of systems

In summary, the set of feasible solutions to our maintenance
scheduling problem is modelled by the constraints (1), (2),
(3), (4), (5) and (6), with binary requirements4 on the vari-
ables xi jkst , zkt , u

i j
t , a

i j
t , b

i j
t , α

i j
t and β

i j
t , for all relevant values

of the indices, while �t ∈ Z+ should hold5 for t ∈ T .

3 Contracts and optimization objectives

3.1 Contracts between the stakeholders

In order to compare two different types of contracts between
the stakeholders—availability and turn-around time con
tracts—and their dependence on the capacity level in the
maintenance workshop, we define three objectives: (i) min-
imization of the maintenance cost for the system operator;
(ii) maximization of the availability of components on the
stock of repaired components (which can be modelled as
minimizing the risk for lack of repaired components); and
(iii) minimization of the penalty for late and early deliveries
of repaired components, which is paid by the maintenance
workshop to the system operator.

We study the two contracts by defining two bi-objective
optimization problems from the objectives (i)–(iii). The first
problem is composed by theminimization of themaintenance
cost and the maximization of the availability of components
on the stock of repaired components, i.e., objectives (i) and
(ii). The second problem is composed by the minimization
of the maintenance costs and the minimization of the penalty
for lateness and earliness, i.e. objectives (i) and (iii). In both
problems, the capacity level of the workshop is varied, while
the set of feasible schedules is defined by all the constraints

4 If all variables zkt , x
i jk
st and ui jt have binary values, the binary require-

ments on the variables ai jt , b
i j
t , α

i j
t and β

i j
t can be relaxed to values in

the interval [0, 1], since any corresponding mixed-integer linear opti-
mization problem will possess binary optimal solutions.
5 Due to the constraints (2) and the binary requirements on the vari-
ables ui jt , the variables �t can be modelled as continuous, non-negative
variables.
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defined in Sect. 2. In Sect. 4, these two problems will be stud-
ied from a bi-objective point of view (Ehrgott, 2005) and the
results are compared and analysed.

3.2 Optimization objectives

Below follows our detailed modelling of the four objectives
defined in Sect. 3.1.

Minimizing costs for maintenance set-up and intervals
Eachmaintenance occasion yields a set-up/maintenance cost
for the system operator. Besides this, there is an interval cost
for every component which is determined based on the length
of the interval between two consecutive maintenance occa-
sions.We assume that the interval cost is non-decreasingwith
the length of the interval. The rationale behind this assump-
tion that (i) the longer time the component has been used for
operations, the more costly will the maintenance be, and (ii)
it enables the enforcement of scheduling the maintenance at
the latest at the end of each individual component’s life (cf.
(1e)). From the system operator’s point of view, the objec-
tive is to minimize the total costs for maintenance during a
prespecified time period. We mathematically formulate this
objective as to

minimize
∑

k∈K

∑

t∈T
dt z

k
t +

∑

k∈K

∑

i∈I

∑

j∈Ji

T+1∑

t=1

t−1∑

s=0

cist x
i jk
st , (7)

where the first sum represents the maintenance set-up costs
and the second the interval costs. Every maintenance occa-
sion for the system k (when zkt = 1) generates a cost dt > 0
while everymaintenance interval (s, t) for a component (i, j)
in system k (when xi jkst = 1) yields an interval cost cist > 0,
which is such that cist ≥ cisr for all r ≤ t .

Minimizing the risk for lack of spare parts To ensure that
the operational schedule is undisturbed, or at least that the
disturbance is minimal, it is crucial to have enough spare
components available. Then, whenever an unexpected failure
occurs, the damaged component can be replaced by a new
one without the planned operations having to be stopped.We
maximize a weighted average of the number of repaired (or
new) components available, which is modelled as to

maximize
1

T

∑

t∈T

∑

i∈I
wi

∑

j∈Ji

bi jt , (8)

where wi > 0 is an objective weight assigned to component
type i ∈ I. The value of this objective function corresponds
to the (weighted) average number of repaired components
available at each single time step, to be compared with the
total number,

∑
i∈I Ji , of components in the system.

Minimize risk of exceeding the contracted turn-around
times for component repair The “turn-around time” of an

individual component (i, j) is defined as the time when it
is taken out of one of the systems in K (i.e. a time t such
that αi j

t = 1) until it has become repaired and is available for
usage again in one of the systems (i.e. a t such thatui j

t−pi−δib
=

1). The total turn-around time, vi jtat, for component individual
(i, j), j ∈ Ji , i ∈ I, over the planning period T , is thus
computed as

v
i j
tat =

T+1∑

t=0

((
t + pi + δib

)
ui jt − tαi j

t

)
, (9a)

where the term (pi + δib)u
i j
0 is positive if component (i, j) is

initially on the stock of damaged components, and the equal-
ities ui jT+1 = ai j0 − ui j0 + ∑

t∈T (α
i j
t − ui jt ) and α

i j
T+1 = 0

hold. 6 The shortest possible turn-around time for a compo-
nent of type i equals δia + pi + δib, i.e. the sum of the repair
time in the maintenance workshop and the time required for
the transportation to and from the workshop.

Letting ci jdelay > 0 and ci jearly ∈ (0, ci jdelay] denote the penal-
ties for late and early, respectively, delivery of a repaired
component, this objective is expressed as to

minimize
∑

i∈I

∑

j∈Ji

(
ci jdelayv

i j
delay − ci jearlyv

i j
early

)
,

(9b)

where v
i j
delay (vi jearly) denotes the total delay (earliness) for

component (i, j) over the planning period. These variables
are due to the constraints

v
i j
early ≤ v

i j
tat − di j

(

ai j0 +
T+1∑

t=1

α
i j
t

)

≤ v
i j
delay, (9c)

v
i j
early ≤ 0 ≤ v

i j
delay. (9d)

Due to the construction of (9) at least one of v
i j
early and v

i j
delay

will attain the value 0 when the objective (9b) is at optimum
(a component will be either early, late, or on time; in the lat-
ter case v

i j
early = v

i j
delay = 0 holds). If the turn–around time

v
i j
tat is longer (shorter) than the due date di j , the component
is late (early); thus, vdelay > 0 (vdelay = 0) and vdelay = 0
(vdelay < 0). By construction of (9), we aggregate these vari-
ables over the whole planning period. Hence, the objective
(9b) minimizes the total penalty for late and early component
delivery.

6 Note that the use of the variables ai j0 and ui jT+1 lead to a possible

underestimate of v
i j
tat, as we possibly shorten the v

i j
tat for components

which were initialized on the stock of components to be repaired at
t = 0 and components which did not finish repair until t = T + 1.
It follows that v

i j
early (vi jdelay), as defined in (9c)–(9d), will possibly be

under(over)estimated.

123



94 Journal of Scheduling (2024) 27:87–101

In Sect. 4, we present our performed tests of the two
bi-objective optimization problems along with the results
obtained.

4 Application: implementation, tests and
results

We present an application from the aerospace industry, from
a collaborationwith the Swedish aerospace and defence com-
pany Saab AB. The instance sizes are considered reasonable
from a practical application point of view and the data sets
used are based on knowledge mediated from the industrial
partner; all numbers are normalized. Our implementation is
made using Julia (2012) and JuMP (seeDunning et al., 2017),
and the computations are performed by Gurobi (2020) on a
laptop computer with a 2.4 GHz Intel Core i5 processor and
8 GB of RAM memory. The computer used has eight avail-
able processors. Gurobi usually uses all cores available, but
can choose to use less. We investigated the thread count: for
all the results reported Gurobi used all eight threads. Com-
paring with results obtained using single thread operations,
we observed that computations take longer than allowing for
multi-thread operations.

4.1 Themain test instance and bi-objective settings

Asa test case,we consider K = 5 systems, eachhaving I = 3
component types and Ji = 10 individual components of each
type i = 1, 2, 3. The operational and maintenance related
differences of the component types are reflected by their
respective processing times in the maintenance workshop, as
well as their respective due dates, which are chosen randomly
within the same order ofmagnitude. The different component
types are also assigned different structures of their inter-
val costs, all modelled with higher costs for longer time in
between any two maintenance occasions, which reflect the
increased risk of having to perform CM. For the turn-around
time objective (9), the penalties for lateness, ci jdelay, vary over
the component types, and the penalties for earliness are set
to ci jearly = ci jdelay/2. The planning horizon is T = 20 time
steps and we alter the workshop capacity between L = 7 and
L = 10 parallel machines. We have tested two main cases of
our planning problem: (i) with no lower limits on the stocks
of repaired components, i.e. with bi = 0, i ∈ I, and (ii) with
the lower limits bi = 1, i ∈ I. The timetable for the sys-
tems’ operations is generated by application of the model in
Gavranis and Kozanidis (2015) to the set of systems K over
the whole planning period T .

Our tests consider an availability contract and a turn-
around time contract, each of which is modelled as a
bi-objective optimization problem. For both contract types,
the system operator’s objective is modelled as to minimize

the total costs for maintenance, i.e. the objective (7). The
maximization of the availability is achieved by the objective
(8), while the minimization of the penalty for late and early
deliveries is achieved by the objective defined in (9).

When solving a multi-objective optimization problem,
one is usually interested in finding Pareto optimal, or effi-
cient solutions; see, for example, Ehrgott et al. (2005, Ch.
2.1). A solution is called Pareto optimal if none of the objec-
tive functions can be improved in value without degrading
at least one of the other objectives’ values. To find points
on the Pareto front—the set of all Pareto optimal points—
we employ the ε-constraint method (see Mavrotas, 2009),
which—in the bi-objective case—optimizes iteratively one
objective function while the other is being constrained.

4.2 Results from the computational tests

For the availability contract, i.e. the objectives (7) and (8),
we employed two levels of the lower limits on the stocks of
repaired components: bi ∈ {0, 1}, i ∈ I, and the workshop
capacity L = 10. When the lower limit bi on the stocks of
repaired components was set to 0 (1), the maximum average
availabilitywas in the interval [2.9, 14.5] ([5.25, 14.75]), and
the lower limit ε on the average availability was varied in the
interval [2.9, 14.5] ([5.25, 14.75]) with an increment of 0.5.
The resulting Pareto fronts are plotted in Fig. 2a. For each
value of ε, the minimal maintenance costs increase slightly
when bi increase from 0 to 1. However, for large average
numbers of repaired components on the stock (in our case,
when the average over the planning period exceeds twelve
components) the two Pareto fronts approach each other; this
is due to the lower stock limit being 0 or 1 losing impact as
the average availability increases.

For the turn-around time contract, i.e. the objectives
defined by (7) and (9), we employed two levels of the lower
limits on the stocks of repaired components: bi ∈ {0, 1},
i ∈ I, and the workshop capacity L = 10. For bi = 0 (1), ε
was varied in the interval [8690, 11250] ([8690, 11055])with
an increment of 200. The resulting Pareto fronts are plotted
in Fig. 2b. The differences between the respective mini-
mal maintenance costs—for the lower limit on the stock of
repaired components being 0 and 1, respectively—are larger
than those resulting from the availability contract; these dif-
ferences seem approximately constant when the value ε of
the upper limit on the delay/earliness penalty is varied.

Theminimal andmaximal maintenance costs correspond-
ing to the availability and turn-around time contracts, as
illustrated in Fig. 2, are listed in Table 1.

The numbers illustrated in Figs. 3, 4, 5, 6, 7, 8 and 9 corre-
spond to the Pareto optimal solutions resulting from the sum
of the objectives in (8) and (7) for the availability contract,
and (9b) and (7) for the turn-around time contract, respec-
tively.
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(a) Average availability vs. maintenance cost.
Totally 30 components in the systems.

(b) Total delay penalty vs. maintenance cost.
Totally 30 components in the systems.

Fig. 2 Computed points on the respective Pareto fronts, for L = 10. The blue and red dots correspond to bi = 0 and bi = 1, respectively, i ∈ I

Table 1 Minimal and maximal
maintenance costs resulting
from the availability and
turn-around time contracts, for
bi ∈ {0, 1}, i ∈ I

Stock limit Minimum maintenance cost Maximum maintenance cost
bi Both contracts Availability contract Turn-around time contract

0 153 1065 554

1 262 1100 701

(a) L = 10 (b) L = 7

Fig. 3 Resulting numbers of active parallel machines over time, i.e. �t , t ∈ T , for the availability and turn-around time contract, respectively. The
blue (red) points correspond to a lower limit of bi = 0 (1) on the stock of repaired components
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(a) No requirements on the stock of repaired compo-
nents: bi = 0, i ∈ I. Here, maintenance cost = 153
and average availability = 4.25.

(b) Lower limit on the stock of repaired components,
bi = 1, i ∈ I. Here, maintenance cost = 262 and
average availability = 5.59.

Fig. 4 Resulting stock levels for the availability contract, L = 10

(a) No requirements on the stock of repaired compo-
nents: bi = 0, i ∈ I. Here, maintenance cost = 554
and total delay penalty = 8700.

(b) Lower limit on the stock of repaired components,
bi = 1, i ∈ I. Here, maintenance cost = 701 and
total delay penalty = 8690.

Fig. 5 Resulting stock levels for the turn-around time contract, with penalties for delayed and early deliveries, L = 10

Figure 3 illustrates the number of active parallel repair
lines over time, as resulting from the availability and turn-
around time contracts, for the workshop capacity being
L = 10 and L = 7, and with the lower limit on the stock
of repaired components being 0 and 1, respectively. The
Pareto points corresponding to Fig. 3a, i.e. for L = 10 and
bi = 0(1), i ∈ I, are determined as follows: For the avail-
ability contract, maintenance cost = 153 (262) and average
availability = 4.249 (5.59); for the turn-around time contract,
maintenance cost = 554 (701) and delay cost = 8700 (8690).

It is noticeable that an availability contract—as compared
to a turn-around time contract—puts more demand on the
workshop in order to fulfil the availability requirements on
repaired components. When reducing the workshop capacity
below L = 7, for the instance considered, finding optimal
schedules becomes computationally too expensive for the
case of a turn-around time contract. For the availability con-
tract, the corresponding effect occurs when the workshop
capacity goes below L = 6.
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(a) No requirements on the stock of repaired compo-
nents: bi = 0, i ∈ I.

(b) Lower limit on the stock of repaired components,
bi = 1, i ∈ I.

Fig. 6 Resulting stock levels for the availability contract, L = 7

(a) No requirements on the stock of repaired compo-
nents: bi = 0, i ∈ I.

(b) Lower limit on the stock of repaired components,
bi = 1, i ∈ I.

Fig. 7 Resulting stock levels for the turn-around time contract with penalties for early and delayed deliveries, L = 7

The stock dynamics resulting from the Pareto points cor-
responding to the availability and turn-around time contract
are illustrated in Figs. 4 and 5, respectively. The main dif-
ference in stock levels for the respective two contract types
can be observed in the stock of components to be repaired.
Namely, with an availability contract, damaged components
are being repaired as soon as they arrive to the stock of com-
ponents to be repairedwhilewith a turn-around time contract,
the number of damaged components on the stock is signifi-
cantly larger over time. The same conclusion applies for both
bi = 0 and bi = 1.

Reducing the workshop capacity from L = 10 to L = 7
parallel machines leads to different stock levels, as presented
in Figs. 6 and 7, for the availability and turn-around time
contract, respectively.

4.3 A larger test instance

In order to investigate the computational complexity of our
model, we consider a larger instance of K = 10 systems,
each having I = 5 component types and Ji = 15 individual
components of each type i = 1, . . . , 5. We extend the time
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Table 2 Instance sizes and computing times for the turn-around time contract

Instance size # Rows # Variables # Binary variables Gap Solution Presolve
I Ji K T L Original After presolve (%) Time Time (s)

3 10 5 20 10 41,193 75,238 73,510 22,237 0.45 20min 0.48

0 6.9 h 0.43

5 15 10 50 20 1,031,340 2,020,318 2,011,340 459,206 1.0 9.6 h 12.26

0.45 124.5 h 11.9

horizon from 20 to 50 time steps and the workshop capac-
ity from 10 to 20 parallel lines. The size of the resulting
mixed-binary linear optimization model for the turn-around
time contract is shown in Table 2, which also reveals that
obtaining a feasible solution with a verified duality gap of
1% requires around 10 hours of computing time,while reduc-
ing the gap below 0.5% takes around 124 hours. While the
smaller instances are solved to optimality in a reasonable
computing time, the larger ones require a significantly longer
computing time to reach a duality gap of 0.45%; details are
listed in Table 2. Presolve times are approximately 0.45 sec-
onds for the first and 12 seconds for the second instance
reported in Table 2; hence, the solver quickly eliminates
redundant variables and/or constraints.7

In terms of the specific application to maintenance of mil-
itary aircraft, a real instance size would differ from the ones
shown in Table 2. The number, I , of component types would
be larger (typically in the range of 20–30), while the num-
ber, Ji , of individual components could be smaller than the
considered value of 15 (since the components considered are
usually quite expensive). Capacity in the maintenance work-
shop, L , could vary as well but most of the time, L is not
very high. The fleet size (i.e. number of systems) would be
in the range of K = 10 aircraft. The length of the plan-
ning horizon depends heavily on the length of each time
step (e.g. one hour, one half day or one day). The use of
our model in different applications, will result in different
instance sizes. For example, rail traffic or commercial airlines
instances would have a larger number of systems (i.e. train
sets/aircraft). Our preliminary tests with the larger instance
reveal that our mixed-binary linear optimization model is
computationally demanding, especially for reasonably large
instance sizes. One way to tackle this problem is to not keep
track of the individual components j ∈ Ji in the systems,
but consider the component types i ∈ I only. The advantage
of such an approach will be a significant reduction of the
problem size as well as of its computational complexity, and
thus also a considerable reduction of computing times for
corresponding instance sizes. On the other hand, since in the

7 Note that the small differences in presolve times when solving one
instance more than once come from slightly different solve times when
solving the instance each time.

turn-around time contract as modelled in (9), the due dates
and turn-around times are defined per individual component,
the disregard of individual components will call for a dif-
ferent modelling. For an availability contract, the approach
of not keeping track of individual components is, however,
tractable, since the availability of components is defined per
component type. In Table 3, we present the size of the result-
ingmixed-integer linear optimization problem resulting from
an aggregation over individual components (regarding all rel-
evant variables in themodel) and an availability contract. It is
noticeable that the problem size as well as computing times
have reduced significantly as compared to the mixed-binary
linear optimization problem for the turn-around time contract
(shown in Table 2).

4.4 Simulation of unexpected events in the
workshop

Our model assumes deterministic processing times in the
maintenance workshop. Uncertainty, such as unexpected
events, may, however, affect the processing times. A rea-
sonable situation is the following: when a component arrives
at the workshop for repair it is first examined, at which occa-
sion further damages may be detected which lengthen the
processing time for the component repair. This scenario is
incorporated in our model by a re-solution of the scheduling
problem for the new processing time(s), from the point in
time at which the damages were detected (i.e. the time step
when the component at hand started repair in the workshop).
The re-solution is performed whenever an unexpected event
is revealed. The “complete” schedule employed is then com-
posed by the computed part schedules, as defined by each
consecutive pair of time steps at which a(ny) longer process-
ing time(s) were detected. This consideration of uncertainty
in the processing times is summarized in the rescheduling
Algorithm 1.

We define an event by the 4-tuple {t̄, ı̄, j̄ , p̄ı̄ j̄t̄ }, where
t̄ ∈ T denotes the time step of the event, ı̄ ∈ I denotes the
component type, j̄ ∈ Jı̄ denotes the individual component,
and p̄ı̄ j̄t̄ denotes the estimated processing time for the compo-
nent individual (ı̄, j̄ ) that started maintenance at time t̄ ; it is
assumed that p̄ı̄ j̄t̄ ≥ pı̄ holds. An event at time t̄ is then con-

123



Journal of Scheduling (2024) 27:87–101 99

Table 3 Instance sizes and
computing times for the
availability contract with the
aggregation over individual
components

Instance size # Rows # Variables # Integer variables Gap Solution Presolve
I Ji K T L Original After presolve (%) Time (s) Time (s)

3 15 10 20 10 2618 14,410 13,430 2048 0 0.1 0.05

5 15 10 40 10 8032 87,750 84,450 12,739 0 36.16 0.24

5 15 11 40 10 8637 96,405 92,895 14,129 0 19.89 0.09

The lower limit on the stock of available components is bi = 1, i ∈ I, for all instances considered

(a) L = 10 (b) L = 7

Fig. 8 Distribution of stock levels per component type i ∈ I on the stock of repaired components for capacities L ∈ {7, 10} in the maintenance
workshop

sidered as an unexpected event if it holds that p̄ı̄ j̄t̄ ≥ pı̄ +π ı̄ ,
for some prespecified value of π ı̄ > 0.

Wenext show some results obtained from the rescheduling
opportunity in Algorithm 1. For demonstration and simplic-
ity, we choose the availability contract with bi = 0, for
each i ∈ I. An analogous rescheduling can be done for
a turn-around time contract. Four unexpected events in the
maintenance workshop were sampled (i.e. four processing
times were longer than expected), leading to five iterations
of Algorithm 1. The resulting distributions of stock levels
over time for repaired components are shown in Fig. 8, for
the capacity in the maintenance workshop being L = 10 and
L = 7, respectively. It is noticeable that for many time steps
there are no repaired components on the stock (i.e. the stock
being on its lower limit). In comparison with the stock of
repaired components reported in Fig. 6a for L = 7, the stock
levels are on average lower, which comes as a consequence
of (some of) the processing times being longer. Moreover,
we observe that a higher number of components on the stock
occurs at only a few time steps.

The corresponding distributions for the active repair lines
in the maintenance workshop are presented in Fig. 9. Setting
the workshop capacity to L = 7 repair lines leads to the
workshop working at its full capacity most of the time; see
Fig. 9b. Increasing the number of repair lines to L = 10yields
more freedom in theworkshop to distribute theworkload, and
the number of time steps at which the workshop operates at
full capacity is reduced by more than a half; see Fig. 9a.

Algorithm 1 Rescheduling algorithm
1: Denote the time horizon T = {tstart, . . . , tend} and initialize tstart :=

1 and tend := T
2: repeat
3: Solve the full model (Sect. 2.6) over T and a specified objective

(Sect. 3.2)
4: Sample an event in themaintenanceworkshop: {t̄, ı̄, j̄ , p̄ı̄ j̄t̄ } (such

that t̄ ≥ tstart)
5: Fix all variable values over time steps {tstart, . . . , t̄ } ∩ T to the

solution in step 3
6: Assign new values: pı̄ := p̄ı̄ j̄t̄ ; t̂ := min{t̄, tend}; tstart := t̂ + 1;

tend := t̂ + T

⇒ updated processing time and time horizon T

7: until [# iterations or tend ≥ Tmax]

5 Conclusions and future research

The solutions resulting from our modelling can be used to
find a lower limit for an optimal performance of a collabora-
tion between stakeholders who govern a common system of
systems. Moreover, our modelling enables an investigation
of contracting forms between stakeholders. It also provides
a planning tool for the case when the maintenance workshop
and the system operator are integrated. We conclude that an
availability contract is more computationally tractable than a
turn-around time contract as it allows removal of individual
components in the model, thereby availability contract type
ismore suitable for larger instances and real-world problems.
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(a) L = 10 (b) L = 7

Fig. 9 Distribution of number of active repair lines in the maintenance workshop for total number of repair lines L ∈ {7, 10}

In our intended application, there are typically several
optional maintenance workshops and/or maintenance com-
panies, who may enter into the cooperation by means of
different contracting forms. Taking these generalizations into
account is a topic for further research.

We start from an NP-hard problem (PMSPIC), general-
ize it to consider individual components and incorporate the
maintenance workshop, the stock dynamics, and the delay
and availability objectives with this problem. Therefore,
our problem has a high complexity and is computationally
very demanding, as shown in Table 2. One important future
research question is therefore how to reduce the computing
times. For larger instances, our current model and solution
approach are computationally intractable and are subject to
further investigation and development, especially in the case
of the turn-around time contract as defined in (9),which intro-
duces non-binary coefficients in the constraint matrix. As
mentioned in Sect. 4, considering component types only, and
not individual components, will simplify the problem signif-
icantly, but in that case we will need to develop a new model
to express the turn-around time objective and constraints.

Other means for reducing computing times include inves-
tigating the polyhedral properties of, as well as mathematical
decomposition approaches for, the mixed-binary linear opti-
mization problem formulated in this article.

Another extension, which is important for the intended
application of this work, is to include corrective maintenance
(CM), in terms of the risk of having to perform CM. At the
current stage, the means to handle unexpected failures are
to (i) reduce the risk for such failures by not allowing too
large maintenance intervals (cf. the constraints (1e)) and (ii)
reschedule the maintenance plan whenever an unexpected
event occurs (see Sect. 4.4). Since short-term changes in the
operational schedules for the systems, as well as in the sched-
ules for the maintenance workshop, are often inconvenient
and sometimes not even feasible, the rescheduling should (if

possible) be such that the solution remains fixed for a certain
number of time steps.
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