
Journal of Scheduling (2022) 25:675–704
https://doi.org/10.1007/s10951-022-00750-w

Packing-based branch-and-bound for discrete malleable task
scheduling

Roland Braune1

Accepted: 25 July 2022 / Published online: 22 September 2022
© The Author(s) 2022

Abstract
This paper addresses the problem of scheduling chain-like structures of tasks on a single multiprocessor resource. In fact,
sub-tasks of unit-time length and predefined size are aggregated to composite tasks that have to be scheduled without
preemption, but subject to flexibility concerning resource allocation. This setting most closely resembles the problem of
malleable task scheduling, with sub-tasks being the smallest atomic unit of allocation. The specific type of malleability
is realized using precedence constraints with minimum and maximum time lags. A bin packing model is established for
this scheduling problem and a corresponding, dedicated branch-and-bound algorithm is devised, alongside problem-specific
bound tightening, symmetry breaking and dominance concepts. The efficacy of the solution approach is demonstrated based
on extensive computational experiments, including randomized instances, adapted benchmark instances from the literature,
and a small real-world data set. In comparison to mixed-integer and constraint programming formulations, the new method is
able to achieve a considerably higher percentage of optimal solutions at computation times that are up to orders of magnitude
smaller.

Keywords Multiprocessor scheduling · Malleable tasks · Precedence constraints · Bin packing · Branch-and-bound

1 Introduction

The relevance of parallel tasks (Drozdowski, 2009) goes
beyond the initial context of multiprocessor scheduling
rooted in information technology environments. In fact, tasks
or activities that require more than one processor or, more
generally, resource unit at a time are also typically found
in manufacturing or project scheduling environments. The
background of the research presented in this paper is a
petrochemical research and development facility, conduct-
ing product tests on different kinds of resources. The resource
capacities are aggregated to daily or weekly buckets, render-
ing the problem a multi-capacitated one. Each product test
involves a number of test specimen, each having the same
resource requirements. There is no upper limit on the num-
ber of specimen of the same product processed per day or
week, but once the product test is started, gaps in its process-

B Roland Braune
roland.braune@univie.ac.at

1 Department of Business Decisions and Analytics, Josef
Ressel Center for Adaptive Optimization in Dynamic
Environments, University of Vienna,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

ing time window, that is, days or weeks where no specimen
of this product are processed, are to be avoided. One of the
objectives in the associated scheduling problem is to keep the
utilization as high as possible in earlier time periods, while
it is allowed to drop toward the end of the planning horizon.
This requirement originates from the rolling-horizon nature
of planning, aiming at both freezing parts of the schedule
and leaving space for new tests. The analogy of this kind of
problem to a multiprocessor scheduling problem with a total
weighted completion time objective is pointed out in Braune
(2019).

The subject of this paper is an abstract, purified version
of the real-world setting outlined above. Test specimen are
mapped to so-called task slices, each of which has unit time
length and requires a discrete amount of resource units. They
are linked through precedence constraints with predefined
time lags.Minimumdelays impose anorder on the task slices,
arranging them according to a chain-like structure, but they
still permit more than one slice of a task to be executed at the
same time. Maximum time lags, on the other hand, prevent
high-level tasks from being interrupted.

As a consequence, the problem can be seen from two dif-
ferent perspectives. The first, low-level perspective is the one

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-022-00750-w&domain=pdf
http://orcid.org/0000-0003-4086-229X

676 Journal of Scheduling (2022) 25:675–704

of the task slices. Related work in the corresponding litera-
ture is concerned with chains of rigid unit-time tasks (see,
e.g., Blazewicz & Liu, 1996). However, those chains do not
allow to simultaneously process two tasks of the same chain
and also do not account for maximum delays. The second
point of view emanates from the high-level tasks. Treating
them as a compound during scheduling may result in varying
resource requirements over time due to the potential concur-
rent processing of two or more of its slices. Modifying a
task’s resource requirements at scheduling time is known as
malleability in the associated literature (see, e.g., Blazewicz
et al., 2006). In the discrete case, the smallest increment
or decrement is one single resource unit. For the problem
at hand, in contrast, the smallest step size is a slice, lead-
ing to a somewhat more coarse-grained malleability. To the
best of the author’s knowledge, this kind of discrete mal-
leable tasks has not been covered in the literature so far. No
matter which viewpoint is adopted, the special type of con-
straints prohibit an immediate adaptation of existing solution
approaches from this area of research.

The solution method proposed in this paper is based on a
bin packing reformulation of the scheduling problem in ques-
tion. The problem mapping itself arises from the unit-time
slices of fixed size and the capacity limitation of themultipro-
cessor resource. Although existing work in this area in fact
also covers precedence constraints, this specific combination
of minimum and maximum delays has not been considered
so far. The methodological contributions of this paper can be
identified as follows:

– The maximum delays are exploited for the development
of an innovative tightening approach for (existing) lower
bounds on the objective function value.

– A symmetry breaking concept is presented, based on
alternative, equivalent packing sequences.

– Several problem-specific dominance rules, based on the
notion of feasible sets, are proposed.

– Construction heuristics known from standard bin packing
are enhanced to properly cover the chain-like precedence
constraints.

– A knapsack-based, precedence-aware heuristic proves
very effective for the considered objective function.

– A subset sum-based, limited enumeration algorithm is
used in a pre-optimization phase under particular prob-
lem configurations.

Finally, all the presented techniques are successfully embed-
ded into a dedicated branch-and-bound (B&B) algorithm, as
confirmed by an extensive computational study. To demon-
strate the genericity of the proposed concepts and in par-
ticular the B&B algorithm, the experimental evaluation is
extended toward the objective of minimizing the makespan
or, equivalently, the number of allocated bins.

Section 2 introduces the scheduling problem that is the
subject of this paper, both from a real-world and an abstract
perspective. An overview of related scientific literature is
given in Sect. 3. Section 4 introduces the packing-oriented
view on the problem that is the basis for the methodological
and computational part of the paper. The bound tightening
technique is presented in Sect. 5, while the proposal of sym-
metry breaking and dominance rules is the subject of Sect. 6.
A custom B&B algorithm as the central solution approach is
outlined in Sect. 7. Computational results and a performance
assessment of the proposed B&B approach are the subject
of Sect. 8. Concluding remarks and an outlook on potential
future research topics are given in the final Sect. 9.

2 Problem background andmodeling

The motivation for the research work presented in this paper
stems from a real-world project that the author conducted in
cooperation with a petrochemical research laboratory a few
years ago. The laboratory performs different types of tests
for the product development department and the goal was to
establish a decision support tool for an automated scheduling
of the associated activities. The schedules should be rebuilt
on a weekly basis to take into account newly added tests and
also deviations from a previously established timeline. This
rolling horizon principle is utilization oriented and gave rise
to the specific objective function addressed in this paper.

The tests themselves can be of mechanical, thermic, or
purely analytical (e.g., gas chromatography) nature. The
objects on which the tests are executed are called test spec-
imen and are in fact small pieces of plastic. A product test
is usually made up of several individual tests, each involv-
ing multiple such specimen. A test is thus represented by an
activity or task, and each task belongs to a job or work order.
The task itself is structured into sub-tasks, each of which
represents a test of one single specimen.

The execution of a test usually requires both a machine
resource and a human resource (operator). Both kinds of
resources are considered in an aggregate fashion with respect
to time, meaning that resource capacities are given in terms
of day-wise or weekly buckets. The capacity itself is sub-
ject to a discrete scale and measured in minutes. Human
resources undergo an additional aggregation step: the capac-
ity allocation is done on a workgroup level, reducing detail
and complexity. The mission of the project was to develop a
tailored, finite capacity scheduling approach for the test lab-
oratory. The workgroup/operator resources are the scarcest
and thus are of primary interest to the firm. The machines,
on the other hand, are dedicated to specific tests, often in
multiple versions, and therefore, the amount of resource con-
tention is low in most cases. Therefore, the focus will be on
resources of type workgroup in the following.

123

Journal of Scheduling (2022) 25:675–704 677

time1 2 3 4

Cap.

Job 1
Analytical
Spec. 1

Job 1
Analytical
Spec. 2

Job 2
Heat

Spec. 1

Job 1
Analytical
Spec. 3

Job 2
Heat

Spec. 2

Job 2
Heat

Spec. 3

Job 2
Heat

Spec. 4

Job 1
Analytical
Spec. 4

Job 1
Analytical
Spec. 5

Job 3
Mechanical
Spec. 1

Job 1
Analytical
Spec. 6

Job 3
Mechanical
Spec. 2

Job 3
Mechanical
Spec. 3

Fig. 1 Finite capacity scheduling of product tests on a bucket resource

time1 2 3 4

Cap.

(a) Left-shifted

time1 2 3 4

Cap.

(b) Balanced

Fig. 2 Different principles of resource loading

When scheduling test activities on a resource, it is manda-
tory to respect custom precedence constraints between the
sub-tasks. Figure 1 shows three such activities, belonging
to different jobs, and each of them involves multiple test
specimen. From a workflow management perspective, it is
of crucial importance not to interrupt a test activity. Con-
sider the analytical test in job 1. It consists of six individual
tests, one for each specimen. While it is allowed to process
more than one specimen in a time period, it is prohibitive
to introduce breaks into the test flow. For example, it would
not be possible to stop job 1 after time period 1 and continue
its execution in time period 3, without any of its sub-tasks
being scheduled in period 2. In other words, once started, at
least one specimen of a test has to be processed in each time
period of its execution time window.

From the company’s point of view, the primary optimiza-
tion objective is to keep the resource allocation profiles as
left-shifted as possible. This in turn means that ideally no
resource idle time exists in earlier time periods. Figure 2
shows such a left-shifted load profile, as opposed to a bal-
anced one. The total load is the same in both cases, but
the profile on the right-hand side (Fig. 2b) is not desir-
able. As already mentioned, schedules are generated on a

rolling-horizon basis, usually for six weeks in advance. The
management wants to “freeze” the schedule and to keep the
resource utilization high for the very near future, that is, the
immediately upcoming time periods. If the resource load is
balanced and idle time exists in those time periods, new activ-
ities might be inserted at the corresponding positions during
the next planning iteration, leading to disturbances and dis-
ruptions in the laboratory. A left-shifted schedule on the other
hand prevents such disruptions and maximizes the resource
utilization typically for the next two or three weeks.

When adopting a more formal perspective, the above
real-world scheduling problem can be specified as a mul-
tiprocessor scheduling problem with particular precedence
constraints. A set of n tasks (= test activities) T = {1, . . . , n}
is to be processed on a set of m identical parallel processors,
representing the daily (or weekly) capacity of a workgroup
resource. Every task i ∈ T consists of ni sub-tasks, called
slices, each of which corresponds to a test specimen. A slice
is identified by a pair (i, j), with i ∈ T and j ∈ {1, . . . , ni }.
The number of processors to be allocated simultaneously for
the execution of a task slice is denoted by si zei, j . All slices
that make up a task i ∈ T have unit processing time, that is,
pi j = 1, j ∈ {1, . . . , ni }, and share the same size, hence,
si zei,1 = si zei,2 = . . . = si zei,ni .

A taskwithmultiple slices ismodeled as a chain-like struc-
ture by defining appropriate precedence constraints. Those
constraints are imposed on every two slices that belong to one
and the same high-level task and have adjacent slice indices.
While minimum time lags ensure a partial order among
slices, maximum time lags prevent the encompassing task
from being preempted. Given a task i ∈ T , let li, j, j ′ denote
the start-to-start time lag (delay) between two task slices
(i, j) and (i, j ′), with (j, j ′) ∈ {1, . . . , ni } × {1, . . . , ni }
and j �= j ′. Then, li, j, j+1 = 0, for j ∈ {1, . . . , ni − 1} and
li, j, j−1 = −1, for j ∈ {2, . . . , ni }.

A feasible schedule S is defined as a matrix of (integer)
starting times (si, j)(i, j)∈T×{1,...,ni } that have to satisfy the
following constraints:

si, j+1 ≥ si, j + li, j, j+1, ∀ i ∈ T , ∀ j ∈ {1, . . . , ni − 1},
(1)

si, j+1 ≤ si, j − li, j+1, j , ∀ i ∈ T , ∀ j ∈ {1, . . . , ni − 1}.
(2)

Although maximum time lags are not present in clas-
sical chain precedence constraints known from scheduling
(Blazewicz et al., 1996), the high-level tasks are referred to
as chains henceforth, for ease of writing. Due to the fact that
the number of scheduled slices of a chain may change from
one time period to the next, the corresponding high-level task
are considered malleable. Since resource allocation occurs
on a discrete scale, this property is referred to as discrete
malleability throughout the paper.

123

678 Journal of Scheduling (2022) 25:675–704

As far as the objective function is concerned, a left-shifted
resource allocation profile, like the one shown in Fig. 2a, can
be achieved by minimizing the total weighted completion
time (TWCT) of the slices, where the weight wi j of a slice
is set equal to its size si zei j . The completion time Ci, j of a
slice in a feasible schedule S is equal to si, j + 1. To simplify
the notation, and since all slices of a chain share the same
weight, weights are considered at the chain level, using wi

as the common, individual weight for all slices of a chain
i ∈ T . The value wi is therefore also called the base weight
of chain i in this specific context.

In the common three-field notation of Graham et al.
(1979), the problem under consideration is of type P |
chains(l); si zei j ; pi j = 1;wi j = si zei j | ∑

wi jCi j . The
property chains(l) means that the chain precedence con-
straints are subject to constant delays. The symbol l denotes
the constant time lag that is imposedbetween twoconsecutive
elements of the chain. As far as the problem’s complex-
ity is concerned, it can be considered a generalization of
P | si zei ; pi = 1 | ∑

Ci , that is, the multiprocessor
scheduling problem with unit time tasks and total comple-
tion time objective. The latter problem has been proven to be
NP-hard in the strong sense by Drozdowski and Dell’Olmo
(2000), therefore also implying strong NP-hardness for the
discrete malleable task scheduling problem at hand.

3 Related work

The sub-tasks or slices that are the core of the considered
scheduling problem are classified as rigid parallel tasks
according to the taxonomy of Drozdowski (2009). They
require a fixed number of processors (or resource units) that
cannot be changed during processing. Contrary to that, the
high-level tasks (chains) can be seen as a special kind of
malleable tasks. These are parallel tasks that are permitted
to change the number of processors allocated to them during
execution. Discrete and continuous variants of the problem
are discussed by Blazewicz et al. (2004) and Blazewicz et
al. (2006) under the objective of makespan minimization.
The authors focus on two versions of this problem, including
continuously and discretely divisible resources, and propose
an O(n) algorithm for both in case convex processing speed
functions. In the completion (flow) time minimization con-
text, Caramia and Drozdowski (2006) incorporate release
times and deadlines and present two polynomially solvable
cases, while the NP-hardness result of P | pmtn; ri | ∑

Ci

transfers to the general problem. Flow time minimization is
also the subject of Hendel et al. (2015) who analyze this
objective in a semi-malleable setting and on two processors
only, resulting in a polynomial time algorithm for this variant.

The work of Sadykov (2012) is devoted to the total
weighted completion time variant of the problem, denoted as

P | var; δi | ∑
wiCi , where δi represents an upper bound

on the number of allocatable processors. This makes it a
generalization of P | pmtn | ∑

wiCi , a problem that has
been shown to be NP-hard in the strong sense. Zhang et al.
(2013) directly prove that Pm | var | ∑

wiCi is strongly
NP-hard as long asm is part of the problem input. They give a
two-approximation algorithm for the general case and a poly-
nomial time algorithm for problems with a restricted number
of different task sizes (work contents). Wang et al. (2018)
revisit this kind of problem and devise both, a polynomial
time approximation scheme for a fixed number of machines
and a polynomial time algorithm for a special case with fixed
m and weights proportional to the task sizes.

Task malleability is also closely related to the field of
variable intensity or energy scheduling. The latter was origi-
nally defined for discrete cumulative resources, representing
the counterpart of multiprocessors in classical resource-
constrained (project) scheduling (e.g., Baptiste et al., 1999).
In the energy scheduling problem (Artigues et al., 2013), the
duration of a task is not fixed, as the amount of resource
units (“energy”) allocated to it can vary during its execution,
as long as it stayswithin predefined limits and a total required
amount of energy is supplied. The problem setting has later
been transferred also to the fully continuous case (Artigues
& Lopez, 2015). Kis (2005) describes similar task character-
istics, also in the context of continuously divisible renewable
resources, referring to them as variable-intensity activities.

On the slice level, the problem covered in this paper
is made up of unit time tasks of fixed size. Scheduling
such tasks on parallel processors for makespan minimiza-
tion (P | si zei ; pi = 1 | Cmax) dates back to the 1980s
(e.g., Lloyd, 1981; Blazewicz et al., 1986). Polynomially
solvable cases are limited to a constant (fixed) range of task
sizes, while the problem in its general form (arbitrary task
sizes) is known to be NP-hard in the strong sense for an
arbitrary number processors (Lloyd, 1981). The objective of
mean flow time minimization is considered, for example, by
Drozdowski and Dell’Olmo (2000) who also prove the NP-
hardness of problem P | si zei ; pi = 1 | ∑

Ci .
Given those unit time task slices of predefined size, the

analogy to bin packing is obvious (Garey et al., 1976; Coff-
man et al., 1978). The uniform character of the chains is in
fact reminiscent of what is known as high-multiplicity bin
packing (Gabay, 2014). As long as the number of distinct
sizes is a fixed constant, such type of problemcan be solved in
polynomial time (Goemans&Rothvoß, 2014; Jansen, 2017).

Rigid parallel tasks on multiprocessor resources can also
be linked by chain precedence constraints. Blazewicz and
Liu (1996) show that scheduling arbitrary chains of rigid
unit-time tasks on three processors, that is, P3 | si zei ; pi =
1; chains | Cmax, is strongly NP-hard. Some special cases,
like uniform chains involving only tasks with si zei ∈ {1, k}
(k ≤ m arbitrary), are solvable in polynomial time.

123

Journal of Scheduling (2022) 25:675–704 679

While maximum time lags do not seem to be an issue in
classical, single-resource multiprocessor scheduling itself,
they received at least some attention in related fields, like
resource-constrained project scheduling (see, e.g., Schutt et
al., 2013). Although (sparse) research has been conducted
on bin packing with precedence constraints (Dell’Amico et
al., 2012; Pereira, 2016), time lags, and in particular those of
maximum-type, did not play a role so far. Scholl et al. (2010)
include them as distance constraints in their model formula-
tion of a generalized assembly line balancing problem, but
they drop them later when it comes to problem solving due
to a lack of practical relevance.

4 Adopting a packing-oriented perspective

As already indicated in Sect. 3, an analogy can be estab-
lished between the scheduling problem at hand and one-
dimensional bin packing. Each slice can be directly mapped
to an item. Its weight wi j = si zei j and thus simply wi (see
Sect. 2). To keep the notation consistent throughout the paper,
the term slicewill be continued to be used, also in the packing
context. Each bin k corresponds to a time period of the orig-
inal scheduling problem, imposing an absolute order among
the bins. In other words, it actually matters to which of the
available bins a slice is allocated. The number of available
bins is denoted by k̄, representing the length of the planning
horizon. A schedule with starting times si j for each slice can
be mapped to a bin packing (and vice versa) in the follow-
ing manner: a slice with si j = 0 is assumed to be placed in
the first bin, a slice with si j = 1 in the second bin, and so
on. Given the order among the bins, it is easy to also trans-
fer the chain-like precedence constraints from the scheduling
problem, including the minimum and maximum delays. All
delays can simply be represented by “distances” between
numbered bins. Although all the developed concepts would
basically support varying bin capacities, one and the same
capacity C, equal to the number of processors m, is used for
all bins.

This section first introduces some fundamental concepts
and symbol notation that is used throughout the paper. Then
a packing-based mixed integer programming (MIP) formu-
lation is presented, modeling the precedence constraints in a
non-standard fashion. The given model also constitutes the
comparison baseline for the computational experiments in
Sect. 8.

To allow for an easier look-up, the symbols that are used
in the remainder of the paper are summarized in Tables 1
(constants) and 2 (sets & functions).

Table 1 Symbol notation: constants

m Number of processors.
si zei, j Size/width of slice j of chain i
ni Length of chain i (= number of slices in the chain)
Ci, j Completion time of slice j of task i
si, j Starting time of slice j of task i
wi, j Weight of task slice (i, j)
wi Base weight of chain i
k̄ Length of the time horizon
C Bin capacity
n′
i Rem. number of slices for chain i (in a partial packing)

Table 2 Symbol notation: sets & functions

T Set of (outer) tasks
S Feasible schedule, defined as a set of starting

times
Fk Feasible set packed into bin k

F
k̄ Set of all potential feasible packings fitting into k̄

bins
hi Multiplicity of chain i slices in a feasible set
�(Fk) Function calculating the total load of a feasible

set Fk
Fk Compulsory part of feasible set Fk
F∗ Intersection of all compulsory parts of all

packings
F̃ Approximation of F∗
T̃k Set of in-progress chains before packing bin k
r(i, k) Function yielding a lower bound on the number

of remaining slices for chain i before packing
bin k

r(F, i, k) Function yielding the true number of remaining
slices for a chain i and a bin k, based on a
feasible packing F

f (F) Function returning the usage cost of a packing F
F s

k Set of slice-saturated feasible sets packable in bin
k

F e
k Set of extensible feasible sets packable in bin k

Fm
k Set of maximal feasible sets packable in bin k

4.1 Conceptual groundwork

The following definition of a feasible set is fundamental to
all problem-specific concepts presented in this paper.

Definition 1 A set Fk = {(1, h1), (2, h2), . . . , (n, hn)}, with
hi ∈ Z

≥0 reflecting the slice count (or multiplicity) of chains
i = 1, . . . , n in the corresponding packing is called a feasible
set for bin k, 1 ≤ k ≤ k̄, if the resulting total load does not
exceed the capacity C of the bin. Removing a pair (i ′, hi ′)
from a feasible set is equivalent to setting the multiplicity of
chain i ′ to zero, hence, Fk \ {(i ′, hi ′)} = {. . . , (i ′, 0), . . .}.

123

680 Journal of Scheduling (2022) 25:675–704

For reasons of convenience, Fk will also be used as a func-
tion henceforth. In fact, Fk : T → Z

≥0 without changing the
semantics.

Let Fk denote the set of all feasible sets fitting into bin
k. Then F

k̄ = F1 × F2 × . . .Fk̄ is the set of all potential,
feasible packings that fit into k̄ bins for a given instance.

The total load of a feasible set is an important quantity
that frequently occurs in the upcoming presentation of the
advanced solution-oriented concepts. To simplify the nota-
tion, let � : {A | A ⊂ {(i, hi) | i ∈ T , 1 ≤ hi ≤ ni }} → Z

≥0

denote the function that calculates the total load of a feasible
set A as �(A) := ∑

(i,hi)∈A hi · wi . The set {(i, hi) | i ∈
T , 1 ≤ hi ≤ ni } used in the definition of function � rep-
resents the set of all feasible sets for a particular problem
instance.

4.2 A packing-basedmixed integer programming
formulation

Apart from the precedence constraints, the mixed integer
programming formulation can be stated in a straightforward
manner. It is based on binary decision variables xi jk ∈ {0, 1}
that indicate whether a slice (i, j) is assigned to bin k or not:

min
k̄∑

k=1

k ·
∑

i∈T

ni∑

j=1

xi jk · wi (3)

s.t.
∑

i∈T

ni∑

j=1

xi jk · wi ≤ C ∀ 1 ≤ k ≤ k̄, (4)

xi, j−1,1 ≥ xi, j,1 ∀ i ∈ T ,

∀ 2 ≤ j ≤ ni ,
(5)

xi, j−1,k−1 + xi, j−1,k ≥ xi, j,k ∀ i ∈ T ,

∀ 2 ≤ j ≤ ni ,
∀ 2 ≤ k ≤ k̄,

(6)

k̄∑

k=1

xi jk = 1 ∀ i ∈ T ,

∀ 1 ≤ j ≤ ni ,
(7)

xi jk ∈ {0, 1} ∀ i ∈ T ,

∀ 1 ≤ j ≤ ni ,
∀ 1 ≤ k ≤ k̄.

(8)

The objective function (Eq. (3)) is essentially the linear
usage cost objective known fromBraune (2019). Constraints
(4) ensure that the bins’ capacities are not exceeded. Con-
straints (5) and (6) enforce the minimum and maximum time
lags by exploiting the semantics of the binary variables. The
idea is that if a slice (i, j) is assigned to a bin k, then its pre-
decessor in the chain, i.e., (i, j − 1), must be assigned either
to the previous bin or the same bin as (i, j). This way of
modeling the precedence constraints turned out to be supe-
rior to the conventional approach, derived from Eqs. (1) and

(2), as indicated by preliminary computational experiments.
Constraints (7) finally make sure that each slice is assigned
to exactly one bin.

5 Tightening lower bounds

Various custom lower bounds for a bin packing problem
with linear usage cost have recently been proposed in Braune
(2019). The linkage to this kind of problem is pointed out in
Sect. 4. Themain difference, on the other hand, is the absence
of precedence constraints in the referenced problem.

In this section, an approach is proposed to exploit those
constraints with regard to tightening the existing lower
bounds. The resulting lower bounds are “local” in the sense
that they have to be recomputed each time a partial packing
(or schedule) has been fixed. In fact, some slices have to be
already packed for precedence constraints to take effect. The
maximum time lags then lead to a situation where a certain
part of the packing in yet unpacked bins is already prede-
termined. Suppose that a particular partial packing has been
fixed and that the bins are re-indexed such that the last packed
bin and the first unpacked bin receive the indices 0 and 1,
respectively. Assume further that at this state of packing, a
maximum number of additional k̄ bins can still be packed in
a way such that no trivial improvements can bemade without
violating the precedence constraints.

The compulsory part of a feasible set Fk (see Definition
1 in Sect. 4.1) is given by Fk = {(i, 1) | i ∈ T ∧ Fk(i) ≥
1∧ Fk−1(i) ≥ 1} and hence consists of exactly one slice for
each chain which is also packed into the previous bin and is
not yet finished, meaning that it has slices left to be packed.
The notion of a compulsory part directly follows from the
precedence constraints with maximum time lags. It means
that the underlying feasible set could be altered by shifting
slices to earlier or later bins, but its compulsory part must
remain untouched in order not to violate the non-preemption
constraints.

Since a packing F ∈ F
k̄ can be considered as a vector of

feasible sets, one for each bin 1 ≤ k ≤ k̄, the compulsory
part F of a packing can be defined in an analogous way.

If the intersection of all compulsory parts of all potential
feasible packings, denoted by F∗, was known, a notable por-
tion of the unpacked bins could already receive some fixed
load up front, regardless of which packing is implemented
afterward. Figure 3 illustrates the idea, based on a concrete
example. The area below the bold, dotted line represents the
common compulsory part F∗, pretending that it is known.
The shaded in dark grey represents an approximation of F∗,
as it will be proposed below. Finally, the feasible set composi-
tion around that part is just one particular option to complete
the packing.

123

Journal of Scheduling (2022) 25:675–704 681

bin index (k)0 1 2 3 4 5 6 7 8 9 10 11 12 13

i1

i2

...

iq

T̃1

C

Already scheduled/fixed

Approximation of F ∗

Extents of F ∗

Fig. 3 The concept of a common compulsory part and its approximation, based on maximum time lags

In terms of the already mentioned lower bounds, such a
fixed, rigid blockmight ideally lead to less fractional load and
thus to tighter bounds in general. Unfortunately, the determi-
nation of F∗ would require the enumeration of all feasible
sets and is thus computationally prohibitive. Therefore, the
remainder of this section is dedicated to an approximation of
F∗.

The main challenges of developing such an approxima-
tion, referred to as F̃ henceforth, are (9) to ensure that the
lower bound property is not violated and (10) to keep the
fixed area as large as possible to ensure a proper tighten-
ing effect. The key to the computation of F̃ is to focus on
chains that are in progress at the transition between packed
and unpacked bins. A chain is considered in progress if it has
at least one unpacked slice remaining. In fact, the remaining
number of slices of in-progress chains determines the shape
of the rigid load that extends into the unpacked bins. The
proposed approximation is therefore based on determining
the minimum possible number of remaining slices for each
unpacked bin 1 ≤ k ≤ k̄.

From a more general point of view, let T̃k denote the set
of in-progress chains before packing bin k. Assuming that
this property holds for q chains after packing the most recent
bin, T̃1 = {i1, i2, . . . , iq} is predetermined and thus constant,
as illustrated in Fig. 3. Accordingly, the first fragment of
the approximation, F̃1 = {(i, 1) | i ∈ T̃1}, can also be
fixed. All subsequent sets T̃k , with k ≥ 2, again depend on
the actual packing and again cannot be determined without
excessive computational effort. However, it is possible to
approximate the sets T̃k : let r(i, k) denote a function yielding

a lower bound on the number of remaining slices for chain
i before packing bin k. Based on the (known) number of
remaining slices n′

i at the boundary between the packed and
the unpacked areas, a recursive definition of function r can
be given as follows:

r(i, k)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n′
i , for k = 1,

r(i, k − 1)−
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C −
∑

i ′∈T̃1,i ′ �=i

min(1, r(i ′, k − 1)) · wi ′

wi

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, for

k ≥ 2.

(9)

The idea of the approach is to use up all the residual space
of a bin for slices of a particular chain i ∈ T̃1. This is done
for each chain separately and independently from the other
chains. Hence, the residual space is essentially used q times,
which constitutes a relaxation of the capacity constraints. An
approximation set F̃k can then be defined as

F̃k =
{

{(i, 1) | i ∈ T̃1}, for k = 1,

{(i,min(1, r(i, k))) | i ∈ T̃1}, for 2 ≤ k ≤ k̄.
(10)

Lemma 1 Let r : F
k̄ × T × {1, . . . , k̄} → Z

≥0 denote a
function that yields the true number of remaining slices for
a chain i ∈ T and bin k, 1 ≤ k ≤ k̄, based on a feasible
packing F ∈ F

k̄ . Again, r(F, i, 1) = n′
i , and for k ≥ 2,

123

682 Journal of Scheduling (2022) 25:675–704

r(F, i, k) = n′
i −

k−1∑

κ=1

Fκ(i). (11)

Then

∀ F ∈ F
k̄,∀ i ∈ T̃1,∀ 1 ≤ k ≤ k̄ : r(i, k) ≤ r(F, i, k).

(12)

Proof By induction on k.

1. Base case: k = 1 Since the packing is fixed and known
before the first unpacked bin, so is n′

i , for all i ∈ T .
Hence, for this bin, the remaining number of slices is
independent of any packing F ∈ F

k̄ , and thus clearly
r(i, 1) = r(F, i, 1) = n′

i , for all i ∈ T .

2. Induction hypothesis: Assume that for all F ∈ F
k̄ and

i ∈ T̃1, and for some 1 ≤ k ≤ k̄, r(i, k) ≤ r(F, i, k)
holds.

3. Induction step: It is to be shown that r(i, k + 1) ≤
r(F, i, k + 1). To simplify the proof, a recursive defi-
nition of function r is given as follows (k ≥ 2, because
r(F, i, 1) = n′

i):

r(F, i, k) = r(F, i, k − 1) − Fk−1(i). (13)

Making use of function � from Sect. 4.1, returning the
total load of a feasible set, it follows directly from Eq.
(13) that

r(F, i, k + 1) = r(F, i, k) − Fk(i)

= r(F, i, k) − �(Fk) − (�(Fk) − Fk(i) · wi)

wi

≥ r(F, i, k) −
⌊
C − (�(Fk) − Fk(i) · wi)

wi

⌋

≥ r(F, i, k) −

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C −
∑

i ′∈T̃1,i ′ �=i

min(Fk(i
′), r(F, i ′, k)) · wi ′

wi

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(by assumption)≥ r(i, k) −

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C −
∑

i ′∈T̃1,i ′ �=i

min(1, r(i ′, k)) · wi ′

wi

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= r(i, k + 1).

�

Lemma 1 allows to finally prove the lower bound property
of the proposed approximation F̃ .

Theorem 1 Given a set of in-progress chains T̃1 �= ∅ result-
ing from a partial packing and an arbitrary completion

F ∈ F
k̄ (k̄ ≥ 2) of the (overall) packing, then for an approx-

imation F̃ as defined in Eq. (10),

�(Fk) ≥ �(F̃k), (14)

for all 1 ≤ k ≤ k̄.

Proof For k = 1, the inequality trivially holds, because F1
must contain all in-progress chains as well, with multiplici-
ties greater than or equal to 1. Consider the case 2 ≤ k ≤ k̄:

�(Fk) =
∑

i∈T
Fk(i) · wi

≥
∑

i∈T
min(1, Fk(i)) · wi

=
∑

i∈T
min(1, Fk(i), r(F, i, k)) · wi

≥
∑

i∈T̃1
min(1, Fk(i), r(F, i, k)) · wi .

Based on the fact that Fk(i) ≥ 1 as long as r(F, i, k) ≥ 1,
for all i ∈ T̃1, and Lemma 1, one finally obtains

∑

i∈T̃1
min(1, Fk(i), r(F, i, k)) · wi

=
∑

i∈T̃1
min(1, r(F, i, k)) · wi

(12)≥
∑

i∈T̃1
min(1, r(i, k)) · wi

= �(F̃k).

�

6 Dominance and symmetry breaking rules

6.1 Dominance between alternative packings

This section deals with equivalence and dominance relations
between alternative packings of the same set of task slices.
First, it is shown that the precedence constraints do not inter-
fere with these relations. This is a fortunate side effect of the
special kind of maximum time lags present in the problem.
Second, a set of conditions is presented by which it is possi-
ble to decide whether a certain packing can be dropped from
consideration because it cannot lead to a better solution than
an alternative one.

Lemma 2 Consider two packings F ∈ F
k̄ and F ′ ∈ F

k̄′
,

involving the same set of slices (and thus chains) and allo-
cating k̄ and k̄′ bins (starting from bin 1), respectively. More
formally,

123

Journal of Scheduling (2022) 25:675–704 683

∀ i ∈ T :
k̄∑

k=1

Fk(i) =
k̄′

∑

k=1

F ′
k(i). (15)

Then F and F ′ are equivalent with respect to the prece-
dence constraints, meaning that exactly the same restrictions
regarding chain continuation apply to both packings.

Proof Packings F and F ′ can be partial packings, that is,
some chains may still have slices remaining to be packed
starting from bins k̄ + 1 and k̄′ + 1, respectively. It follows
from Eq. (15) that the number of remaining slices n′

i for each
chain i ∈ T has to be the same in both cases. Two major
cases are distinguished:

1. Packing F is self-contained in the sense that all started
chains are also finished within F . This must hold for
F ′ as well, because otherwise the set of slices would be
different.

2. Packing F contains incomplete chains.
Then exactly the same chains are also incomplete in F ′,
with the same number slices left for each of those chains.

�
Let f : Fk̄ → R denote the objective function, return-

ing the usage cost of a particular packing F ∈ F
k̄ , that is,

f (F) := ∑k̄
k=1 k · �(Fk). It is easy to see that the defini-

tion of f is in accordance with the objective function of the
MIP formulation provided in Sect. 4.2, with variables xi jk
essentially deciding whether a slice (i, j) is part of a feasible
set Fk or not. To prove the dominance between alternative
packings of the same slices, the following result is needed:

Lemma 3 Consider a particular packing F ∈ F
k̄ , involving

k̄ bins. Delaying the packing by κ bins increases the objec-
tive function value f (F) by κ times the total load of slices
contained in F.

Proof Without loss of generality, it is assumed that F starts in
bin 1. Let F ′ be the packing resulting from the shift, simply
containing a load of zero in the first κ bins and then the
original packing F starting in bin κ + 1. Consequently, k̄′ =
k̄+κ . The difference between f (F ′) and f (F) is then given
by

f (F ′) − f (F) =
k̄′

∑

k=κ+1

k · �(Fk−κ) −
k̄∑

k=1

k · �(Fk)

= (κ + 1) · �(F1) + · · · + (κ + k̄) · �(Fk̄)

− 1 · �(F1) − · · · − k̄ · �(Fk̄)

= κ · �(F1) + · · · + κ · �(Fk̄) = κ ·
k̄∑

k=1

�(Fk).

�

Theorem 2 Let F and F ′ be two alternative packings involv-
ing the same set of task slices, as specified in Lemma 2.
Packing F cannot lead to a better solution than F ′ if one
of the following conditions holds:

f (F) ≥ f (F ′) ∧ k̄ ≥ k̄′ (16)

f (F) < f (F ′) ∧ k̄ ≥ k̄′

∧ f (F ′) − f (F) ≤ (k̄ − k̄′) ·
∑

i∈T
n′
i · wi (17)

f (F) ≥ f (F ′) ∧ k̄ < k̄′

∧ f (F) − f (F ′) ≥ (k̄′ − k̄) ·
∑

i∈T
n′
i · wi (18)

Proof Lemma 2 guarantees that the precedence constraints
do not interfere with any of the above conditions. It is then
easy to see that F cannot lead to a better solution than F ′
if both, the objective value and the number of bins are at
least as high as for F ′. The remaining total load is exactly
the same for both packings and it will be allocated to the still
unoccupied bins after the respective partial load. The optimal
packing for this remaining load will therefore also be exactly
the same in both cases.

Conditions (17) and (18) are less intuitive, however. Figure
4 illustrates the rationale behind them. It shows two different
packings for the same set of chains (and slices). The pack-
ing on the left occupies eight bins and yields a usage cost
(TWCT) objective value of 900. The packing on the right
uses one bin more, but leads to a slightly lower objective
value of 897. This peculiarity of the problem is in fact the
key to the two additional dominance rules.

Condition (17) refers to the case where F looks similar to
the right part of Fig. 4 and thus occupies more bins than F ′
at lower usage costs. It then solely depends on the amount
of the remaining (unpacked) load, whether F is nevertheless
dominated by (or at least as good as) F ′ or not. Let k̄′′ denote
the number of additional bins that can be allocated by those
remaining slices. Any packing F ′′ ∈ F

k̄′′
could be started

(k̄ − k̄′) bins earlier when adopting F ′. From Lemma 3, it
is known that the objective value difference amounts to (k̄ −
k̄′) ·∑k̄′′

k=1 �(F ′′
k) = (k̄− k̄′) ·∑i∈T n′

i ·wi , based on the fact
that F ′′ contains all remaining slices with multiplicities n′

i .
Condition (18) covers the exact opposite case. Here, F

already induces a higher usage cost objective, but requires
fewer bins. Hence, F might still lead to a better solution.
This is precluded, however, if the difference in the objective
value is larger than the savings that can be gained from the
more compact way of packing. Any packing F ′′ ∈ F

k̄′′
could

be started (k̄′ − k̄) bins earlier when adopting F instead of

F ′. The gain is therefore (k̄′ − k̄) · ∑k̄′′
k=1 �(F ′′

k) = (k̄′ − k̄) ·∑
i∈T n′

i · wi , according to Lemma 3. �

123

684 Journal of Scheduling (2022) 25:675–704

1 2 3 4 5 6 7 8

26

1
(7)

2
(9)

2
(9)

1
(7)

2
(9)

2
(9)

1
(7)

2
(9)

2
(9)

4
(5)

1
(7)

3
(14)

4
(5)

1
(7)

3
(14)

4
(5)

1
(7)

3
(14)

4
(5)

4
(5)

3
(14)

4
(5)

4
(5)

3
(14)

(a) 8 occupied bins, objective value 900

1 2 3 4 5 6 7 8 9

26

4
(5)

1
(7)

3
(14)

4
(5)

1
(7)

3
(14)

4
(5)

1
(7)

3
(14)

4
(5)

1
(7)

3
(14)

4
(5)

1
(7)

3
(14)

4
(5)

4
(5)

1
(7)

2
(9)

2
(9)

2
(9)

2
(9)

2
(9)

2
(9)

(b) 9 occupied bins, objective value 897

Fig. 4 Example problem with an optimal solution that occupies more bins than would be minimally necessary

(1, 1) (1, 2) (1, 3)

(1, 4)(2, 2) (2, 4)

(2, 1) (2, 3)

(a) Dominated feasible set in the first
bin (two chains starting)

(1, 3)

(1, 2)

(1, 1)

(1, 4)

(2, 2)

(2, 1)

(2, 4)

(2, 3)

(b) Equivalent packing: only one
chain starting in each bin

Fig. 5 Dominance between packings involving different chains with
the same base weight

6.2 Equally weighted chains

Consider a problem instance involving two or more chains
sharing the same base weight. During packing, a lot of sym-
metrymight arise, as indicated inFig. 5. In the given example,
the feasible set in the first bin contains one slice of chain 1
and two slices of chain 2. An equivalent packing could be
obtained by putting together two slices of chain 1 and one
slice of chain 2. It is easy to see that the number of dif-
ferent ways to combine chains such kind in a feasible set
increases with the number of chains and the number of times
the (common) chain size fits into a bin. However, the follow-
ing symmetry breaking rules help reduce that combinatorics
considerably, without omitting potential optimal solutions.
In a feasible set, for each distinct value of wi ,

– Only one chain is allowed to start,
– Only one chain is allowed to finish,
– Arbitrarily many chains are allowed to start and finish.

The last rule applies to chains that are short enough to entirely
fit into a single bin. The right part of Fig. 5 exemplarily shows
how the application of these rules leads to an equivalent pack-
ing. The equivalence directly follows from Theorem 2. The
time of application of the associated rules is different though.

While dominance (or equivalence) between packings involv-
ing the same set of slices can only be checked in retrospect,
the above stated rules can be used to filter feasible sets up
front, before they are even packed.

6.3 Extensible feasible sets

Definition 2 A feasible set Fk is called extensible if it leaves
space for an additional slice of a chain that is not part of Fk
when packed to a bin k. More formally, there exists a chain
i ′ ∈ T , with Fk(i ′) = 0, such that

∑
i∈T Fk(i)·wi +wi ′ ≤ C.

Unlike one would expect, extensible feasible sets are of
vital importance when constructing optimal solutions for the
problem at hand. Consider the example shown in Fig. 6. The
packing on the left-hand side is an optimal one, featuring
an extensible feasible set in the very first bin. There would
be still enough space to pack a slice of chain 5 (w5 = 2).
However, due to themaximum time lags, chain 5must be con-
tinued and would thus prevent the feasible set {(2, 2), (3, 1)}
from being packed in the subsequent bins. Hence, creating
only “maximal” feasible sets, meaning that no further slice of
any chain can be added to the feasible set without violating
the capacity constraints, may not be sufficient for solving
a given problem instance to optimality. Note that starting
with the feasible set {(2, 2), (3, 1)}makes things even worse,
requiring one more bin and leading to an inferior solution as
well. This is due to the fact that the feasible set {(3, 2)} is no
more packable in this situation (chain 2 is forced to be contin-
ued), and besides that, chain 3 is incompatible with chain 4.

Note that an extensible feasible set might actually occur
also in the middle of an optimal packing, as shown in Fig. 7.
In the depicted example, F9 = {(5, 2), (1, 1)} would leave
enough space for starting chain 0 (size 2). However, proceed-
ing like this prevents chain 2 from being packed together
with chain 5, which is obviously necessary for constructing
an optimal solution.

123

Journal of Scheduling (2022) 25:675–704 685

1 2 3 4 5 6 7 8 9 10 11 12

26

3
(12)

3
(12)

3
(12)

2
(7)

2
(7)

3
(12)

2
(7)

2
(7)

3
(12)

2
(7)

2
(7)

3
(12)

2
(7)

2
(7)

4
(16)

2
(7)

5
(2)

4
(16)

1
(6)

5
(2)

5

4
(16)

1
(6)

5
(2)

5

4
(16)

1
(6)

4
(16)

1
(6)

4
(16)

1
(6)

4
(16)

(a) Objective value 1780

1 2 3 4 5 6 7 8 9 10 11 12

26

3
(12)

3
(12)

5
(2)

3
(12)

3
(12)

5
(2)

3
(12)

3
(12)

5
(2)

4
(16)

2
(7)

5
(2)

4
(16)

2
(7)

5
(2)

4
(16)

2
(7)

4
(16)

2
(7)

4
(16)

2
(7)

4
(16)

2
(7)

4
(16)

2
(7)

2
(7)

2
(7)

1
(6)

1
(6)

1
(6)

1
(6)

1
(6)

(b) Objective value 1803

Fig. 6 Extensible versus maximal feasible sets at the beginning of a packing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

15

4
(8)

3
(7)

4
(8)

3
(7)

4
(8)

3
(7)

4
(8)

3
(7)

4
(8)

2
(5)

1
(2)

4
(8)

2
(5)

1
(2)

4
(8)

2
(5)

1
(2)

4
(8)

2
(5)

1
(2)

2
(5)

2
(5)

1
(2)

5
(9)

2
(5)

5
(9)

2
(5)

6
(9)

2
(5)

6
(9)

7
(2)

7

7

6
(9)

7
(2)

7

7

6
(9)

7
(2)

6
(9)

Fig. 7 An extensible feasible set amid an optimal packing

Under particular circumstances, however, it is possible to
restrict the search space by discarding dominated extensible
feasible sets or their extensions.

Proposition 1 Consider an extensible feasible set Fk allo-
cated to a bin k and assume that it is possible to allocate the
same feasible set also to the next bin k + 1. Then any feasi-
ble set F ′

k+1 for bin k + 1 that is a simple extension of Fk,
hence adding at least one slice of another chain according
to Definition 2, cannot be part of an optimal solution.

Proof Clearly, a packing containing Fk and its simple exten-
sion F ′

k+1 in directly consecutive bins can be trivially
improved with regard to the usage cost objective by simply
swapping the allocations of the two feasible sets, i.e., putting
F ′
k+1 into bin k and Fk into bin k + 1. �

Proposition 2 Let Fk be an extensible feasible set assigned
to bin k. The set Fk cannot be part of an optimal solution if
both

1. Fk contains exactly one slice for each covered chain and
2. There exists an extending chain i ′ ∈ T that can be finished

before the continuation of Fk across the subsequent bins
ends.

k

20

1
(10)

1
(10)

1
(10)

5
(6)

5
(6)

5
(6)

3
(2)

3

3
(2)

3

3
(2)

(a) Dominated

k

20

5
(6)

5
(6)

5
(6)

5
(6)

4
(7)

...

3
(2)

3
(2)

(b) Non-dominated

Fig. 8 Extensible feasible sets with varying dominance status

Proof The first condition ensures that the configuration of Fk
does not change over time. This means that Fk can only be
extended and not reduced. The purpose of packing an exten-
sible feasible set is to leave enough flexibility for switching to
another feasible set (that is not a simple extension) in one of
the subsequent bins, as depicted in Fig. 6. If Fk contains two
or more slices for a chain, it is possible to switch to another
feasible set in any bin, as long as at least one slice of each
chain in progress is packed. A chain that extends Fk would
then again impose restrictions on the transition to another
feasible set, if it requires more than one bin to finish. This
case is illustrated in the right part of Fig. 8. If, on the other
hand, Fk contains exactly one slice for each covered chain,
that is, when Fk(i) = 1 for all i ∈ T with Fk(i) ≥ 0, no
such transition is possible unless at least one involved chain
is running out of slices. If a fitting extension chain i ′ ∈ T

123

686 Journal of Scheduling (2022) 25:675–704

Fig. 9 Relations among different types of feasible sets

can be found that can be finished before this happens, Fk is
clearly dominated by the resulting extension F ′

k (see left part
of Fig. 8). �

7 A branch-and-bound algorithm

The proposed branch-and-bound (B&B) algorithm con-
structs a schedule in a chronological fashion, starting at time
period 0 (bin 1). Its core concept is to enumerate feasible sets
for each time period or bin. From a packing-oriented point
of view, it can therefore be classified as a “bin-completion”
algorithm (Fukunaga & Korf, 2007).

Definition 3 A feasible set Fk is called slice-saturated if
for none of its already included chains, an additional slice
can be added without exceeding the capacity of bin k. For-
mally speaking, this is the case when there is no i ′ ∈ T with
Fk(i ′) > 0 and

∑
i∈T Fk(i) · wi + wi ′ ≤ C.

If a partial packing has already been established, this prop-
erty also depends on the remaining number of slices n′

i of
each chain i . Of course, a feasible set that runs out of slices
for one of its chains is also slice-saturated.

Definition 4 A feasible set Fk is called maximal if no addi-
tional slice of any, not necessarily already included, chain
can be added without exceeding the capacity of bin k.

Note that a slice-saturated feasible set can still be exten-
sible (see Definition 2), because there may be enough space
for a slice of a chain that is not yet included. On the other
hand, an extensible feasible set does not necessarily have to
be slice-saturated. Let F s

k , F
e
k and Fm

k denote the set of
slice-saturated, extensible and maximal feasible sets pack-
able in bin k, respectively. Then the following set relations
hold: Fm

k ⊂ F s
k and Fm

k ∩ F e
k = ∅.

As already indicated inSect. 6.3, in order tofind anoptimal
solution to the problem at hand, it is not sufficient to restrict
the search to maximal feasible sets. Rather, the search has
to be extended to sets that are extensible and slice-saturated.
An optimization algorithm therefore has to consider the set
unionF o

k = Fm
k ∪ (F s

k ∩F e
k), as depicted in Fig. 9 by the

areas shaded in light gray. Note that a feasible set that is not
extensible but slice-saturated has to be a maximal one.

Proposition 3 Consider an optimal solution to a particular
instance of the discrete malleable task scheduling problem

with TWCT objective, allocating k∗ bins. Then in all bins
k ∈ N

+, k ≤ k∗, this solution contains either a maximal or
an extensible, slice-saturated feasible set.

Proof Suppose that in one of the bins 1 ≤ k ≤ k∗, the
solution contains a feasible set that is not maximal and not
slice-saturated. Then it is easy to see that the solution can
be trivially improved by removing a slice from a later (e.g.,
the next) bin and adding it to this feasible set. No such move
operation would violate the precedence constraints because
at least the immediately succeeding bin contains another slice
of one of the chains in question. Note that any feasible set
occurring in the last bin k∗ is always a maximal one (all
remaining slices are simply put there), otherwise the solu-
tion would not be optimal. �

Every node in the B&B tree corresponds to a partial pack-
ing up to a particular bin k̂ (starting from bin 1). Branching is
conducted by determining the set of potential feasible sets for
bin k̂+1, that is,F o

k̂+1
. Hence, each branch is an extension of

the current partial packing by exactly one additional (packed)
bin. To avoid the exploration of non-promising regions of
the search space, a variety of techniques is used to filter the
potential feasible sets. The most important concepts have
already been presented in Sects. 5 and 6 and will there-
fore be discussed with regard to their embedding into the
B&B algorithm only. It must be emphasized at this point
that conventional techniques for filtering feasible sets in bin
packing, like the ones proposed by Martello and Toth (1990)
and Scholl et al. (1997), cannot be applied to the problem at
hand. The interchange arguments used in the corresponding
proofs are not generally valid under the presence of prece-
dence constraints.

Algorithm 1 gives an outline of the flow structure of the
proposed B&B algorithm. To keep it short, it is an informal,
high-level description, leaving out implementation details.
Rather, its main goal is to illustrate the sequence in which the
major steps of the algorithm (bounding, filtering and consis-
tency checking) are executed. The three filtering procedures
called at the beginning (lines 2, 3, and 4), are not further out-
lined. The corresponding techniques have been introduced in
Sects. 6.2 and 6.3. Note that the incumbent solution and its
associated objective valueUB are treated as global variables
here (lines 14 and 20). It is assumed that they are initialized
before the algorithm is run, by using a constructive heuristic,
for example.

7.1 Bounding

Assume that a particular feasible set Fk̂+1 ∈ F o
k̂+1

has been
chosen to extend the existing partial packing. A lower bound
on the usage cost objective obtained from the resulting new
partial packing can be used to decide whether the extension

123

Journal of Scheduling (2022) 25:675–704 687

Algorithm1:Outline of the proposedbranch-and-bound

procedure.
Input : A partial packing F , and the index of its latest packed

bin k̂.

1 Determine potential feasible sets for bin k̂ + 1: F o
k̂+1

;

2 F o′
k̂+1

← FilterEqualWeightChains(F o
k̂+1

) ; // Sec.

6.2

3 F o′
k̂+1

← FilterFeasSetExtensions(F o′
k̂+1

) ; // Prop.

1

4 F o′
k̂+1

← FilterExtFeasibleSets(F o′
k̂+1

) ; // Prop. 2

5 foreach Fk̂+1 ∈ F o′
k̂+1

do

6 Create packing F ′ by appending Fk̂+1 to F ;

7 if F ′ is not complete then
8 Perform constraint propagation on F ′ (by CP model);

9 if CP model is consistent and no alternative

10 dominating packing F ′′ exists in no-goods then
11 Set up problem instance I for remaining slices;

12 Create tightened instance I ′ of I using compulsory

part;

13 Compute lower bound LB based on I ′;
14 if LB < UB then
15 BranchAndBound(F ′, k̂ + 1);

16 Add F ′ to no-goods memory structure;

17 end

18 end

19 else /*Leaf node reached(new incumbent?) */

20 if f (F ′) < UB then
21 UB ← f (F ′);
22 Update incumbent solution (data);

23 end

24 end
25 Remove Fk̂+1 from F ′;
26 end

Fk̂+1 can safely be dropped from consideration or not. For

this purpose, the bounding scheme LLUC
2LLM that has proven

particularly successful for the linear usage cost bin packing
problem without precedence constraints (Braune, 2019) is
employed in conjunction with the tightening approach pre-
sented in Sect. 5.

The bound computation is based on a partial problem that
consists of all slices (and chains) left to be packed after the
extension Fk̂+1 has been added. Hence, Fk̂+1 is the last bin of
the packed area shown in Fig. 3. To incorporate the approx-
imation F̃ of the compulsory part of the continuation of the
packing into the bound computation, the following approach
is used: The corresponding partial problem is made up of two
different kinds of slices. First, a dummy slice is created for
each bin that is occupied by the approximation F̃ . Theweight
of each such dummy slice equals the load of F̃ in the cor-
responding bin. Second, slices of chains that are in-progress

or still completely unpacked are added to the problem. If a
compulsory part exists, that is, when at least F̃1 �= ∅, some
of the latter slices are already tied to F̃ . Note that by the
definition of F̃ [see Eq. (10)], it contains at most one slice
of each in-progress chain per bin. Let n′′

i denote the number
of remaining slices of a chain i ∈ T that are not part of F̃ .
One obtains n′′

i = n′
i − (min {k ∈ N | r(i, k) = 0} − 1) for

i ∈ T̃1, and simply n′′
i = n′

i otherwise. Note that in this spe-
cific context, k is relative to the beginning of the unpacked
area, hence, k = 1 for the first bin after the last packed bin
k̂ + 1.

Once the partial problem is set up based on the compulsory
part and the remaining slices, it is passed to the bounding pro-
cedure. Both, dummy and regular slices can then be handled
uniformly according to their weight and assigned to different
sets, as typical for advanced bin packing lower bounds based
on item grouping. The only major modification required is
to always process the dummy slices (or the bins that contain
them) first, with regard to matching and the distribution of
fractional loads. In other words, to make effective use of the
notion of compulsory parts, it has to be ensured that the cor-
responding dummy slices always appear at the beginning of
any packing that is constructed by a lower bounding proce-
dure.

7.2 Filtering

– No-good recording Section 6.1 covers the equivalence
(and dominance) between alternative packings of the
same set of slices. To exploit this concept, the proposed
B&B algorithm stores packings that have not been dom-
inated so far in a memory structure (a hash table). The
contents of this memory structure are referred to as no-
goods. This term has its roots in constraint programming
(see, e.g., Schiex and Verfaillie, 1994)). In its original
form, it refers to variable assignments that do not lead to a
feasible solution of the associated constraint satisfaction
problem and thus trigger a backtrack. In the optimization
context, a no-good can be seen as a collection of solution
characteristics that do not (immediately) lead to an opti-
mal solution. The contributions by Jouglet (2002) and
Jouglet et al. (2004) were among the first ones to intro-
duce this concept in single-machine branch-and-bound
methods,whileMorrison et al. (2016) give amore general
classification in the context of a survey on branch-and-
bound techniques. For the problem at hand, every time a
new partial packing is constructed, it is checked whether
another packing involving the same slices has already
been recorded. If one of the conditions of Proposition 2
[see Eqs. (16), (17) and (18)] succeeds to verify, then the
new partial packing and thus its corresponding node can
be discarded.

123

688 Journal of Scheduling (2022) 25:675–704

– Symmetry breaking and dominance The feasible set
Fk̂+1 is examined for symmetry if it contains slices of
equal weight (see Sect. 6.2). If Fk̂+1 is a simple exten-
sion of Fk̂ , it can immediately be discarded (see Sect. 6.3,
Proposition 1). On the other hand, if Fk̂+1 is an extensible
feasible set itself, the conditions of Proposition 2 have to
be checked to decide whether the node can be fathomed
or not.

7.3 Supporting techniques

This section covers two auxiliary/supporting techniques pro-
viding information that can be exploited for intensified
pruning of the B&B tree. First, the B&B algorithm carries
a constraint programming (CP) model that is synchronized
with the branching progress and can be used to detect incon-
sistent states. Second, through the (required) knowledge of
all potentially extending feasible sets, the bin capacities
might be “virtually” reduced, ideally leading to tighter lower
bounds and an increased degree of constraint propagation.

– Constraint propagation Cambazard et al. (2013) pro-
posed a constraint propagation approach in the context
of linear usage cost bin packing. The incorporation of
precedence constraints into that approach turned out to be
impossible to do in an immediate way and is considered
beyond the scope of this paper. Nevertheless, the prop-
agation routine for the relaxed version of the problem
(without precedence constraints) proved successful in
reducing the B&B search effort. What the routine essen-
tially does is to iteratively tighten lower and upper bounds
on the bin loads based on an upper bound on the objective
function value. The modified load domains can then be
used to make further inferences, like the identification of
non-packable bins (Shaw, 2004).

– Dynamic capacity adjustment Suppose that one knows
the maximum load among all feasible sets that can still
be packed starting from the current node, that is, after
the latest extension. If that quantity is less than C, the bin
capacities for k ≥ k̂ + 2 can be temporarily (locally) set
to that value. This allows to potentially further tighten
lower bounds and to increase the effectiveness of con-
straint propagation. The implementation of this technique
is based on a bit array indicating for each feasible set
whether it can currently be packed or not. For exam-
ple, a feasible set that contains a chain that is already
packed can be omitted from consideration. The bit array
is indexed based on unique IDs that are assigned to the
feasible sets upon creation at the root node and is then
continuously updated upon branching (whenever a chain
has been completely packed) and simply reverted upon
backtracking. The update itself can be performed effi-

ciently by relying on a hash table that allows to retrieve
all feasible sets in which a particular chain is included.

7.4 Handling instances with small slices only

Instances that exclusively contain small slices, that is when
wi ≤ 0.5C are more likely to fill bins exactly up to their load
limit, which is the ideal constellation with regard to total
weighted completion time minimization. Preliminary exper-
iments have shown that this particularly applies to chains
with wi ∈ [0, 0.3C]. This observation can be leveraged in so
far that one might first try to obtain a solution with a max-
imum number of completely filled bins. If all bins but one
(for the leftover slices) can be filled that way, it is clear that
an optimal solution has been found.

The B&B algorithm, on the other hand, is designed to enu-
merate feasible sets, including those that do not completely
fill a bin (see Sect. 6.3). The idea is to enhance the algorithm
by a pre-optimization phase in the spirit of primal heuristics
known from mixed integer programming. Instead of feasible
sets with varying total load, only those that exactly cover a
bin are generated. This can be achieved by solving a cor-
responding subset sum problem for each bin successively,
starting with the first one. Of course, the precedence con-
straints exacerbate this process because they may restrict the
opportunities for finding exact covers in later bins.

To find the desired packing, it might therefore be neces-
sary to look at more than one covering feasible set for each
bin k. Speaking in terms of the subset sum problem, one is
interested in all or at least a subset of feasible sets whose total
loads are equal to the capacity limit C. In essence, this means
that multiple (or even all) optimal solutions to a subset sum
problem have to be enumerated. The well-known dynamic
programming approach for this kind of problem has been
modified to fill a table-like memory structure, allowing for
an enumeration of equivalent solutions.

The subset-sum solution generator is then embedded into
the B&B framework shown in Algorithm 1, replacing the
“standard” feasible set generator and omitting filtering and
bounding mechanisms. Instead, any branch that is not able to
completely fill a bin (except for the last one) is immediately
discarded. The number of branches is limited up front, ren-
dering the approach similar to what is known as beam search.
The idea is to run the algorithm with an increasing sequence
of different “aperture” sizes, trying to dive as quickly as pos-
sible into the search tree.This pre-optimizationphase is either
terminated by a time limit or as soon as an optimal solution
is found.

7.5 Generalizability considerations

So far, the B&B algorithm and its subroutines, based on con-
cepts fromSects. 5 and 6,were described solely in the context

123

Journal of Scheduling (2022) 25:675–704 689

of a special case of total weighted completion timeminimiza-
tion. Although the resulting approach is able to optimally
solve also real-world problem instances to optimality, as will
be shown in Sect. 8, the applicability might appear limited
with regard to the objective function. Instead, the proposed
concepts are transferable to other objectives as well and thus
broaden the scope of the overall approach. The chain-like
precedence constraints are assumed to be still present for the
subsequent considerations, since the exploitation of those
constraints is the key to the efficacy and also the novelty of
all the techniques.

Consider for example the objective of makespan mini-
mization. Speaking in terms of packing, this coincides with
the minimization of the number of allocated bins. All the
symmetry breaking and dominance rules still hold under this
objective as well. As far as the bound tightening approach
is concerned, it gets immediately clear that the fundamen-
tal principle of approximating the compulsory part of the
continuation of a partial packing is independent of the objec-
tive function. It is trivial to show that the approximation is
a lower bound on the number of allocated bins. The tighten-
ing approach finally has to be embedded into lower bounds
known from standard bin packing.

Lifting the restriction concerning the weights, hence
allowing the sizes and weights of the slices to be independent
but still homogeneous within the same chain, makes it possi-
ble to consider theTWCTobjective in amore general fashion.
A well-known special case is the minimization of the total
completion time, with all weightswi = 1. Though both cases
(arbitrary weights and all weights equal to one) can in fact be
handled by the B&B algorithm, the linkage to packing is not
as close as for the variant considered in this paper. Indeed,
trying to integrate the total completion time or the general
TWCTobjectiveswith the packing-oriented linear usage cost
lower bounds (Braune, 2019) does not prove effective, as
preliminary experiments have shown. The development of
tailored lower bounds thus seems to be indispensable in this
context.

8 Computational results

A series of computational experiments were conducted to
empirically assess the performance of the proposed Branch-
and-Bound algorithm for the discretemalleable task schedul-
ing problem in comparison to “off-the-shelf” commercial
MIP and CP solvers. The following subsections first describe
the experimental conditions underwhich the study took place
and then discuss the obtained results in detail. Besides the
main optimization objective, that is, the minimization of
the total weighted completion time (TWCT), an alternative
objective, namely the minimization of the makespan (and

Table 3 Instance configurations for different problem sizes

Chains Slices/chain Slices total

{10, 20} [3, 8], [2, 4] 50

{10, 20, 30} [2, 4], [3, 8], [6, 15] 100

{10, 20, 30, 40} [2, 5], [3, 6], [5, 10], [10, 20] 150

{10, 20} [8, 13], [15, 25] 200

{10, 20} [13, 18], [25, 35] 300

thus the number of occupied bins) is addressed as well. This
should point out the versatility of the proposed base concepts.

8.1 Experimental setup

The computational experiments are based on three types of
problem data: problem instances generated randomly from
scratch, benchmark sets from the literature, and finally real-
world data sets. As for the newly generated instances, the
problem size varies between 50 and 300 slices in total.
Table 3 provides an overview of the configurations for each
size. The number of chains ranges from 10 to 40 (first col-
umn). The chains have different lengths, with the respective
ranges for the number of slices per chain shown in the sec-
ond column. For the two largest instance groups with 200
and 300 slices, the number of chains is limited to 20. For
each problem instance, five different capacity configurations
(C ∈ {20, 50, 100, 250, 500}) are used.

A further important distinctive feature is the range of
weights. It is known for the problem variant without prece-
dence constraints that the “bulkiness” of items has a con-
siderable impact on the required computation time (Braune,
2019). Therefore, three different basic scenarios have been
considered for the computational experiments: (9) a small-
weight scenario in two variants, with wi ∈ [0, 0.3C] and
wi ∈ [0, 0.5C], (10) instances with bulky slices, that is,
wi ∈ [0.3C, 0.7C] and wi ∈ [0.2C, 0.8C], and (3) a mixed
scenario, with wi ∈ [0,C]. For each configuration obtained
this way, a set of 50 instances was generated.

From a structural point of view, instances of high-multi-
plicity bin packing problems would be best suited for
benchmarking purposes. However, to the best of the author’s
knowledge, no such instances are publicly available. There-
fore, the second part of the computational experiments is
based on standard benchmark instances known from bin
packing. They offer at least a certain degree of item multi-
plicity and can thus be subdivided into chains in a simple
and reproducible way. The data sets taken from the OR-
library include 120, 250 and 500 items (= slices) per instance.
For two further groups of bin packing instances, bin1data
and bin2data, as described by Scholl et al. (1997), C ∈
{100, 120, 150, 1000} and ∑

i ni = 50, 100, 200, and 500.

123

690 Journal of Scheduling (2022) 25:675–704

Finally, the randomized instances used in the survey by
Delorme et al. (2016) are also employed for assessing the
efficacy of the proposed B&B approach. These instance sets
cover four different problem sizes with 50, 100, 200, and 300
slices and are thus referred to as DIM 50 through DIM 300
henceforth.

All benchmark instances underwent a scaling procedure
to reduce the amount of potential feasible sets. The instances
are designed for classical bin packing, where much more
effective filtering mechanisms can be used. Without these,
none of themethods analyzed in this paper are able to achieve
optimal solutions within a reasonable time frame, as prelimi-
nary experiments revealed. Hence, a scaling factor ϕ ∈]0, 1[
was applied to both, weights and capacities in the follow-
ing fashion: wi ← �ϕ · wi� and C ← �ϕ · C�. The factor
ϕ was set to 0.2 for an original capacity C ≤ 200 and 0.1
otherwise. These modified instances are available for down-
load at https://bda.univie.ac.at/research/data-and-instances/
scheduling-problems/discrmalleablesched/, besides the ran-
dom data sets.

Apart from that, the proposed B&B method and its com-
petitors were also applied to real-world instances, retrieved
from a petrochemical R&D facility during a scheduling opti-
mization project. In total, 10 instance sets, collected over 5
months, in intervals of two weeks were used for the experi-
ments. Each set contains around 30 instances. The capacities
are aggregated daily resource capacities given in minutes,
ranging between 24 and 8280. The number of slices varies
between five and 1281, yielding an average of 249 slices per
instance. The instances cover human resources only and indi-
vidual capacities (regular working times) are aggregated to
the workgroup or team level.

The B&B algorithm described in Sect. 7 was implemented
in C# and run on the Microsoft .NET platform. The config-
uration settings are summarized in Table 4. For comparison
purposes, the MIP model from Sect. 4.2 and two constraint
programming (CP) models described in Sects. 1 and 1 were
implemented in IBM ILOG CPLEX and IBM ILOG CP
Optimizer (version 12.10), respectively. The modifications
required to cover the makespan objective are indicated in the
corresponding subsection (Sect. 8.4). All experiments were
conducted on a Windows 10 (× 64) workstation, equipped
with a Core i7-4770 CPU (3.4GHz) and 16 GB of RAM. All
solver algorithms were run in single-threaded mode, given a
time limit of 1800s per instance.

8.2 Generating initial incumbents

Although the precedence constraints of the problem at hand
are relatively difficult to handle for an exact optimization
method, as underpinned by various anomalies (see Sect. 6),
they can be easily incorporated into existing construction

Table 4 B&B configuration settings

Configuration property Actual setting

Search strategy Depth-first

Branching type Feasible set-based

Branching order (1) Total load (non-increasing)

(2) # of slices (non-decreasing)

Lower bound LLUC
2LLM (tightened)

Pre-optimization phase time share 5 %

heuristics known from bin packing. In fact, the only nec-
essary modification is to keep track of any started chain to
ensure its non-preemptive continuation. While this is easy
to cover from an implementation point of view, it makes it
more difficult to find good solutions, because each “bad”
packing decision may immediately propagate across sev-
eral subsequent bins. First fit decreasing (FFD) and best fit
decreasing (BFD)variants are employed, besides a knapsack-
based heuristic. The latter tries to maximize the allocated
loads in each bin, proving particularly effective in problem
settings with many small slices, as these are more likely
to produce completely filled bins. A detailed description
of these heuristics, including a pseudo-code notation, is
given in Sect. 22. All heuristics were enhanced to properly
cover the chain-like precedence constraints of the problem
at hand.

A slight variation of the profits in the knapsack-based
heuristic allows to keep the number of slices as small
as possible at the same time: when subtracting one from
each slice’s profit (gi j ← gi j − 1), knapsacks with a
larger number of slices are less preferable from a profit-
oriented point of view. Tables 12 and 13 summarize heuristic
results for the randomized instances, for the TWCT and
the makespan objective, respectively. The knapsack-based
algorithm aiming at minimizing the number of slices is
referred to as “KnapsackMin” in the table. For the TWCT
objective, the table also reports results obtained by heuris-
tics working according to the first- and best-fit increasing
principle.

It turns out that FFD and BFD perform well in the
makespan case, while their performance considerably
declines for scenarios with bulky items under the TWCT
objective. As expected, the knapsack-based heuristics per-
form exceptionally well as long as slices are small. In
contrast, difficulties arise in the bulky or mixed settings.

To generate an initial incumbent solution for the B&B
algorithm, all four heuristics are applied to the problem
instance and the best resulting solution is installed. When
comparingmethods, the same solution is provided to theMIP
and CP solvers as a “warm-start” (starting point) solution.

123

https://bda.univie.ac.at/research/data-and-instances/scheduling-problems/discrmalleablesched/
https://bda.univie.ac.at/research/data-and-instances/scheduling-problems/discrmalleablesched/

Journal of Scheduling (2022) 25:675–704 691

8.3 Total weighted completion time objective
(proportional weights)

8.3.1 Results on randomized instances

As outlined in Sect. 8.1, the randomized instances have
been designed to cover three levels of bulkiness. During
the computational experiments, it turned out that this is in
fact the most distinctive feature with regard to solvability
and required computation time. The computational results
reported in Table 5 are therefore grouped accordingly. The
second grouping criterion is the number of chains (column
“|T |”). For each combination of weight range and chain
count, the results are aggregated over instance sets with C

ranging from 20 to 500. Each such set contains 50 instances,
yielding 250 instances per combination. For each of the com-
pared approaches, the table lists the percentage of instances
solved to optimality, and the average (tμ), maximum (tmax)
and coefficient of variation (tCV) of the computation times (in
seconds). Only those instances for which an optimal solution
could be found are included in the time statistics. The highest
percentage of optimal solutions in each row is printed in bold
face while the smallest average computation time is marked
with a superscript “b”. Note that the CP results reported here
are based on the corresponding scheduling model described
in Sect. 1. Though the performance of the CP models is gen-
erally poor for this kind of objective, the scheduling-oriented
model still shows better results than the packing-based CP
formulation (see Sect. 1).

Small sliceswithwi ∈ [0, 0.3C] seem to pose the least dif-
ficulties among all settings. Thanks to the subset sum-based
pre-optimization phase, the B&B is able to solve almost all
of these instances to optimality within a fraction of a second.
Strikingly, the percentage of optimal solutions achieved by
the MIP actually increases with the number of chains |T |.
It is obviously easier to find exact bin covers with a greater
variety of chain sizes. A slight increase of the weight upper
bound (wi ≤ 0.5C) already changes the picture a little bit:
The subset-sum phase is much less effective here, also for a
higher number of chains. On the other hand, slices are too
small for bounding techniques to work properly. It turns out
that this setting is the hardest for the B&Bwhen compared to
theMIP. For |T | = 40, the ratio of optimally solved instances
even becomes equal. There is also no clear winner in terms
of average computation times.

Bulky slices (wi ∈ [0.3C, 0.7C] and wi ∈ [0.2C, 0.8C])
basically reduce the combinatorics, because the probability
that slices of different chains are just not compatible with
each other is higher. On the other hand, exact bin covers are
less likely, rendering the subset sum-based pre-optimization
phase ineffective. Nevertheless, the B&B method performs
well also in this scenario, leading to computation time
advantages (average and maximum) of about an order of

magnitude, as long as |T | ≤ 20. More chains (≥ 30) make it
considerably more difficult for both, the B&B and the MIP,
to solve those instances.

As far as the mixed instances (wi ∈ [0,C]) are concerned,
the B&B is still able to solve a large portion of instances to
optimality, being between 5 and 60 times faster than the MIP
on average.

The fact that none of the 40 chains instances in the bulky
and mixed scenarios could be solved to optimality within the
time limit underpins the difficulty of the problem. The coef-
ficient of variation is fluctuating for all methods, with the
MIP showing slightly smaller values than the B&B. How-
ever, since the B&B solves a notably higher percentage of
instances, this statistics is somewhat biased.

Togain further insight into the ability of the differentmeth-
ods to quickly deliver optimal solutions, an investigation has
been conducted that focuses on the number of such solutions
obtained over time. Figure 10a and b plot the fraction of
optimal solutions against the computation time for 10 and 20
chains, respectively. The total slice count is varied between
50 and 150 and C = 500. The area shaded in light gray visu-
alizes the range for theB&Bmethod,while the area shaded in
darker gray corresponds to the MIP results. Strikingly, those
areas show almost no overlaps, meaning that the B&B is still
able to deliver optimal solutions for 150 slices faster than the
MIP is able to do it for 50 slices.

As a second aspect of the analysis, the impact of the total
number of slices on the computation time is of central con-
cern. This time, the weight range is kept fixed (wi ∈ [0,C])
and only the slice count is varied between 50 and 300. This
is only possible because the number of chains |T | has been
limited to 20 for this kind of investigation. Figures 13 and 14
in 22 plot computation times and the percentage of instances
solved to optimality against the total number of slices for 10
and20 chains (C = 500). In both scenarios, it can be observed
that the computation times of the B&B are almost insensi-
tive to the number of slices, while the number of achieved
optimal solutions slightly decreases. In contrast, theMIP and
CP approaches are more notably affected by the increase in
the number of slices. This especially holds for the optimal-
ity statistics which begin to decline quite early. Note that no
presentable results could be obtained for the CP approach in
case |T | = 20 (see also Table 5).

The last part of the computational evaluation is concerned
with the impact of the problem-specific enhancements to the
B&B method, as presented in Sects. 5 and 6. To assess the
contribution of each of those techniques with regard to B&B
performance, the following approach has been adopted: The
B&B is run on the mixed instance set (wi ∈ [0,C], C = 500)
again, leaving out exactly one of the enhancements at a time.
The required per-instance computation times are then com-
pared to the original ones, obtained with the fully-fledged
B&B. The comparison itself is based on time factors com-

123

692 Journal of Scheduling (2022) 25:675–704

Table 5 Randomized instances, TWCT objective: percentage of obtained optimal solutions and required computation times (seconds) across
different methods

wi |T | B&B MIP CP

% Opt tμ tmax tCV % Opt tμ tmax tCV % Opt tμ tmax tCV

[0, 0.3C] 10 98 19b 100 5.0 69 126 384 2.9 1 1,158 1,187 0.6

[0, 0.3C] 20 98 0b 4 4.6 76 30 80 4.0 0

[0, 0.3C] 30 99 0b 1 4.9 82 34 126 3.6 0

[0, 0.3C] 40 99 0b 1 4.9 84 63 236 4.5 0

[0, 0.5C] 10 99 41b 218 2.2 32 389 1,387 1.8 14 580 672 0.9

[0, 0.5C] 20 67 224 694 2.8 28 128b 637 2.5 0

[0, 0.5C] 30 38 392 821 1.8 26 255b 587 2.6 0

[0, 0.5C] 40 26 104b 252 3.2 26 245 629 3.2 0

[0.3C, 0.7C] 10 100 0b 0 1.8 71 386 799 1.3 46 824 1,677 0.7

[0.3C, 0.7C] 20 99 36b 175 2.1 34 613 1,655 1.0 0

[0.3C, 0.7C] 30 46 574b 1,407 1.0 1 978 1,388 0.6 0

[0.3C, 0.7C] 40 0 0 0

[0.2C, 0.8C] 10 100 0b 0 2.1 61 407 953 1.3 53 743 1,411 0.9

[0.2C, 0.8C] 20 98 70b 186 2.1 23 615 1,282 0.9 0

[0.2C, 0.8C] 30 28 617 734 0.9 0 0

[0.2C, 0.8C] 40 0 0 0

[0,C] 10 100 6b 29 2.4 58 341 769 1.3 76 314 749 1.4

[0,C] 20 83 186b 460 1.5 17 956 1,613 0.8 0

[0,C] 30 11 783 1,090 0.8 0 0

[0,C] 40 0 0 0

1 5 10 50 10
0

50
0
1,0
00
2,0
00

0

20

40

60

80

100

Computation time (s)

P
er
ce
nt

so
lv
ed

op
ti
m
al
ly

(a) 10 chains

1 5 10 50 10
0

50
0
1,0
00
2,0
00

0

20

40

60

80

100

Computation time (s)

P
er
ce
nt

so
lv
ed

op
ti
m
al
ly

B&B (150 slices)
B&B (100 slices)
B&B (50 slices)
B&B (range)

MIP (150 slices)
MIP (100 slices)
MIP (50 slices)
MIP (range)

(b) 20 chains

Fig. 10 Percentage of optimally solved instances over time (wi ∈ [0,C] and C = 500, TWCT objective)

puted as the quotient of the new computation time and the
original one. An average time factor of 1.9, for example,
means that the B&B algorithm without the enhancement in
question is 1.9 times slower on average than the original B&B
with all features activated. Table 6 reports the corresponding

results for each enhancement in terms of average, minimum
and maximum statistics. Besides that, the difference in the
number of optimal solutions found is also reported as a per-
centage (column�Opt). A value of−16, for example, means
that without the approach in question, the proportion of opti-

123

Journal of Scheduling (2022) 25:675–704 693

Table 6 Impact of B&B
ingredients (wi ∈ [0,C],
C = 500, TWCT objective)

|T | Slices No no-goods No tightening No dom.rules

%�Opt Time factor %�Opt Time factor %�Opt Time factor

Avg. Min Max Avg. Min Max Avg. Min Max

10 50 0 1.9 0.7 9.2 0 1.8 1.0 4.9 0 2.5 1.0 11.3

10 100 0 10.4 0.8 189.2 0 2.7 1.0 6.5 0 2.9 1.0 13.8

10 150 −16 20.2 0.8 131.7 0 2.7 1.0 5.0 −2 3.1 1.6 11.0

20 50 −2 21.3 2.3 334.2 0 1.8 1.6 1.9 0 3.3 1.3 20.8

20 100 −34 9.1 2.0 30.8 −6 2.2 1.8 2.6 −10 4.5 1.7 24.5

20 150 −26 11.6 2.4 45.0 −18 2.3 2.0 2.9 −22 7.0 2.0 25.8

30 100 −8 −4 1.9 1.8 2.0 −6 2.2 2.2 2.2

30 150 −6 −4 1.9 1.9 1.9 −6

mal solutions is 16% smaller. Note that the dominance rules
described in Sects. 6.2 and 6.3 are considered in a combined
fashion.

Obviously, the no-good recording technique based on
equivalent packings (see Sect. 6.1) has the largest impact,
rendering the B&B up to 21.3 times faster on average. It
must be emphasized that none of the larger instances with 30
chains can be solved to optimality without no-good record-
ing.Hence, this kind of enhancement appears to be vital to the
performance of theB&B.Bound tightening seems to perform
best under a small number of chains, while the dominance
rules based on equally sized chains and extensible feasible
sets show their best results for |T | = 20.Both of the latter two
kinds of techniques behave similarly for the larger instances
with 30 chains. From this empirical investigation, it can be
concluded that each of the enhancements on its own has a
non-negligible, if not crucial impact on the B&B solution
behavior.

8.3.2 Results on benchmark instances

Table 7 shows aggregated results on benchmark instances
from the literature. Again, the proposed B&B algorithm is
compared to theMIP and the CP formulation, using the same
configuration and time limit as for the randomized instances.
For each group, the table reports the average, the maximum
and the coefficient of variation of the computation times
needed for the instances that can be solved to optimality. The
first column of each method shows the percentage of optimal
solutions. The highlighting follows the same principle as in
Table 5.

It can be seen that the B&B performs particularly well on
the first part (bin1data) of the benchmarks according to
(Scholl et al., 1997). The same holds true for the OR-library
instances, none of which could be solved to optimality by the
MIP or the CP. The bin2data sets are obviously harder to
tackle. The ratio of optimal solutions is still relatively high for
the B&B, while the MIP solver exhibits lower computation

times for two subsets (N2 and N4). Anyway, the correspond-
ing percentage of optimal solutions is considerably lower for
both of them.

As regards the instances by Delorme et al. (2016), the
solution behavior of the three approaches is similar to the
bin1data instances. The B&B algorithm is able to solve
between 70 and 90 percent of the instances, taking con-
siderably less time than MIP and CP. Interestingly, the CP
formulation performs a little bit better on these instances,
which is contrary to the other instance sets from the litera-
ture.

8.3.3 Results on real-world instances

From Table 8, it becomes apparent that most instances drawn
from real-world data are not very difficult to solve. In most
of the cases, the slices are relatively small, rendering the con-
struction of ideal packings quite easy. The B&B can solve
between 80 and 90% of all instances to optimality, with aver-
age computation times between less than one and 30s. Both
MIP and CP take considerably more time (up to 3min on
average and almost half an hour maximum), with optimality
ratios ranging between 63 and 75% for the MIP and between
38 and 50% for the CP.

8.4 Makespan objective

Minimizing the makespan for the given scheduling problem
essentially means to allocate the smallest possible number of
bins for the slices. For this objective, it is possible to rely on
almost the same B&B configuration as for the TWCT objec-
tive, with the following differences: (1) bounding is based
on the lower bound L2LLM (Labbé et al., 1991), known from
standard bin packing, and (2) no constraint propagation pro-
cedure is used. It is easy to verify that the symmetry breaking
and dominance rules proposed in Sect. 6 are also valid in
the makespan case. For the MIP and CP models stated in
Sects. 4.2 and 1, just the objective function has to be adapted

123

694 Journal of Scheduling (2022) 25:675–704

Table 7 Benchmark instances from the literature, TWCT objective: ratio of obtained optimal solutions and required computation times across
different methods

Instance set B&B MIP CP

% Opt tμ tmax tCV % Opt tμ tmax tCV % Opt tμ tmax tCV

bin1data (N1) 100 0b 6 2.1 66 339 1,773 1.2 12 826 1,704 0.6

bin1data (N2) 100 7b 148 2.7 6 537 1,474 0.8 0

bin1data (N3) 98 90b 1,485 2.2 0 0

bin1data (N4) 69 154b 1,730 2.1 0 0

bin2data (N1) 97 33b 1,607 5.4 75 54 1,435 4.1 1 1,764 1,764

bin2data (N2) 84 48 1,629 5.0 53 20b 411 3.6 0

bin2data (N3) 73 15b 231 2.8 33 34 653 4.2 0

bin2data (N4) 61 112 1,414 2.4 23 15b 37 0.5 0

OR-library (120) 100 4 17 1.1 0 0

OR-library (250) 100 42 212 1.1 0 0

OR-library (500) 90 718 1,768 0.6 0 0

DIM 50 91 34b 1,076 3.7 43 338 1,784 1.4 27 211 1,787 1.8

DIM 100 81 42b 1,315 3.3 13 467 1,714 1.0 16 196 1,795 1.8

DIM 200 75 73b 1,377 2.7 0 10 384 1,696 1.3

DIM 300 70 85b 1,366 2.4 0 7 330 1,450 1.0

Table 8 Real-world instances,
TWCT objective: ratio of
obtained optimal solutions and
required computation times
across different methods

Instance set B&B MIP CP

% Opt tμ tmax tCV % Opt tμ tmax tCV % Opt tμ tmax tCV

1 84 31b 822 5.1 63 104 1,368 3.0 50 134 926 2.2

2 82 5b 144 5.1 65 32 340 2.6 47 99 911 2.4

3 85 1b 21 3.7 71 69 550 2.2 41 9 79 2.4

4 88 3b 71 5.1 75 176 1,679 2.3 38 153 1,720 3.2

5 82 0b 1 4.6 70 12 105 2.3 39 19 226 3.2

6 78 0b 1 3.3 75 100 1,084 2.7 41 31 323 2.9

7 87 0b 2 3.0 74 13 132 2.2 45 53 286 1.8

8 84 0b 5 3.1 72 11 62 1.5 38 11 66 1.9

9 88 9b 235 4.8 67 55 1,076 4.1 45 18 214 3.1

10 84 13b 181 3.6 72 53 405 2.1 41 6 38 1.8

accordingly. Apart from a pure performance comparison, a
further goal of the computational analysis in this context was
to investigate in how far the discrete malleable scheduling
problem with makespan objective differs from the standard
bin packing problem. For this purpose, the well-known and
publicly available solver of Brandao and Pedroso (2016) was
employed. According to the survey of Delorme et al. (2016),
it is one of the most efficient solvers in this field. Conse-
quently, it was possible to solve all randomized instances to
optimality. However, the precedence constraints are not con-
sidered by the solver and therefore, a major aspect of the
analysis is to see how many of those precedence constraints
are actually violated in the generated solutions.

Table 9 shows computational results obtained for the same
randomized instances as used for the TWCT experiments.

The comparison between the three solution approaches
reveals that the B&B is still able to achieve the highest ratio
of optimal solutions in most of the settings and is still faster
in many cases. However, the CP model performs very well
under this objective, especially for the instances with smaller
slices. Unsurprisingly, the pack constraint (Shaw, 2004)
blends much better with makespan minimization than with
the sum-based TWCT objective, even when precedence con-
straints are imposed. As a consequence, the advantage of the
B&B algorithm is much smaller, but a custom implementa-
tion of the pack constraint can be expected to considerably
boost its performance, especially for instances with a greater
number of chains.

The comparison to standard bin packing solutions is con-
ducted in the last two columns of Table 9. Column “� bins”

123

Journal of Scheduling (2022) 25:675–704 695

Table 9 Randomized instances,makespanobjective: percentage of obtained optimal solutions, required computation times (seconds) across different
methods, and deviations from standard bin packing solutions

wi |T | B&B MIP CP VP Solver

% Opt tμ tmax tCV % Opt tμ tmax tCV % Opt tμ tmax tCV � bins Viol.

[0, 0.3C] 10 100 1b 9 6.2 97 1 9 0.7 100 8 57 3.0 0.0022 8.2

[0, 0.3C] 20 99 7 54 6.7 98 4 34 1.5 100 5b 38 2.2 0.0067 19.4

[0, 0.3C] 30 99 0b 0 7.0 99 0 0 0.2 100 0b 2 2.4 0.0050 33.2

[0, 0.3C] 40 99 0b 0 7.0 99 0 0 0.1 100 1 4 1.5 0.0200 43.8

[0, 0.5C] 10 100 12b 68 4.1 64 68 244 3.4 84 75 301 3.8 0.0222 7.5

[0, 0.5C] 20 90 67 210 3.7 65 37 138 3.6 81 64b 199 3.8 0.1144 16.9

[0, 0.5C] 30 78 96 194 4.0 70 23 111 2.4 80 41b 110 2.9 0.2267 27.4

[0, 0.5C] 40 62 29b 76 5.4 62 39 157 1.2 70 30 96 3.1 0.4700 36.9

[0.3C, 0.7C] 10 100 0b 1 2.9 79 326 812 1.4 60 50 130 3.8 0.0000 2.4

[0.3C, 0.7C] 20 94 74 224 3.2 61 377 930 1.6 56 31b 118 4.1 0.0033 3.5

[0.3C, 0.7C] 30 64 7b 43 4.3 24 381 736 1.1 40 19 89 3.7 0.0833 5.0

[0.3C, 0.7C] 40 68 5b 25 2.2 6 558 998 1.1 45 5b 10 2.8 0.1133 5.7

[0.2C, 0.8C] 10 100 0b 1 3.3 70 345 826 1.5 59 37 122 3.5 0.0089 2.7

[0.2C, 0.8C] 20 94 66 139 3.0 54 421 980 1.3 59 24b 88 3.8 0.0133 4.6

[0.2C, 0.8C] 30 54 58 241 3.7 14 579 955 0.9 46 49b 173 2.6 0.3233 7.1

[0.2C, 0.8C] 40 61 17b 72 2.5 5 533 906 1.0 50 40 101 2.9 0.3900 8.7

[0,C] 10 100 5b 22 3.9 68 317 863 1.6 66 42 102 3.6 0.0200 3.3

[0,C] 20 93 46 112 2.9 49 334 644 1.5 63 15b 46 3.7 0.0211 6.6

[0,C] 30 59 42 119 3.6 16 353 465 1.3 51 32b 78 3.3 0.2983 11.1

[0,C] 40 55 35 76 3.3 7 299 598 0.7 50 23b 54 3.3 0.6267 14.7

shows the mean difference in the number of bins allocated by
the best B&B solution (optimal or feasible) and Brandao’s
VP solver. Column “Viol.” indicates the average number of
precedence constraints violated by the VP solver. It can be
observed that the difference in the number of allocated bins
is very low across all configurations, whereas the number of
constraint violations is fluctuating a lot. It has to be remarked
that the violations are counted based on the solution that the
VP solver returns as “the optimal” solution for each instance.
Clearly, there might be multiple optimal solutions for one
and the same instance, with varying numbers of violated
constraints. However, trying to reduce the violations on a
per-instance basis would suggest an enumeration of optimal
solutions, which in turn requires modifications to the VP
solver and much longer computation times.

Obviously,most violations are produced for instanceswith
smaller slices, and the number increaseswith the chain count.
On the other hand, instanceswith bulky slices lead to very few
precedence violations. For themixed instances (wi ∈ [0,C]),
the extent of the violations is still non-negligible, and there-
fore it can be concluded that solutions for the standard bin
packing problem are very similar in terms of the number of
allocated bins, but can hardly be considered as an alternative
for the discrete malleable scheduling problem at hand.

Computational results on benchmark instances from the
literature and on the real-world instances are summarized in
Sect. 22 (Tables 10 and 11). Finally, a comparison of a variety
of simple construction heuristics under the makespan objec-
tive is given in Table 13 (Appendix G) for the randomized
instances.

9 Conclusion and outlook

An exact solution method has been presented for solving a
multiprocessor scheduling problem in which the tasks are
subject to a restricted form of discrete malleability and the
objective is to minimize the total weighted completion time.
Delayed precedence constraints of min/max type are used to
concatenate unit-time task slices which suggest adopting a
bin packing-oriented point of view. In fact, a packing-based
branch-and-bound algorithm is proposed that makes use of
several non-trivial, problem-specific enhancements. These
include on the one hand a tightening approach for lower
bounds that takes advantage of the special kind of prece-
dence constraints. On the other hand, symmetry breaking and
dominance rules have been devised to help reduce the size
of the search tree. Since also non-maximal feasible sets of
task slices have to be taken into consideration for computing
optimal solutions to the problem at hand, these enhancements

123

696 Journal of Scheduling (2022) 25:675–704

to the B&B method turn out to be of crucial importance, as
confirmed by computational experience. As a side track to
the main solution approach, a pre-optimization phase has
been proposed, based on a limited enumeration of subset-
sum solutions. This kind of primal heuristic specifically aims
at scenarios with small slices and thus a high probability of
completely (and exactly) using up the capacity in each time
period.

Due to a lack of benchmark sets in related multiprocessor
literature, the computational evaluation is based on dedicated
randomized instances, adapted benchmark problems from
classical bin packing and data taken froma real-world setting.
A custom MIP and a scheduling-oriented CP formulation
serve as the comparison baseline. Itmust be pointed out again
that the problem structure prohibits a simple adaptation or a
direct transfer of existing sophisticated solution approaches
(like column generation) from both fields, scheduling and
packing.

In all the scenarios, the new B&B algorithm proves very
effective in obtaining optimal solutions within the predefined
time limit. The required computation times are more than an
order of magnitude smaller than those needed by the MIP
in the majority of cases. Whenever the average computa-
tion time of the MIP is smaller, its percentage of achieved
optimal solutions is also notably lower. Surprisingly, the CP
solver was not able to yield competitive results, most likely
because of the structure (min-sum) of the objective function
and the special type of precedence constraints. The good
overall performance of the B&B method is mainly owed to
the symmetry breaking and dominance rules, as well as the
bound tightening approach, as an in-depth analysis reveals.

Instances with slices requiring between zero and half the
number of resource units still seem to pose a challenge to the
newmethod. Potential reasonsmight be the insufficient lower
bound quality for this size configuration (Braune, 2019), and
the inability of the primal heuristic to take effect. The real-
world data in its current form mainly consists of slices that
are small compared to the processor capacity. Thanks to the
primal heuristic, this kind of problem can be handled quite
well, and still better than through the MIP formulation.

The sample application to makespan minimization as an
alternative objective gives an indication of the generalizabil-
ity of the proposed concepts. Even without an appropriate
constraint propagation mechanism, the B&B algorithm can
still solve more instances than the MIP and CP models, but
the advantage is notably smaller.

Gaining deeper insights into the real-world setting will
hence be one of the key aspects of future research activities.
On the theoretical side, there is still room for improve-
ment with regard to feasible set combinatorics. The number
of such sets to be created especially in the root node is
still enormous for 40 or more chains. The development of
even more effective elimination techniques or dominance

rules will be of central concern in this context. Yet another
stream of research might focus on the generalization of the
proposed techniques and the overall optimization approach
toward size-independent weights and/or arbitrary minimum
and maximum time lags.

Acknowledgements The financial support by the Austrian Federal
Ministry for Digital and Economic Affairs and the National Foundation
for Research, Technology and Development and the Christian Doppler
Research Association is gratefully acknowledged.

Funding Open access funding provided by University of Vienna.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: A packing-based CPmodel

Using custom constraints, a packing-based constraint pro-
gramming formulation can be given for the problem consid-
ered in the paper in a clear and also very compact fashion.
Let γ denote the vector of bin loads, hence γk represents the
load of bin k, with 1 ≤ k ≤ k̄ and γk ∈ {0, . . . ,C}. The
decision variable k∗ reflects the number of bins used by the
packing solution. The CP packing formulation can be stated
in the following compact form:

min
k̄∑

k=1

k · γk

pack(γ, s, w, k∗), (19)

si j ≤ si, j+1 ∀ i ∈ T , ∀ 1 ≤ j ≤ ni − 1, (20)

si, j+1 ≤ si j + 1 ∀ i ∈ T , ∀ 1 ≤ j ≤ ni − 1. (21)

The pack-constraint (Constraint 19) takes bin loads γ ,
bin assignment variables s (one for each item/slice), item
sizes w and the number of used bins k∗ as arguments. Apart
from w, these are all decision variables whose values will
be set by the solver. Note that the bin assignment si j of slice
(i, j) can be seen as its starting time (with a constant offset
of one, see Sect. 2) and hence the same symbol is used. The
precedence constraints are more naturally represented in the
conventional fashion here (see Constraints (20) and (21)),
since the bin assignment variables are of type integer. Note

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Scheduling (2022) 25:675–704 697

that the bin capacity constraints are indirectly enforced via
the domains of decision variables γk .

Appendix B: A scheduling-oriented CPmodel

Constraint programming (CP) solvers like IBM ILOG CP
Optimizer offer a broad variety of specific scheduling-related
modeling facilities. For many scheduling problems, these
dedicated model elements (mostly predefined custom prop-
agators) can considerably accelerate the solution process,
both in terms of feasibility and optimization. Therefore, as an
alternative to the packing model from the preceding section,
a scheduling-oriented CP formulation is introduced below,
relying on unit-time interval variables ϒi j , one for each slice
(i, j):

min
∑

i∈T

ni∑

j=1

si zei · endOf(ϒi j) (22)

s.t.
∑

i∈T

ni∑

j=1

pulse(ϒi j , si zei) ≤ m, (23)

endBeforeStart(ϒi j , ϒi, j+1,−1), ∀ i ∈ T ,

∀ 1 ≤ j ≤ ni − 1,
(24)

endBeforeStart(ϒi, j+1, ϒi j ,−2), ∀ i ∈ T ,

∀ 1 ≤ j ≤ ni − 1.
(25)

The left-hand side of Constraint (23) represents a cumul
function expression, speaking in terms of CP Optimizer. In
the given context, it is used to limit the resource usage to the
number of processors at any time. Constraints (24) and (25)
ensure that the minimum and maximum delay precedence
constraints are met. Note that the model is no more “time-
indexed”, being one of the most appealing properties of CP
scheduling formulations in general.

Appendix C: Constraint propagation for bin
packing with linear usage cost

Cambazard et al. (2013) proposed constraint propagation-
based domain reduction rules for the a packing problem with
linear usage cost. These rules are also embedded into the
Branch-and-Bound algorithm for the problem addressed in
this paper (see Sect. 7. For the sake of completeness, the
associated procedures are described in detail below.Note that
this presentation is essentially a reproduction of the original
description, with slight notational modifications.

The central idea of the approach is to tighten the domains
of the variables representing the bin loads, that is, their lower
and upper bounds, denoted by γ

k
and γ k , respectively. Let us

Algorithm 2: Outline of the CP procedure for load

bound adjustment, according to Cambazard et al. (2013).
Input : Bin load upper and lower bounds γ and γ , respectively,

an upper bound UB on the objective value, the total slice

weight W , the index k̂ of the boundary bin

Output: A boolean value, indicating whether the CP model is

consistent or not

1 Set W ′ ← W − ∑k̂
k=1 γ

k
;

2 Set Lk̂ ← W ′ − ∑k̂−1
k=1(γ k − γ

k
);

3 Set Lk ← γ k − γ
k
, for all 1 ≤ k < k̂;

4 Set Lk ← 0, for all k > k̂;

5 LB1 ← ∑k̂−1
k=1 Lk · k + Lk̂ · k̂;

6 LB ′
1 ← ∑k̂

k=1 γ
k
· k + LB1;

7 UpdateLoadLowerBounds(γ , UB, LB ′
1, k̂, L);

8 UpdateLoadUpperBounds(γ , UB, LB ′
1, k̂, L);

9 Check consistency based on non-packable bins;

Algorithm 3: Outline of procedure

UpdateLoadLowerBounds.
Input : Lower bounds on bin loads (γ), an upper bound and a

lower bound on the objective value (UB and LB ′
1), the

index k̂ of the boundary bin, and a vector L of fractional

loads.

Output: Adjusted bin load lower bounds γ

1 Set gap ← UB − LB ′
1;

2 for k ← 1 to k̂ do
3 if k = k̂ then b ← k̂ + 1 else b ← k̂ Set q ← 0, �Obj ← 0;

4 while q < Lk and �Obj ≤ gap and b ≤ k̄ do
5 q ′ ← min(Lk − q, γ b − γ

b
− Lb);

6 �′
Obj ← q ′ · (b − k);

7 if �Obj + �′
Obj > gap then

8 q ′ ← (gap − �Obj)/(b − k);

9 end
10 q ← q + q ′;
11 �Obj ← �Obj + �′

Obj ;

12 b ← b + 1;

13 end
14 if �Obj > gap then γ

k
← γ

k
+ (Lk − q)

15 end

assume that γ
k

> 0 for the first few bins, as indicated by the
hatched area in Fig. 11. Similarly, let us suppose that γ k < C

for all bins (light gray boxes in Fig. 11), implying that some
tightening has already taken place. A lower bound on the
objective value can be computed by fractionally packing all
items into the bins, from left to right, filling each bin up to
its upper bound γ k . The last bin that receives fractional load
will be called the boundary bin henceforth, and is denoted
by k̂. The fractional load allocated to bin k̂ might be smaller
than γ k̂ .

123

698 Journal of Scheduling (2022) 25:675–704

When trying to increase the load lower bound of a bin
1 ≤ k < k̂, one tries to determine the maximum load q
that can be removed from bin k and placed into the earliest
bin that still has capacity left, i.e., primarily bin k̂, without
exceeding the upper bound on the objective function value by
that load transfer. In Fig. 11, the movable load is shown for
bin 1 (q1). When k̂’s remaining capacity is not sufficient to
accommodate qk , the remaining part of the latter quantity is
simply put into the next bin k̂+1. When this one is depleted,
one tries k̂ + 2, and so on. If the upper bound is actually
exceeded by moving a quantity qk < γ k − γ

k
, the lower

bound can be set to γ k − qk .
On the other hand, when trying to adjust (= decrease) the

bin load upper bounds γ k , for k̂ ≤ k ≤ k̄, the idea is to take
some (fractional) load q from the boundary bin k̂, and try to
move it to a particular bin k , without violating the objective
value upper bound. Figure 12 illustrates this principle. In the
shown case, it is assumed that no more than the quantity

removed from bin k̂ (q12) can be placed into bin 14 without
exceeding the upper boundon the objective value. Thismeans
that the upper bound of bin 14 could actually be reduced to
q12. Note that the movable quantity q might stretch across
several bins b, with 1 ≤ b ≤ k̂, if the differences between
lower and upper bounds are small in that area, and later bins
still have ample space.

Algorithms 3 and 4 give an outline of the two procedures
used for tightening lower and upper bounds, respectively.
Both procedures rely on avector L of fractional loads, defined
for bins 1 ≤ k ≤ k̂. These loads originate from the fractional
packing determined during bounding the objective function
value from below. Since the load is not allow to drop below
the respective lower bound, only the quantities Lk can be
subject to a move to a later bin. The initialization of those
quantities takes place in the main CP routine (see Algorithm
2) that also embeds the two tightening procedures. The final
step of the propagation is a consistency check using the con-
cept of non-packable bins according to Shaw (2004).

bin index (k)1 2 3 4 5 6 7 8 9 10 11 12 13

k̂

q1

C

Bin load LBs γ
k

Bin load UBs γk

”Movable” quantity qk

Fig. 11 Principle of tightening bin load lower bounds

bin index (k)7 8 9 10 11 12 13 14 15 16 17 18 19

k̂

q12

C

Bin load LBs γ
k

Bin load UBs γk

”Movable” quantity qb

Fig. 12 Principle of tightening bin load upper bounds

123

Journal of Scheduling (2022) 25:675–704 699

Algorithm 4: Outline of procedure

UpdateLoadUpperBounds.
Input : Upper bounds on bin loads (γ), an upper bound and a

lower bound on the objective value (UB and LB ′
1), the

index k̂ of the boundary bin, and a vector L of fractional

loads.

Output: Adjusted bin load upper bounds γ

1 Set gap ← UB − LB ′
1;

2 for k ← k̂ to k̄ do
3 Set q ← 0, �Obj ← 0;

4 Set b ← k̂;

5 if j = k̂ then
6 b ← k̂ − 1;

7 q ← Lk̂ ;

8 end
9 while q < γ j − γ

j
and �Obj ≤ gap and b ≥ 1 do

10 q ′ ← min(Lb, γ j − γ
j
− q);

11 �′
Obj ← q ′ · (k − b);

12 if �Obj + �′
Obj > gap then

13 q ′ ← (gap − �Obj)/(k − b);

14 end
15 q ← q + q ′;
16 �Obj ← �Obj + �′

Obj ;

17 b ← b − 1;

18 end
19 if �Obj > gap then γ ← γ + q

20 end

Appendix D: Construction heuristics for the
bin packing problem with chain-like prece-
dence constraints

Construction heuristics, like first-fit decreasing (FFD) or
best-fit decreasing (BFD) are well known from standard bin
packing. In this section, it is shown how the chain-like prece-
dence constraints can be integrated into the basic heuristics
and a further approach that is based on solving a knapsack
problem in every bin.

The idea of the integration into the fit-based algorithms
is to process the slices in a chain-wise manner. Hence, a
chain is considered a single entity to be scheduled, in a dis-
crete malleable fashion, however. Algorithm 5 exemplarily
shows the flow principle of a precedence constraint-aware
fit-based algorithm. First, the chains are sorted according
to their weight (= size of their slices) and the largest chain
is selected to be packed starting with the first fitting bin.
Before that, it has to be verified that the chain can be
packed consecutively without any preemption. The latter
would occur, for example, if one of the subsequent bins
does not have enough capacity any more to accommodate
at least one slice of the chain. Once a chain is released

for packing, the procedure tries to put as many slices of
this chain as possible into each bin in a row. This does
not violate the FFD principle, because all these slices are
of the same size. A best-fit decreasing (BFD) algorithm
could be realized within the same structural framework,
by slightly modifying the condition of the first while-loop
such that the best fitting bin is sought instead of the first
one.

When packing (scheduling) unit-time slices with wi j =
si zei j and total weighted completion time objective, it is
known that left-shifted packings are preferable (Braune,
2019). Hence, when packing the bins from left to right in
chronological order, the leftmost bins should receive asmuch
load as possible. An obvious approach to achieve this is to
solve a knapsack problem for each bin, based on the remain-
ing slices. Algorithm 6 gives an outline of the corresponding
heuristic. First, the slice profits, denoted by gi j are set equal to
the weights. As long as there are chains with unpacked slices
(set R), the current bin k first receives exactly one slice of
each chain that is in-progress tomaintain the non-preemption
property. For the remaining part of the bin, a knapsack prob-
lem is set up, involving all slices that could potentially be
packed (set U). The subroutine SolveKnapsack is not
described in detail here, because it can be realized by any
algorithm (exact or heuristic) that solves the knapsack prob-
lem. It just has to return the slices (set K) that are actually
placed into the knapsack and thus the remaining part of the
bin.

Algorithm 5: First-fit decreasing (FFD) with chain-like

precedence constraints.

1 Sort chains according to their slice size in non-increasing order;

2 Re-index the chains such that i < j �⇒ wi ≥ w j ;

3 for i ← 1 to |T | do
/* Find first fitting bin */

4 k ← 1;

5 while k ≤ k̄ and C− γk < wi and not the whole chain can be

accommodated do
6 k ← k + 1;

7 end
/* Pack chain starting from bin k */

8 j ← 1;

9 while k ≤ k̄ and j ≤ ni do
10 Pack as many slices of chain i as possible into bin k;

11 Increase slice index j accordingly;

12 k ← k + 1;

13 end

14 end

123

700 Journal of Scheduling (2022) 25:675–704

Algorithm 6: Knapsack-based packing with chain-like

precedence constraints.

1 Set profits gi j ← wi j , for all i ∈ T , j ∈ {1, . . . , ni };
2 Init pointers to next slice per chain: u[i] ← 1, for all i ∈ T ;

3 Set k ← 1;

4 Init set R ← {i | i ∈ T } of remaining chains;

5 while R �= ∅ do
/* Pack in-progress chains first into bin

k */

6 Init remaining capacity C′ ← C;

7 foreach i ∈ T do
8 if chain i is in progress then
9 Pack exactly one slice of chain i into bin k;

10 Set pointer u[i] ← u[i] + 1;

11 Set C′ ← C′ − wi ;

12 if all slices of chain i are packed then
13 R ← R \ {i};
14 end

15 end

16 end
/* Solve knapsack for rem. part of bin */

17 Determine set U of unpacked slices:

U ← {(i, j) | i ∈ T , u[i] ≤ j ≤ ni };
18 K ← SolveKnapsack(U ,C′, w, g);

19 Pack all slices (i, j) ∈ K into current bin k;

20 Update u and R;

21 Set k ← k + 1;

22 end

Appendix E: Impact of total slice count on
solution behavior

50 100 150 200 300
0

500

1,000

1,500

Slice count

T
im

e
(s
ec
on

ds
)

B&B
MIP
CP

50 100 150 200 300
0

20

40

60

80

100

Slice count

P
er
ce
nt

so
lv
ed

op
ti
m
al
ly

B&B
MIP
CP

Fig. 13 Comparison of B&B, MIP and CP results for up to 300 slices (10 chains, si zei ∈ [0,m] and m = 500)

123

Journal of Scheduling (2022) 25:675–704 701

50 100 150 200 300
0

500

1,000

1,500

Slice count

T
im

e
(s
ec
on

ds
)

B&B
MIP

50 100 150 200 300
0

20

40

60

80

100

Slice count

P
er
ce
nt

so
lv
ed

op
ti
m
al
ly

B&B
MIP

Fig. 14 Comparison of B&B, MIP and CP results for up to 300 slices (20 chains, si zei ∈ [0,m] and m = 500)

AppendixF:Additional computational results
for themakespan objective

Table 10 Benchmark instances from the literature, makespan objective: ratio of obtained optimal solutions and required computation times across

different methods

Instance set B&B MIP CP

% Opt tμ tmax tCV % Opt tμ tmax tCV % Opt tμ tmax tCV

bin1data (N1) 100 0b 14 6.6 83 196 1,761 2.0 91 4 291 8.1

bin1data (N2) 100 3b 127 5.1 26 274 1,556 1.3 73 62 1,703 3.7

bin1data (N3) 100 11b 232 2.7 0 54 171 1,734 2.0

bin1data (N4) 91 159 1,731 2.1 0 25 85b 940 2.3

bin2data (N1) 99 10 573 6.0 91 34 1,129 5.1 97 6b 230 4.7

bin2data (N2) 93 10 435 4.9 75 5b 292 6.6 85 38 1,236 5.3

bin2data (N3) 77 41 1,056 4.2 63 2b 6 0.6 67 34 1,374 5.7

bin2data (N4) 60 34 921 4.6 46 123 972 1.4 48 28b 1,345 6.4

OR-library (120) 100 4b 28 2.0 0 75 208 1,012 1.6

OR-library (250) 100 52b 376 1.8 0 10 514 1,019 1.4

OR-library (500) 75 591 1,549 0.9 0 0

DIM 50 97 15b 1,330 7.6 79 155 1,697 2.2 89 17 1,619 6.9

DIM 100 90 24b 1,340 5.0 20 593 1,795 0.9 71 51 1,205 3.5

DIM 200 84 52b 1,426 3.6 0 43 122 1,777 2.4

DIM 300 79 61b 1,405 3.2 0 33 183 1,730 2.1

123

702 Journal of Scheduling (2022) 25:675–704

Table 11 Real-world instances,

TWCTp objective: ratio of

obtained optimal solutions and

required computation times

across different methods

Instance set B&B MIP CP

% Opt tμ tmax tCV % Opt tμ tmax tCV % Opt tμ tmax tCV

1 97 6 115 4.0 81 84 903 2.4 88 2b 46 5.2

2 97 0b 1 3.6 91 117 1,569 2.8 91 49 1,525 5.6

3 100 0b 1 4.8 88 29 310 2.1 97 9 289 5.7

4 100 8 268 5.6 91 82 518 1.8 94 7b 214 5.5

5 97 0b 4 5.4 88 73 1,429 3.6 97 2 57 5.6

6 100 0b 0 4.4 91 91 929 2.5 100 19 613 5.7

7 100 0b 1 4.1 94 36 298 2.0 97 0b 0 3.0

8 100 0b 1 4.4 91 94 1,289 2.7 97 6 174 5.6

9 100 2 66 5.7 88 74 1,083 2.8 97 1b 23 5.5

10 100 0b 9 4.4 88 96 1,436 2.9 91 35 1,012 5.4

Appendix G: Results obtained by construc-
tion heuristics

Table 12 Bin packing

heuristics: average and

maximum gaps to B&B

solutions (TWCT objective)

wi |T | FFD BFD Knapsack KnapsackMin FFI BFI

Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max

[0, 0.3C] 10 3.09 8.13 3.09 8.13 1.42 5.52 0.10 0.95 7.05 12.28 7.05 12.28

[0, 0.3C] 20 1.52 4.39 1.52 4.39 1.10 4.35 0.04 0.52 7.37 12.29 7.37 12.29

[0, 0.3C] 30 1.13 2.96 1.13 2.96 0.90 3.76 0.02 0.30 7.21 10.76 7.21 10.76

[0, 0.3C] 40 0.93 2.63 0.93 2.63 0.78 2.95 0.01 0.06 7.21 10.47 7.21 10.47

[0, 0.5C] 10 4.33 13.12 4.33 13.12 4.91 13.06 1.10 5.50 14.29 25.18 14.29 25.18

[0, 0.5C] 20 2.56 7.12 2.56 7.12 3.94 9.62 0.75 3.47 14.61 22.59 14.61 22.59

[0, 0.5C] 30 1.72 4.75 1.72 4.75 3.04 7.82 0.30 1.81 13.70 19.22 13.70 19.22

[0, 0.5C] 40 1.15 3.52 1.15 3.52 2.72 6.90 0.08 1.30 14.25 18.59 14.25 18.59

[0.3C, 0.7C] 10 9.58 25.84 9.58 25.84 3.44 15.37 2.03 12.52 27.22 41.70 27.22 41.70

[0.3C, 0.7C] 20 8.53 19.47 8.53 19.47 3.89 13.04 1.91 8.82 30.96 42.23 30.96 42.23

[0.3C, 0.7C] 30 7.53 16.23 7.53 16.23 3.58 11.19 1.68 6.21 32.80 43.98 32.80 43.98

[0.3C, 0.7C] 40 6.08 14.30 6.08 14.30 3.53 9.28 1.21 4.62 33.89 42.00 33.89 42.00

[0.2C, 0.8C] 10 7.93 20.13 7.93 20.13 6.60 20.17 3.71 15.25 25.98 40.56 25.98 40.56

[0.2C, 0.8C] 20 7.23 15.69 7.23 15.69 7.65 16.78 4.51 13.54 29.70 40.12 29.70 40.12

[0.2C, 0.8C] 30 6.41 13.01 6.41 13.01 7.69 15.53 4.42 12.94 30.86 40.15 30.86 40.15

[0.2C, 0.8C] 40 4.42 11.51 4.42 11.51 7.48 15.51 3.54 10.43 31.01 38.76 31.01 38.76

[0,C] 10 4.48 13.23 4.48 13.23 7.30 18.41 3.10 13.01 24.63 39.32 24.63 39.32

[0,C] 20 4.05 9.89 4.05 9.89 7.34 14.51 3.70 10.96 27.81 37.80 27.81 37.80

[0,C] 30 3.13 7.96 3.13 7.96 6.94 13.94 3.19 8.33 28.39 38.34 28.39 38.34

[0,C] 40 1.90 7.35 1.90 7.35 6.40 13.01 2.18 6.13 27.89 35.57 27.89 35.57

123

Journal of Scheduling (2022) 25:675–704 703

Table 13 Bin packing heuristics:

average and maximum gaps to B&B

solutions (makespan objective)

wi |T | FFD BFD Knapsack KnapsackMin

Avg. Max Avg. Max Avg. Max Avg. Max

[0, 0.3C] 10 3.02 12.19 3.02 12.19 2.50 11.51 0.17 3.85

[0, 0.3C] 20 1.74 10.07 1.74 10.07 2.09 10.24 0.08 2.59

[0, 0.3C] 30 1.21 6.03 1.21 6.03 1.89 7.86 0.03 1.50

[0, 0.3C] 40 1.06 5.02 1.06 5.02 1.72 8.33 0.00 0.00

[0, 0.5C] 10 4.48 13.33 4.48 13.33 7.45 19.07 2.30 12.76

[0, 0.5C] 20 2.93 9.27 2.93 9.27 6.74 17.59 1.89 10.05

[0, 0.5C] 30 1.93 6.00 1.93 6.00 5.85 14.02 0.96 6.05

[0, 0.5C] 40 0.94 4.27 0.94 4.27 5.78 14.21 0.64 5.16

[0.3C, 0.7C] 10 3.04 13.47 3.04 13.47 4.72 20.77 2.95 18.27

[0.3C, 0.7C] 20 2.42 9.03 2.42 9.03 6.01 20.88 3.09 15.49

[0.3C, 0.7C] 30 2.52 7.93 2.52 7.93 6.74 19.46 3.30 13.62

[0.3C, 0.7C] 40 2.24 6.92 2.24 6.92 8.79 18.30 4.13 14.35

[0.2C, 0.8C] 10 2.62 11.49 2.62 11.49 8.66 25.88 5.56 23.17

[0.2C, 0.8C] 20 2.07 8.81 2.07 8.81 11.17 25.20 7.52 21.30

[0.2C, 0.8C] 30 2.12 6.76 2.12 6.76 12.67 24.25 8.56 21.29

[0.2C, 0.8C] 40 1.59 5.39 1.59 5.39 14.51 27.52 9.41 19.28

[0,C] 10 1.88 10.08 1.88 10.08 7.55 21.97 3.44 17.58

[0,C] 20 1.56 6.85 1.56 6.85 9.53 22.34 5.53 16.92

[0,C] 30 1.26 5.45 1.26 5.45 11.09 23.12 6.46 16.04

[0,C] 40 0.55 3.17 0.55 3.17 11.23 19.81 6.04 13.68

References

Artigues, C., & Lopez, P. (2015). Energetic reasoning for energy-

constrained scheduling with a continuous resource. Journal of

Scheduling, 18(3), 225–241. https://doi.org/10.1007/s10951-014-

0404-y

Artigues, C., Lopez, P., & Haït, A. (2013). The energy scheduling prob-

lem: Industrial case-study and constraint propagation techniques.

International Journal of Production Economics, 143(1), 13–23.

Baptiste, P., Le Pape, C., & Nuijten, W. (1999). Satisfiability tests

and time-bound adjustments for cumulative scheduling problems.

Annals of Operations Research, 92, 305–333. https://doi.org/10.

1023/A:1018995000688

Blazewicz, J., & Liu, Z. (1996). Scheduling multiprocessor tasks with

chain constraints. European Journal of Operational Research, 94,

231–241.

Blazewicz, J., Drabowski, M., & Weglarz, J. (1986). Scheduling mul-

tiprocessor tasks to minimize schedule length. IEEE Transactions

on Computers C, 35(5), 389–393.

Blazewicz, J., Machowiak, M., Weglarz, J., Kovalyov, M., & Trystram,

D. (2004). Scheduling malleable tasks on parallel processors to

minimize the makespan. Annals of Operations Research, 129(1–

4), 65–80. https://doi.org/10.1023/B:ANOR.0000030682.25673.

c0

Blazewicz, J., Kovalyov,M.,Machowiak,M., Trystram, D., &Weglarz,

J. (2006). Preemptable malleable task scheduling problem. IEEE

Transactions on Computers, 55(4), 486–490.

Blazewicz, J. W., Domschke, W., & Pesch, E. (1996). The job shop

scheduling problem: Conventional and new solution techniques.

European Journal of Operational Research, 33, 1–33.

Brandao, F., & Pedroso, J. P. (2016). Bin packing and related problems:

General arc-flow formulation with graph compression.Computers

& Operations Research, 69, 56–67.

Braune, R. (2019). Lower bounds for a bin packing problem with linear

usage cost. European Journal of Operational Research, 274(1),

49–64. https://doi.org/10.1016/j.ejor.2018.10.004

Cambazard, H., Mehta, D., O’Sullivan, B., & Simonis, H. (2013). Bin

packing with linear usage costs - an application to energy manage-

ment in data centres. Lecture Notes in Computer Science. In C.

Schulte (Ed.), Principles and practice of constraint programming,

(Vol. 8124, pp. 47–62). Springer.

Caramia,M., &Drozdowski,M. (2006). Schedulingmalleable tasks for

mean flow time criterion. In: Abstracts of the 10th international

workshop on project management and scheduling, (pp. 106–109)

Coffman, E. G., Jr., Garey, M. R., & Johnson, D. S. (1978). An appli-

cation of bin-packing to multiprocessor scheduling. SIAM Journal

on Computing, 7(1), 1–17. https://doi.org/10.1137/0207001

Dell’Amico, M., Diaz, J. C. D., & Iori, M. (2012). The bin packing

problemwith precedence constraints.Operations Research, 60(6),

1491–1504.

123

https://doi.org/10.1007/s10951-014-0404-y
https://doi.org/10.1007/s10951-014-0404-y
https://doi.org/10.1023/A:1018995000688
https://doi.org/10.1023/A:1018995000688
https://doi.org/10.1023/B:ANOR.0000030682.25673.c0
https://doi.org/10.1023/B:ANOR.0000030682.25673.c0
https://doi.org/10.1016/j.ejor.2018.10.004
https://doi.org/10.1137/0207001

704 Journal of Scheduling (2022) 25:675–704

Delorme, M., Iori, M., & Martello, S. (2016). Bin packing and cut-

ting stock problems: Mathematical models and exact algorithms.

European Journal of Operational Research, 255(1), 1–20.

Drozdowski, M. (2009). Scheduling for parallel processing. Computer

Communications and NetworksSpringer Verlag.

Drozdowski, M., & Dell’Olmo, P. (2000). Scheduling multiproces-

sor tasks for mean flow time criterion. Computers & Operations

Research, 27(6), 571–585.

Fukunaga, A. S., & Korf, R. E. (2007). Bin completion algorithms for

multicontainer packing, knapsack, and covering problems. Journal

of Artificial Intelligence Research, 28(1), 393–429.http://dl.acm.

org/citation.cfm?id=1622591.1622602

Gabay, M. (2014). High-multiplicity scheduling and packing problems.

PhD thesis, Université Joseph Fourier

Garey, M., Graham, R., Johnson, D., & Yao, A. C. (1976). Resource

constrained scheduling as generalized bin packing. Journal of

Combinatorial Theory, Series A, 21(3), 257–298. https://doi.org/

10.1016/0097-3165(76)90001-7

Goemans, MX., & Rothvoß, T. (2014). Polynomiality for bin pack-

ing with a constant number of item types. In Proceedings of the

twenty-fifth annualACM-SIAMSymposiumondiscrete algorithms,

society for industrial and applied mathematics, (pp. 830-839)

USA, SODA ’14,

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G.

(1979). Optimization and approximation in deterministic sequenc-

ing and scheduling: a survey. Annals of Operations Research, 5,

187–326.

Hendel, Y., Kubiak, W., & Trystram, D. (2015). Scheduling semi-

malleable jobs tominimizemean flow time. Journal of Scheduling,

18(4), 335–343. https://doi.org/10.1007/s10951-013-0341-1

Jansen, K. (2017). New algorithmic results for bin packing and

scheduling. In D. Fotakis, A. Pagourtzis, & V. T. Paschos (Eds.),

Algorithms and Complexity (pp. 10–15). Springer International

Publishing.

Jouglet, A. (2002). The one machine total cost sequencing problem.

PhD thesis, Université de Technologie deCompiègne, Compiègne,

France

Jouglet, A., Baptiste, P., & Carlier, J. (2004). Branch-and-bound algo-

rithms for total weighted tardiness. In J.T. Leung (ed) Handbook

of Scheduling, CRC Press, chap 13

Kis, T. (2005). A branch-and-cut algorithm for scheduling of projects

with variable-intensity activities. Mathematical Programming

Series A, 103, 515–539.

Labbé, M., Laporte, G., & Mercure, H. (1991). Capacitated vehicle

routing on trees. Operations Research, 39(4), 616-622.

Lloyd, E. L. (1981). Concurrent task systems. Operations Research,

29(1), 189–201.

Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and

computer implementations. New York: John Wiley and Sons.

Morrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C. (2016).

Branch-and-bound algorithms: A survey of recent advances in

searching, branching, and pruning.Discrete Optimization, 19, 79–

102. https://doi.org/10.1016/j.disopt.2016.01.005

Pereira, J. (2016). Procedures for the bin packing problem with prece-

dence constraints. European Journal of Operational Research,

250(3), 794–806. https://doi.org/10.1016/j.ejor.2015.10.048

Sadykov, R. (2012). A dominant class of schedules for malleable jobs in

the problem tominimize the total weighted completion time.Com-

puters & Operations Research, 39(6), 1265–1270. https://doi.org/

10.1016/j.cor.2011.02.023, special Issue on Scheduling in Manu-

facturing Systems

Schiex, T., & Verfaillie, G. (1994). Nogood recording for static and

dynamic constraint satisfaction problems. International Journal

on Artificial Intelligence Tools, 03(02), 187–207. https://doi.org/

10.1142/S0218213094000108

Scholl, A., Klein, R., & Jürgens, C. (1997). Bison: A fast hybrid proce-

dure for exactly solving the one-dimensional bin packing problem.

Computers & Operations Research, 24(7), 627–645. https://doi.

org/10.1016/S0305-0548(96)00082-2

Scholl, A., Fliedner, M., & Boysen, N. (2010). Absalom: Balancing

assembly lines with assignment restrictions. European Journal of

Operational Research, 200(3), 688–701. https://doi.org/10.1016/

j.ejor.2009.01.049

Schutt, A., Feydy, T., Stuckey, P., & Wallace, M. (2013). Solving

RCPSP/max by lazy clause generation. Journal of Scheduling,

16(3), 273–289. https://doi.org/10.1007/s10951-012-0285-x

Shaw, P. (2004). A constraint for bin packing. In M. Wallace (Ed.),

Principles and practice of constraint programming - CP 2004 (pp.

648–662). Springer.

Wang, K., Chau, V., & Li, M. (2018). Scheduling fully parallel jobs.

Journal of Scheduling, 21(6), 619–631. https://doi.org/10.1007/

s10951-018-0563-3

Zhang, Q., Wu, W., & Li, M. (2013). Minimizing the total weighted

completion time of fully parallel jobs with integer parallel units.

Theoretical Computer Science 507, 34–40, https://doi.org/10.

1016/j.tcs.2013.02.017, combinatorial Optimization and Applica-

tions

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

http://dl.acm.org/citation.cfm?id=1622591.1622602
http://dl.acm.org/citation.cfm?id=1622591.1622602
https://doi.org/10.1016/0097-3165(76)90001-7
https://doi.org/10.1016/0097-3165(76)90001-7
https://doi.org/10.1007/s10951-013-0341-1
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1016/j.ejor.2015.10.048
https://doi.org/10.1016/j.cor.2011.02.023
https://doi.org/10.1016/j.cor.2011.02.023
https://doi.org/10.1142/S0218213094000108
https://doi.org/10.1142/S0218213094000108
https://doi.org/10.1016/S0305-0548(96)00082-2
https://doi.org/10.1016/S0305-0548(96)00082-2
https://doi.org/10.1016/j.ejor.2009.01.049
https://doi.org/10.1016/j.ejor.2009.01.049
https://doi.org/10.1007/s10951-012-0285-x
https://doi.org/10.1007/s10951-018-0563-3
https://doi.org/10.1007/s10951-018-0563-3
https://doi.org/10.1016/j.tcs.2013.02.017
https://doi.org/10.1016/j.tcs.2013.02.017

	Packing-based branch-and-bound for discrete malleable task scheduling
	Abstract
	1 Introduction
	2 Problem background and modeling
	3 Related work
	4 Adopting a packing-oriented perspective
	4.1 Conceptual groundwork
	4.2 A packing-based mixed integer programming formulation

	5 Tightening lower bounds
	6 Dominance and symmetry breaking rules
	6.1 Dominance between alternative packings
	6.2 Equally weighted chains
	6.3 Extensible feasible sets

	7 A branch-and-bound algorithm
	7.1 Bounding
	7.2 Filtering
	7.3 Supporting techniques
	7.4 Handling instances with small slices only
	7.5 Generalizability considerations

	8 Computational results
	8.1 Experimental setup
	8.2 Generating initial incumbents
	8.3 Total weighted completion time objective (proportional weights)
	8.3.1 Results on randomized instances
	8.3.2 Results on benchmark instances
	8.3.3 Results on real-world instances

	8.4 Makespan objective

	9 Conclusion and outlook
	Acknowledgements
	Appendix A: A packing-based CP model
	Appendix B: A scheduling-oriented CP model
	Appendix C: Constraint propagation for bin packing with linear usage cost
	Appendix D: Construction heuristics for the bin packing problem with chain-like precedence constraints
	Appendix E: Impact of total slice count on solution behavior
	Appendix F: Additional computational results for the makespan objective
	Appendix G: Results obtained by construction heuristics
	References

