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Abstract
In parallel machine scheduling, a size of a job is defined as the number of machines that are simultaneously required for its
processing. This paper considers a scheduling problem in which the set of jobs consists of jobs of two sizes: the conventional
jobs (each job requires a single machine for its processing) and parallel jobs (each job to be simultaneously processed on
more than one machine). The processing times are controllable, and they have to be chosen from given intervals in order to
guarantee the existence of a preemptive schedule in which all jobs are completed by a common deadline. The objective is
to minimize the total compression cost which reflects possible reductions in processing times. Unlike problems of classical
scheduling with conventional jobs, the model under consideration cannot be directly handled by submodular optimization
methods. We reduce the problem to maximizing the total weighted work of all jobs parametrized with respect to total work of
the parallel jobs. The solution is delivered by separately finding the breakpoints for the maximum total weighted work of the
parallel jobs and for the maximum total weighted work of the conventional jobs. This results in a polynomial-time algorithm
that is no slower than needed to perform sorting of jobs’ parameters.

Keywords Multi-processor jobs · Submodular optimization · Parallel machine scheduling · Controllable processing times

1 Introduction

One of the main assumptions of the classical scheduling the-
ory is that each job is not processed onmore than onemachine
at a time. This assumption leads to a range of scheduling
models that have found numerous applications in industry
and services. However, during the last thirty years there has
been a considerable volume of studies of various scheduling
models in which a job can be (or even must be) processed on
several machines simultaneously. The main application area
of models of this type is the scheduling of computational
tasks on computer systems of parallel architecture.

Formally, in scheduling on (identical) parallel machines,
we are given a set N = {1, 2, . . . , n} of jobs/tasks to be
processed on m ≥ 2 machines/processors of set M =
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{M1, M2, . . . , Mm}. It takes p( j) time units to process a
job j ∈ N . Preemption is allowed, i.e., the processing of any
job j can be interrupted and resumed later; the total length
of time intervals of processing job j must be equal to p( j).
The following variants of scheduling models can be distin-
guished:

• Classical: each job can be processed preemptively on
any machine, but only one at a time;

• Dedicated: for each job j ∈ N a set of machines, tradi-
tionally denoted by f i xed( j) ⊆ M, is given and the job
must be preemptively processed on all machines of this
set simultaneously;

• Rigid (also known as non-moldable): for each job j ∈ N
a number of machines, traditionally denoted by si ze( j),
where 1 ≤ si ze( j) ≤ m, is given and at any time of its
processing the job must be preemptively processed on
exactly si ze ( j) machines simultaneously;

• Non-Rigid (also known as malleable and moldable): for
each job j ∈ N , its size is not fixed in advance, and a job
is allowed to be preemptively processed on any number
of machines, but its actual processing time depends on
the number of these machines.
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By contrast with the classical model for which all jobs are
conventional, i.e., of size one, in the last three models listed
above some jobs require (or are allowed to use)more than one
machine. We call such jobs parallel jobs or multi-processor
jobs. See the monograph (Drozdowski, 2009) for a compre-
hensive exposition of scheduling with multi-processor jobs.

The main scheduling model studied in this paper belongs
to the class of the rigid models. In fact, we focus on a
restricted model, in which conventional jobs are processed
by one machine and all parallel jobs have the same size �,
where 1 < � ≤ m.

Let S be a schedule that is feasible for a certain schedul-
ing model. The completion time of job j ∈ N is denoted
by C( j). Assuming that the processing times p( j) are fixed,
the following feasibility problems are of interest: to check
whether there exists a schedule in which all jobs are com-
pleted by a given deadline D. Using the accepted scheduling
notation, we denote these problems on m parallel identi-
cal machines by P |pmtn,C( j) ≤ D| − for the classical
model and by P |pmtn, si ze( j) ∈ {1,�} ,C( j) ≤ D| − for
the model with parallel jobs of two sizes. Each of these prob-
lems is known to be solvable inO(n) time; see (McNaughton,
1959) for the classical model and Błažewicz et al. (1986) for
the model with parallel jobs of two sizes. Notice that if the
sizes of jobs are arbitrary, the problem is still solvable in
O(n) provided the number of machinesm is fixed (Jansen &
Porkolab, 2003).

In amore general setting, the processing times p( j) are not
fixed, but should be chosen by a decision-maker from a given
interval [l( j), u( j)]. Selecting actual processing time p( j)
implies compression of the longest processing time u( j) by
the amount x( j) = u( j)− p( j). Compression may decrease
the completion time of each job j but incurs additional cost
w( j)x( j).

A wide range of the problems of scheduling with control-
lable processing times (SCPT) has been studied, see the most
recent surveys (Shabtay & Steiner, 2007) and Shioura et al.
(2018). For problems relevant to this paper, the goal is to
minimize the total compression cost

∑
j∈N w( j)x( j) for a

schedule in which all jobs complete by a common deadline
D. In particular, the problemonm identical parallelmachines
thatwedenote by P |pmtn, p( j) = u( j) − x( j),C( j) ≤ D|
∑

w( j)x( j) is solvable in O(n) time (Jansen & Mastro-
lilli, 2004). The best known polynomial-time algorithms for
more general problems, that allow job-dependent release
dates and/or deadlines and machine speeds are developed
in McCormick (1999); Shioura et al. (2013, 2015, 2016);
see also the survey (Shioura et al., 2018). Methods for solv-
ing speed scaling scheduling problems for the energy-aware
environment are presented in Shioura et al. (2017). All these
algorithms are designed by adapting methods of submodular
optimization.

All prior results on the problemswith changeable process-
ing times deal with themodels of the classical type, i.e., those
with the jobs of size one. The notable exception is scheduling
multi-processor jobs on machines with changeable speeds;
see (Kononov & Kovalenko, 2020a, b; Li, 1999, 2012).

Rigid tasks are typical for modern distributed systems,
which allow users to formulate their specific resource
requirements in terms of the CPU cores, GPU’s, memory,
input/output devices, etc. In a Gantt chart, rigid jobs are
usually represented by two-dimensional rectangles, where
si ze( j) represents the requirement of job j in terms of
resource utilization and p( j) represents the job execution
time. As stated in the survey (Lopes & Menasce, 2016), the
study of rigid jobs is amongmost popular research directions.

Scenarios which combine the two features, task rigid-
ness and controllability, arise, for example, in scientific
computation. Users of scientific computation software, such
as MAGMA (MAGMA, 2022), PETSc (PETSc, 2022), or
ScaLAPACK (ScaLAPACK, 2022), are required to spec-
ify their resource requirement si ze( j). A certain level of
flexibility in computation time p( j) is usually admitted. A
solution of a higher precision is expected if computation time
is p( j) > l( j). The penalty for delivering a less accurate
solution, compared to a solution found during the maxi-
mum computation time u( j), is measured as w( j)x( j). The
associated scheduling problem combines then the features of
scheduling with controllable processing times and rigid par-
allel tasks, with pre-specified resource requirements si ze( j)
for all jobs, j ∈ N .

Other scenarios of similar nature arise in the context
of audio and video streaming, location analysis of moving
objects, or temperature/humidity analysis of controlled envi-
ronments. For these domains, getting a timely approximate
result before the deadline is a preferred option compared to
a delayed result of higher quality.

The ability to control processing times can be part of
the service level agreement between a user and a resource
provider. Such an agreement reflects an obligation of a
resource provider to commit si ze( j) resources during the
time u( j) for processing task j ; it also regulates a penalty
(w( j)x( j) in our model) payable by the resource provider if
job j gets required resources not for the time u( j), but for
a shorter time p( j); the latter situation happens if the job is
terminated earlier by the resource provider due to the adopted
overload management policy.

The main objective of this paper is to verify to which
extend the methods used for solving the SCPT problems
with conventional jobs can be applied to handling the models
which include the parallel jobs. In particular, we would like
to see whether the techniques of submodular optimization
can be used, directly or partly, for solving the SCPT prob-
lems with parallel jobs, even in the basic case of jobs of two
sizes.
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We present a polynomial-time algorithm for the prob-
lem with multi-processor jobs of two sizes that have to
be completed before a common deadline and the total
compression cost is to be minimized. Combining the ear-
lier used pieces of notation, we denote this problem by
P |pmtn, p( j) = u( j) − x( j), si ze( j) ∈ {1,�} ,C( j) ≤
D|∑w( j)x( j). Interestingly, the submodular optimization
toolkit, elaborated in our earlier study, is applicable for the
special cases of this problem, if either si ze( j) = 1 or
si ze( j) = � for all jobs N , but not for the combined prob-
lem, with two types of jobs. As we show in this paper, the
combined problembrings substantial algorithmic challenges;
still the submodular optimization methods are helpful in the
development of a fast algorithm. Our study can be considered
as the first step toward developing the solution methods for
the general problem, with jobs of different sizes.

In Sect. 2, we demonstrate that, unlike many SCPT prob-
lems of the classical setting, the problem with parallel jobs
cannot be directly formulated as a linear programming prob-
lemwith submodular constraints. An algorithm to handle the
problem is outlined in Sect. 3. Sections4 to 9 present detailed
analysis of various parts of the algorithm. Further improve-
ments for some components of the algorithm are presented
in Appendix A. Section10 contains concluding remarks.

2 Formulations and links to submodular
optimization

For a problem with the jobs of two sizes, a job of a size 1
will be called a 1-job, while a job of size � will be called a
�-job. Let N1 and N� denote the set of all 1-jobs and the set
of all �-jobs, respectively, N = N1 ∪ N�.

Throughout this paper, for an n-dimensional vector p =
(p(1), p(2), . . . , p(n)) ∈ R

N of processing times and a set
X ⊆ N define

p(X) =
∑

j∈X
p( j).

We refer to this value as the total work of set X . Similarly,
we define the minimum and the maximum work of set X :

l(X) =
∑

j∈X
l( j),

u(X) =
∑

j∈X
u( j).

In scheduling theory, the processing capacity function is
a set-function ϕ(X) defined for any subset of jobs X ⊆ N
and it represents the total capacity of the machines available
for processing the jobs of set X . It is widely used, not only

for the problems with fixed processing times, but also for the
SCPT problems (Shioura et al., 2018).

In the classical setting, i.e., when each job is a 1-job, the
function ϕ(X) is essentially equal to the length of all time
intervals within which the jobs of set X can be processed.
This means that for a problem with fixed processing times
a feasible schedule exists if and only if for each set X of
jobs their total work does not exceed the available processing
capacity. Thus, a feasible schedule exists if and only if the
inequality

p(X) ≤ ϕ(X) (2.1)

holds for all sets X ⊆ N ; see (Horn, 1974). For example, in
the classical problem P |pmtn,C( j) ≤ D| −withm parallel
identical machines and a common deadline D, each job of a
set X ⊆ N must be completed by time D, and we have that

ϕ(X) = min {|X | ,m} D.

More general feasibility problems on parallel machines,
including the problems with job-dependent release dates and
machine speeds can be found in Shioura et al. (2013, 2015);
see also the survey (Shioura et al., 2018).

Let us try to derive the processing capacity function for
the feasibility problem P|pmtn, si ze( j) ∈ {1,�} ,C( j) ≤
D|− and formulate the condition for the existence of a feasi-
ble schedule. For a set X ⊆ N of jobs, let X1 = N1 ∩ X
and X� = N� ∩ X be the sets of all 1-jobs and of all
�-jobs, respectively, in X . Then the total processing require-
ment, i.e., the length of all intervals during which the jobs
of set X have to be processed on the machines is given by
p(X�)� + p(X1). On the other hand, the total duration of
the intervals that are available for this processing is given by

ϕ(X) = min {|X�| � + |X1| ,m} D.

However, a simple argument which defines the total pro-
cessing requirement and the processing capacity in terms of
lengths of the relevant intervals cannot be extended from a
classical settings with 1-jobs only to the setting with parallel
jobs. Indeed, for problem P |pmtn, si ze( j) ∈ {1,�} ,C( j)
≤ D| − the condition that the inequality

p(X�)� + p(X1) ≤ min {|X�| � + |X1| ,m} D (2.2)

holds for any set X = X1∪X� ⊆ N is a necessary condition
for the existence of a feasible schedule, but not a sufficient
condition.

To illustrate this, consider the following instance of
P |pmtn, si ze( j) ∈ {1,�} ,C( j) ≤ D| − with m = 3, n =
3 jobs and D = � = 2; each job is a 2-job of unit length, i.e.,
N = N� = {1, 2, 3} and p ( j) = 1 for j ∈ N . Clearly, for
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this instance a feasible schedule in which all jobs complete
by time D = 2 does not exist. But if we check the conditions
(2.2) for a set X ⊆ N = {1, 2, 3}, we obtain the inequalities

2p (X) ≤ min {�,m} D = 4, |X | = 1;
2p (X) ≤ min {2�,m} D = 6, |X | = 2;
2p (X) ≤ min {3�,m} D = 6, |X | = 3,

which all hold, provided that p ( j) = 1, j ∈ N .

Notice that for the instances with �-jobs only, we may
assume that the number of machines is a multiple of � and
any of the extra machines is empty in any feasible schedule
and can be removed. Thus, if in the example above the third
machine is removed, checking the conditions (2.2) does not
lead to the contradiction.

One of the reasons for the successful development of fast
algorithms for the SCPTproblems onparallelmachines in the
classical settings is that for most environment the problem
of minimizing total compression cost can be written as a
linear programming (LP) problem over a region related to a
submodular polyhedron.

For completeness, below we briefly discuss the relevant
issues, some of which will be applied in the remainder of
this paper.Wemainly follow a comprehensivemonograph on
submodular optimization (Fujishige, 2005), see also (Katoh
& Ibaraki, 1998) and Schrijver (2003).

Definition 1 (Fujishige, 2005) A set-function ϕ : 2N → R

is called submodular if the inequality

ϕ(X) + ϕ(Y ) ≥ ϕ(X ∪ Y ) + ϕ(X ∩ Y )

holds for all sets X ,Y ∈ 2N . For a submodular function ϕ

defined on 2N such that ϕ(∅) = 0, the pair (2N , ϕ) is called
a submodular system on N , while ϕ is referred to as
its rank function.

Definition 2 (Fujishige, 2005) For a submodular system
(2N , ϕ), polyhedra

P(ϕ) = {p ∈ R
N | p(X) ≤ ϕ(X), X ∈ 2N };

B(ϕ) = {p ∈ R
N | p ∈ P(ϕ), p(N ) = ϕ(N )},

are called the submodular polyhedron and the base
polyhedron , respectively, associatedwith the submodular
system.

An SCPT problemwith preemption can bemodeled as the
linear programming problem

maximize
∑

j∈N
w( j)p( j)

subject to p(X) ≤ ϕ(X), X ∈ 2N ,

l( j) ≤ p( j) ≤ u( j), j ∈ N ,

(2.3)

where ϕ(X) is the processing capacity function, p ∈ R
N is

a vector of decision variables, w ∈ R
N+ is a non-negative

weight vector, and l,u ∈ R
N are vectors of upper and lower

bounds on the components of vector p, respectively. This
problem serves as a mathematical model for many SCPT
problems tominimize total compression cost, includingprob-
lem P |pmtn, p( j) = u( j) − x( j),C( j) ≤ D|∑w( j)x( j)
andmany of its extensions. This is due to the fact that the val-
ues of p( j) are actual processing times in a feasible schedule
and minimizing total compression cost

∑

j∈N
w( j)x( j) =

∑

j∈N
w( j)(u( j) − p( j))

is equivalent to maximizing total weighted processing time
or total weighted work

∑
j∈N w( j)p( j).

If in problem (2.3) set-function ϕ : 2N → R is submod-
ular and ϕ(∅) = 0, then the feasible region of problem (2.3)
is a submodular polyhedron intersected with a box (Shioura
et al., 2018), and the problem can be solved by various tools
of submodular optimization, including the classical greedy
algorithm and a recent decomposition algorithm developed
in Shioura et al. (2015).

Unfortunately, the submodular optimization toolkit avail-
able for solving the SCPT in the classical settings, with the
jobs of size 1only, cannot beuseddirectly even for a relatively
simple problem P |pmtn, p( j) = u( j) − x( j), si ze( j) ∈
{1,�} ,C( j) ≤ D|∑ j∈N w( j)x( j). One reason for that is
that there is no known reformulation of the corresponding
feasibility problem in terms of capacity set-functions.

Suppose, however, such a formulation is known with
respect to a capacity function ϕ, which is submodular. The
problem can be written as an LP problem similar to (2.3);
however, the feasible region will not be a submodular poly-
hedron, since the coefficients in the left-hand side of some
constraints are different from 0 and 1.

For illustration, consider an instanceof problem P |pmtn,

si ze( j) ∈ {1, 2} ,C( j) ≤ D| − with m = 2 machines, n =
3 jobs and � = 2 such that N� = {1} and N1 = {2, 3}. The
capacity function ϕ is such that ϕ (X) = 2D for X = {1} and
all sets X with |X | ≥ 2, while ϕ ({ j}) = D for j ∈ {2, 3}.
The set of constraints that describe a feasible region iswritten
as

2p (1) ≤ 2D; p (2) ≤ D; p (3) ≤ D;
2p (1) +p (2) ≤ 2D; 2p (1) + p (3) ≤ 2D;
p (2) +p (3) ≤ 2D;

2p (1) +p (2) + p (3) ≤ 2D.

which is not a submodular polyhedron.
Thus, in order to solve problem P|pmtn, p( j) = u( j) −

x( j), si ze( j) ∈ {1,�} ,C( j) ≤ D|∑ j∈N w( j)x( j) we
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need to develop an alternative approach, which cannot be
completely based on previously known techniques of sub-
modular optimization.

3 Outline of our algorithm

Denote

n� = |N�| , n1 = |N1| .

Throughout this paper, we assume that the jobs are numbered
in such a way that

N� = {1, 2, . . . , n�} , N1 = {n� + 1, . . . , n} ,

where we additionally assume that the jobs of set N� are
numbered in non-increasing order of their weights, i.e.,

w(1) ≥ w(2) ≥ · · · ≥ w(n�). (3.1)

Wealso assume that a sequenceσ = (σ (1), σ (2), . . . , σ (n1))
is a permutation of jobs in N1 satisfying the condition

w(σ(1)) ≥ w(σ(2)) ≥ · · · ≥ w(σ(n1)), (3.2)

and the values

Ut =
t∑

j=1

u(σ ( j)), Lt =
t∑

j=1

l(σ ( j)),

t = 0, 1, . . . , n1, (3.3)

are available. Notice that these assumptions can be satisfied
in O(n log n) time.

We may assume that u( j) ≤ D for each j ∈ N ;
otherwise, the upper bounds can be reduced to D. Let
p(1), p(2), . . . , p(n) be the variables that represent the val-
ues of the actual processing times such that l( j) ≤ p( j) ≤
u( j) for each j ∈ N .

We introduce a parameter λ, equal to total work of the
�-jobs, i.e.,

λ =
n�∑

j=1

p( j). (3.4)

Provided that total work of �-jobs is equal to λ and the
deadline D is observed, introduce the following functions
of parameter λ:

• W�(λ), the maximum total weighted work of �-jobs;
• W1(λ), the maximum total weighted work of 1-jobs;
• W (λ), the maximum total weighted work of all jobs.

The structure of the problem allows us to employ the fol-
lowing approach to finding W (λ). First, we consider the
�-jobs alone and find their maximum total work W�(λ);
see Sect. 4. Then, keeping the structure of the correspond-
ing schedule for processing the �-jobs, we add the 1-jobs
and maximize W1(λ), see Sect. 5. As a result, W (λ) =
W�(λ) + W1(λ). Note that the schedule for �-jobs is con-
structed in such a way that it does not create restrictions on
finding the maximum total weighted workW1(λ) for 1-jobs,
as it leaves room for scheduling 1-jobs in the most favorable
way.

As mentioned in Sect. 2, the problem of minimizing total
compression cost is equivalent to the problem of maximiz-
ing total weighted work, i.e., to maximizing W (λ) over the
appropriate range of λ-values. In the following sections, we
describe an algorithm for finding λ = λ∗ that maximizes
the function W (λ); as soon as the value λ∗ is obtained, we
can also obtain the corresponding optimal processing times
p∗( j) of jobs j ∈ N .

Below we present an outline of the proposed algorithm.
In Sects. 4, 5, and 6, we show that for a given λ, the function
valueW (λ) can be computed in O(n) time, provided that the
sorted lists of the input parameters w( j), u( j), and l( j) are
given. We also show that each function W�(λ), W1(λ), and
W (λ) is a piecewise-linear concave function. Therefore, an
optimal value of λ that maximizesW (λ) is achieved at some
breakpoint of that function, and we describe how to search
for such a breakpoint.

Any breakpoint of W (λ) is either a breakpoint of W�(λ)

or a breakpoint ofW1(λ).We classify all breakpoints ofW (λ)

into two types: major breakpoints and minor breakpoints.
Major breakpoints consist of breakpoints of W�(λ), plus

some additional points (see Sect. 4 for details). We show in
Sect. 4 that all major breakpoints can be obtained in O(n�)

time. Major breakpoints split the domain of the parameter λ

into intervals, and we want to find an interval that contains
λ∗, an optimal value of λ. We show in Sect. 7 that by using
binary search, we can find in O(n log n�) time at most two
candidates for such interval.

Minor breakpoints consist of breakpoints of function
W1(λ). We show in Sect. 8 that for any single interval defined
by the major breakpoints, the number of the minor break-
points in the interval is O(n1). In Sect. 8, we present an
O((n1)2)-time algorithm for finding all minor breakpoints.
Then, we apply binary search to find a minor breakpoint that
maximizes the function valueW (λ), which is a global maxi-
mizer ofW (λ), and this operation can be done in O(n log n1)
time.

In total, function W (λ) can be maximized in O(n log n +
(n1)2) time.
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Theorem 1 Problem P|pmtn, p( j) = u( j)−x( j), si ze( j) ∈
{1,�}, C( j) ≤ D| ∑ j∈N w( j)x( j) can be solved in

O(n log n + (n1)2) time.

It is easy to see that the lower bound on the time com-
plexity of the algorithm that solves this scheduling problem
is O(n log n), and the bound O((n1)2) for computing the
minor breakpoints is the bottleneck to achieve the best possi-
ble time bound. In Appendix A, we present a faster algorithm
for computing the minor breakpoints and show that it runs
in O(n1 log n1) time. This makes it possible to solve our
scheduling problem in O(n log n) time.

Theorem 2 Problem P|pmtn, p( j) = u( j)−x( j), si ze( j) ∈
{1,�}, C( j) ≤ D| ∑ j∈N w( j)x( j) can be solved in
O(n log n) time.

In the following sections, we explain each part of the out-
lined algorithm in detail.

4 Analysis of total weighted work of parallel
jobs

In this section, we show that W�(λ), an optimal total
weighted work of the �-jobs, provided that their total work
is equal to λ, is a piecewise-linear concave function with
O(n�) breakpoints, and it can be computed in O(n�) time.
It is assumed that all �-jobs are numbered in non-increasing
order of their weights, in accordance with (3.1).

Notice that in a feasible schedule the total work λ of
�-jobs is contained in the interval [λ, λ], where

λ =
∑

j∈N�

l( j), λ = min

⎧
⎨

⎩

∑

j∈N�

u( j), �m/��D
⎫
⎬

⎭
. (4.1)

For a fixed λ ∈ [λ, λ], the function value W�(λ) is equal
to the optimal value of the following linear programming
problem:

Maximize
∑

j∈N�

w( j)p( j)

subject to
∑

j∈N�

p( j) = λ,

l( j) ≤ p( j) ≤ u( j), j ∈ N�.

(4.2)

The feasible region of problem (4.2) is a base polyhedron
intersected with a box, and the problem can be solved by
a greedy algorithm. The algorithm considers the jobs in the
order of their numbering and each job j is assigned the largest
value of p( j)which does not affect the previous assignments.

For j = 0, 1, . . . , n�, we define

λ j =
j∑

j ′=1

u( j ′) +
n�∑

j ′= j+1

l( j ′).

Notice that

λ0 =
∑

j∈N�

l( j) = λ, λn� =
∑

j∈N�

u( j),

λ0 ≤ λ1 ≤ · · · ≤ λn�.

Provided that λ ∈ [λq−1, λq ], 1 ≤ q ≤ n�, an optimal
solution to problem (4.2), can be found by computing actual
processing times p∗( j), j ∈ N�, by

p∗( j) =

⎧
⎪⎨

⎪⎩

u( j) for j = 1, 2, . . . , q − 1,

λ − λq−1 + l(q) for j = q,

l( j) for j = q + 1, q + 2, . . . , n�,

and the corresponding optimal value of the objective function
is given by

W�(λ) =
q−1∑

i=1

w(i)u(i) +
n�∑

i=q+1

w(i)l(i)

+w(q)(λ − λq−1 + l(q)). (4.3)

The following statement holds.

Lemma 1 Foranygivenλ ∈ [λ, λ], the function valueW�(λ)

can be computed in O(n�) time.

It follows from formula (4.3) that function W�(λ) is
piecewise-linear and its slope is decreasing in λ as λ changes
within [λ, λ]. Therefore, the following is valid.

Lemma 2 Function W�(λ) is a piecewise-linear concave
function.

We see that breakpoints of the function W�(λ) are given
by

{λ, λ} ∪ {λ j | 0 ≤ j ≤ n�, λ j ∈ [λ, λ]}.

In addition to these points, we consider the set of points

{r D | r is integer, λ ≤ r D ≤ λ}.

The points in the union of these two sets are called the
major breakpoints of function W (λ). In the following dis-
cussion, we often consider a closed interval I = [λ′, λ′′]
given by two consecutive major breakpoints λ′ and λ′′; we
call such an interval a major interval.
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By definition, major breakpoints consist of breakpoints
of W�(λ) and additional points r D; due to these additional
points, any major interval I satisfies the condition that

I ⊆ [r D, (r + 1)D] for some integer r . (4.4)

This means that if λ ∈ [λ′, λ′′], where [λ′, λ′′] is a major
interval, then all �-jobs can be processed by using the same
number of groups of � machines. This property makes it
easier to analyze the function W1(λ) in Sect. 8.

It is easy to see that the number of breakpoints of the
function W�(λ) is at most n� + 2. We have

λ ≤
n�∑

j=1

u( j) ≤ Dn�

since by assumption u( j) ≤ D holds for j ∈ N�. Hence, if
r D ≤ λ, then we have r ≤ n�, and this implies that

|{r D | r is integer, λ ≤ r D ≤ λ}| ≤ n�.

Thus, the number of the major breakpoints is O(n�).
The procedure below computes all major breakpoints of

function W (λ) and outputs them as an increasing list.

Procedure ComputeMajor

Step 1. Compute λ and λ by (4.1). Set λ0 := λ.
Step 2. For j = 1, 2, . . . , n�, setλ j := λ j−1+u( j)−l( j).
Step 3. Let j ′ (respectively, j ′′) be the smallest (respec-

tively, the largest) integer j such that λ j ∈ (λ, λ
)
.

Step 4. Let r ′ be the smallest integer such that r ′D ≥ λ.
Let r ′′ be the largest integer such that r ′′D ≤ λ.

Step 5. Merge the sorted lists λ, λ j ′, λ j ′+1, . . . , λ j ′′ , λ and
r ′D, (r ′ + 1)D, . . . , r ′′D, eliminate duplicates (if
any), and output the merged sorted list.

It is easy to see that Procedure ComputeMajor requires
O(n�) time. Hence, we obtain the following lemma.

Lemma 3 Thenumberofmajor breakpoints of functionW (λ)

is O(n�), and all major breakpoints can be found in O(n�)

time.

To illustrate various algorithmic aspects of the paper, we
will use the instance of P|pmtn, p( j) = u( j) − x( j),
si ze( j) ∈ {1,�}, C( j) ≤ D| ∑ j∈N w( j)x( j) presented
below.

Example 1. There are 6 jobs to be processed on 5
machines so that they all should be completed by time
D = 7. The parameters of the jobs are given in Table 1.
It is assumed that � = 2 and each job of set N� =
{J1, J2, J3} requires two machines for its processing,

Table 1 Data for Example 1 j l ( j) u ( j) w ( j)

1 2 4 5

2 1 6 3

3 3 5 1

4 2 6 5

5 1 8 2

6 3 5 1

while each job of set N1 = {J4, J5, J6} is conventional.
Notice that the jobs of each of these two sets are num-
bered in decreasing order of their weights.
In accordance with Procedure ComputeMajor, we find
λ = 6 and λ = min {15, 14} = 14. We also compute
λ0 = 6, λ1 = 8, λ2 = 13 and λ3 = 15. Determine j ′ =
1 and j ′′ = 2, as well as r ′ = 1 and r ′′ = 2. The list of
the major breakpoints is given by (6, 7, 8, 13, 14) .

To illustrate (4.3), take, e.g., λ ∈ [λ1, λ2],
and compute W� (λ) = w (1) u (1) + w (3) l (3)
+w (2)

(
λ−λ1+l

(
2
)) = 20+3+3 (λ − 7) = 3λ+2.

In particular for λ = 10, we have that W� (λ) = 32
and the corresponding optimal processing times of the
�-jobs are p∗ (1) = 4, p∗ (3) = 3 and p∗ (2) = 3;
notice that the sum of these processing times is equal
to λ = 10.

5 Analysis of total weighted work of 1-jobs

In this section, we show that W1(λ) is a piecewise-linear
concave function.

5.1 Explicit formula forW1(�)

Let λ ∈ [λ, λ
]
be a taken value of total work of the �-jobs.

To determine the maximum total weighted work W1(λ) of
the 1-jobs, we consider the case that r D < λ ≤ (r + 1)D,
where r = �λ/D�.

For λ in this range, the �-jobs are assigned to r groups
of � machines, occupying these machines fully in [0, D],
and additionally the remaining load of the �-jobs equal to
λ − r D is assigned to another group of � machines. Time
D − (λ − r D) = (r + 1)D − λ left on each of the machines
of the latter group has to be used to process the 1-jobs. Note
that leaving only one group of�machines partially loaded is
the best possible configuration for scheduling 1-jobs. Thus,
to determine W1(λ) we need to solve a problem with con-
trollable processing times to maximize weighted processing
time of 1-jobs, provided that � machines are only available
in the interval [0, d], where d = (r + 1)D − λ, while the
remaining m′ = m − (r + 1)� machines are available in the
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interval [0, D]. We say that the � machines that are avail-
able in the interval [0, d] are restricted, and the remaining
m′ machines are unrestricted.

Example 2.For illustration ofwhatwewant to achieve,
take the same instance as in Example 1. Assume that
λ = 10. The processing times of the size 2 jobs are as
found in Example 1. We see that r = 1, i.e., we can
build a schedule in which one group of twomachines is
busy in the interval [0, 7] and one group is busy for three
time units, e.g., in the interval [4, 7]. More specifically,
machines M1 and M2 simultaneously process job J1
in the time interval [0, 4] and job J2 in [4, 7], while
machines M3 and M4 are restricted and simultaneously
process job J3 in the interval [4, 7].
Since r = 1 and m′ = 1, we deduce that for the pro-
cessing of the conventional jobs J4, J5 and J6 we may
use the restricted machines M3 and M4, each avail-
able in the interval [0, d] = [0, 4], and the unrestricted
machine M5 available in the interval [0, 7] .
Our goal is tomaximize the total weightedworkW1 (λ)

of the conventional jobs. Further in this section we
explain how to achieve this in general by formulating
and solving the corresponding problem with submodu-
lar constraints. Before we do this, we use our small size
example to illustrate the logic behind such an approach.
Job 4 has the largest weight and we should try to give it
the largest actual processing time, i.e., p∗ (4) = 6.This
means that job J4 is processed on one of the restricted
machines, e.g., on M3 in the interval [0, 4], and on the
unrestricted machine M5 for 2 time units within the
interval [4, 7], e.g., in the interval [4, 6]. To process
jobs J5 and J6 we have 9 time units: the interval [0, 4]
on each machine M4 and M5 plus one time unit on M5

after time 4. Thus, job J5 can be processed for at most
5 units, e.g., in [0, 4] on machine M4 and in [6, 7] on
machine M5, while job J6 is processed in [0, 4] on M5.
See Fig. 1 for the corresponding schedule. We see that
W1 (λ) = 5×6+2×5+1×4 = 44. The total weighted
work for this example W (λ) = W� (λ) + W1 (λ) =
10 + 44.

In Example 2, we have just solved the problem of a small
size using a common sense reasoning. However, it should be
clear that we need a solid mathematical technique to solve
the problem in the general case.

We will employ the technique similar to that used in
Shioura et al. (2013), based on the ideas of submodular opti-
mization. The problem of maximizing the total weighted
work for the conventional jobs can be formulated in terms of

Fig. 1 Schedule for example 2

the linear programming (LP) problem of type (2.3) as

(1-Job): maximize
∑

j∈N1

w( j)p( j)

subject to p(X) ≤ ϕ(X), X ⊆ N1,

l( j) ≤ p( j) ≤ u( j), j ∈ N1,

(5.1)

where ϕ is an appropriate processing capacity function. For
a given λ, the optimal value of this LP problem is equal to
W1(λ).

To derive the function ϕ, observe that the required pro-
cessing capacity depends on the cardinality of a chosen set
X ⊆ N1 of jobs. If 0 ≤ |X | ≤ m′, then all these jobs can
be processed on the unrestricted machines, at most one for
each job. If m′ < |X | < m′ + �, then we can fully use
the available capacity on the m′ unrestricted machines and
additionally a required number of the restricted machines.
If m′ + � ≤ |X | ≤ n1, then we can use all machines with
available capacity. Thus, the capacity function can be written
as

ϕ(X , d) =
⎧
⎨

⎩

D|X |, if |X | ≤ m′,
Dm′ + d(|X | − m′), if m′ < |X | < m′ + �,

Dm′ + d�, if m′ + � ≤ |X |.
(5.2)

Under the conditions of Example 2, for |X | = 1 we have
the unrestrictedmachine to process a single job in the interval
[0, D] = [0, 7]. On the other hand, for |X | = 2 two jobs can
be processed on the unrestricted machine in [0, 7] and on one
of the restricted machines in [0, d] = [0, 3] .

Notice that in (5.2) we stress that the capacity function
depends on both, the chosen set X and the small deadline d.
Although d is fixed in problem (5.1), for our further purposes
it is useful to emphasis the dependence on d.

It is not difficult to prove that ϕ is a submodular func-
tion for each fixed d; see (Shakhlevich & Strusevich, 2008;
Shioura et al., 2018) for details of the proof techniques that
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can be used for this purpose. Thus, the feasible region for
problem (5.1) is a submodular polyhedron intersected with a
box.

In our previous work, on multiple occasions we have
applied the result proved in Shakhlevich et al. (2009) that
an LP problem of the form (5.1) reduces to maximizing the
same objective function over a base polyhedronwith the rank
function defined by

ϕu
l (X , d) = min

Y⊆N1
{ϕ(Y , d) + u(X \ Y )

−l(Y \ X)}, X ⊆ N1. (5.3)

Such a reduction allows us to apply the most well-known
result of submodular optimization which says that this prob-
lem can be solved by a greedy algorithm, that delivers
components p∗( j), j ∈ N1, of an optimal solution in a closed
form.

For the sequence σ = (σ (1), σ (2), . . . , σ (n1)) defined
by (3.2), introduce the sets

Nt (σ ) = {σ(1), . . . , σ (t)} , 1 ≤ t ≤ n1; (5.4)

and for completeness, define N0(σ ) = ∅. Then, the compo-
nents of an optimal solution are given by

p∗(σ (t)) = ϕu
l (Nt (σ ), d) − ϕu

l (Nt−1(σ ), d),

t = 1, 2, . . . , n1. (5.5)

The overall optimal value of the function is

W1(λ) =
n1∑

t=1

w(σ(t))(ϕu
l (Nt (σ ), d) − ϕu

l (Nt−1(σ ), d))

=
n1∑

t=1

(w(σ(t)) − w(σ(t + 1)))ϕu
l (Nt (σ ), d), (5.6)

where w(σ(n1 + 1)) = 0.

5.2 Concavity ofW1(�)

Using formula (5.6), we prove that function W1(λ) is a
piecewise-linear concave function. For this purpose, we
rewrite functions ϕ(X , d) and ϕu

l (X , d), which are functions
of the parameter d, as functions of the parameter λ.

We substitute m′ = m − (r + 1)� into the formula (5.2)
and obtain

ϕ(X , d)

=

⎧
⎪⎪⎨

⎪⎪⎩

D|X |, if |X | + (r + 1)� ≤ m,

D(m − (r + 1)�)

+d(|X | − m + (r + 1)�), if m < |X | + (r + 1)� < m + �,

D(m − (r + 1)�) + d�, if m + � ≤ |X | + (r + 1)�.

(5.7)

Since this formula is dependent on the parameter r , we write
here ϕ(X , d) = ϕr (X , d), and define the function ϕ̃(X , λ)

by
ϕ̃(X , λ)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕ0(X , D − λ), if 0 < λ ≤ D,

ϕ1(X , 2D − λ), if D < λ ≤ 2D,

.

.

.
.
.
.

ϕ�m/��−1 (X , (�m/��)D − λ),

if (�m/�� − 1)D < λ ≤ �m/��D.

Lemma 4 For each fixed X ⊆ N1, function ϕ̃(X , λ) is a
piecewise-linear concave function in λ.

Proof Since

ϕ̃(X , λ) = ϕr (X , (r + 1)D − λ) for λ ∈ (r D, (r + 1)D],

it follows from (5.7) that function ϕ̃(X , λ) is linear in the
interval (r D, (r + 1)D]. In the rest of this proof, we show
that for r = 0, 1, 2, . . . , �m/�� − 2, ϕ̃(X , λ) is continuous
and concave at the point λ = (r + 1)D. For this purpose, we
fix an integer r , r ∈ {0, 1, 2, . . . , �m/��−2}, and show that
the following two properties hold:

Property A:

lim
λ↗(r+1)D

ϕ̃(X , λ) = lim
λ↘(r+1)D

ϕ̃(X , λ); (5.8)

Property B: the slope of ϕ̃(X , λ) in the interval λ ∈
(r D, (r + 1)D] is no smaller than the slope of
ϕ̃(X , λ) in the interval λ ∈ ((r+1)D, (r+2)D].

Depending on the cardinality of set X , we have five cases
to consider. The cases arise when we assume different posi-
tions of |X |+ (r + 1)� and |X |+ (r + 2)� regarding m and
m + �.

Case 1: |X | + (r + 2)� ≤ m.
In this case, we have

ϕ̃(X , λ) = D|X | for λ ∈ (r D, (r + 2)D],

so that Properties A and B obviously hold.
Case 2: |X |+ (r +1)� < m < |X |+ (r +2)� < m+�.
In this case, we have

ϕ̃(X , λ) = D|X | for λ ∈ (r D, (r + 1)D],
ϕ̃(X , λ) = D(m − (r + 2)�) + ((r + 2)D − λ)×

(|X | − m + (r + 2)�) for λ ∈ ((r + 1)D, (r + 2)D].

Notice that

lim
λ↘(r+1)D

ϕ̃(X , λ) = D|X |,
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so that PropertyA holds. Besides, the slope of ϕ̃(X , λ) is zero
for λ ∈ (r D, (r + 1)D] and is equal to
−(|X | −m + (r + 2)�) < 0 for λ ∈ ((r + 1)D, (r + 2)D],
so that Property B also holds.

Case 3: |X | + (r + 1)� ≤ m, m + � ≤ |X | + (r + 2)�.
In this case, |X | + (r + 1)� = m and

ϕ̃(X , λ) = D|X | for λ ∈ (r D, (r + 1)D],
ϕ̃(X , λ) = D(m − (r + 2)�) + ((r + 2)D − λ)�

= Dm − λ� for λ ∈ ((r + 1)D, (r + 2)D].

Notice that

lim
λ↘(r+1)D

ϕ̃(X , λ) = Dm − (r + 1) D� = D|X |,

so that Property A holds. Besides, the slope of ϕ̃(X , λ) is
zero for λ ∈ (r D, (r + 1)D] and is equal to −� < 0 for
λ ∈ ((r + 1)D, (r + 2)D], so that Property B also holds.

Case 4:m < |X |+ (r +1)� < m+� < |X |+ (r +2)�.
In this case, we have

ϕ̃(X , λ) = D(m − (r + 1)�) + ((r + 1)D − λ)

(|X | − m + (r + 1)�) for λ ∈ (r D, (r + 1)D],
ϕ̃(X , λ) = D(m − (r + 2)�) + ((r + 2)D − λ)�

for λ ∈ ((r + 1)D, (r + 2)D].

We have that

lim
λ↗(r+1)D

ϕ̃(X , λ) = D(m − (r + 1)�);
lim

λ↘(r+1)D
ϕ̃(X , λ) = D(m − (r + 2)�) + D�,

so that Property A holds. Besides, the slope of ϕ̃(X , λ) is
−(|X | − m + (r + 1)�) for λ ∈ (r D, (r + 1)D] and
is equal to −� for λ ∈ ((r + 1)D, (r + 2)D]. Since
−(|X | − m + (r + 1)�) > −� by the assumption that
defines this case, we conclude that Property B also holds.

Case 5: m + � ≤ |X | + (r + 1)�.
In this case, we have

ϕ̃(X , λ) = D(m − (r + 1)�) + ((r + 1)D − λ)�

for λ ∈ (r D, (r + 2)D],

so that Properties A and B obviously hold.
This concludes the proof of the concavity of function

ϕ̃(X , λ). ��
In accordance with (5.3), define

ϕ̃u
l (X , λ) = min

Y⊆N1
{ϕ̃(Y , λ) + u(X \ Y ) − l(Y \ X)},

X ⊆ N1.

Since ϕ̃(Y , λ) is piecewise-linear concave in λ, for each
set Y ⊆ N1 the function ϕ̃(Y , λ) + u(X \ Y ) − l(Y \ X)

is a piecewise-linear concave function in λ, which implies
that the function ϕ̃u

l (X , λ) is also a piecewise-linear concave
function in λ, since the minimum of several piecewise-linear
concave functions is also a piecewise-linear concave func-
tion. It follows from (5.6) that

W1(λ) =
n1∑

t=1

(w(σ(t)) − w(σ(t + 1)))ϕ̃u
l (Nt (σ ), λ).

This shows thatW1(λ) is a weighted sum of piecewise-linear
concave functions, which implies the following statement.

Lemma 5 Function W1(λ) is a piecewise-linear concave
function.

6 Computation ofW1(�)

In this section,wepresent an algorithm that for a givenλ com-
putes the value ofW1(λ) inO(n1) timeunder the assumptions
made at the beginning of Sect. 3.

Let r be the integer with λ ∈ (r D, (r + 1)D]. It fol-
lows from (5.6) that in order to compute W1(λ) it suffices
to compute the function values ϕu

l (Nt (σ ), d), where d =
(r + 1)D − λ. We introduce the sets

Yv = {Y ⊆ N1 | |Y | = v}, 1 ≤ v ≤ n1, (6.1)

that contain all subsets of the ground set N1 with exactly v

elements; for completeness we define Y0 = {∅}. Combining
(5.2) and (5.3) and using the identity u(X\Y ) = u(X) −
u(X ∩ Y ), define

ψ ′(X , d) = u(X) + min
0≤v≤m′

{

Dv − max
Y∈Yv

{u(X ∩ Y ) + l(Y \ X)}
}

; (6.2)

ψ ′′(X , d) = u(X) + Dm′ − dm′ + min
m′<v<m′+�

{

dv − max
Y∈Yv

{u(X ∩ Y ) + l(Y \ X)}
}

; (6.3)

ψ ′′′(X , d) = u(X) + Dm′ + d� − max
m′+�≤v≤n1

{

max
Y∈Yv

{u(X ∩ Y ) + l(Y \ X)}
}

, (6.4)

which imply that

ϕu
l (X , d) = min

{
ψ ′(X , d), ψ ′′(X , d), ψ ′′′(X , d)

}
. (6.5)

By (5.6), to compute the function value W1(λ), we need
to compute the smallest of the values ψ ′(X , d), ψ ′′(X , d)
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and ψ ′′′(X , d) for X = Nt (σ ), where 0 ≤ t ≤ n1.
Algorithm ComputeW1 that performs this computation is
presented below.

To computeψ ′(X , d) for a given set X ⊆ N1, observe that
this function does not depend on d and the minimum in the
right-hand side is sought for among the differences between
v multiples of D and the sum of v numbers, each being either
a u-value or an l -value. It follows from D ≥ u( j) ≥ l( j),
j ∈ N1, that the minimum in the right-hand side is achieved
by v = 0, i.e.,

ψ ′(X , d) = u(X). (6.6)

Thus, all required valuesψ ′(Nt (σ ), d), t = 0, 1, . . . , n1, can
be easily computed. See Step 1 of Algorithm ComputeW1
below.

For ψ ′′′(X , d), the maximum in the right-hand side is
attained by v = n1, so that

ψ ′′′(X , d) = u(X) + Dm′ + d� − (u(X) + l(N1 \ X))

= Dm′ + d� − l(N1 \ X), (6.7)

and all required values ψ ′′′(Nt (σ ), d), t = 0, 1, . . . , n1, can
be easily computed. See Step 2 of Algorithm ComputeW1
below.

We now consider function ψ ′′(X , d). In the right-hand
side of (6.3) theminimum is sought for among the differences
of v multiples of d and the sum of v numbers, each equal to
some u-value or some l-value, and the minimum is attained
if these u- and l-values are greater than d. Formally, for a
given set X , define

Y (X , d) = { j ∈ X | u( j) > d} ∪ { j ∈ N1 \ X | l( j) > d} .

Then, we have

min
0≤v≤n1

{

dv − max
Y∈Yv

{u(X ∩ Y ) + l(Y \ X)}
}

= d · ∣∣Y (X , d)
∣
∣

−(u(X ∩ Y (X , d)) + l(Y (X , d) \ X)), (6.8)

i.e., for each fixed d, the set Y (X , d) is the set-minimizer
that is smallest with respect to inclusion. Hence, if m′ <

|Y (X , d)| < m′ + �, then (6.3) implies that

ψ ′′(X , d) = u(X) + Dm′ − dm′ + d · |Y (X , d)|
−u(X ∩ Y (X , d)) − l(Y (X , d) \ X).

The lemma below shows that if the set Y (X , d) does not
satisfy the condition m′ < |Y (X , d)| < m′ + �, then the
function ψ ′′(X , d) can be ignored in computing ϕu

l (X , d).

Lemma 6 Suppose that either
∣
∣Y (X , d)

∣
∣ ≥ m′ + � or∣

∣Y (X , d)
∣
∣ ≤ m′ holds. Then,

ϕu
l (X , d) = min{ψ ′(X , d), ψ ′′′(X , d)} ≤ ψ ′′(X , d).

Proof We show that ψ ′′(X , d) ≥ ψ ′(X , d) or ψ ′′(X , d) ≥
ψ ′′′(X , d) holds. Since Y (X , d) satisfies (6.8), it follows that

min
m′<v<m′+�

{

dv − max
Y∈Yv

{u(X ∩ Y ) + l(Y \ X)}
}

≥ d · |Y (X , d)| − u(X ∩ Y (X , d)) − l(Y (X , d) \ X).

(6.9)

Suppose first that |Y (X , d)| ≥ m′ + �. By (6.3), (6.7),
and (6.9), we have

ψ ′′(X , d) − ψ ′′′(X , d)

= u(X) − d(m′ + �) + l(N1 \ X)

+ min
m′<v<m′+�

{

dv − max
Y∈Yv

{u(X ∩ Y ) + l(Y \ X)}
}

≥ u(X) − d(m′ + �) + l(N1 \ X) + d · |Y (X , d)|
− u(X ∩ Y (X , d)) − l(Y (X , d) \ X)

= d(|Y (X , d)| − m′ − �) + u(X \ Y (X , d))

+ l(N1 \ (X ∪ Y (X , d))) ≥ 0,

where the last inequality follows from the assumption
|Y (X , d)| ≥ m′ + � and from the non-negativity of u( j)
and l( j). Hence, we have ψ ′′(X , d) ≥ ψ ′′′(X , d).

Suppose now that |Y (X , d)| ≤ m′. By (6.3), (6.6), and
(6.9), we have

ψ ′′(X , d) − ψ ′(X , d)

= Dm′ − dm′

+ min
m′<v<m′+�

{

dv − max
Y∈Yv

{u(X ∩ Y ) + l(Y \ X)}
}

≥ Dm′ − dm′ + d · |Y (X , d)|
− u(X ∩ Y (X , d)) − l(Y (X , d) \ X)

≥ Dm′ − dm′ + d · |Y (X , d)| − D · |Y (X , d)|
= (D − d)(m′ − |Y (X , d)|) ≥ 0,

where the second inequality follows from l( j) ≤ u( j) ≤ D
for j ∈ N , while the last inequality follows from d ≤ D
and from the assumption |Y (X , d)| ≤ m′. Hence, we have
ψ ′′(X , d) ≥ ψ ′(X , d). ��

The lemmaabove implies that for each t = 0, 1, . . . , n1, in
order to determine ϕu

l (Nt (σ ), d), the value of ψ ′′(Nt (σ ), d)

must be compared to the smaller of ψ ′(Nt (σ ), d) and
ψ ′′′(Nt (σ ), d) only if m′ < Y (Nt (σ ), d) < m′ + �.
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The algorithm for computing the valueW1(λ) is presented
below.

Algorithm ComputeW1

Step 0. Let r be the integer such that r D < λ ≤ (r + 1)D.
Set d := (r + 1)D − λ, m′ := m − (r + 1) �.

Step 1. For t = 0, 1, . . . , n1, set ψ ′
t := Ut , where Ut is

given by (3.3).
Step 2. For t = 0, 1, . . . , n1, set ψ ′′′

t := Dm′ + d� −
(Ln1 − Lt ), where Lt is given by (3.3).

Step 3. Define

Y0 := { j ∈ N1 | l( j) > d} ,

v0 := |Y0|, Z0 := dv0 − l(Y0).

For t = 0, 1, . . . , n1 − 1 do

(a) If σ(t + 1) ∈ Yt , then set

Y t+1 := Y t ; vt+1 := vt ; Zt+1 := Zt + l(σ (t + 1))

−u(σ (t + 1)).

(b) If σ(t + 1) /∈ Y t and u(σ (t + 1)) > d, then set

Y t+1 := Y t ∪ {σ(t + 1)} ; vt+1 := vt + 1;
Zt+1 := Zt + d − u(σ (t + 1)).

(c) If σ(t + 1) /∈ Y t and u(σ (t + 1)) ≤ d, then set

Y t+1 := Y t ; vt+1 := vt ; Zt+1 := Zt .

Step 4. For t = 0, 1, . . . , n1, setψ ′′
t := Ut +Dm′ −dm′ +

Zt .
Step 5. For t = 0, 1, . . . , n1, set

ϕu
l (Nt (σ ), d) :=

{
min{ψ ′

t , ψ
′′
t , ψ ′′′

t }, if m′ + 1 ≤ vt ≤ m′ + � − 1,

min{ψ ′
t , ψ

′′′
t }, otherwise.

Step 6. Output the value
∑n1

t=1(w(σ(t)) − w(σ(t + 1)))ϕu
l (Nt (σ ), d).

It is easy to see that the running time of Algorithm Com-
puteW1 is O(n1).

Lemma 7 For any λ ∈ [λ, λ], the function value W1(λ) can
be computed in O(n1) time.

7 Search bymajor breakpoints

In this section, we describe how to find up to two consecu-
tive major intervals of λ, which is total work of the �-jobs,

that contain an optimal value of λ∗ that maximizes function
W (λ). The running time of the presented search algorithm
is O(n log n�).

We know from Sect. 4 that function W�(λ) is concave,
and from Sect. 5 that function W1(λ) is concave. Thus, the
overall function W (λ) is concave, as it is the sum of these
two functions. Hence, we have the following properties of
an optimal value λ = λ∗ that maximizes the function value
W (λ):

For any two real numbers λ′ and λ′′ such that λ′ < λ′′,

• if W (λ′) = W (λ′′), then there exists an optimal λ∗ such
that λ′ ≤ λ∗ ≤ λ′′, since W (λ) ≤ W (λ′) for λ ≤ λ′ and
W (λ) ≤ W (λ′′) for λ ≥ λ′′;

• if W (λ′) > W (λ′′), then there exists an optimal λ∗ such
that λ∗ ≤ λ′′, since W (λ) ≤ W (λ′′) for λ ≥ λ′′;

• if W (λ′) < W (λ′′), then there exists an optimal λ∗ such
that λ∗ ≥ λ′, since W (λ) ≤ W (λ′) for λ ≤ λ′.

This justifies the application of binary search for deter-
mining a rough location of the global optimum of function
W (λ). Such an algorithm is outlined below. The algorithm
calls Procedure ComputeMajor described in Sect. 4, which
outputs a sorted list of the major breakpoints.

For a given interval I = [λ′, λ′′] ofλ-values, the increment
δ(I ) of function W (λ) is defined as the difference W (λ′′) −
W (λ′) of the function values computed at the endpoints of
the interval.

Algorithm SearchMajor

Step 1. Call Procedure ComputeMajor to compute the
sorted list of the major breakpoints. Suppose that
the total number of the found major breakpoints is
g+1. Denote the corresponding major intervals by
I1, I2, . . . , Ig.

Step 2. Compute the increments δ(I1) and δ(Ig)of function
W (λ). If δ(I1) ≤ 0, then output the interval I1 and
stop. If δ(Ig) ≥ 0, then output the interval Ig and
stop. Otherwise, go to Step 3.

Step 3. Perform binary search among the major intervals
with a purpose of finding two consecutive inter-
vals I ′ and I ′′, one with a positive increment δ(I ′)
and the other with a negative increment δ(I ′′). Set
k′ := 1 and k′′ := g.

(a) If k′ + 1 = k′′, then output intervals Ik′ and Ik′′
and stop. Otherwise, go to Step 3(b).

(b) Set k := � 1
2 (k

′ + k′′)� and compute the incre-
ment δ(Ik) of function W (λ).

(c) If δ(Ik) = 0, then output the interval Ik and
stop.
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If δ(Ik) > 0, then update k′ := k and return to
Step 3(a).
Otherwise (i.e., δ(Ik) < 0), update k′′ := k and
return to Step 3(a).

In Algorithm SearchMajor, Steps 1 and 2 can be done in
O(n) time by Lemmas 1, 3, and 7. Since the number of major
breakpoints is O(n�) by Lemma 3, the number of iterations
of binary search in Step 3 is O(log n�). Each iteration in
Step 3 can be implemented in O(n) time by Lemmas 1 and 7.
Thus, the overall time complexity of Algorithm SearchMajor
is O(n log n�).

Algorithm SearchMajor outputs either a single major
interval or two consecutive major intervals. The endpoints
of each of these intervals are major breakpoints of function
W (λ), and the globalmaximumof functionW (λ) is achieved
within these intervals. Notice that within each of major inter-
vals the function W�(λ) is linear. In order to find the global
maximum of W (λ), we need to closely inspect the behavior
of the functionW1(λ) over each of the found major intervals.
As established in Sect. 5, the function W1(λ) is piecewise-
linear over each of these intervals, and we need to determine
its breakpoints, which we call minor breakpoints. The next
sections present details for finding and handlingminor break-
points.

8 Minor breakpoints

Consider I , one of the major intervals found by running
Algorithm SearchMajor. In what follows we explain how
to determine the minor breakpoints of function W (λ) within
interval I , i.e., the breakpoints of function W1(λ) within I .

Remark The algorithm presented in this section does not find
exactly the set of all minor breakpoints in I , but rather finds
its superset, i.e., the set obtained by the algorithm contains
all minor breakpoints and may contain some points that are
not minor breakpoints. This is sufficient for our purpose of
finding an optimalλ∗ thatmaximizes the functionW (λ) since
λ∗ is contained in the set of minor breakpoints and therefore
in the set computed by the algorithm.

8.1 Classification of breakpoints

We can represent function W1(λ) by using function
ϕu
l (Nt (σ ), d) as follows. The chosen major interval I is con-

tained in the interval [r D, (r + 1)D] for some integer r (see
(4.4)). Then, we have d = (r + 1)D − λ, and (5.6) implies
that

W1(λ) =
n1∑

t=1

(w(σ(t)) − w(σ(t + 1)))

×ϕu
l (Nt (σ ), (r + 1)D − λ), λ ∈ I .

This shows that all breakpoints of W1(λ) in the major inter-
val I can be obtained by finding all breakpoints of functions
ϕu
l (Nt (σ ), d) for t = 1, 2, . . . , n1 within the interval [0, D].

In the remainder of this section, we focus on the latter prob-
lem.

Recall that ϕu
l (Nt (σ ), d) can be represented as

ϕu
l (Nt (σ ), d) = min

{
ψ ′(Nt (σ ), d), ψ ′′(Nt (σ ), d),

ψ ′′′(Nt (σ ), d)
}

with the functions ψ ′(Nt (σ ), d),
ψ ′′(Nt (σ ), d) and ψ ′′′(Nt (σ ), d) given by (6.6), (6.3), and
(6.7), respectively, with X = Nt (σ ). That is,

ψ ′(Nt (σ ), d) = u(Nt (σ )), (8.1)

ψ ′′(Nt (σ ), d) = u(Nt (σ )) + Dm′ − dm′

+ min
m′<v<m′+�

{

dv − max
Y∈Yv

{u(Nt (σ ) ∩ Y ) + l(Y \ Nt (σ ))}
}

,

(8.2)

ψ ′′′(Nt (σ ), d) = Dm′ + d� − l(N1 \ Nt (σ )). (8.3)

While the functions ϕu
l (Nt (σ ), d), ψ ′(Nt (σ ), d),

ψ ′′(Nt (σ ), d), ψ ′′′(Nt (σ ), d) are defined on the finite inter-
val [0, D], in the following we extend the domain of the
functions to the infinite interval (−∞,+∞) to simplify the
discussion. For our purpose, we just compute all breakpoints
of the function ϕu

l (Nt (σ ), d) and then take those contained
in the interval [0, D].

Since the functions ψ ′(Nt (σ ), d) and ψ ′′′(Nt (σ ), d) are
linear, the breakpoints of function ϕu

l (Nt (σ ), d) can be clas-
sified into four types:

Type 1: breakpoints of ψ ′′(Nt (σ ), d);
Type 2: intersection points of ψ ′(Nt (σ ), d) and ψ ′′′
(Nt (σ ), d),
Type 3: intersection points of ψ ′(Nt (σ ), d) and ψ ′′
(Nt (σ ), d);
Type 4: intersection points of ψ ′′(Nt (σ ), d) and ψ ′′′
(Nt (σ ), d).

Here, intersection points of two functions of the argument
d are defined as the values of d for which both functions
are equal. It is easy to see that for each integer t , a Type 2
breakpoint is uniquely determined since both ψ ′(Nt (σ ), d)

and ψ ′′′(Nt (σ ), d) are linear functions. We will show that
for each integer t , Type 3 and Type 4 breakpoints are also
uniquely determined.

In our analysis of the minor breakpoints, let B =(
β̄1, β̄2, . . . , β̄2n1

)
be a non-increasing sequence of the val-

ues l( j) and u ( j), j ∈ N1. Such a sequence, which we call
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the B-sequence can be obtained in O(n1 log n1) time. We
assume that the B-sequence is available before starting the
computation of minor breakpoints.

For each t , 0 ≤ t ≤ n1, let Bt be a sequence that contains
the values of u( j) for j ∈ Nt (σ ) and the values of l( j) for
j ∈ N1\Nt (σ ). For z = 1, 2, . . . , n1, let β

(t)
z denote the z-

th largest number in sequence Bt . Notice that the sequence
β

(t)
1 , β

(t)
2 , . . . , β

(t)
n1 is a sub-sequence of the B-sequence.

8.2 Type 1 and Type 2 breakpoints

We first consider the Type 1 breakpoints and show that those
breakpoints are defined by either u-values or l-values.

Using the sequence β
(t)
1 , β

(t)
2 , . . . , β

(t)
n1 , function

ψ ′′(Nt (σ ), d) of the form (8.2) can be rewritten as

ψ ′′(Nt (σ ), d) = u(Nt (σ )) + Dm′ − dm′

+ min
m′<v<m′+�

{

dv −
v∑

z=1

β(t)
z

}

. (8.4)

For each integer v withm′ < v < m′ +�, we define a linear
function ψ ′′

v (Nt (σ ), d) by

ψ ′′
v (Nt (σ ), d) = u(Nt (σ )) + Dm′ − dm′ + dv −

v∑

z=1

β(t)
z .

Then, (8.4) implies that

ψ ′′(Nt (σ ), d) = min
m′<v<m′+�

{
ψ ′′

v (Nt (σ ), d)
}
.

To obtain amore explicit formula forψ ′′(Nt (σ ), d), intro-
duce the intervals

I (t)m′+�−1 =
(
−∞, β

(t)
m′+�−1

]
,

I (t)v =
[
β

(t)
v+1, β

(t)
v

]
, v = m′ + � − 2,m′ + � − 3, . . . ,m′ + 2,

I (t)m′+1 =
[
β

(t)
m′+2, +∞

)
.

Lemma 8 For t = 0, 1, . . . , n1 and v = m′ + 1,m′ +
2, . . . ,m′ + � − 1, if d ∈ I (t)

v then ψ ′′(Nt (σ ), d) =
ψ ′′

v (Nt (σ ), d). Moreover, the breakpoints of ψ ′′(Nt (σ ), d)

are given by β
(t)
z , z = m′ + 2,m′ + 3, . . . ,m′ + � − 1.

Note that β
(t)
m′+1 is not a breakpoint of ψ ′′(Nt (σ ), d) within

the interval I (t)
m′+1, as parameter v in (8.4) takes the minimum

value m′ + 1 for any d > β
(t)
m′+2.

Proof Since ψ ′′(Nt (σ ), d) is a piecewise-linear concave
function, it suffices to show that for each integer v̂ =

m′ + 1,m′ + 2, . . . ,m′ + � − 2, if d = β
(t)
v̂+1 then we have

ψ ′′(Nt (σ ), d) = ψ ′′
v̂
(Nt (σ ), d) = ψ ′′

v̂+1(Nt (σ ), d). (8.5)

To prove the first equality in (8.5), we show that at
d = β

(t)
v̂+1, for any v, m′ < v < m′ + �, the linear

function ψ ′′
v (Nt (σ ), d) has the same or larger value than

ψ ′′
v̂
(Nt (σ ), d). For v ∈ {m′ + 1,m′ + 2, . . . ,m′ + � − 2}, it

holds that

ψ ′′
v (Nt (σ ), d) − ψ ′′

v̂
(Nt (σ ), d) =

(

β
(t)
v̂+1v −

v∑

z=1

β(t)
z

)

−
⎛

⎝β
(t)
v̂+1v̂ −

v̂∑

z=1

β(t)
z

⎞

⎠ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v∑

z=v̂+1

(β
(t)
v̂+1 − β(t)

z ) if v ≥ v̂,

v̂∑

z=v+1

(β(t)
z − β

(t)
v̂+1) if v < v̂.

(8.6)

Since the values β
(t)
z are non-increasing with respect to z,

we have
∑v

z=v̂+1(β
(t)
v̂+1 − β

(t)
z ) ≥ 0 if v ≥ v̂ and

∑v̂
z=v+1(β

(t)
z −β

(t)
v̂+1) ≥ 0 if v < v̂. Hence, Eq. (8.6) implies

that ψ ′′
v (Nt (σ ), d) ≥ ψ ′′

v̂
(Nt (σ ), d).

The second equality in (8.5) follows immediately from
(8.6) in the case v = v̂ + 1 since

ψ ′′
v̂+1(Nt (σ ), d) − ψ ′′

v̂
(Nt (σ ), d) = β

(t)
v̂+1 − β

(t)
v̂+1 = 0.

��
By the lemmaabove, all Type1breakpoints ofϕu

l (Nt (σ ), d)

for t = 0, 1, 2, . . . , n1 belong to the sequenceB and they can
be computed in O(n1) time.

For t = 0, 1, . . . , n1, a Type 2 breakpoint of ϕu
l (Nt (σ ), d)

is the intersection of two linear functions ϕ′(Nt (σ ), d) and
ϕ′′′(Nt (σ ), d), i.e., the point

d = u(Nt (σ )) + l(N1 \ Nt (σ )) − Dm′
�

= Ut + Ln1 − Lt − Dm′
�

;

recall the definitions of Ut and Lt in (3.3). Therefore, the
Type 2 breakpoints for all t can be also obtained in O(n1)
time.

8.3 Type 3 and Type 4 breakpoints

We first show that for each t , Type 3 and Type 4 breakpoints
are uniquely determined.

Lemma 9 For each t = 0, 1, . . . , n1, the intersection
points of ψ ′(Nt (σ ), d) and ψ ′′(Nt (σ ), d), as well as of
ψ ′′(Nt (σ ), d) and ψ ′′′(Nt (σ ), d) are uniquely determined.
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Proof To prove the claim, we use the following fundamental
property of a continuous function:

for a continuous and strictly increasing function f :
R → R such that limd→+∞ f (d) = +∞ and
limd→−∞ f (d) = −∞, a solution of the equation
f (d) = 0 is uniquely determined.

We show that the continuous functions f (d) =
ψ ′′(Nt (σ ), d)−ψ ′(Nt (σ ), d) and f̃ (d) = ψ ′′′(Nt (σ ), d)−
ψ ′′(Nt (σ ), d) satisfy the conditions above.

By (8.1), (8.2), and (8.3), the slope of ψ ′(Nt (σ ), d) is
zero, the slope of ψ ′′′(Nt (σ ), d) is �, and the slope of
ψ ′′(Nt (σ ), d) is between 1 and � − 1. Hence, the func-
tions f (d) = ψ ′′(Nt (σ ), d) − ψ ′(Nt (σ ), d) and f̃ (d) =
ψ ′′′(Nt (σ ), d) − ψ ′′(Nt (σ ), d) are strictly increasing and
satisfy

lim
d→+∞ f (d) = +∞, lim

d→−∞ f (d) = −∞,

lim
d→+∞ f̃ (d) = +∞, lim

d→−∞ f̃ (d) = −∞.

��
For t = 0, 1, . . . , n1, denote by γ (t) the (unique) intersec-

tion point of ψ ′(Nt (σ ), d) and ψ ′′(Nt (σ ), d), i.e., γ (t) is a
Type 3 breakpoint. We now present an algorithm for finding
the Type 3 breakpoints.

The idea of our algorithm is simple. Recall the repre-
sentation of function ψ ′′(Nt (σ ), d) and the definition of the

intervals I (t)
v used in Lemma 8. To compute γ (t), for each

integer v from m′ + � − 1 down to m′ + 1 we compute the
intersection point γ (t)

v of two linear functions ψ ′′
v (Nt (σ ), d)

and ψ ′(Nt (σ ), d). The intersection point γ (t)
v is given as

γ (t)
v = 1

v − m′ (

(t)
v − Dm′), (8.7)

where


(t)
v =

v∑

z=1

β(t)
z , t = 0, 1, . . . , n1, v = m′ + 1,m′ + 2, . . . ,

m′ + � − 1, (8.8)

i.e., 
(t)
v is the sum of v largest elements in sequence Bt . We

have γ (t) = γ
(t)
v if the intersection point γ (t)

v is contained in
the interval I (t)

v , and such v always exists.

Algorithm ComputeGamma1

Step 0. Computeβ
(0)
1 , β

(0)
2 , . . . , β

(0)
m′+�−1, and


(0)
m′+�−1.

Set t := 0.
Step 1. Compute the value γ (t) as follows:

Step 1-1. Set v := m′ + � − 1.
Step 1-2. Compute the intersection point γ

(t)
v of the two

linear functions ψ ′′
v (Nt (σ ), d) and ψ ′(Nt (σ ), d)

by (8.7).
Step 1-3. If γ

(t)
v ∈ I (t)

v , then set γ (t) := γ
(t)
v and go to

Step 2 (Note: if v = m′ + 1, then the condition
γ

(t)
v ∈ I (t)

v must hold).
Otherwise, set 
(t)

v−1 := 

(t)
v − β

(t)
v , v := v − 1,

and go to Step 1-2.
Step 2. If t = n1, then stop. Otherwise, go to Step 3.
Step 3. Compute β

(t+1)
1 , β

(t+1)
2 , . . . , β

(t+1)
m′+�−1, and



(t+1)
m′+�−1.

Step 4. Set t := t + 1 and go to Step 1.

��
We explain implementation details of the algorithm and

analyze its running time.
In Steps 0 and 3, we compute β

(t)
1 , β

(t)
2 , . . . , β

(t)
m′+�−1,

which can be done easily in O(n1) time by using the B-
sequence since β

(t)
1 , β

(t)
2 , . . . , β

(t)
m′+�−1 is a sub-sequence of

the B-sequence. The value 

(0)
m′+�−1 is initially computed in

O(n1) time, and then updated in Step 3 in constant time by
using the following formula:



(t+1)
m′+�−1 =

⎧
⎪⎨

⎪⎩



(t)
m′+�−1 if β

(t)
m′+�−1 ≥ u(σ (t + 1)),



(t)
m′+�−1 − β

(t)
m′+�−1 + u(σ (t + 1)) if u(σ (t + 1)) > β

(t)
m′+�−1 > l(σ (t + 1)),



(t)
m′+�−1 − l(σ (t + 1)) + u(σ (t + 1)) if l(σ (t + 1)) ≥ β

(t)
m′+�−1.

Steps 1-1, 1-2, and 1-3 can be done in constant time. Since
the number of iterations in Step 1 is O(�), Step 1 requires
O(�) time in total.

Steps 2 and 4 can be done in constant time.
Since Steps 1–4 are repeated O(n1) times, the running

time of Algorithm ComputeGamma1 is O((n1)2).
Now,wepresent an algorithm for finding theType 4 break-

points, which is similar to Algorithm ComputeGamma1 for
finding the Type 3 breakpoints. For t = 0, 1, . . . , n1, we
denote byα(t) the (unique) intersectionpoint ofψ ′′(Nt (σ ), d)

and ψ ′′′(Nt (σ ), d), i.e., α(t) is a Type 4 breakpoint.
To compute α(t), for each integer v fromm′ +�−1 down

tom′ +1 we compute the intersection point α(t)
v of two linear

functionsψ ′′
v (Nt (σ ), d) andψ ′′′(Nt (σ ), d). The intersection
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point α(t)
v is given as

α(t)
v = 1

m′ + � − v
(ϒt − 
(t)

v ), (8.9)

where

ϒt = u(Nt (σ )) + l(N1 \ Nt (σ )), t = 0, 1, . . . , n1.

(8.10)

We have α(t) = α
(t)
v if the intersection point α(t)

v is contained
in the interval I (t)

v , and such v always exists.

Algorithm ComputeAlpha1

Step 0. Compute β
(0)
1 , β

(0)
2 , . . . , β

(0)
m′+�−1. Also, com-

pute ϒ0 and 

(0)
m′+�−1 by (8.10) and (8.8 ),

accordingly. Set t := 0.
Step 1. Compute the value α(t) as follows:

Step 1-1. Set v := m′ + � − 1.
Step 1-2. Compute the intersection point α(t)

v of the two lin-
ear functionsψ ′′

v (Nt (σ ), d) andψ ′′′(Nt (σ ), d) by
(8.9).

Step 1-3. If α(t)
v ∈ I (t)

v , then set α(t) = α
(t)
v and go to Step 2

(Note: if v = m′+1, then the conditionα
(t)
v ∈ I (t)

v

must hold).
Otherwise, set 
(t)

v−1 := 

(t)
v − β

(t)
v , v := v − 1,

and go to Step 1-2.
Step 2. If t = n1, then stop. Otherwise, go to Step 3.
Step 3. Computeβ

(t+1)
1 , β

(t+1)
2 , . . . , β

(t+1)
m′+�−1.Also, com-

pute 

(t+1)
m′+�−1.

Step 4. Set ϒt+1 := ϒt + u(σ (t + 1)) − l(σ (t + 1)),
t := t + 1, and go to Step 1.

��
As in the analysis for Algorithm ComputeGamma1, we

can show that the running time of Algorithm ComputeAl-
pha1 is O((n1)2). In Appendix A, we will present a faster
algorithm for computing the Type 3 and Type 4 breakpoints.

9 Search byminor breakpoints

Let I ∗ be a major interval, and suppose that we find (a super-
set of) all minor breakpoints μ1, μ2, . . . , μs contained in
the major interval I ∗; for convenience, we denote by μ0 and
μs+1 the left and right endpoints of the interval I ∗. By the
result in Sect. 8, we have s = O(n1). In this section, we show
that some μk ∈ I ∗ that maximizes the function value W (λ)

can be found in O(n log n1) time.
The approach of the algorithm described below is essen-

tially the same as the one used in Sect. 7. Since the function
W (λ) is concave, we have the following properties for an

optimal value λ = λ∗ that maximizes the function value
W (λ) within the interval I ∗.

For any consecutive minor breakpoints μ′ < μ′′ in the
interval I ∗, one of the following holds:

• if W (μ′) = W (μ′′), then both of μ′ and μ′′ are optimal
since W (λ) ≤ W (μ′) for λ ≤ μ′, W (λ) = W (μ′) =
W (μ′′) for λ ∈ [μ′, μ′′], and W (λ) ≤ W (μ′′) for λ ≥
μ′′.

• if W (μ′) > W (μ′′), then there exists an optimal λ∗ such
that λ∗ ≤ μ′ since W (λ) ≤ W (μ′) for λ ≥ μ′;

• if W (μ′) < W (μ′′), then there exists an optimal λ∗ such
that λ∗ ≥ μ′′ since W (λ) ≤ W (μ′′) for λ ≤ μ′′.

Notice that for any consecutive minor breakpoints μ′ <

μ′′, function W (λ) is linear in the interval [μ′, μ′′].
This justifies the application of binary search for determin-

ing an optimal λ = λ∗ that maximizes the function W (λ) in
the interval I ∗. Recall the definition of an increment δ(I ) of
the function W (λ) for an interval I = [μ′, μ′′] of λ-values,
as defined in Sect. 7.

Algorithm Minor

Step 1. Find an increasing sequenceμ1, μ2, . . . , μs of real
numbers containing all minor breakpoints ofW (λ)

in interval I ∗. Also, let μ0 and μs+1 be the left and
right endpoints of the interval I ∗, respectively. The
values μ0, μ1, . . . , μs+1 split the interval I ∗ into
intervals I1, I2, . . . , Is+1, where Ik = [μk−1, μk

]
,

1 ≤ k ≤ s + 1.
Step 2. Compute the increments δ(I1) and δ(Is+1) of func-

tion W (λ). If δ(I1) ≤ 0, then output the value
λ∗ = μ0 and stop. If δ(Is+1) ≥ 0, then output
the value λ∗ = μs+1 and stop. Otherwise, go to
Step 3.

Step 3 Perform binary search among the found intervals
with a purpose of finding two consecutive intervals
I ′ and I ′′, one with a positive increment δ(I ′) and
the otherwith a negative increment δ(I ′′). Startwith
k′ = 1, k′′ = s + 1.

(a) If k′ + 1 = k′′, then output the value μk′ and stop.
Otherwise, go to Step 3(b).

(b) Compute k = ⌊ 1
2 (k

′′ + k′)
⌋
and the increment

δ(Ik) of function W (λ).
(c) If δ(Ik) = 0, then output the value μk (or μk−1)

and stop.
If δ(Ik) > 0, then update k′ = k and return to
Step 3(a).
Otherwise (i.e., δ(Ik) < 0), update k′′ = k and
return to Step 3(a).
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In AlgorithmMinor, Step 1 can be done in O((n1)2) time
by the results presented in Sect. 8. Step 2 can be done in
O(n) time by Lemmas 1 and 7. The number of iterations of
binary search in Step 3 is O(log n1). Each iteration in Step
3 can be implemented in O(n) time by Lemmas 1 and 7.
Thus, the overall time complexity of Algorithm Minor is
O(n log n1 + (n1)2).

The results presented in this section imply that after the
major intervals that contain an optimal value of λ are found,
that optimal value can be found in O(n log n1 + (n1)2)
time. This concludes the proof of Theorem 1, that states
that the scheduling problem P|pmtn, p( j) = u( j) −
x( j), si ze( j) ∈ {1,�} ,C( j) ≤ D|∑ j∈N w( j)x( j) can

be solved in O(n log n + (n1)2) time.

10 Conclusions

Themain result of this paper is an O (n log n)-time algorithm
for minimizing total compression cost on identical paral-
lel machines, provided that the processing times of the jobs
are controllable and each job either requires one machine or
� > 1 machines for its processing. Although the problem
does not admit a direct reformulation in terms of submod-
ular optimization, some techniques developed in our prior
research (Shioura et al., 2018) still appear to be useful; see,
e.g., Sect. 5. This paper shows that even in a fairly simple set-
tings, with only two sizes of the jobs, considerable technical
efforts are required to design a fast algorithm.

The problems that combine the presence of parallel jobs
and controllable processing times have been insufficiently
studied. We hope that this work will initiate systematic stud-
ies in this area, and that will lead to establishing fairly general
methodological principles.
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Appendix A: Faster algorithm for finding the
Type 3 and Type 4 breakpoints

Algorithm Minor from Sect. 9 locates the optimal value
λ∗ in a major interval I ∗ in O(n log n + (n1)2) time.
The term (n1)2 is responsible for finding the Type 3
breakpoints γ (0), γ (1), . . . , γ (n1) and the Type 4 break-
points α(0), α(1), . . . , α(n1) according to the algorithms from
Sect. 8.3. Here we present improved algorithms for finding
the Type 3 and Type 4 breakpoints and show that each of
them runs in O(n1 + m logm) time. These results prove
Theorem 2, which states that the problem P|pmtn, p( j) =
u( j)−x( j), si ze( j) ∈ {1,�} ,C( j) ≤ D|∑ j∈N w( j)x( j)
can be solved in O(n log n) time.

A1Monotonicity properties of minor breakpoints

Type3 andType4breakpoints have the followingmonotonic-
ity, which will be used in developing an efficient algorithm
for computing those breakpoints.

Lemma 10 α(0) ≤ α(1) ≤ · · · ≤ α(n1).

Proof For an integer t , 0 ≤ t < n1, we show that α(t) ≤
α(t+1) holds. By the definitions of α(t) and α(t+1), we have

ψ ′′(Nt (σ ), α(t)) = ψ ′′′(Nt (σ ), α(t)), ψ ′′(Nt+1(σ ), α(t+1))

= ψ ′′′(Nt+1(σ ), α(t+1)). (A1.1)

By (8.3), we have

ψ ′′′(Nt (σ ), α(t)) − ψ ′′′(Nt+1(σ ), α(t+1))

=
(
Dm′ + α(t)� − l(N1 \ Nt (σ ))

)

−
(
Dm′ + α(t+1)� − l(N1 \ Nt+1(σ ))

)

= (α(t) − α(t+1))� − l(σ (t + 1)). (A1.2)

Let v(t + 1), m′ < v(t + 1) < m′ +�, be an integer such
that

ψ ′′(Nt+1(σ ), α(t+1)) = u(Nt+1(σ )) + Dm − α(t+1)m′

+α(t+1)v(t + 1) −
v(t+1)∑

z=1

β(t+1)
z . (A1.3)

By (8.4), we have

ψ ′′(Nt (σ ), α(t)) ≤ u(Nt (σ )) + Dm − α(t)m′

+α(t)v(t + 1) −
v(t+1)∑

z=1

β(t)
z . (A1.4)
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It follows from (A1.3) and (A1.4) that

ψ ′′(Nt (σ ), α(t)) − ψ ′′(Nt+1(σ ), α(t+1))

≤
(
u(Nt (σ )) + Dm − α(t)m′

+α(t)v(t + 1) −
v(t+1)∑

z=1

β(t)
z

⎞

⎠

−
(
u(Nt+1(σ )) + Dm − α(t+1)m′

+α(t+1)v(t + 1) −
v(t+1)∑

z=1

β(t+1)
z

⎞

⎠

= −u(σ (t + 1)) + (α(t) − α(t+1))(v(t + 1) − m′)

−
v(t+1)∑

z=1

(
β(t)
z − β(t+1)

z

)
. (A1.5)

By (A1.1), (A1.2) and (A1.5), we have

0 = ψ ′′(Nt (σ ), α(t)) − ψ ′′(Nt+1(σ ), α(t+1))

− ψ ′′′(Nt (σ ), α(t)) + ψ ′′′(Nt+1(σ ), α(t+1))

≤
(
−u(σ (t + 1)) + (α(t) − α(t+1))(v(t + 1) − m′)

−
v(t+1)∑

z=1

(
β(t)
z − β(t+1)

z

)
⎞

⎠

−
(
(α(t) − α(t+1))� − l(σ (t + 1))

)

= (α(t) − α(t+1))(v(t + 1) − m′ − �)

−
v(t+1)∑

z=1

(
β(t)
z − β(t+1)

z

)
− (u(σ (t + 1)) − l(σ (t + 1)) ,

from which the inequality

(α(t) − α(t+1))(v(t + 1) − m′ − �) ≥ ξt (A1.6)

follows, where

ξt =
v(t+1)∑

z=1

(
β(t)
z − β(t+1)

z

)
+ (u(σ (t + 1)) − l(σ (t + 1)) .

Below we show that ξt ≥ 0. Recall that the value of β
(t)
z

(respectively, β(t+1)
z ) is the z-th largest number inBt (respec-

tively, in Bt+1), and the sequence Bt+1 is obtained from Bt

by the removal of l(σ (t+1)) and the insertion of u(σ (t+1)).
Hence, we have to examine the following three possibilities:

Case 1: l(σ (t + 1)) is contained in the sequence
(β

(t)
1 , β

(t)
2 , . . . , β

(t)
v(t+1)), and u(σ (t + 1)) is contained

in the sequence (β
(t+1)
1 , β

(t+1)
2 , . . . , β

(t+1)
v(t+1)).

In this case, we have ξt = 0, since (β
(t+1)
1 , β

(t+1)
2 , . . . ,

β
(t+1)
v(t+1)) is obtained from (β

(t)
1 , β

(t)
2 , . . . , β

(t)
v(t+1)) by the

removal of l(σ (t + 1)) and the insertion of u(σ (t + 1)).

Case 2: l(σ (t + 1)) is not contained in the sequence
(β

(t)
1 , β

(t)
2 , . . . , β

(t)
v(t+1)), but u(σ (t + 1)) is contained

in the sequence (β
(t+1)
1 , β

(t+1)
2 , . . . , β

(t+1)
v(t+1)).

In this case, we have ξt ≥ 0 since l(σ (t + 1)) ≤
β

(t)
v(t+1) and (β

(t+1)
1 , β

(t+1)
2 , . . . , β

(t+1)
v(t+1)) is obtained from

(β
(t)
1 , β

(t)
2 , . . . , β

(t)
v(t+1)) by the removal of β

(t)
v(t+1) and the

insertion of u(σ (t + 1)).

Case 3: l(σ (t + 1)) is not contained in the sequence
(β

(t)
1 , β

(t)
2 , . . . , β

(t)
v(t+1)), and u(σ (t + 1)) is not con-

tained in the sequence (β
(t+1)
1 , β

(t+1)
2 , . . . , β

(t+1)
v(t+1)).

In this case, we have ξt = 0 since the sequences
(β

(t)
1 , β

(t)
2 , . . . , β

(t)
v(t+1)) and (β

(t+1)
1 , β

(t+1)
2 , . . . , β

(t+1)
v(t+1))

coincide.
Thus, in any case, ξt ≥ 0 holds. This, togetherwith (A1.6),

implies that α(t) −α(t+1) ≤ 0, since v(t + 1)−m′ −� < 0.
��

Lemma 11 γ (0) ≤ γ (1) ≤ · · · ≤ γ (n1).

Proof For an integer t , 0 ≤ t < n1, we show that γ (t) ≤
γ (t+1) holds. By the definitions of γ (t) and γ (t+1), we have

ψ ′′(Nt (σ ), γ (t)) = ψ ′(Nt (σ ), γ (t)), ψ ′′(Nt+1(σ ), γ (t+1))

= ψ ′(Nt+1(σ ), γ (t+1)). (A1.7)

By (8.1), we have

ψ ′(Nt (σ ), γ (t)) − ψ ′(Nt+1(σ ), γ (t+1)) = u(Nt (σ ))

−u(Nt+1(σ )) = −u(σ (t + 1)). (A1.8)

Let ṽ(t), m′ < ṽ(t) < m′ + �, be an integer such that

ψ ′′(Nt (σ ), γ (t)) = u(Nt (σ )) + Dm′ − γ (t)m′

+γ (t)ṽ(t) −
ṽ(t)∑

z=1

β(t)
z . (A1.9)

By (8.4), we have

ψ ′′(Nt+1(σ ), γ (t+1)) ≤ u(Nt+1(σ )) + Dm′ − γ (t+1)m′

+γ (t+1)ṽ(t) −
ṽ(t)∑

z=1

β(t+1)
z . (A1.10)
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It follows from (A1.9) and (A1.10) that

ψ ′′(Nt+1(σ ), γ (t+1)) − ψ ′′(Nt (σ ), γ (t))

≤
(
u(Nt+1(σ )) + Dm′ − γ (t+1)m′

+γ (t+1)ṽ(t) −
ṽ(t)∑

z=1

β(t+1)
z

⎞

⎠

−
⎛

⎝u(Nt (σ )) + Dm′ − γ (t)m′ + γ (t)ṽ(t) −
ṽ(t)∑

z=1

β(t)
z

⎞

⎠

= u(σ (t + 1)) + (γ (t+1) − γ (t))(ṽ(t) − m′)

−
ṽ(t)∑

z=1

(
β(t+1)
z − β(t)

z

)
. (A1.11)

By (A1.7), (A1.8), and (A1.11), we have

0 = ψ ′′(Nt+1(σ ), γ (t+1)) − ψ ′′(Nt (σ ), γ (t))

− ψ ′(Nt+1(σ ), γ (t+1)) + ψ ′(Nt (σ ), γ (t))

≤
(
u(σ (t + 1)) + (γ (t+1)

−γ (t))(ṽ(t) − m′) −
ṽ(t)∑

z=1

(
β(t+1)
z − β(t)

z

)
⎞

⎠

− u(σ (t + 1))

= (γ (t+1) − γ (t))(ṽ(t) − m′) −
ṽ(t)∑

z=1

(
β(t+1)
z − β(t)

z

)
,

from which it follows that

(γ (t+1) − γ (t))(ṽ(t) − m′) ≥
ṽ(t)∑

z=1

(
β(t+1)
z − β(t)

z

)
. (A1.12)

By the definitions of β
(t)
z and β

(t+1)
z , we have that β

(t)
z ≤

β
(t+1)
z for each z,which implies that

∑ṽ(t)
z=1

(
β

(t+1)
z − β

(t)
z

)
≥

0. Since ṽ(t)−m′ > 0 in (A1.12), we have γ (t+1)−γ (t) ≥ 0,
as required. ��

A2 An improved algorithm

Wepresent a faster algorithm for computing the Type 4minor
breakpoints α(t), t = 0, 1, . . . , n1; the Type 3 minor break-
points can be found in a similar way and the details of the
corresponding algorithm are omitted.

The idea for the faster algorithm is as follows. Recall that
to find the value α(t), Algorithm ComputeAlpha1 computes
the values α

(t)
z for z = m′ + � − 1,m′ + � − 2, . . . ,m′ + 1

and checks whether α
(t)
z is contained in the interval I (t)

z ; if
α

(t)
z ∈ I (t)

z then α(t) = α
(t)
z holds. We, however, know that

α(t) ≥ α(t−1) by Lemma 10. This implies that it suffices to
check whether one of the following conditions holds:

α(t)
v ∈ I (t)

v ∩
[
α(t−1), β(t)

v

]
, α(t)

z ∈ I (t)
z ,

z = v − 1, v − 2, . . . ,m′ + 1,

where v is an integer such that α(t−1) ∈ I (t)
v . Besides, instead

of computing the values β
(t)
z for all z, m′ < z < m′ + �, in

advance at the beginning of each iteration, we compute the
values one by one, when necessary.

For t = 1, 2, . . . , n1, let v(t − 1) denote the maximum
integer v ∈ {m′ + 1, . . . ,m′ + � − 1} such that α(t−1) ∈
I (t−1)
v . To compute v(t − 1), define the sequence

S =
(
β(t−1)
z | 1 ≤ z ≤ n1, β(t−1)

z ≥ α(t−1)
)

and its length |S|. By definition,

v(t − 1) = max
{|S| , m′ + 1

}
.

Similarly, for t = 1, 2, . . . , n1, denote by v′(t) the max-
imum integer v ∈ {m′ + 1, . . . ,m′ + � − 1} such that
α(t−1) ∈ I (t)

v . To compute v′(t), define the sequence

S ′ =
(
β(t)
z | 1 ≤ z ≤ n1, β(t)

z ≥ α(t−1)
)

and its length
∣
∣S ′∣∣. By definition,

v′(t) = max
{∣
∣S ′∣∣ , m′ + 1

}
.

Lemma 12 For t = 1, 2, . . . , n1, we have v′(t) ∈
{v(t − 1), v(t − 1) + 1}.
Proof Recall that v(t − 1) (respectively, v′(t)) is defined via
the length of the sequence S (respectively, of S ′). By the
definition of the valuesβ

(t−1)
z andβ

(t)
z , we have the following

three possibilities for the relationship between the sequences
S and S ′.

Case 1: S ′ = S;
Case 2: S ′ is obtained from S by the insertion of
u(σ (t));
Case 3: S ′ is obtained from S by the insertion of
u(σ (t)) and the removal of l(σ (t)).

InCases 1 and 3,we have v′(t) = v(t−1), while inCase 2,
we have v′(t) = v(t − 1) + 1, if v(t − 1) = |S| ≥ m′ + 1,
or v′(t) = v(t − 1) = m′ + 1, if v(t − 1) = m′ + 1 > |S|. ��

We describe below a faster algorithm for computing α(t).
While we compute the value α(0) in the same way as in
Algorithm ComputeAlpha1, we compute the values α(t) for
t = 1, 2, . . . , n1 using the idea explained above.
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Algorithm ComputeAlpha2

Step 0. Compute β
(0)
1 , β

(0)
2 , . . . , β

(0)
m′+�−1. Also, com-

pute ϒ0 and 

(0)
m′+�−1, by (8.10) and (8.8 ),

accordingly. Set t := 0.
Step 1. Compute the values α(0) and v(0) as follows:

Step 1-1. Set v := m′ + � − 1.
Step 1-2. Compute the intersection point α

(0)
v of the two

linear functionsψ ′′
v (N0(σ ), d) andψ ′′′(N0(σ ), d)

by (8.9).
Step 1-3. If α

(0)
v ∈ I (0)

v , then set α(0) := α
(0)
v , v(0) := v,

and go to Step 2 (Note: if v = m′ + 1, then the
condition α

(0)
v ∈ I (0)

v must hold).
Otherwise, set 


(0)
v−1 := 


(0)
v − β

(0)
v and v :=

v − 1, and go to Step 1-2.
Step 2. Set ϒ1 := ϒ0 + u(σ (1)) − l(σ (1)) and t := 1.

Go to Step 3.
Step 3. Compute the value α(t) as follows:

Step 3-1. Compute thevaluesv′(t),β(t)
v′(t), and


(t)
v′(t) (details

will be given later).
Step 3-2. Compute the intersection point α

(t)
v′(t) of the two

linear functionsψ ′′
v′(t)(Nt (σ ), d) andψ ′′′(Nt (σ ), d)

by (8.9).
Step 3-3. If v′(t) = m′ + 1, or v′(t) ≥ m′ + 2 and α(t−1) ≤

α
(t)
v′(t) ≤ β

(t)
v′(t), then set α(t) := α

(t)
v′(t), v(t) :=

v′(t), and go to Step 4. Otherwise, set v := v′(t)
and go to Step 3-4.

Step 3-4. Compute the value β
(t)
v−1 (details will be given

later). Set 
(t)
v−1 := 


(t)
v − β

(t)
v and v := v − 1.

Step 3-5. Compute the intersection point α(t)
v of the two lin-

ear functionsψ ′′
v (Nt (σ ), d) andψ ′′′(Nt (σ ), d) by

(8.9).
Step 3-6. If v = m′ + 1, or v ≥ m′ + 2 and α

(t)
v ∈ I (t)

v , then
set α(t) := α

(t)
v , v(t) := v, and go to Step 4.

Otherwise, go to Step 3-4.
Step 4. If t = n1, then stop. Otherwise, setϒt+1 := ϒt +

u(σ (t + 1)) − l(σ (t + 1)), t := t + 1, and go to
Step 3.

It is not difficult to see that the algorithm above computes
the values α(t) correctly. The most important part in Algo-
rithm ComputeAlpha2 is the computation of values v′(t),
β

(t)
v′(t), and 


(t)
v′(t) in Step 3-1 and β

(t)
v−1 in Step 3-4. It is easy

to compute these values in O(n1) time, as inAlgorithmCom-
puteAlpha1, which leads to the same running time as before.
To reduce the running time, we use a heap H, which, at the
beginning of Step 3, is a multi-set

{β(t)
z | 1 ≤ z ≤ n1, β(t)

z ≥ α(t−1)}.

This implies the following properties:

at the beginning of Step 3,
• v′(t) is equal to max

{|H| ,m′ + 1
}
, where |H| is the

size of H,
• 


(t)
v′(t) is the total sum of the values inH,

• β
(t)
v′(t) is the minimum value inH.

Hence, the values v′(t) and 

(t)
v′(t) can be obtained in con-

stant timebymaintaining the size ofH and the total sumof the
values inH. The value β

(t)
v′(t) can be obtained in constant time

as well.
To compute the value β

(t)
v−1 in Step 3-4, we delete the

minimum value from H so that the new minimum value in
H is equal to β

(t)
v−1. This can be done in O(log n1) time.

After computing the valueα(t) in Step 3,we need to update
the heapH, which can be done easily as follows.At this point,
H is represented by the multi-set

{β(t)
z | 1 ≤ z ≤ n1, β(t)

z ≥ α(t)},

which should be updated to

{β(t+1)
z | 1 ≤ z ≤ n1, β(t+1)

z ≥ α(t)}.

Since

{β(t+1)
1 , β

(t+1)
2 , . . . , β(t+1)

n1 } = {β(t)
1 , β

(t)
2 , . . . , β(t)

n1 } \
{l(σ (t + 1))} ∪ {u(σ (t + 1))},

it follows that if l(σ (t +1)) ≥ α(t) then the value l(σ (t +1))
is currently in H and it should be deleted. Additionally, if
u(σ (t + 1)) ≥ α(t), the value u(σ (t + 1)) is added to H. In
this way, we can update the heap H in O(log n1) time.

We give a detailed implementation of Algorithm Com-
puteAlpha2, where Steps 0 and 1 are the same as before and
omitted.

Step 2. Set ϒ1 := ϒ0 + u(σ (1)) − l(σ (1)). Let H be
the heap which is represented by the multi-set
{β(0)

z | 1 ≤ z ≤ n1, β
(0)
z ≥ α(0)}.

If l(σ (1)) ≥ α(0), then delete the value l(σ (1))
fromH.
If u(σ (1)) ≥ α(0), then add the value u(σ (1)) toH.
Set t := 1andcomputev′(1) := max

{|H| ,m′ + 1
}
,

the sum 

(1)
v′(1) of the elements in H and its mini-

mum element β(1)
v′(1). Go to Step 3.

Step 3. Using the current heap H and the values v′(t) =
max

{|H| ,m′ + 1
}
, 


(t)
v′(t) equal to the total sum

elements of H and the minimum element β
(t)
v′(t),

compute the value α(t) as follows:
Step 3-1. Compute the intersection point α(t)

v′(t) of the two lin-
ear functions ψ ′′

v′(t)(Nt (σ ), d) and ψ ′′′(Nt (σ ), d)

by (8.9).
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Step 3-2. If v′(t) = m′ + 1, or v′(t) ≥ m′ + 2 and α(t−1) ≤
α

(t)
v′(t) ≤ β

(t)
v′(t), then set α

(t) := α
(t)
v′(t), v(t) := v′(t),

and go to Step 4. Otherwise, set v := v′(t) and go
to Step 3-3.

Step 3-3. Determine the interval I with the endpoints being
the two smallest elements in the heap (to be used in
Step 3-5). To do this, store the minimum value in
H, which is β

(t)
v , as c′. Delete that minimum value

c′ fromH and update 

(t)
v−1 := 


(t)
v − c′. Store the

minimum value in the updated heap H, which is
β

(t)
v−1, as c

′′ and define I = [c′, c′′]. Set v := v −1.

Step 3-4. Compute the intersection point α(t)
v of the two lin-

ear functions ψ ′′
v (Nt (σ ), d) and ψ ′′′(Nt (σ ), d) by

(8.9).
Step 3-5. If v = m′ + 1, or v ≥ m′ + 2 and α

(t)
v ∈ I , then set

α(t) := α
(t)
v , v(t) := v, and go to Step 4.

Otherwise, go to Step 3-3.
Step 4. If t = n1, then stop. Otherwise, go to Step 5.
Step 5. Set ϒt+1 := ϒt + u(σ (t + 1)) − l(σ (t + 1)). If

l(σ (t+1)) ≥ α(t), then delete the value l(σ (t+1))
from H. If u(σ (t + 1)) ≥ α(t), then add the value
u(σ (t + 1)) toH. For the obtained heap, appropri-
ately update the size, the total sumand theminimum
element.
Set t := t + 1 and go to Step 3.

We analyze the time required to each steps. As in Algo-
rithm ComputeAlpha1, Steps 0 and 1 can be done in
O(n1) time and Step 4 requires O(1) time. Step 2 requires
O(n1 log n1) time for initializing the heap H, and Step 5
requires O(log n1) time for deletion/insertion in the heapH.

We now analyze the time required in Step 3 for each t =
1, 2, . . . , n1. It is easy to see that each of Steps 3-1 – 3-5 can
be done in O(log n1) time. The number of iterations of Steps
3-3, 3-4 and 3-5 is equal to v′(t) − v(t). Hence, Step 3 for
each t requires O((v′(t)−v(t)+1) log n1) time. This implies
that the total running time of Algorithm ComputeAlpha2 is

O(n1 +
n1∑

v=1

(v′(t) − v(t) + 1) log n1) = O(n1 log n1

+
n1∑

v=1

(v′(t) − v(t)) log n1) = O(n1 log n1),

where the last equality follows from the lemma below.

Lemma 13
∑n1

v=1(v
′(t) − v(t)) ≤ 2n1.

Proof By Lemma 12, we have v′(t) ≤ v(t − 1) + 1 for each
t = 1, 2, . . . , n1. It follows that

n1∑

v=1

(v′(t) − v(t)) ≤
n1∑

v=1

(v(t − 1) + 1 − v(t)) = n1 + v(0)

−v(n1) ≤ 2n1,

where the last inequality is by v(0) ≤ n1 and v(n1) ≥ 0. ��

This concludes the proof of Theorem 2, stating that
the problem P|pmtn, p( j) = u( j) − x( j), si ze( j) ∈
{1,�} ,C( j) ≤ D|∑ j∈N w( j)x( j) can be solved in
O(n log n) time.
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