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Abstract
Electrifying road-based long-haul transportation is an intricate task. Given the current state of battery technology, either the
driving ranges of electric commercial vehicles (ECVs) are too short or high-capacity batteries are costly and so heavy that
payloads are limited. An old, yet recently revitalized, charging infrastructure currently evaluated onmultiple test tracks around
the globe alternatively suggests charging of electric trucks while driving. Analogously to trams, trolley buses, or trains, ECVs
are powered by an electric motor connected to overhead wires via a movable contact arm and supported by a battery or an
extra conventional drive, which steps in on non-electrified road segments. This paper is dedicated to the routing of a single
ECV executing full-truckload point-to-point deliveries along a highway main line where charge-while-drive infrastructure
is fixedly installed along some but not all parts of the road. We formulate the resulting optimization problem, investigate
computational complexity, and provide suitable solution procedures based on decomposition. Once all this is available, we
explore the induction effect of charge-while-drive technology, i.e., the amount of charging detours required to gather enough
energy for the next job. Our results show that the induction effect can be considerable and may lead to substantial extra traffic
compared to conventional charge-while-park technology.

Keywords Green transportation · Electric vehicles · Charge-while-drive technology · Vehicle scheduling.

1 Introduction

Electrification of vehicle fleets has proved successful in urban
logistics where many customers live in a restricted area, and
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thus tour lengths are comparatively small (Oliveira et al.,
2017). Given the current state of battery technology, elec-
trifying road-based long-haul transportation, on the other
hand, is an intricate task. The batteries of electric commer-
cial vehicles (ECVs) employed in urban logisticswith driving
ranging between 130 and 160 km (Davis & Figliozzi, 2013)
are too small for long-haul transportation, where they would
require frequent recharging stops, impeding on-time deliv-
eries (Liimatainen et al., 2019). Larger batteries enabling
sufficient driving ranges exist, but are very costly and so
heavy that they reduce the maximum payloads of ECVs
considerably (Mareev et al., 2017). These limitations have
triggered a recent (re-)consideration of charge-while-drive
technology for road-based long-haul transportation.

Overheadwires are an old established technology to trans-
mit electrical energy to trams, trolleybuses, and trains via
roof-mounted current collectors, also denoted as pantographs
or trolley poles. Even in truck-based freight transportation,
catenary trucks, also known as trolley trucks (Plötz et al.,
2019), have a long tradition and are still used in large
mining projects (Cruzat & Valenzuela, 2018). In 2012, Ger-
many’s largest industrial manufacturing company Siemens
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announced its eHighway concept, which transfers these
previous approaches to public-road freight transportation
(Siemens AG, 2019). In addition to an electric motor, pow-
ered via overhead wiring and connected by an automatic
contact arm, a conventional engine or a battery with a range
of about 50 to 100 km is applied to allow overtaking and
to access non-electrified road segments (Plötz et al., 2019).
Driving under overhead wiring not only powers the ECV, but
additionally enables recharging of the battery.

Currently, a handful of test tracks on public or private
roads all around the world exist (Siemens AG, 2019). Figure
1 depicts three examples from Germany, Sweden, and the
USA. Note that other projects evaluate charge-while-drive
infrastructure embedded into the road where a movable con-
tact arm mounted under the vehicles connects to the power
line grouted into the tarmac (Schwerdfeger et al., 2021).
Moreover, one day, even inductive charge-while-drive tech-
nology without direct contact may be available on public
roads (Deflorio et al., 2015). While our vehicle scheduling
approach presented in this paper generally also covers these
alternative charge-while-drive technologies, we stick to the
case of overhead wiring, which seems closest to making it
into daily operations.

In addition to all remaining technological problems to be
solved until the power supply of trucks via overhead wiring
reaches a market-ready state, there are two challenges in par-
ticular related to charge-while-drive infrastructure.

• High investment costs: First, the investment costs for
overhead wiring are huge. In addition to poles and wires,
substations, analogously to those applied for tram and
train systems (Rufer et al., 2004), are required every 1.5–
3 km to convert the high-voltage alternating current of
the power main line into the low-voltage direct current
suited for ECVs. Kühnel et al. (2018) estimate the invest-
ment costs for each electrified (bidirectional) km to range
between e1.7 and 3.1 million. Due to these huge infras-
tructure costs, it seems impossible to electrify a complete
highwaynetwork. ForGermany,Kühnel et al. (2018) esti-
mate that electrifying about 30%of theGerman autobahn
is sufficient to electrify the majority of long-haul trans-
portation. Similar results are obtained bySchwerdfeger et
al. (2021) for the largest German highway, the A7, when
minimizing the investment costs for charge-while-drive
infrastructure while still enabling ECV drives between
all major German cities. Thus, it seems safe to assume
that on a highway main line, only some segments will
be electrified, interspersed with non-electrified segments
where the ECV’s battery has to take over. This adds the
challenging aspect of gathering enough electric energy
for the drives along non-electrified highway segments
and roads beyond the highway to the routing problem.

• Induced traffic: The second challenge that might be asso-
ciated with charge-while-drive technology that has not
yet been publicly discussed is induced traffic. Tradition-
ally, this term has referred to the frequently observed
phenomenon that once additional capacity is added to
a road network, latent demand materializes and the
streets are loaded to capacity just as before (Goodwin,
1996). In the context of charge-while-drive technology,
we borrow this term to denominate the additional traf-
fic generated by charging detours that are required to
gather enough energy for reaching the next customer
without energy shortage. Whereas conventional ECVs
charge while parking, charge-while-drive technology
may incentivize the oscillation of ECVs between dif-
ferent customer regions to charge their batteries. Such
behavior can be even more pronounced in the ramp-up
phase when power obtained via overhead wiring is sub-
sidized by public authorities to attract participants. One
contribution of this paper is the investigation and quan-
tification of the induction effect of charge-while-drive
infrastructure, which we quantify with the help of our
routing approach.

To do so, we formulate a basic electric vehicle routing prob-
lemwith overheadwiring.Given a single ECVand a highway
with predefined electrified and non-electrified segments, we
aim to execute a given set of transport jobs each defining a
full-truckload point-to-point delivery with a given start and
end point along the highway and a predefined target charge
level to reach each job’s actual origin and destination beyond
the highway on non-electrified roads. Our objective is tomin-
imize the makespan to execute all jobs without ECV battery
shortage. We define this problem, investigate its computa-
tional complexity, and provide suitable exact and heuristic
solution approaches. Once these solution approaches are
available (and have proven their performance in a computa-
tional study), we switch to our research question elaborated
above and explore the induction effect of charge-while-drive
infrastructure. Specifically, we obtain the solutions of our
solution approaches if the ECV is charged via overhead
wiring and solve the same data instances for ECVs charged
while parking at charging stations or when applying conven-
tional trucks. This allows us not only to compare the resulting
makespans of these alternatives, but also to benchmark the
driven distances, which allows us to quantify the resulting
induction effect of charge-while-drive infrastructure.

The remainder of the paper is structured as follows:
Section 2 reviews the related literature. Section 3 defines
our basic electric vehicle routing problem with overhead
wiring and investigates its computational complexity. Solu-
tion approaches, namely, a mixed-integer program and two
heuristic decomposition approaches, are presented in Sect. 4.
Our computational study in Sect. 5 first investigates the com-
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Fig. 1 Examples for test tracks equipped with overhead wiring in Germany (left; source: Siemens AG), Sweden (middle; source: Scania CV AB),
and the USA (right; source: Siemens AG)

putational performance of our solution approaches and then
explores the induction effect. Finally, Sect. 7 concludes the
paper.

2 Literature review

Our basic optimization problem, which we apply to quan-
tify the induction effect of charge-while-drive infrastructure,
belongs to the (vast) field of vehicle routing problems. Natu-
rally, we cannot survey the huge number of papers published
in this area. For an overview and introduction, we refer
instead to Golden et al. (2008) and Vidal et al. (2020). Our
optimization problem, however, is a very specific vehicle
routing problem that has the following peculiarities: The
vehicle to be routed (i) is an ECV that is chargedwith charge-
while-drive infrastructure, (ii) only executes full-truckload
point-to-point deliveries along a single highway constituting
(iii) a routing problem on the line. Each of these peculiarities
is addressed in the following paragraphs.

(i) As electric vehicles in general, and freight
transportation with ECVs in particular, have gained
momentum, it is not surprising that a a large strand of
scientific literature on green and electric vehicle rout-
ing has accumulated in recent years. For surveys, we
refer to the literature reviews provided by Pelletier et
al. (2016) and Lin et al. (2014). The vast majority of
the literature, however, treats either battery swapping
or charge-while-park infrastructure. Vehicle routing
approaches related to charge-while-drive infrastructure
are rare. The survey paper on inductive charging pro-
vided by Jang (2018) supports this finding. The vast
majority of papers summarized there treat infrastruc-
ture planning. We assume that this decision has already
been made, and take the placement of electrified and
non-electrified road segments as an input. The only
operations research papers related to vehicle routing
with charge-while-drive infrastructure are by Deflo-
rio et al. (2015), Kosmanos et al. (2018), and Li et
al. (2018). Li et al. (2018) consider inductive charg-

ing and, due to lower power efficiency, assume higher
energy costs for it. Given both charge-while-drive
energy, which is more costly but enables movement
while charging, and charge-while-park energy, which
is cheaper but requires a vehicle standstill, they solve
a bi-objective vehicle routing problem and provide a
mixed-integer program. Deflorio et al. (2015) simulate
the traffic flow along multilane streets where charging
zones for inductive charging are located at given posi-
tions. In this way, they estimate the amount of energy
received by each vehicle. Finally, route optimization
to reach the destination of a single ECV with given
charge-while-drive infrastructure in the most efficient
way is treated by Kosmanos et al. (2018).

(ii) Full-truckload transportation is an important logistics
branch and has been shown to be the most efficient
strategy if the economic lot size of customers is close
to the vehicle capacity (Gallego & Simchi-Levi, 1990).
Truckload carriers face the problem of efficiently trans-
porting full-truckload point-to-point transport requests
of customers with their truck fleets. The vehicle rout-
ing problem in the full-truckload context has received
considerable attention; important contributions are, for
instance, provided by Arunapuram et al. (2003), Ball et
al. (1983), and Gschwind et al. (2019). In the context
of parts supply for automotive assembly lines, full-
truckload transportation with electric vehicles (i.e., tow
trains executing milk runs) and their need to recharge
has also been investigated by Emde et al. (2018),
although not with charge-while-drive infrastructure.

(iii) Due to their manifold applications, routing problems
along a single line—for example, representing a river,
a driving lane in a container yard, or a highway—have a
long-standing tradition. First and foremost, there is the
seminal paper of Gilmore and Gomory (1964), who
solve the routing of a single vehicle executing full-
truckload point-to-point transport requests along a line
in polynomial time. Note that we apply their algorithm
to sequence the transport jobs in our heuristic decom-
position approaches elaborated in Sect. 4.3. Further
studies investigate routing on the line under additional
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extensions, such as release dates (Psaraftis et al., 1990),
release dates and/or deadlines (Tsitsiklis, 1992), multi-
ple vehicles (Simchi-Levi & Berman, 1991; Yu & Liu,
2009), and capacity for multiple jobs at a time and/or
preemption (Atallah & Kosaraju, 1988; Guan, 1998).
Routing on the line of electric vehicles has been treated
by Boysen et al. (2018). They optimize point-to-point
job sequences if the single ECV has to visit charging
stations intermediately at given positions.We, however,
consider a charge-while-drive infrastructure for which
no routing problems on the line yet exist.

To conclude, neither our specific vehicle routing problem
nor the quantification of induced traffic caused by charge-
while-drive infrastructure has yet been treated in the scientific
literature. This finding is also supported by the recent liter-
ature survey on electric vehicles by Pelletier et al. (2016).
They also mention overhead wiring as an upcoming future
research issue with no literature coverage so far.

3 Problem description

3.1 Problem characterization

Our electric vehicle routing problem on a line with full truck-
loads and overhead wiring consists of the following basic
ingredients:

• Highway: We have a bidirectional highway of given
length to be accessed and exited via ramps at given posi-
tions. The highway is equipped with overhead wiring in
specific parts, so that we have fixed electrified and non-
electrified segments along the highway.

• ECV:Our single ECV is equippedwith an electric engine,
amovable contact arm to connect to the overheadwires in
electrified segments, and a battery to power the engine in
non-electrified segments. Driving with a constant veloc-
ity along a (non-)electrified segment adds (consumes) a
fixed amount of charge to (from) the battery, which has a
givenmaximumcharge capacity that cannot be exceeded.
Naturally, theECV’s charge levelmaynot fall belowzero.
Initially, the ECV is positioned at a given start position
along the highway and has a given initial charge level
at the start. We require the ECV to return to its initial
position, e.g., the depot of the truckload carrier, after con-
ducting all jobs.

• Jobs: We have a given set of jobs each representing a
point-to-point transport that loads our ECV to capacity.
Each job has to be picked up and successfully delivered
before the next job can be processed. Each job has an
actual origin and destination beyond the highway, so that
when leaving the highway at the closest ramp toward the

origin (destination), our ECV requires aminimum charge
level to ensure a successful pickup (delivery) of the asso-
ciated load at the actual origin (destination) and the return
to the closest ramp afterwards without energy shortage.

Given this setting, we aim to minimize the total travel dis-
tance of the ECV while successfully executing all jobs along
the highway. Note that we omit from the objective the drives
beyond the highway, because they are fixed once the job set
is determined. They are, however, relevant to ensuring the
minimum energy levels when leaving the highway toward a
customer.

Example Consider a bidirectional highway connecting
positions 0 and 1. Five ramps and their positions along the
highway are depicted as upward arrows within Fig. 2a. Our
single ECV has an initial and maximum charge level of 0.5
and 1.0, respectively. It starts at position 0.5 and has to pro-
cess the four jobs, whose start and end positions along the
highway are given in Fig. 2a. Note that the job indices are
given by the white numbers within the truck icons. For this
example, we assume that the actual origins and destinations
of these jobs are immediately at the indicated ramps, so
that no additional energy is consumed to drive beyond the
highway. We have a single electrified segment (accessible
for both directions) between 0.3 and 0.6. When driving 0.1
length units along an electrified segment, the ECV receives
0.2 charge units and consumes 0.1 when driving along non-
electrified segments. The solution depicted in Fig. 2b is the
optimal solution for our example, which leads to a total driv-
ing distance of 2.0. This solution starts with an empty drive
from initial position 0.5 to the start point of job 1. Then,
this solution subsequently processes jobs 1, 2, 3, and 4. The
charge levelswhen starting and completing each job are given
by the numbers above the arrows in Fig. 2b. Two solutions for
alternative job sequence 〈3, 4, 1, 2] are depicted in Fig. 2c,
d. Solution (c) is infeasible, because directly approaching
job 3 cannot charge enough energy to successfully complete
second job 4 without energy shortage. Instead, our ECV has
to drive empty in the opposite direction to charge sufficient
energy before turning at the ramp at position 0.2 and heading
back toward job 3. This allows us to derive feasible solution
(d), but the charging detour increases the total driving dis-
tance to 2.6.Note that our example shows that in the best case,
charge-while-drive technology produces no induced traffic
compared to a conventional truck (or an ECV charging at a
charging station on the way). However, if even the optimal
solution requires charging detours, or if a truck route is badly
planned, induced traffic may arise. The solution depicted in
Fig. 2d, for instance, increases the traffic on our highway for
processing our job set by (2.6 − 2.0)/2.0 = 30%.

In the following, we list the (simplifying) assumptions
made in our problem setting that we have not addressed
before and provide some justification:
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Fig. 2 Example instance with three solutions for two job sequences

• We consider a single highway but not a network of
multiple interconnected streets. This may be a simpli-
fication once charge-while-drive infrastructure is well
established. But since the investment costs for overhead
wiring are substantial (see Sect. 1), especially during the
ramp-up phase, only the most frequented highway main
lines will be candidates for electrification. Moreover, a
fast and reliable solution method for the single-highway
case could also be applicable for solving this subprob-
lem in a larger algorithmic framework dedicated to the
general-network case.

• A strictly parallel layout of electrified and non-electrified
segments in both driving directions is economically
advisable, because this policy saves extra substations
(Kühnel et al., 2018). However, the terrain does not
always allow this. We take the positions of the electrified
and non-electrified segments of both driving directions
as inputs, so that both cases can be modeled.

• To isolate the impact of charge-while-drive infrastruc-
ture, we assume that for our ECV, neither the alternative
charging options (e.g., charge-while-park infrastructure
at charging stations along the highway) nor an additional
conventional engine is available. Thus, our ECV is pow-
ered either via overhead wires in electrified segments
or via the additional battery in non-electrified segments.
Note that the type of ECV currently applied on the test
tracks in Germany actually has a battery without addi-

tional plug-in function (to charge while parked), but
is equipped with an additional diesel engine (Grüning,
2019). In our case study in Sect. 6, however, we bench-
mark different vehicle setups.

• We assume constant charging and consumption rates per
length unit on electrified and non-electrified highway
segments, respectively. Although an approximation of
reality, where these parameters vary with the charge level
(Pelletier et al., 2016), this is an assumption frequently
made in the electric vehicle routing community. One of
the few exceptions is Froger et al. (2019).

• On the demand side, fixed charging and consumption
rates are based on the assumption of a constant average
driving speed of our ECV. In the real world, the ECV’s
speed is rather a decision variable or can vary over the
day depending on the current traffic situation. However,
since our main intention is to quantify the additional traf-
fic inducedby charge-while-drive infrastructure, constant
driving velocities, which are already desired to save costs
and energy, seem a pardonable simplification.

• We assume that the ECV’s energy consumption on
drives via exit- and on-ramps when changing the driv-
ing direction is negligible compared to the much longer
drives along the highway. Thus, changing the direc-
tion is assumed to consume no energy. Note, however,
that extending our solution approaches by this issue is
straightforward.

123



24 Journal of Scheduling (2023) 26:19–41

• Our (actual) objective is to minimize the makespan of
processing the given set of transport jobs. This objective
releases our ECV as early as possible and allows the sys-
tem to start processing subsequent jobs earlier. Since the
drives beyond the highway are fixed once the job set is
determined, we simplify the problem and only address
the driving distance of our ECV along the highway. Nat-
urally, there are many other potential objectives (e.g.,
related to due dates); we, however, opted for the most
basic one.

3.2 Problem definition

We consider a highway with end points at one-dimensional
integer coordinates 0 to L . We have a set R of ramps with
an integer position pr for each ramp r ∈ R on the highway.
These ramps are the only option to access and exit the high-
way,which is divided into electrified segmentswith overhead
wiring and non-electrified segments without. This segmen-
tation is represented by points q1, . . . , q2W of positions with
0 ≤ q1 < . . . < q2W ≤ L . We interpret positions q2w−1

and q2w with w = 1, . . . ,W as the start position and the end
position of thewth electrified segment. Hence, it has a length
of q2w −q2w−1. We assume all these positions to be integers,
that is, pr ∈ N for each r ∈ R and q2w−1, q2w ∈ N for each
w = 1, . . . ,W . Furthermore, we have a set J of jobs, and
each job j ∈ J is specified by

• Two ramps roj ∈ R and rdj ∈ Rwith roj �= rdj representing
the ramps where our ECV leaves the highway to pick up
job j at its actual origin beyond the highway and to deliver
job j at its actual destination, respectively, and

• Numbers loj and ldj representing the total travel distance
beyond the highway when leaving the highway at the
closest ramp to pick up job j and to deliver job j , respec-
tively, and returning to the highway.

For each pair of jobs j and j ′ with rdj = roj ′ , we additionally

have the total travel distance ld,o
j, j ′ of the tour between leaving

the line to, first, deliver job j , and second, pick up job j ′
and return to the line. This information is required whenever
the pickup of a successor job directly follows the delivery of
its predecessor via the same ramp without returning to the
highway in between.We presuppose that ld,o

j, j ′ ≥ max{ldj , loj ′ }
throughout the remainder.

We consider a single ECV with an initial position at ramp
r0 ∈ R, a battery capacity C ∈ N, and an initial battery
charge c0 ∈ N with 0 ≤ c0 ≤ C . Finally, once all jobs
have been processed, we require that the ECV returns to its
initial position at ramp r0. Note that it is also possible to end
the schedule once the last job is completed. Integrating this
into our solutions concepts is straightforward, but we abstain

Fig. 3 Notation

from a detailed description. The ECV can travel the highway
in both directions, but can change the travel direction at ramps
only. Figure 3 illustrates the notation using the same instance
as depicted in Fig. 2a (rescaled such that relevant positions
are integers).

The battery’s charge level is altered along the ECV’s route
when it travels segments on the highway or picks up or deliv-
ers jobs.

• The ECV, passing a part of the highway of length l which
lies within an electrified segment, increases the charge of
its battery by min{C − c, l · δ+}, where c is the bat-
tery’s charge at the beginning of that part, and δ+ ∈ N is
the constant charging rate. Hence, its battery’s charge is
min{C, c + l · δ+} at the end of the part. When passing
a part of the highway of length l within a non-electrified
segment or when driving a distance of l beyond the high-
way, our ECV’s battery charge decreases by l · δ−. Here,
δ− ∈ N is the constant consumption rate. Hence, the
charge level is c − l · δ− at the end of the part.

• The ECV, either picking up j or delivering j beyond the
highway, decreases the charge of its battery by loj · δ− or

ldj · δ−, respectively. Hence, its battery’s charge is c −
loj · δ− and c − ldj · δ−, respectively, when returning to
the highway afterwards. If, however, job j is delivered at
the same ramp as job j ′ is picked up, and both operations
are conducted while leaving the highway only once, then
the ECV’s battery charge decreases by ld,o

j, j ′ · δ− and is

c − ld,o
j, j ′ · δ− when returning to the highway afterwards.

Note that this definition accounts for negative charge levels
of the battery, which will later be labeled as infeasible. A
solution consists of two parts.

• Wehave a sequence σ of all jobs in J specifying the order
in which they are processed by the ECV. This sequence
implies the order in which ramps are headed from where
the line is left for picking up or delivering a job. We refer
to the kth entry of σ by σ(k).
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• We have a sequence of ramps visited in between pick-
ing up or delivering jobs. More formally, this part of a
solution is defined as follows:

– For each job σ(k), with k = 1, . . . , |J |, of job
sequence σ , we have a sequence of all ramps passed
along the highway after returning to the highway at
roσ(k) ∈ R after picking up job σ(k) and before leav-

ing at ramp rdσ(k) ∈ R for delivering this job.
– For each job σ(k), with k = 2, . . . , |J |, of job

sequence σ , we have a sequence of all ramps passed
along the highway after returning to the highway at
rdσ(k−1) ∈ R after delivering predecessor job σ(k−1)
and before leaving at ramp roσ(k) ∈ R for picking up
successor job σ(k).

– We have a sequence of all ramps passed along the
highway before leaving the highway for the first time
at roσ(1) ∈ R, and we have a sequence of all ramps
passed after entering the highway for the last time at
rdσ(|J |) ∈ R.

Since the ECV can change its direction of travel only at
ramps, a solution thus specifies the exact routing and hence
its battery’s charge as a function of the total distance traveled
up to a certain point of its route.

A solution is position-feasible if the ECV is located at
its initial position at the start and the end of the routing,
respectively, and any pair of ramps that are consecutive in
the routing are consecutive along the highway as well.

A position-feasible solution is furthermore
charge-feasible if the battery level does not drop below zero
at any position along the route.

In a charge-feasible solution, the ECV can travel any seg-
ment between two ramps an arbitrary number of times to
charge the vehicle. Note that such a charging detour occurs
in solution (d) of Fig. 2. Zigzag routes where the ECV travels
multiple charging loops, which might even be nested, seem
counterintuitive, but can be the optimal choice to minimize
the makespan. In order to obtain a lever with regard to the
occurrence of charging detours, we enrich the problem by an
additional parameter. Integer parameter � imposes an upper
bound on the number of charging detours allowed between
any pair of consecutive pickups and deliveries (and before the
first pickup and after the last delivery). We identify a charg-
ing detour by a change of travel direction at a ramp where
the highway is not left for picking up or delivering a job.

A charge-feasible solution is feasible if the number of
detours taken between any pair of consecutive pickups and
deliveries (and before the first pickup and after the last deliv-
ery) does not exceed �.

The electric vehicle routing problem on a line with full-
truckloads and overhead wiring (EVRP-LFO) is to find a

feasible solution with minimum total travel distance along
the highway.

3.3 Computational complexity

In this section, wewill analyze the computational complexity
of EVRP-LFO. More specifically, we show that two rather
restricted special cases of the problem areNP-hard. Further-
more, our problem is also shown to be hard to approximate
within an arbitrarily small factor.

First, we consider the special case of EVRP-LFO, where
we have only a single electrified segment.

Theorem 1 EVRP-LFO is stronglyNP-hard, even if W = 1,
δ+ = δ− = 1, loj = ldj = 0 for each j ∈ J , and � ≥ 1 is
fixed.

Proof See Appendix. �	
Not only is our EVRP-LFO with a single electrified seg-

ment hard to solve, but it is also hard to approximate within
arbitrarily small factors, as we will see in the following.

Theorem 2 There is nopolynomial-timeapproximationalgo-
rithm for EVRP-LFO with a factor of less than 1.5 unless
P = NP .

Proof See Appendix. �	
Finally, we show that solving EVRP-LFO remains a com-

plex matter, even if we have only a single job. Note that
this finding directly implies that even if the job sequence
is already given (e.g., determined by some metaheuristic), a
complex optimization task remains as a subproblem.

Theorem 3 EVRP-LFO is NP-hard even if |J | = 1, C =
∞, and δ+ = δ− = 1.

Proof See Appendix. �	
We can summarize that at least two aspects render EVRP-

LFO inherently hard to solve. As stated by Theorem 1,
determining the optimum sequence of jobs is hard even if
choosing the electrified segment for recharging is not an
issue. On the other hand, choosing the optimum electrified
segments for recharging is also hard even if finding the job
sequence is not an issue; see Theorem 3.

4 Solution approaches

This section is dedicated to our solution approaches. Sec-
tion 4.1 provides a mixed-integer program that can be fed
into an off-the-shelf solver. Section 4.2 presents a dynamic
programming (DP) scheme for the subproblem that remains
once the job sequence is already specified. This scheme is
then applied in Sect. 4.3 to derive heuristic decomposition
approaches.
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4.1 Amixed-integer program

We summarize the notation used in our mixed-integer pro-
gramming (MIP) formulation, which we dub EVRP-LFO-
MIP, in Table 1. EVRP-LFO-MIP consists of objective (1)
and constraints (2) to (27).

The basic idea for the modeling approach is to have a
sequence of ramps being visited by the ECV. Binary variable
xk,r specifies whether ramp r is the one in the kth position
of the sequence (xk,r = 1) or not (xk,r = 0). Note that
ramps r and r ′ with xk,r = xk+1,r ′ = 1 are not necessarily
consecutive, and xk,r = xk+1,r ′ = 1 implies all ramps in
between r and r ′ being passed by. Binary variables yk, j and
zk, j specify whether job j is picked up or delivered (yk, j = 1
or zk, j = 1) via the kth ramp visit or not (yk, j = 0 or
zk, j = 0). Auxiliary continuous variables cak and cdk track
(a lower bound of) the charge level when arriving at the kth
ramp and when leaving the kth ramp, respectively. Finally,
auxiliary continuous variables Xk,r ,r ′ signal whether the k−
1th ramp is r and the kth ramp is r ′. Note that although Xk,r ,r ′
is defined to be continuous, it only takes binary values in
a feasible solution. Furthermore, we introduce dummy end
position rd and set F , which contains all ramp pairs among
which feasible drives are possible, that is

F =
{
(r , r ′) with r ∈ R, r ′ ∈ R\{r} ∪ {rd} : cmin

r ,r ′ ≤ C
}

.

The dummy end position is introduced merely for modeling
purposes and coincides in its position with r0 (the dedicated
final position of the ECV). A pair (r , r ′) qualifies for F if
a constant movement between two ramps r and r ′ without
intermediate direction change does not necessarily drain the
battery; that is, cmin

r ,r ′ ≤ C must hold, where cmin
r ,r ′ is the min-

imum charge level required for driving from pr straight to
pr ′ without leaving the highway.

EVRP-LFO-MIP: MinimizeZ(x, y, z, ca, cd,X)

=
∑

k∈S\{1}

∑
(r ,r ′)∈F

dr ,r ′ Xk,r ,r ′ (1)

subject to
∑
k∈S

yk, j = 1 ∀ j ∈ J (2)

∑
k∈S

zk, j = 1 ∀ j ∈ J (3)

∑
j∈J

yk, j ≤ 1 ∀ k ∈ S (4)

∑
j∈J

zk, j ≤ 1 ∀ k ∈ S (5)

∑

r∈R∪{rd }
xk,r = 1 ∀ S\{1, M} (6)

xk,roj ≥ yk, j ∀ k ∈ S; j ∈ J (7)

xk,rdj
≥ zk, j ∀ k ∈ S; j ∈ J (8)

k∑
k′=1

∑
j∈J

(yk′, j − zk′, j ) ≤ 1 ∀ k ∈ S (9)

∑
k∈S

(k · zk, j − k · yk, j ) ≥ 0 ∀ j ∈ J (10)

xk−1,r + xk,r ′ − 1 ≤ Xk,r ,r ′ ∀ k ∈ S\{1}; (r , r ′) ∈ F ∪ {(rd , rd )}
(11)

xk−1,r + xk,r ′ ≥ 2 · Xk,r ,r ′ ∀ k ∈ S\{1}; (r , r ′) ∈ F ∪ {(rd , rd )}
(12)∑

(r ,r ′)∈F∪{(rd ,rd )}
Xk,r ,r ′ = 1 ∀ k ∈ S\{1} (13)

cak ≤ cdk−1 +
∑

(r ,r ′)∈F
δr ,r ′ Xk,r ,r ′ ∀ k ∈ S\{1} (14)

cak ≤
∑

(r ,r ′)∈F
cmax
r ,r ′ Xk,r ,r ′ ∀ k ∈ S\{1} (15)

cdk ≤ cak − δ− ·
∑
j∈J

loj · yk, j ∀ k ∈ S (16)

cdk ≤ cak − δ− ·
∑
j∈J

ldj · zk, j ∀ k ∈ S (17)

cdk ≤ cak − (zk, j + yk, j ′ − 1) · δ− · ld,o
j, j ′ ∀ k ∈ S;

j, j ′ ∈ J : rdj = roj ′ , δ
− · ld,o

j, j ′ ≤ C (18)

zk, j + yk, j ′ ≤ 1 ∀ k ∈ S; j, j ′ ∈ J : rdj = roj ′ , δ
− · ld,o

j, j ′ > C

(19)

cdk−1 ≥
∑

(r ,r ′)∈F
cmin
r ,r ′ Xk,r ,r ′ ∀ k ∈ S\{1} (20)

k+�∑
k′=k

∑
j∈J

(yk′, j + zk′, j ) + xk+�,rd ≥ 1

∀ k ∈ S\{1, M − � + 1, . . . , M} (21)
0 ≤ cak ≤ C ∀ k ∈ S\{1} (22)

0 ≤ cdk ≤ C ∀ k ∈ S (23)

xk,r ∈ {0, 1} ∀ k ∈ S\{1}; r ∈ R ∪ {rd } (24)
yk, j ∈ {0, 1} ∀ k ∈ S; j ∈ J (25)
zk, j ∈ {0, 1} ∀ k ∈ S; j ∈ J (26)

Xk,r ,r ′ ≥ 0 ∀ k ∈ S\{1}; (r , r ′) ∈ F ∪ {(rd , rd )} (27)

Objective function (1) reflects the goal to minimize the
total driving distance along the highway. Constraints (2) to
(10) altogether establish proper sequences of visited ramps
with all jobs being processed. Specifically, constraints (2)
and (3) ensure that each job is picked up and delivered. Due
to constraints (4) and (5), at most one job can be picked
up and delivered in each slot of the sequence, respectively.
Constraints (6), (7), and (8) establish that there is exactly
one position in each slot of the sequence and that positions
are compatible with pickups and deliveries. Constraints (9)
and (10) ensure that at most one job is processed at each
moment and that jobs are delivered only after being picked
up, respectively.
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Constraints (11) to (20) establish the feasibility of solu-
tions with respect to charge levels. Constraints (11) to (13)
connect auxiliary variable Xk,r ,r ′ to variables xk−1,r and
xk,r ′ . Constraints (14) bound the charge level when arriving
at the kth ramp from above, depending on the charge level
when leaving the previous ramp and the net change in the
charge level on travel. In addition, constraints (15) impose
an upper bound on the charge level when arriving at the kth
ramp depending only on the kth ramp r ′ and the previous
ramp r . We can predetermine cmax

r ,r ′ under the assumption that
the ECV starts at r with a fully charged battery. Note that
the resulting charge level at r ′ does not depend on the spe-
cific charge level when leaving r as long as at some point
of the travel from r to r ′ the battery is fully charged. Con-
straints (16) to (19) bound the charge level when leaving a
ramp from above depending on the charge level when arriv-
ing at this ramp and jobs picked up or delivered in between.
Note that only cdk ≤ cak is enforced if no job is picked up
or delivered and that (18) dominates both (16) and (17) if

zk, j = yk, j ′ = 1 due to ld,o
j, j ′ ≥ max

{
ldj , l

o
j ′
}
. Finally, con-

straints (20) ensure that the charge level when leaving the
previous ramp is sufficient to reach the current one. Again,
we can preprocess cmin

r ,r ′ .
Furthermore, constraints (21) ensure that in a sequence

of � + 1 consecutive slots, at least one pickup or deliv-
ery occurs, or the final position has been ultimately reached,
which establishes the upper bound on the number of charg-
ing detours that is allowed between any pair of consecutive
pickups and deliveries. Finally, the variables’ domains are
defined in (22) to (27).

While themodel specified by (1) to (27) precisely captures
problem EVRP-LFO, we can reduce symmetry and exclude
dominated solutions from the solution space using the fol-
lowing valid inequalities.

r−1∑
r ′=1

xk−1,r ′ + xk,r +
m∑

r ′=r+1

xk+1,r ′ ≤ 2 +
∑
j∈J

(yk, j + zk, j )

∀ k = 2, . . . , M − 1; r ∈ R (28)

xk−1,r + xk,r ′ − 1 ≤
∑
j∈J

(yk−1, j + zk−1, j ) +
max{r ,r ′}−1∑

r ′′=min{r ,r ′}+1

xk−2,r ′′

∀ k = 3, . . . , M;
r , r ′ ∈ R, r �= r ′, δr ,r ′ + δr ′,r ≤ 0 (29)

xk−1,r + xk,r ′ − 1 ≤
∑
j∈J

(yk, j + zk, j ) +
max{r ,r ′}−1∑

r ′′=min{r ,r ′}+1

xk+1,r ′′

∀ k = 2, . . . , M − 1;
r , r ′ ∈ R, r �= r ′, δr ,r ′ + δr ′,r ≤ 0 (30)

In the model as introduced above, there are probably multi-
ple solutions representing the same route taken by the ECV.
For any pair of nonconsecutive ramps r and r ′ in positions
k and k + 1 of the sequence, we can prolong the sequence
by inserting a visit of a ramp in between r and r ′ between

positions k and k+1 of the sequence (unless we violate con-
straints (21) when doing so). By adding constraints (28) to
the model, we enforce a ramp visit, which lies between the
previous ramp and the next one, to imply a pickup or deliv-
ery. Hence, we allow only those ramp visits in a sequence
that signal a charging detour or correspond to a pickup or a
delivery.

So far, the model allows arbitrary detours. Some of them
clearly cannot be beneficial and are excluded by the following
restrictions. Constraints (29) state that if the tour leads from
ramp r to r ′ with δr ,r ′ + δr ′,r ≤ 0, then a job is picked
up or delivered in r or the ramp r ′′ visited before r lies in
between r and r ′. Assume that no job is picked up or delivered
in r . Due to (28), r cannot lie in between r ′′ and r ′. Now,
furthermore, assume that r ′′ does not lie in between r and r ′.
Then, our ECV travels from r ′′ to r passing r ′ and then back
to r ′. Since δr ,r ′ + δr ′,r ≤ 0, we can drop the travel back
and forth between r and r ′ without violating any constraints
and without increasing the total travel distance. Constraints
(30) establish the same if no pickup or delivery occurs in r ′
concerning the ramp visited after r ′.

Naturally, feeding model EVRP-LFO-MIP into a default
solver is one approach to solve our EVRP-LFOproblem.Due
to our complexity results (see Sect. 3.3), however, it is to be
expected that this approach is not able to solve large-sized
problem instances. Therefore, we present a DP approach
for a given job sequence in Sect. 4.2. This scheme is then
applied in the heuristic decomposition approaches presented
in Sect. 4.3.

4.2 Dynamic programming for given job sequences

We consider the problem of finding a routing for a given
job sequence σ , such that the former is optimal among all
solutions with given job sequence σ . Theorem 3 implies that
this problem is NP-hard. Here, we propose a DP approach
that runs in pseudo-polynomial time.

We consider a state (r , c, v, π) for each r = 1, . . . , |R|,
c = 0, . . . ,C , v = 0, . . . , 2|J |, and π = 0, . . . ,� repre-
senting the ECV being in position pr along the highway with
charge level c after having conducted v pickups and deliv-
eries, and after π charging detours since the last pickup or
delivery. We have a transition from state (r , c, v, π) to state
(r ′, c′, v′, π ′) if

• v′ = v, cmin
r ,r ′ ≤ c, c′ = min{c + δr ,r ′ , cmax

r ,r ′ }, and π ′ =
π + 1 (reflecting a charging detour to r ′),

• v′ = v + 1 is odd, cmin
r ,r ′ ≤ c, r ′ = roj with j = σ((v′ +

1)/2), c′ = min{c + δr ,r ′ , cmax
r ,r ′ } − δ− · loj , and π ′ = 0

(reflecting the pickup of job j via ramp r ′),
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• v′ = v + 1 is even, cmin
r ,r ′ ≤ c, r ′ = rdj with j = σ(v′/2),

c′ = min{c+δr ,r ′ , cmax
r ,r ′ }−δ− · ldj , and π ′ = 0 (reflecting

the delivery of job j via ramp r ′), or
• v′ = v + 2 is odd, cmin

r ,r ′ ≤ c, r ′ = rdj = roj ′ with j =
σ((v′ − 1)/2) and j ′ = σ((v′ + 1)/2), c′ = min{c +
δr ,r ′ , cmax

r ,r ′ } − δ− · ld,v
j, j ′ , and π ′ = 0 (reflecting both, the

delivery of job j and the pickup of j ′ via ramp r ′ without
intermediate return to the highway).

Costs c((r , c, v, π), (r ′, c′, v′, π ′)) of a transition from
(r , c, v, π) to (r ′, c′, v′, π ′) reflect the total travel distance
after leaving ramp r and before being ready to leave ramp
r ′. We evaluate each state (r , c, v, π) by d(r , c, v, π), which
is the total travel distance for reaching (r , c, v, π). We set
d(r0, c0, 0, 0) = 0 and d(r , c, 0, 0) = ∞ for each r �= r0

or c �= c0. For all other states, we formulate the following
Bellman function:

d(r , c, v, π) = min
{
d(r ′, c′, v′, π ′) + c((r ′, c′, v′, π ′), (r , c, v, π)) |

(r ′, c′, v′, π ′) ∈ P(r , c, v, π)
}
,

where P(r , c, v, π) is the set of states that have a transi-
tion leading to (r , c, v, π). The problem is then to determine
min

{
d(r0, c, 2|J |, π) | c = 0, . . . ,C;π = 0, . . . , �

}
, that

is, the state with all jobs completed and the ECV returned to
its initial position, implying minimum total travel distance.

We haveO(|R| ·C · |J | ·�) states andO(|R|2 ·C · |J | ·�)

transitions. Checking whether a particular transition exists
and, if so, determining its associated costs can be accom-
plished in constant time (after having predetermined each
cmin
r ,r ′ , cmax

r ,r ′ , and δr ,r ′ ). Hence, we end up with an overall com-

putational effort of O(|R|2 · C · |J | · �).
To reduce the number of states, we further apply the fol-

lowing extensions:

• Dominance: A state (r , c, v, π) dominates another state
(r , c′, v, π ′) if c ≥ c′, π ≤ π ′ and d(r , c, v, π) ≤
d(r , c′, v, π ′) holds. In both states, the ECV has reached
the same position after conducting the same operations.
In the dominated state, however, the current battery
charge is lower (or equal), and there is less (or the same)
freedom for charging. We then do not need to further
consider the dominated state.

• Fathoming: State (r , c, v, π) can be fathomed if
d(r , c, v, π)+�(r , v) ≥ UB holds. Here,UB denotes a
valid upper bound, such as d(r0, c, 2|J |, π), and�(r , v)

reflects the total driving distance from r necessary to
conduct the remaining operations v + 1, . . . , 2|J | and
to eventually reach position r0 while ignoring the need
to recharge.

Example (cont.) For our example introduced in Fig. 2a,
the resulting DP graph for � = 0 and given job sequence
〈1, 2, 3, 4] is depicted in Fig. 4. The bold path corresponds
to the optimal solution depicted in Fig. 2b.

4.3 Decomposition approaches

This section introduces two alternative decomposition
approaches that both derive one or multiple job sequences
on a first stage and solve the remaining subproblem, i.e., the
optimal sequencing of ramp visits for the given job sequence,
with our DP approach of Sect. 4.2.

Construction heuristic for a single job sequence (GG)We
employ the seminal approach ofGilmore andGomory (1964)
for determining a single job sequence on the first stage.
Their solution procedure determines a minimum makespan
schedule in polynomial time for a single vehicle execut-
ing full-truckload point-to-point deliveries without charging
restrictions. To apply this approach, we only have to remove
all charging information for a data instance. The resulting
job sequence σ , obtained by the approach of Gilmore and
Gomory (1964), is then handed over to the second stage of our
decomposition procedure, where we apply our DP approach
to determine the optimal sequence of ramp visits for the given
job sequence. The resulting solution is the solution of our first
decomposition approach GG.

Example (cont.) For our example introduced in Fig. 2, job
sequences 〈1, 2, 3, 4] and 〈3, 4, 1, 2] both lead to an optimal
objective value of 2.0, if charging is a non-issue. Thus, it
depends on the implementation with regard to which of these
two optimal job sequences is returned by the procedure of
Gilmore and Gomory (1964) and whether applying our DP
approach leads to overall optimal solution (b) with a total
distance of 2.0 or nonoptimal solution (d) with total distance
2.6.

Multi-start Tabu search for a multiple job sequences
(TABU) Applying only a single job sequence is very fast,
but we cannot rule out considerable optimality gaps (see our
example). Therefore, we also introduce a second decomposi-
tion approach that applies a straightforward multi-start Tabu
search scheme to derive multiple job sequences on the first
stage and to evaluate a selected job sequence applying our
DP procedure on stage two. Tabu search is a metaheuristic
that was introduced by Glover (1989). To diversify its local
search process, Tabu search applies a memory mechanism
for identifying solutions already evaluated. Specifically, our
TABU decomposition approach proceeds as follows. Note
that the line referenced in the following description refer to
the pseudo-code of Algorithm 1.

We follow a multi-start approach and generate κ initial
job sequences first. One job sequence σ1 is obtained with the
solution procedure of Gilmore and Gomory (1964) (line 1).
With σ1 on hand, we generate κ −1 additional sequences σi ,
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Fig. 4 DP graph for � = 0 and job sequence 〈1, 2, 3, 4] of our example

with i = 2, . . . , κ , by randomly reassigning φ1 percent of
the positions of job sequence σ1 (line 2). For each sequence
σi , with i = 1, . . . , κ , we determine both Z(σ ), which rep-
resents the optimal objective value obtained by our DP, and
ZNC (σ ), which equals the distance of the direct drive along
the given job sequence without charging.

These solutions are handed over to the iterative part of
our first stage, where the following Tabu search approach
is performed in parallel for each single initial solution on a
separate processor core (line 4). Starting with the initial solu-
tion, each iteration replaces the current solution with the best
(non-Tabu) neighboring solution (lines 11, 17, and 18), even
if the objective value of the latter is worse (best-fit approach)
(lines 10 and 16). The neighborhood is defined by swap-
ping any two job pairs in the job sequence (line 9). To avoid
cycling, a Tabu list is applied that forbids performing certain
moves for aminimumnumber i ttabu of iterations (also known
as “Tabu tenure”) (lines 10, 16, and 19). In our Tabu list, we
store the positions in the sequence that were swapped. A pro-
hibited move is performed nonetheless if it provides a new
best solution (also known as “aspiration criterion”) (lines 13
and 14). This approach is repeated until our stop criterion
is met, which is reached once a maximum number i t f ail of
subsequent iterations without a new best solution have been
executed (line 7). To save computational effort, we do not
evaluate each neighboring solution by our DP on the sec-
ond stage, but only those where ZNC (σ ) does not exceed φ2

percent of the length of the initial sequence ZNC (σi ) (lines
3 and 12). If none of the neighboring solutions fulfills this
condition, the non-Tabu solution with the best value of our
surrogate objective ZNC (σ ) is applied as the new current
solution instead (lines 11 and 18).

The solution process of TABU is steered by five basic
steering parameters. Preliminary tests (that for a matter of
conciseness are not reported in this paper) have shown that
the following parameter setting delivers a reasonably good
compromise between solution time and quality: κ = 6, φ1 =
10%, φ2 = 105%, i ttabu = 5, and i t f ail = 15.

Algorithm 1: Multi-start tabu search procedure

1 generate σ1; // job sequence by GG
2 generate σi = Shake(σ1), i = 2, . . . , κ; // modified job
sequences

3 determine Zi = ZNC (σi ), i = 1, . . . , κ; // surrogate
value

4 for (i = 1; i ≤ κ; i++) do
5 Z∗

i = Z(σi ), σ
∗
i = σi ; // best

objective/sequence
6 j = 0; // counter for non-improving

iterations
7 while ( j ≤ i t f ail ) do
8 Z

∗ = ∞, Z
∗
NC = ∞; j++; // best (surrogate)

objective
9 for each(σ ∈ Neighbor(σi )) do

10 if (Z
∗ == ∞ and ZNC (σ ) < Z

∗
NC and

σ /∈ TabuList) then
11 Z

∗
NC = ZNC (σ ); σ ∗ = σ ; // update

current (surrogate)
// objective/sequence

12 if (ZNC (σ ) ≤ Zi · φ2) then
13 if (Z(σ ) < Z∗

i ) then
14 Z∗

i = Z(σ ); σ ∗
i = σ ; // update best

objective/sequence

15 Z
∗ = Z(σ ); σ ∗ = σ ; j = 0; // update

current obj/seq/counter

16 else if (Z(σ ) < Z
∗
and σ /∈ TabuList) then

17 Z
∗ = Z(σ ); σ ∗ = σ ; // update

current objective/sequence
18 σi = σ ∗; // update sequence
19 Update(TabuList); // update tabu list
20 i∗ = argmini=1,...,κ Z∗

i ; // determine best solution
21 return sol(σ ∗

i∗ ); // return best solution during
all restarts

5 Computational performance

This section explores the performance of our solution
approaches. To ensure systematic tests, we benchmark our
solution procedures on generated data. The data generator
that obtains our test data is elaborated on in Sect. 5.1. Then
we discuss the performance results in Sect. 5.2.
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5.1 Test data and setup of study

This section reports on our data generator, which is based
on that applied by Schwerdfeger et al. (2021) for placing
the electrified and non-electrified segments of charge-while-
drive infrastructure. To test the performance of our solution
approaches, we vary the number of jobs |J |, the number of
ramps |R|, the percentage of highway electrification l, and
the maximum number � of charging detours that we allow
our ECV. Given this input data, a single instance is obtained
as follows.

• Highway: Each instance considers a highway of length
L = 100 km,where |R| ramps are randomly spread along
the line using a uniform distribution. Recall that we con-
sider a bidirectional highway where the ramps for both
driving directions are strictly symmetric.

• Electrification: According to Kühnel et al. (2018), sub-
stations, to supply the overhead wire systemwith energy,
have to be erected every 3 km. Therefore, for each direc-
tion, we randomly spread electrified sections of 3-km
length until at least l% of the highway is equipped with
electrified segments. Note that we randomly draw each
starting point of an electrified segment along the highway
according to a uniform distribution. If a starting point
falls within an already existing electrified segment, we
prolong the latter by the overlap. Further note that we
do not assume strictly symmetrical electrified and non-
electrified segments in both driving directions, so that the
overhead wiring is placed for each direction separately.

• ECV: In line with (Davis & Figliozzi, 2013), we assume a
maximum battery capacity of C = 160 km for the truck.
Thus, the consumption rate in non-electrified sections is
δ− = 1. Furthermore, Wietschel et al. (2017) report that
an ECV charges energy for a driving range between 10
and 30 km when driving 2 or 3 km along an electrified
section. Thus, we assume a default charging rate of δ+ =
5 per km. The origin (and destination) of the truck is
randomly drawn among the available ramps along the
highway, with r0 = rd . The initial charge level c0 is set
to a uniformly distributed random integer between 0 and
battery capacity C . To reduce the chance of infeasible
solutions, we repeat the instance generation until there
exists at least one ramp r ∈ R with cmin

r0,r
≤ c0, cmin

r ,r0
≤

min{cmax
r ,r0

, c0 + δr0,r }, and δr0,r + δr ,r0 > 0, so that there

exists a cycle r0 − r − r0 the ECV can reach without
energy shortage and that suffices to charge the battery.

• Jobs: Analogously to the ECV, jobs are generated by
randomly drawing their pickup and drop-off positions
among the available ramps along the highway with roj �=
rdj for each j ∈ J . Furthermore, we have to determine the
actual starting point and destination for each job j ∈ J

beyond the highway. To compute loj , l
d
j , and ld,o

j, j ′ , we

determine polar coordinates (α2, β), where α and β are
uniformly distributed random numbers (i.e., α ∈ U(0, 1)
and β ∈ U(0, 360)). Applying the Euclidean distance,
α2 reflects the distance between the ramp and the actual
starting point and destination. Specifically, we set loj and

ldj to 2
⌈
α2 · C/2

⌉
. Thus, each job has its actual start

and destination up to 80 km beyond the highway, so that
our ECV can travel the way back and forth the highway
without intermediate charging. To determine travel dis-
tances ld,o

j, j ′ for jobs j, j ′ ∈ J , with rdj = roj ′ , we apply
the Euclidean distance between the two locations dej, j ′

and set ld,o
j, j ′ = loj /2 + ldj /2 +

⌈
dej, j ′ · C/2

⌉
. To reduce

the probability of infeasible solutions, we repeat instance
generation until there exists at least one ramp r ∈ R sat-
isfying cmax

r ,roj
≥ δ−loj and δroj ,r

+ δr ,roj
> 0 or one ramp

r ′ ∈ R satisfying cmax
r ′,rdj

≥ δ−ldj and δrdj ,r
′ + δr ′,rdj

> 0.

The data generator and all our procedures have been imple-
mented inC# (usingMicrosoft Visual Studio 2019). The tests
have been carried out on an x64PCwith an Intel Core i7-3770
3.40-GHzCPU and 16.0GB of RAM.As a default solver, we
have applied Gurobi (version 9.0.0). If not stated otherwise,
we have applied a general time limit of 1800 seconds.

5.2 Computational results

First, we investigate the impact of input parameter �, i.e.,
the maximum number of charging detours allowed between
two subsequent jobs, on the performance of our dynamic
programming approach (see Sect. 4.2). Recall that a direct
drive between two subsequent jobs may not gather the ECV
enough energy to successfully accomplish the drive beyond
the highway on non-electrified roads. In this case, a charg-
ing detour, in the worst case consisting of multiple zigzag
turns along electrified highway segments, may be inevitable
to either reach feasibility or an optimal solution. However,
charging detours are counterintuitive for human planners
used to the advantageousness of direct drives, and param-
eter � allows us to restrict the number of charging detours
between two subsequent jobs. Beyond its impact on the plau-
sibility and acceptability of solutions for human planners,
parameter � also impacts the performance: the greater the
number of charging detours allowed (and thus the larger �),
the larger the solution space.

To explore the impact of parameter �, Fig. 5(left) reports
on the gap (dubbed gapb) of a specific parameter value of �

related to the best solution found with the largest � = 20.
Figure 5(right) indicates the resulting computational time
in CPU seconds. For this test, we assume |J | = 50 jobs,
|R| = 20 ramps, and a share of highway electrification of
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Fig. 5 Impact of parameter � ∈ {1, 2, 3, 5, 10, 20} on the performance of our DP approach in terms of solution quality (left) and computational
time (right)

l = 50%. With these parameters, our instance generator
(see Sect. 5.1) has been applied to generate ten instances.
Furthermore, 100 randomly generated job sequences per
instance were obtained, and the optimum solution for each of
these sequences was determined with our DP approach (see
Sect. 4.2). Note that for each single instance and each job
sequence, a feasible solution could be obtained.

Figure 5 brings good news. The loss of solution quality for
low values of � is small. Even if we allow at most a single
charging detour between any two subsequent jobs, the gap is
well below 3.2%. For even larger values of �, the positive
effect quickly diminishes. Thus, the price for having more
plausible tours for human planners is low. Even if we allow
more zigzagging, however, the solution time of our DP is
not that strongly effected by increasing values of �. Even
instances with larger values of� can be solved quite rapidly.

Next, we turn to our holistic EVRP-LFO problem, which
includes deriving a job sequence. Specifically, we compare
off-the-shelf solver Gurobi solving EVRP-LFO-MIP (see
Sect. 4.1) with our two heuristic decomposition approaches
(see Sect. 4.3) denoted as GG (i.e., a single job sequence
obtained using the algorithm byGilmore andGomory (1964)
handed over to our DP) and TABU (i.e., Tabu search pro-
cedure applying our DP for evaluating neighboring job
sequences). When comparing the performances of these
solution approaches in Table 2, we report on the average
optimality gap in percent determined by Gurobi (column
“Gap”), the average gap in percent to the best solution found
among all competitors (column “Gapb”), the number of times
the respective approach determined the best solution among
all competitors (column “Best”), the number of solutions
proven to beoptimal (column“Opt”), the number of instances

proven infeasible without energy shortage of the ECV (col-
umn “Inf”), the number of instances where at least one
feasible solution was obtained (column “Sol”), and the aver-
age CPU seconds (column “Sec”). Note that our two gaps
can only be reported if at least a single feasible solution has
been found by the respective solution approach. If it failed
in all ten repetitions, we mark this case by “–”. For each
combination of number of jobs |J |, number of ramps |R|,
share of highway electrification l, and the maximum number
of allowed charging detours �, ten instances as described in
Sect. 5.1 have been obtained, so that a total of 360 instances
constitute this test bed. The instances (specifying all parame-
ters but�) can be found in an online repository at https://doi.
org/10.5281/zenodo.6554110. Note that l = 100 represents
a full electrification, whereas l = 50 means that at least 50%
of the highway is equippedwith overheadwires.While lower
values for l are reasonable in the realworld, preliminary com-
putational studies have indicated that Gurobi struggles even
more for lower values. This is why we do not consider any
of these values when comparing our algorithmic approaches.
The results summarized in Table 2 suggest the following con-
clusions.

• Default solver: Obviously, the default solver Gurobi
struggles with our MIP formulation. Even for the small-
est instances with only |J | = 5 jobs, Gurobi is not able to
verify optimal solutions or prove infeasibility within the
given time frame of 1800 CPU seconds in all cases. For
|J | = 10 jobs, either feasible solutions cannot be found
at all, or the gaps (i.e., both the optimality gap reported
by Gurobi and gapb to the best solution) are substantial.
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Table 2 Computational results comparing the performance of Gurobi solving EVRP-LFO-MIP and our two decomposition heuristics GG and
TABU

|J | |R| l � EVRP-LFO-MIP GG TABU

Gap Gapb Best Opt Inf Sol Sec Gapb Best Opt Sol Sec Gapb Best Opt Sol Sec

5 10 50 1 4.2 0.0 10 7 0 10 922.6 5.5 3 2 10 0.0 0.0 10 7 10 0.0

5 10 50 3 34.1 0.6 8 0 0 10 1800.6 4.5 3 0 10 0.0 0.0 10 0 10 0.0

5 10 50 5 37.7 0.5 7 0 0 10 1801.2 3.9 3 0 10 0.0 0.0 10 0 10 0.0

5 10 100 1 6.2 0.0 10 8 0 10 675.1 4.4 6 4 10 0.0 0.0 10 8 10 0.0

5 10 100 3 25.1 0.0 10 3 0 10 1420.1 3.6 6 0 10 0.0 0.0 10 3 10 0.0

5 10 100 5 31.1 0.0 10 0 0 10 1800.6 3.6 6 0 10 0.0 0.0 10 0 10 0.0

5 20 50 1 19.4 0.6 8 3 0 10 1495.1 4.6 5 1 10 0.0 0.0 10 3 10 0.0

5 20 50 3 52.5 17.6 0 0 0 10 1800.3 2.5 5 0 10 0.0 0.0 10 0 10 0.3

5 20 50 5 57.1 22.1 1 0 0 9 1800.5 2.3 6 0 10 0.0 0.0 10 0 10 0.4

5 20 100 1 25.2 0.0 10 4 0 10 1335.2 1.7 8 3 10 0.0 0.0 10 4 10 0.0

5 20 100 3 58.4 4.0 5 0 0 10 1800.3 1.4 8 0 10 0.0 0.0 10 0 10 0.0

5 20 100 5 60.1 1.2 3 0 0 10 1800.5 1.4 8 0 10 0.0 0.0 10 0 10 0.0

10 10 50 1 48.7 12.9 0 0 1 8 1625.6 6.5 0 0 8 0.0 0.0 9 0 9 0.1

10 10 50 3 62.4 29.7 0 0 1 5 1680.4 5.3 0 0 9 0.0 0.0 9 0 9 0.5

10 10 50 5 63.1 29.0 0 0 0 4 1800.3 4.7 0 0 9 0.0 0.0 9 0 9 0.7

10 10 100 1 47.8 3.7 1 0 0 10 1800.2 2.9 4 0 10 0.0 0.0 10 0 10 0.0

10 10 100 3 52.8 6.5 1 0 0 9 1800.3 1.7 5 0 10 0.0 0.0 10 0 10 0.0

10 10 100 5 52.4 6.0 1 0 0 6 1800.3 1.7 5 0 10 0.0 0.0 10 0 10 0.0

10 20 50 1 – – 0 0 0 0 1800.3 3.0 2 0 8 0.0 0.0 9 0 9 0.2

10 20 50 3 72.7 42.7 0 0 0 1 1800.5 2.3 2 0 10 0.0 0.0 10 0 10 5.0

10 20 50 5 70.5 26.9 0 0 0 2 1800.6 2.3 2 0 10 0.0 0.0 10 0 10 6.2

10 20 100 1 78.1 21.4 0 0 0 1 1800.3 1.7 5 0 10 0.0 0.0 10 0 10 0.0

10 20 100 3 82.0 21.9 0 0 0 4 1800.4 1.4 5 0 10 0.0 0.0 10 0 10 0.1

10 20 100 5 81.0 35.1 1 0 0 6 1800.7 1.4 5 0 10 0.0 0.0 10 0 10 0.1

20 10 50 1 – – 0 0 0 0 1800.2 10.0 0 0 8 0.0 0.0 8 0 8 1.2

20 10 50 3 – – 0 0 0 0 1800.4 7.8 0 0 9 0.0 0.0 9 0 9 10.2

20 10 50 5 – – 0 0 0 0 1800.7 7.4 0 0 9 0.0 0.0 9 0 9 15.7

20 10 100 1 – – 0 0 0 0 1800.2 4.8 1 0 10 0.0 0.0 10 0 10 0.3

20 10 100 3 – – 0 0 0 0 1800.4 3.8 1 0 10 0.0 0.0 10 0 10 0.5

20 10 100 5 – – 0 0 0 0 1800.7 3.9 1 0 10 0.0 0.0 10 0 10 0.5

20 20 50 1 – – 0 0 0 0 1800.5 7.1 0 0 9 0.0 0.0 9 0 9 6.0

20 20 50 3 – – 0 0 0 0 1801.1 5.1 0 0 10 0.1 0.0 10 0 10 70.8

20 20 50 5 – – 0 0 0 0 1801.8 5.3 0 0 10 0.1 0.0 10 0 10 97.0

20 20 100 1 – – 0 0 0 0 1800.5 3.6 1 0 10 0.0 0.0 10 0 10 0.6

20 20 100 3 – – 0 0 0 0 1800.9 2.9 1 0 10 0.0 0.0 10 0 10 1.6

20 20 100 5 – – 0 0 0 0 1801.4 2.8 1 0 10 0.0 0.0 10 0 10 1.8

Avg 42.2 7.8 23.9 6.9 0.6 48.6 1704.8 3.8 30.0 2.8 96.9 0.0 0.0 97.5 6.9 97.5 6.1

For larger instances with |J | = 20 jobs, Gurobi is not
able to obtain a single feasible instance.

• GG: Straightforward decomposition heuristic GG per-
forms significantly better than the standard solver. Fea-
sible solutions are obtained for 96.9% of all instances
within a negligible amount of time. Note that if we report
a computational time of 0.0, we actually mean that it is

below0.05CPUseconds. The overall gap to the best solu-
tions found is just 3.8%. Furthermore, this gap exceeds
10% for no class of instances, and it exceeds 6% for only
five classes of instances.

• Tabu: The best solution quality is obtained by our TABU
decomposition approach. In 97.5% of all cases, it finds
a feasible solution and always delivers the best solution
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value. Thus, it also finds all optimal solutions verified by
the default solver. Although the computational times are
higher than those of GG, they are still fairly small for
most instances and never exceed 100 seconds even for
the most complex instances.

We conclude that our decomposition approaches seem well
suited for solving EVRP-LFO. If enough time is at hand,
TABU should be applied. For very large instances or if time
is a pressing concern, such as in a real-time environment, GG
delivers reasonably good solutions very .

6 Managerial issues

In this section, we quantify the induction effect of charge-
while-drive infrastructure and benchmark our ECV exclu-
sively charged via overhead wiring with alternative vehicle
setups.

To quantify the induction effect, we apply the blueprint
of the Autobahn A7, Germany’s longest highway and one of
Europe’s most important north–south main lines. The A7 has
a total length of 963 km (598 mi) and leads from Handewitt
at the border to Denmark to Füssen, a Bavarian town near the
border toAustria. In total, theA7 has 140 on-ramps and exits,
whichwe recordedwith the help of Scholl (2020) andGoogle
Maps. For all remaining parameters, we apply our data gen-
erator defined in Sect. 5.1. Specifically, we assume |J | = 50
jobs and vary two parameters: the percentage of highway
electrification l ∈ {20, 30, 40, 50} and charging efficiency
δ+ ∈ {1, 2, . . . , 9}. Recall that both Kühnel et al. (2018) and
Schwerdfeger et al. (2021) assume that electrifying about
l = 30%of the highway network is a reasonable compromise
in the trade-off between service level and investment costs.
Furthermore, Wietschel et al. (2017) report that the status
quo charging rate of current-generation overhead wiring is
δ+ = 5. Thus, we vary our parameters around these default
values. For each parameter setting, we generate ten instances,
so that a total of 360 instances have been obtained. Each of
these instances has been solved with our GG approach (see
Sect. 4.3), which was able to find feasible solutions for 305
instances. The obtained travel distances of GG are related
to the optimal routes determined by the exact approach of
Gilmore and Gomory (1964) if charging is a nonissue. Note
that the drives from start to destination ramp along the high-
way are constant, so that we only report on the empty drives
on the highway from the previous customer’s delivery to the
subsequent customer’s pickup plus the (potential) charging
detours of our ECV. The results of this test (i.e., for detour
parameters � = 1 and � = 5) are reported in Fig. 6. The
following conclusions can be drawn from these results.

• Largest induction effect: First, we can conclude that the
induction effect of charge-while-drive infrastructure can
be substantial, especially if (to save investment costs)
large parts of the highway remain un-electrified (small l)
and the charging efficiency of the overhead wiring is low
(small δ+). If both are given, up to 84% and 49% extra
traffic for � = 1 and � = 5, respectively, threatens if
full-truckload logistics providers tailor their ECV routes
for the usage overhead wiring.

• Impact of �: If we allow more zigzagging (� = 5),
gathering enough energy to make the drives to the cus-
tomers beyond the highway can be achieved within a
shorter total distance. Thus, the induction effect reduces
with larger �. However, in particular in areas close to
large urban populations with numerous potential cus-
tomers, additional charging traffic may concentrate on
central electrified segments.

• Average and smallest induction effect: If we assume the
most plausible values and presuppose that l = 30% of
the highway is electrified (see Kühnel et al., 2018) and
that the charging efficiency is δ+ = 5 (see Wietschel et
al., 2017), then we still witness an induction effect of
about 5 to 6% extra traffic for charging detours. An even
higher level of electrification and a more efficient charg-
ing reduce the induction effect to a minimum between 2
and 3% in our experiments.

It can be concluded that the induction effect of charge-while-
drive infrastructure should not be neglected when evaluating
the pros and cons of this charging alternative.When deciding
on the layout of charge-while-drive infrastructure within a
highway network, naturally, themost frequented parts are the
first candidates for electrification. Once realized, however,
these central segments of the highway will then also attract
the most charging detours, so that the induction effect in
these segments can be especially pronounced. Thus, when
neglecting this effect, central and well-frequented highway
segments are especially at risk of being burdened with even
more traffic. This effect may be even more pronounced in the
ramp-up phase when power obtained via overhead wiring is
subsidized by public authorities to attract participants. In this
case, even more extra traffic threatens, because ECVs having
an additional plug-in option or a diesel engine are also nudged
toward taking charging detours in order to save energy costs.

Next, we benchmark our ECV setup exclusively obtaining
energy from overhead wires with alternative vehicle types.
For this benchmark test, applying the same instances as
before, we record not only the total travel distances, but
also the total travel time (makespan) to supply all customers,
including charging times, and the resulting CO2 emissions.
Specifically, we compare the following five vehicle types:
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Fig. 6 Induction effect of charge-while-drive infrastructure: additional driving distances of the ECV in % charged via overhead wires related to
the optimal solutions if charging is a nonissue depending on the share of highway electrification l and charging efficiency δ+

• Diesel truck: Today’s status quo is certainly still the con-
ventional truck exclusively powered by a diesel-fueled
combustion engine. For this vehicle setup, charging is a
nonissue, so that its optimal route can be determined by
the algorithm of Gilmore and Gomory (1964).

• ECV-plug-in: This vehicle type exclusively charges its
battery while plugged in at a stationary charging station.
The route for this case is also determined by the proce-
dure of Gilmore and Gomory (1964), but we have to add
charging stops to avoid energy shortages. To specify the
efficiency of stationary charging, we redefine parameter
δ+, so that stationary charging is as efficient as the charge-
while-drive technology. In this interpretation, a value of
δ+ = 9, for instance, means that a range of 12 km is
added per minute of charging, which equals the superfast
charging times announced for the Tesla Semi (Howard,
2017). We assume that charging stations are available at
any ramp, so that the ECV can charge exactly the amount
required for reaching the next customer or filling the bat-
tery to capacity whenever needed.

• Vehicle type ECV-overhead: denotes the case where an
ECV charges its battery for driving along non-electrified
road segments via only overhead wiring. Neither an
additional plug-in option for charging stationary nor an
additional combustion engine is available. This equals
our previous vehicle setup producing the induction effect.
To emulate the behavior of this vehicle, we solve each
data instance with our decomposition approach GG (see
Sect. 4.3) and allow � = 1 charging detour between
subsequent jobs.

• ECV-overhead-diesel: In this setup, our previous ECV is
additionally equipped with a conventional diesel engine,

which automatically steps in if the battery charged via
the overhead wires is depleted. This allows the vehicle to
strictly follow the shortest route obtained by the proce-
dure of Gilmore and Gomory (1964).

• ECV-overhead-plug-in: Finally, an ECV charged via
overheadwires can also have an additional plug-in option
to charge while parking at a charging station. We assume
that in this case, charging detours are not accepted, so
that the truck follows the shortest route determined by the
approach of Gilmore and Gomory (1964). The battery is
charged via the overhead wiring whenever the ECV trav-
els along an electrified segment of the given route. But if
these gains of energy are not sufficient, we fall back on
the stationary charging opportunities also offered in the
ECV-plug-in case.

Note that for each of the five vehicle types, we assume
an underlying job sequence according to the algorithm of
Gilmore and Gomory (1964), which makes the resulting
routes easier to compare. For each of these vehicle setups,
we determine the routes for all our 360 instances elaborated
above. In each case, we record the following three perfor-
mance indicators. The total length of the routes of these
vehicle types directly corresponds to one important perfor-
mance measure denominated “distance” in Table 3. Note,
however, that the total travel distance from each job’s origin
to its destination is constant, and as all vehicles apply the
same job sequence, those drives from the highway to jobs’
origins and from jobs’ destination back to the highway are
almost equal. Thus, we only report on the remaining variable
parts of the route, i.e., the empty travel distance from the pre-
vious job’s destination ramp to the subsequent job’s origin
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ramp plus the (potential) charging detours of an ECV. For
calculating the total delivery time (dubbed “time” in Table
3) for such a travel distance, we assume a constant driv-
ing speed of 80 km/h and add the charging times for those
ECVs applying the plug-in alternative based on the respec-
tive charging efficiency δ+. Finally, to derive the total CO2

emissions that a vehicle (permanently or part-time) powered
by its diesel engine emits on its route,we presuppose an emis-
sion rate of 700 g/km of CO2 (Dresden, 2014; Kühnel et al.,
2018), whereas we assume only 50 g/km of emitted CO2 for
ECVs powered by 100% renewable electric energy (Dresden,
2014). Thus, our CO2 emissions reported below have to be
adapted if the fraction of renewable energy is actually lower.

In Table 3, we again vary the share of highway electri-
fication l and charging rates δ+. The outcomes of the four
ECV-based vehicle concepts, averaged over all ten instances
obtained for each parameter setting, are related to the status
quo of a conventional diesel truck, which constitutes 100%
of each measure. Note that a parameter setting marked with
“–” indicates that we were not able to find any feasible solu-
tion for the “ECV-overhead” case, so that a benchmarking is
not possible here. The following conclusions can be drawn
from the results reported in Table 3.

• Distance: When comparing the total driving distances,
we can conclude that all vehicle types except for ourECV-
overhead setup can follow the optimal solution obtained
by the approach of Gilmore and Gomory (1964) without
charging detours. Naturally, this holds true for the diesel
truck and ECV-overhead-diesel, because they have the
(additional) diesel engine to realize this solution. Vehicle
types ECV-plug-in and ECV-overhead-plug-in can also
follow this solution,which is interruptedonly by charging
stops at stationary charging stations. Only our ECV-
overhead vehicle has to make charging detours along
electrified segments in order to gather enough energy for
the drives toward customers beyond the highway. The
induction effect ranges between 84% (for a low share
of highway electrification and a low charging efficiency)
and 2.4% (for a high electrification share and a high effi-
ciency).

• Time: Since we neglect the duration of refuel stops, the
diesel truck completes all jobs the fastest (i.e., makespans
of all approaches are outlined in relation to it). The same
delivery time is reached by the ECV-overhead-diesel,
because the additional diesel engine allows the vehicle
to steadily move onward even if the battery is depleted.
The makespan of vehicle type ECV-overhead-plug-in is
between 0.5% and 36.4% higher. Although this vehi-
cle recharges its battery while driving along electrified
segments, additional recharging stops at charging sta-
tions are required from time to time whenever there is

not sufficient energy for the drives beyond the highway.
ECV-overhead has to make charging detours for gather-
ing enough energy, which increase the makespans even
more. Note that performance measures “distance” and
“time” are directly equivalent and only rescaled by the
fixed driving velocity, so that both percentile outcomes
related to the diesel truck are identical. Finally, we have
ECV-plug-in. This vehicle type is exclusively dependent
on time-consuming charging stops to gather its energy,
during which no further movement onward is possible.
Consequently, the increase of delivery times is consid-
erable, and ECV-plug-in is clearly outperformed by all
alternatives when it comes to timely deliveries.

• CO2:With regard to the CO2 emissions, the diesel truck
is by far the worst alternative. Compared to this sta-
tus quo, which again constitutes 100%, all other vehicle
types produce only about one-tenth or lower emissions.
The lowest level of emissions, i.e., only 7.1% of that of
the diesel truck, is produced by ECV-plug-in and ECV-
overhead-plug-in. Emissions are only slightly higher for
ECV-overhead, which is due to the charging detours. The
emissions of ECV-overhead-diesel are even higher, espe-
cially if the diesel engine has to step in quite often (i.e., in
case of a low share of highway electrification and a low
charging efficiency). Obviously, however, formost drives
the electric energy received via the overhead wiring is
sufficient, since even in the worst case, ECV-overhead-
diesel only produces 14.6% of the diesel truck’s CO2

emissions.

We have to openly admit that our benchmark test lacks
elementary aspects. Foremost, the differences in vehicle
acquisition costs and especially infrastructure costs should
not be neglected when deciding on the allocation of R&D
budgets for alternative vehicle types and charging technolo-
gies. Detailed information on these two cost types are, for
instance, provided by Wietschel et al. (2017). When mainly
focusing on the three evaluation criteria investigated in this
paper, however, we come to the following conclusions. The
frequent recharging stops of plug-in ECVs considerably pro-
long their delivery times. An electric vehicle charging its
battery via charge-while-drive technology resolves this prob-
lem, because the vehicle can steadily move onward while
charging via overhead wires. To gather enough energy for
the drives beyond the highway on non-electrified streets,
however, a non-negligible induction effect may arise, which
consumes parts of the improvement in terms of delivery
times. An ECV chargeable via overhead wires, but also hav-
ing the plug-in option to charge while parked, eliminates
the induction effect and thus further accelerates the deliv-
ery process. On the other hand, it requires both kinds of
costly charging infrastructure, overhead wires and charging
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Table 3 Evaluation of different vehicle types in terms of driving distance, total delivery time, and CO2 emissions related to a conventional diesel
truck constituting 100%

l δ+ ECV-plug-in ECV-overhead ECV-overhead-diesel ECV-overhead-plug-in

Distance Time CO2 Distance Time CO2 Distance Time CO2 Distance Time CO2

20 1 – – – – – – – – – – – –

20 2 – – – – – – – – – – – –

20 3 100.0 396.9 7.1 184.7 184.7 7.8 100.0 100.0 14.6 100.0 125.3 7.1

20 4 100.0 314.8 7.1 122.4 122.4 7.3 100.0 100.0 9.6 100.0 105.7 7.1

20 5 100.0 265.0 7.1 112.2 112.2 7.3 100.0 100.0 8.8 100.0 102.8 7.1

20 6 100.0 237.5 7.1 108.7 108.7 7.2 100.0 100.0 8.4 100.0 101.8 7.1

20 7 100.0 214.9 7.1 108.0 108.0 7.2 100.0 100.0 8.9 100.0 101.9 7.1

20 8 100.0 200.5 7.1 106.5 106.5 7.2 100.0 100.0 8.6 100.0 101.4 7.1

20 9 100.0 189.4 7.1 105.8 105.8 7.2 100.0 100.0 8.4 100.0 101.1 7.1

30 1 – – – – – – – – – – – –

30 2 100.0 526.1 7.1 178.3 178.3 7.8 100.0 100.0 12.3 100.0 126.4 7.1

30 3 100.0 371.6 7.1 119.3 119.3 7.3 100.0 100.0 9.8 100.0 107.2 7.1

30 4 100.0 303.7 7.1 109.3 109.3 7.2 100.0 100.0 8.9 100.0 103.6 7.1

30 5 100.0 263.0 7.1 106.1 106.1 7.2 100.0 100.0 8.5 100.0 102.2 7.1

30 6 100.0 235.8 7.1 104.6 104.6 7.2 100.0 100.0 8.2 100.0 101.4 7.1

30 7 100.0 216.4 7.1 103.6 103.6 7.2 100.0 100.0 7.9 100.0 100.9 7.1

30 8 100.0 201.8 7.1 103.0 103.0 7.2 100.0 100.0 7.8 100.0 100.7 7.1

30 9 100.0 190.5 7.1 102.7 102.7 7.2 100.0 100.0 7.7 100.0 100.5 7.1

40 1 100.0 930.6 7.1 157.9 157.9 7.7 100.0 100.0 11.4 100.0 136.8 7.1

40 2 100.0 507.4 7.1 116.5 116.5 7.3 100.0 100.0 9.4 100.0 109.8 7.1

40 3 100.0 371.6 7.1 108.5 108.5 7.2 100.0 100.0 8.8 100.0 104.7 7.1

40 4 100.0 303.7 7.1 106.0 106.0 7.2 100.0 100.0 8.4 100.0 102.7 7.1

40 5 100.0 263.0 7.1 104.3 104.3 7.2 100.0 100.0 8.1 100.0 101.7 7.1

40 6 100.0 235.8 7.1 103.6 103.6 7.2 100.0 100.0 7.9 100.0 101.1 7.1

40 7 100.0 216.4 7.1 103.1 103.1 7.2 100.0 100.0 7.8 100.0 100.8 7.1

40 8 100.0 201.8 7.1 102.7 102.7 7.2 100.0 100.0 7.7 100.0 100.6 7.1

40 9 100.0 190.5 7.1 102.5 102.5 7.2 100.0 100.0 7.7 100.0 100.5 7.1

50 1 100.0 914.8 7.1 141.1 141.1 7.5 100.0 100.0 10.4 100.0 128.3 7.1

50 2 100.0 507.4 7.1 113.4 113.4 7.3 100.0 100.0 9.2 100.0 108.8 7.1

50 3 100.0 371.6 7.1 107.7 107.7 7.2 100.0 100.0 8.7 100.0 104.4 7.1

50 4 100.0 303.7 7.1 105.2 105.2 7.2 100.0 100.0 8.3 100.0 102.5 7.1

50 5 100.0 263.0 7.1 104.2 104.2 7.2 100.0 100.0 8.0 100.0 101.6 7.1

50 6 100.0 235.8 7.1 103.4 103.4 7.2 100.0 100.0 7.9 100.0 101.1 7.1

50 7 100.0 216.4 7.1 102.9 102.9 7.2 100.0 100.0 7.8 100.0 100.8 7.1

50 8 100.0 201.8 7.1 102.5 102.5 7.2 100.0 100.0 7.7 100.0 100.6 7.1

50 9 100.0 190.5 7.1 102.4 102.4 7.2 100.0 100.0 7.6 100.0 100.5 7.1

stations. Thus, a hybrid ECV equipped with access to over-
head wires and an additional diesel engine, which steps in
once the battery is depleted, seems the best compromise.
It is neither slowed down by charging stops nor charging
detours and can rely on the existing network of filling sta-
tions. Nonetheless, this vehicle type still powers most drives
via the charge-while-drive infrastructure in our tests, even if
just parts of the highway are electrified. The diesel engine

is only exceptionally applied, and the CO2 emissions still
amount to only a fraction of those produced by a conven-
tional diesel-only truck. However, pushing the overhead wire
technology requires a huge public investment in the infras-
tructure and probably additional tax rebates to outweigh the
higher acquisition costs of a hybrid truck compared to its
combustion-engine-only counterpart, so it will be interesting
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to see whether charge-while-drive infrastructure will indeed
make it into daily operations.

7 Conclusions and outlook

In this paper, we treat the impact of charge-while-drive
infrastructure on routing decisions. Given a set of full-
truckload point-to-point deliveries along a single highway,
where some but not all road segments are equipped with
overhead wires, we seek a minimum makespan route of a
single ECV receiving energy via the overhead wires. While
driving on electrified road segments, the vehicle can obtain
additional energy to charge its battery, which has to step in
on non-electrified road segments. We formulate the resulting
optimization problem as a mixed-integer program, provide
an analysis of computational complexity, and present two
decomposition heuristics applying a dynamic programming
scheme for a subproblem with given job sequence. Our com-
putational study investigates the computational performance
of our solution approaches and shows that our decomposi-
tion procedures derive reasonably good solutions quickly.
Specifically, our Tabu search algorithm has determined the
best solution among all competitors in each single instance
and required an average running time of only 6 seconds. Off-
the-shelf solver Gurobi, instead, has found a feasible solution
in only 48.5% of the instances and best solutions in only
23.9%, and had to be aborted when reaching the time limit
of 30 minutes in 93.1% of our instances. Furthermore, our
computational study explores the induction effect of charge-
while-drive infrastructure.AnECV receiving energy only via
overhead wires has to make charging detours from time to
time in order to obtain enough energy for reaching the next
customer on the non-electrified roads beyond the highway
and returning from there to the main line. Our computational
results reveal that the induction effect can be considerable,
especially if only a few road segments are electrified in order
to save investment costs for the charge-while-drive infras-
tructure and the charging efficiency via the wires is low. A
hybrid vehicle equipped with an additional diesel engine,
which steps in when the battery is depleted, avoids the induc-
tion effect.

Since charge-while-drive infrastructure is a novel and
interesting technology, there are plenty of possibilities to
build up on our research. Alternative street network topolo-
gies (e.g., general graphs), other job characteristics (e.g.,
less-than-truckload transport jobs), and varying objective
functions (e.g., related to due dates or energy consumption)
are just some examples for the manifold possible extensions
of our problem setting. In addition, there is a strong interde-
pendence between the strategic decision on the electrification
of the highway and operational route planning. The more
highway parts are equipped with this charge-while-drive

infrastructure, the fewer detours for ECVs are required (and
vice versa). Thus, further exploring the trade-off between
operational and strategic costs is another interesting subject
of future research.
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Appendix

This appendix contains the proofs for our analysis of compu-
tational complexity provided in Sect. 3.3. We start with the
proof of Theorem 1 and show that EVRP-LFO is strongly
NP-hard, even if we have only a single electrified segment.

Theorem 1 EVRP-LFO is stronglyNP-hard, even if W = 1,
δ+ = δ− = 1, and loj = ldj = 0 for each j ∈ J , and � ≥ 1
is fixed.

The proof is based on a reduction from the 3-partition
problem, which is well known to be strongly NP-complete
(see Garey & Johnson, 1979), to the decision version of
EVRP-LFO. The latter asks whether a feasible solution with
a certain total travel distance exists. 3-Partition can be stated
as follows.
3-Partition Given 3t positive integers a1, . . . , a3t with B

4 <

aq < B
2 for each q = 1, . . . , 3t , does there exist a parti-

tion of set {1, 2, . . . , 3t} into t subsets A1, . . . , At , such that∑
q∈Ai

aq = B for each i = 1, . . . , t?

Proof Given an instance I of 3-partition, we construct
an instance I ′ of EVRP-LFO as follows. We have R =
{1, . . . , 2 + B/2}, p1 = 0, and pr = B + r − 2 for each
r = 2, . . . , 2+ B/2, and L = 3B/2. Furthermore, there is a
single electrified segment of length B positioned directly at
the start of the highway, i.e., W = 1, q1 = 0, and q2 = B.

For each integer value aq , q = 1, . . . , 3t , we introduce a
job, so that J = {1, . . . , 3t}. The ramps associated with each
job j = 1, . . . , 3t are given as roj = 2 + a j and rdj = 2.

Finally, we set loj = ldj = 0 for each j ∈ J , C = 2B,
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c0 = 0, r0 = 2, and δ+ = δ− = 1. The reduction is in
pseudo-polynomial time.

We claim that there is a feasible solution to I ′ with total
driving distance of nomore than 4t B if and only if the answer
to I is YES.

Constructing such a feasible solution to I ′ from aYES cer-
tificate of I is straightforward.We simply have to execute the
jobs corresponding to each subset of I in direct succession,
and before each three-set of jobs we return to ramp r = 1
and back to ramp r = 2 to recharge the battery to capacity. It
is easy to see that the schedule is feasible and implies a total
driving distance of 4t B.

On the other hand, a feasible solution to I ′ also constitutes
a YES instance of I . First, we note that whenever the ECV
travels between ramps 1 and 2 (positions 0 and B), it returns
to ramp 2 after 2B with a fully charged battery. Second,
conducting all jobs implies a total travel distance of 2t B
moving back and forth between varying pickup positions and
unique delivery position p2 = B (if initially starting from
ramp 2 in position p2 = B). Hence, the total consumption
of battery charge is 2t B and thus implies at least t charging
detours to ramp 1. On the other hand, more than t charging
detours to ramp 1 imply a total travel distance between ramps
1 and 2 of more than 2t B and thus an overall travel distance
of more than 4t B. Third, t travels to ramp 1 suffice only if
the charge level is zero each time a travel from ramp 2 to
ramp 1 is started; otherwise, less than a battery charge of
2B is gained. Fourth, we can reach a charge level of zero at
ramp 2 only if, after the last trip to ramp 1, exactly three jobs
with total consumption of 2B, and thus the sum of pickup
positions of 3B + B, have been processed. These subsets of
jobs correspond directly to the integer subsets of I , and we
have a one-to-one mapping between the two problems. �	

Next, we provide the proof for Theorem 2 and show that
EVRP-LFO is also hard to approximate within arbitrarily
small factors.

Theorem 2 There is nopolynomial-timeapproximationalgo-
rithm for EVRP-LFO with a factor of less than 1.5 unless
P = NP .

The proof is based on a reduction from the partition prob-
lem, which is well known to be binary NP-complete (see
Garey & Johnson, 1979) and can be stated as follows.
Partition Given t ′ positive integers a′

1, . . . , a
′
t ′ , does there

exist a partition of set {1, 2, . . . , t ′} into subsets A′
1 and A′

2,
such that

∑
q∈A′

1
a′
j = ∑

q∈A′
2
a′
j = B ′?

Proof Given an instance I of partition, we construct an
instance I ′ of EVRP-OWas follows.We have L = gB ′+2B ′
with an arbitrary positive integer g and R = {1, . . . , t ′ + 2},
p1 = 0, p2 = gB ′, and pr = gB ′ + a′

r−2 for each
r = 3, . . . , t ′ + 2. Furthermore, there is a single electri-

fied segment of length gB ′ positioned directly at the start of
the highway, i.e., W = 1, q1 = 0, and q2 = gB ′.

For each integer value a′
q , q = 1, . . . , t ′, we introduce a

job, so that J = {1, . . . , t ′}. The ramps associated with each
job j = 1, . . . , t ′ are given as roj = 2 + j with position

proj = gB ′ + a′
j and rdj = 2 with position prdj

= gB ′.
Finally, we set loj = ldj = 0 for each j ∈ J , C = 2gB ′,
c0 = 0, r0 = 2, δ+ = 1, and δ− = g.

We claim that there is a schedule with total travel distance
of no more than 4gB ′ + 4B ′ if and only if the answer to I
is YES. The argument is strictly analogous to the one in the
proof of Theorem 1.

Now, consider a feasible schedule with a total travel dis-
tance of more than 4gB ′ +4B ′. Then, the ECV visits ramp 1
at least three times, since the total travel distance of the ECV
goingback and forth betweenpickuppositions and the unique
delivery position is fixed. Hence, the total travel distance is
at least 6gB ′ + 4B ′. For sufficiently large g ≥ 1/(2ε), an
algorithm that guarantees an approximation factor of 1.5− ε

with ε > 0 therefore signals the answer to I , since it yields
a schedule with total travel distance of

(1.5 − ε)(4gB ′ + 4B ′) < 6gB ′ − ε4gB ′ + 6B ′ ≤ 6gB ′ + 4B ′

if and only if the answer to I is YES. Thus, the algorithm
cannot run in polynomial time unless P = NP . �	

Note that the proofs of Theorems 1 and 2 are similar to
those provided in Boysen et al. (2018), when scheduling
an ECV along a line with charge-while-park infrastructure.
Finally, we prove Theorem 3 and show that solving EVRP-
LFO remains a complex matter, even if we have only a single
job.

Theorem 3 EVRP-LFO is NP-hard, even if |J | = 1, C =
∞, and δ+ = δ− = 1.

The proof is based on a reduction from the change-making
problem (CMP), which is known to be NP-complete (see
Lueker, 1975; Martello & Toth, 1990) to the decision version
of EVRP-LFO, where we ask whether a feasible schedule
with a certain total travel distance exists. The CMP, which
aims to realize a change value with a given set of coins, is
defined as follows.
CMPGiven t ′′ non-negative integers a′′

1 , . . . , a′′
t ′′ and an addi-

tional integer number B ′′, are there non-negative integers
x1, . . . , xt ′′ , such that

∑t ′′
q=1 xqa

′′
q = B ′′?

Proof Given an instance I of CMP, we construct an instance
of I ′ of EVRP-LFO as follows.We have R = {1, . . . , t ′′+1},
p1 = 0, and pr = ∑r−1

r ′=1 a
′′
r ′ for each r = 2, . . . , t ′′ + 1, and

L = ∑t ′′
q=1 a

′′
q . Note that ramps are numbered in increasing

positions. Furthermore, there is a single electrified segment
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of length L spanning thewhole highway, i.e.,W = 1, q1 = 0,
and q2 = L .

We have a single job j , so that J = { j}, with roj = t ′′ +1,

rdj = 1, loj = L + 2B ′′, and ldj = 0. Finally, we set C = ∞,

c0 = 0, r0 = 1, and δ+ = δ− = 1. The reduction is in
polynomial time.

We claim that there is a feasible solution to I ′ with a total
driving distance of no more than 2L + 2B ′′ + loj if and only
if the answer to I is YES.

Constructing such a feasible solution to I ′ from a YES
certificate of I can be done quite easily. The ECV travels
between pr and pr+1, r = 1, . . . , t ′′, 2xr + 1 times before
moving to pr+2 for the first time (or picking up job j if
r = t ′′). The route is to essentially sweep the line from
position p1 = 0 to pt ′′+1 = L with xr additional loops
between pr and pr+1. Since

∑t ′′
q=1 xqa

′′
q = B ′′, the charge

level drops to zero just when returning to the highway after
picking up j . The ECV then returns to ramp r = 1, delivers
job j , and returns to the highway. The total travel distance is
2L + 2B ′′ + loj .

On the other hand, a feasible solution to I ′ with a total
driving distance of no more than 2L + 2B ′′ + loj also consti-
tutes a YES instance of I . First, we note that the total travel
distance of the ECV before leaving the highway at position L
for picking up job j is L+2B ′′ +ε with ε ≥ 0, which brings
the charge level to L+2B ′′ +ε. Note that the remaining total
travel distance of the ECV after leaving the highway at posi-
tion L is at least L + loj . Hence, if the total driving distance is
2L+2B ′′+loj , thenwehave ε = 0.Let x ′

r ≥ 1, r = 1, . . . , t ′′,
be the number of times the ECV travels between pr and pr+1

before leaving the highway at L . Note that x ′
r is odd for each

r = 1, . . . , t ′′. We have

t ′′∑
r=1

a′′
r (x ′

r − 1)/2 =
⎛
⎝

t ′′∑
r=1

a′′
r (x ′

r − 1)

⎞
⎠ /2

=
⎛
⎝

t ′′∑
r=1

a′′
r x

′
r −

t ′′∑
r=1

a′′
r

⎞
⎠ /2

=
⎛
⎝

t ′′∑
r=1

a′′
r x

′
r − L

⎞
⎠ /2

= (
L + 2B ′′ − L

)
/2 = B ′′.

Hence, (x ′
r − 1)/2 ∈ N, r = 1, . . . , t ′′ constitutes a YES

certificate for I . This completes the proof. �	
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