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Abstract
We study two NP-hard single-machine scheduling problems with generalized due-dates. In such problems, due-dates are
associated with positions in the job sequence rather than with jobs. Accordingly, the job that is assigned to position j in the
job processing order (job sequence), is assigned with a predefined due-date, δ j . In the first problem, the objective consists of
finding a job schedule that minimizes the maximal absolute lateness, while in the second problem, we aim to maximize the
weighted number of jobs completed exactly at their due-date. Both problems are known to be strongly NP-hard when the
instance includes an arbitrary number of different due-dates. Our objective is to study the tractability of both problems with
respect to the number of different due-dates in the instance, νd . We show that both problems remain NP-hard even when
νd = 2, and are solvable in pseudo-polynomial time when the value of νd is upper bounded by a constant. To complement
our results, we show that both problems are fixed parameterized tractable (FPT ) when we combine the two parameters of
number of different due-dates (νd ) and number of different processing times (νp).

Keywords Scheduling · Single machine · Generalized due-dates · NP-hard · Pseudo-polynomial time algorithm ·
Parameterized complexity.

1 Introduction

In most classical scheduling problems involving due-date
related performance measures, the due-dates are given as a
set of predefined job-related parameters, i.e., each job has
its own predefined due-date given by the instance. When
scheduling with generalized due-dates (gdd’s), the due-date
of each job is defined only after the scheduling decisions are
made. Accordingly, due-dates are associated with positions
in the job processing order, and each job is assigned with a
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due-date based on its position in this order. Yin et al. (2012)
pointed out that scheduling with gdd arises in cases where
there are milestones in a serial project, each indicating the
number of operations that are required to be completed up
to a certain point in time. Browne et al. (1984), Hall (1986)
and Stecke and Solberg (1981) describe situations in which
generalized due-dates arise in practical settings, including in
public utility planning, survey design and flexible manufac-
turing.

1.1 Literature review and problem definition

The field of scheduling with gdd was first introduced by Hall
(1986) who analyzed several scheduling problems with gdd
on a single machine and on identical parallel machines. He
showed that some problems that are solvable in polynomial
time for the case of job-related due-dates remain so when
generalized due-dates are considered. This includes the prob-
lems of theminimizingmaximum lateness and the number of
tardy jobs on a singlemachine.He also showed, however, that
for some other problems the complexity status changes. For
example, Hall showed that although the problem of minimiz-
ing the total tardiness on a single machine isNP-hard when
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due-dates are job-related (see Du & Leung, 1990), it is solv-
able in polynomial timewith gdd. Other results on scheduling
under the assumptionofgdd appear inSriskandarajah (1990),
Hall et al. (1991), Tanaka and Vlach (1999), Gao and Yuan
(2006), Yin et al. (2012) and Gerstl and Mosheiov (2020) .

In many cases where a scheduling problem with gdd is
found to be NP-hard, the reduction is done to an instance
that includes an arbitrary number of different due-dates, νd
(see, e.g., Tanaka & Vlach, 1999; Gerstl &Mosheiov, 2020).
However, in real-life applications, especially in cases where
delivery costs are very high, the value of νd may be of limited
size. Therefore, it is interesting to investigate whether or not
the problems become tractable for bounded values of νd . We
focus on two such problems,where the scheduling criterion is
non-regular and follows the concept of just in time (JIT ). The
concept of JIT is used whenever both job earliness and tardi-
ness should be avoided, i.e., when it is desirable to complete a
job’s processing at, or as close as possible, to its due-date. In
the first problem, our aim is to find a schedule that minimizes
the maximum absolute lateness, while in the second problem
we seek a schedule that maximizes the weighted number of
jobs completed exactly at their due-dates.

The two problems we consider in this paper are defined as
follows. We are given a set J = {J1, J2, . . . , Jn} of n jobs
to be scheduled non-preemptively on a single machine. Let
p j be the processing time of job J j on the single machine. A
feasible job schedule S is defined by (i) a processing permu-
tation π = {J[1], J[2], . . . , J[n]} of the n jobs on the single
machine, where [ j] is the index of the job in the j th posi-
tion in π , and by ( i i) a feasible set of processing intervals,
(S[ j],C[ j] = S[ j] + p[ j]] for j = 1, . . . , n, satisfying that
S[ j] ≥ C[ j−1] = S[ j−1] + p[ j−1] for j = 1, . . . , n, where
S[ j] andC[ j] are the start time and the completion time of job
J[ j], respectively, and S[0] = p[0] = 0 by definition. Given
S, the due-date assigned to job J[ j] is δ j . Accordingly, the
lateness of job J[ j] is defined by L [ j] = C[ j] − δ j . More-
over, we say that job J[ j] is a JIT job if C[ j] = δ j , and by
E = {J j ∈ J ∣

∣C[ j] = δ j }, we denote the set of JIT jobs.
In the first problem, our objective is to find a feasible

schedule that minimizes the maximum absolute lateness,
given by maxJ j∈J {∣∣L j

∣
∣}, while in the second problem we

aim to find a solution that maximizes the weighted number
of JIT jobs, given by �J j∈Ew j , where w j is the weight of
job J j representing the gain obtained from completing job
J j in a JIT mode. Using the classical three-field notation for
scheduling problems (see Graham et al., 1979), we denote
the first problemwe study by 1 |gdd|maxJ j∈J {∣∣L j

∣
∣} and the

second problem by 1 |gdd| �J j∈Ew j . We note that
∣
∣L [ j]

∣
∣ =

max{E[ j], T[ j]}, where E[ j] = max{0, δ j −C[ j]} is the earli-
ness of job J[ j], and T[ j] = max{0,C[ j] −δ j } is the tardiness
of job J[ j].By1 ||maxJ j∈J {∣∣L j

∣
∣} and 1 || �J j∈Ew j , we refer

to the variant of the same problems where due-dates are job-
related.

Whendue-dates are job-related, the resulting 1 ||maxJ j∈J
{∣∣L j

∣
∣} and 1 || �J j∈Ew j problems are solvable in polyno-

mial time (see Garey et al., 1988 and Lann and Mosheiov,
1996). However, both problems are strongly NP-hard with
generalized due-dates (see Tanaka & Vlach, 1999 and Gerstl
& Mosheiov, 2020), and for the 1 |gdd| �J j∈Ew j problem,
the stronglyNP-hardness result holds even if all weights are
identical (i.e., even when the objective is simply to maximize
the number of JIT jobs, |E |).

1.2 Research objectives and paper organization

The reductions used by Tanaka and Vlach (1999) and Ger-
stl and Mosheiov (2020) to prove that problems 1 |gdd|
maxJ j∈J {∣∣L j

∣
∣} and 1 |gdd| |E | are strongly NP-hard are

done by constructing instances that include an arbitrary
number of different due-dates. We aim to see whether the
problems become easier to solve when the number of differ-
ent due-dates in the instance is of a limited size. Our analysis
is done from both a classical (see Garey & Johnson, 1979)
and a parameterized (see, e.g., Downey, 1999&Niedermeier,
2006) complexity point of view. To do so, let vd be the num-
ber of different due-dates in the instance. From a classical
complexity perspective, we aim to determine whether or not
the problems are solvable in polynomial time when vd is
upper bounded by a constant. If not, we aim to determine
whether the problem remains NP-hard in the strong sense,
or it is solvable in pseudo-polynomial time. We also aim to
determine the complexity of each problem with respect to
(wrt.) vd in the sense of parameterized complexity.

Given anNP-hard problem and a parameter k, in parame-
terized complexity we aim to determine whether the problem
has an algorithm running in f (k)nO(1) time, where f (k) is
a function that depends solely on k (and thus independent of
the number of jobs n). Such an algorithm is referred to as a
Fixed Parameter Tractable (FPT ) algorithmwrt. k. Note that
an FPT algorithm is always faster than an n f (k) algorithm,
for any monotone increasing function f (k), when n and k
are sufficiently large. Thus, for example, an FPT algorithm
is preferable over an algorithm that is polynomial whenever
k is constant.

In Sections 2 and 3,we analyze the tractability of problems
1 |gdd|maxJ j∈J {∣∣L j

∣
∣} and 1 |gdd| �J j∈Ew j wrt. νd . We

prove that problems 1 |gdd|maxJ j∈J {∣∣L j
∣
∣} and 1 |gdd| |E |

are bothNP-hard even if νd = 2. Unless P=NP , this result
rules out the possibility to constructFPT algorithms for prob-
lems 1 |gdd|maxJ j∈J {∣∣L j

∣
∣} and 1 |gdd| |E |wrt. νd .We also

provide pseudo-polynomial time algorithms to solve prob-
lems 1 |gdd|maxJ j∈J {∣∣L j

∣
∣} and 1 |gdd| �J j∈Ew j when νd

is upper bounded by a constant. These results lead to the
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conclusion that both problems are strongly NP-hard only
for an arbitrary value of νd , while they both become ordi-
nary NP-hard when νd is upper bounded by a constant.
As both problems do not admit an FPT algorithm wrt. νd ,
we further analyze the case where we combine parameter
νd with another parameter, νp, which represents the num-
ber of different processing times in the instance. We provide
FPT algorithms for problems 1 |gdd|maxJ j∈J {∣∣L j

∣
∣} and

1 |gdd| |E | wrt. the combined parameter. A summary and
future research section concludes our paper.

2 Maximal absolute lateness

The 1 |gdd|max{∣∣L j
∣
∣} problem is strongly NP-hard when

due-dates are arbitrary (see Tanaka & Vlach, 1999). When
there is a common due-date for all jobs (i.e., νd = 1), a sim-
ple O(n) time algorithm provides the optimal schedule for
the corresponding 1

∣
∣gdd, δ j = δ

∣
∣max{∣∣L j

∣
∣} problem (see

Cheng, 1987). In the following three subsections,we comple-
ment these two results by showing that the 1 |gdd|max{∣∣L j

∣
∣}

problem is (i)NP-hard evenwhenwe have only two distinct
due-dates in the instance; (i i) solvable in pseudo-polynomial
time when the value of νd is upper bounded by a constant;
and (i i i) fixed parameterized tractable (FPT ) when we com-
bine the two parameters consisting of the number of different
due-dates (νd ) and number of different processing times (νp).

2.1 NP-hardness for the two distinct due-dates
case

In this subsection, we show that the 1 |gdd|max{∣∣L j
∣
∣} is

NP-hard even when νd = 2. The reduction is done from
the ordinary NP-hard Equal Size Partition problem,
which is defined below.

Definition 1 Equal Size Partition: Given a set of 2t pos-
itive integers A = {a1, a2, . . . , a2t } with �2t

j=1a j = 2B and
0 < a j < B. Can A be partitioned into two subsets A1 and
A2 such that �a j∈Ai a j = B and |Ai | = t for i = 1, 2?

Theorem 1 The 1 |gdd|max{∣∣L j
∣
∣} is NP-hard even when

there are only twodistinct due-dates ( i.e., evenwhen νd = 2).

Proof Given an instance for the NP-hard Equal Size
Partition problem, we construct the following instance
for our 1 |gdd|max{∣∣L j

∣
∣} problem: The instance includes

n = 2t + 2 jobs. The processing times are:

p j =
{

a j for j = 1, . . . , 2t
2B for j = 2t + 1, 2t + 2

(1)

and the due-dates are

δ j =
{

δ = 2.5B for j = 1, . . . , t + 1

δ = 5.5B for j = t + 2, . . . 2t + 2
. (2)

In the decision version of the problem, we ask whether there
exists a feasible schedule with max{∣∣L j

∣
∣} ≤ B/2. Note

that there are only two distinct due-dates in the constructed
instance of the 1 |gdd|max{∣∣L j

∣
∣} problem.

Given a solution that provides aYES answer for theEqual
Size Partition, we construct the following solution S to
our 1 |gdd|max{∣∣L j

∣
∣} problem. We set Ji = {J j

∣
∣a j ∈ Ai }

for i = 1, 2. Then, we schedule the jobs in the following
order: J2t+1,J1, J2t+2,J2 with no machine idle times. The
processing order in each Ji (i = 1, 2) is arbitrary. Since
|Ji | = |Ai | = t , all jobs in J2t+1 ∪ J1 share the same due-
date of δ = 2.5B, and all jobs in J2t+2 ∪ J2 share the same
due-date of δ = 5.5B. Therefore, in S:

• Job J2t+1 is scheduled during time interval (0, 2B]. Thus,
|L2t+1| = |2B − 2.5B| = 0.5B.

• Job set J1 is scheduled during time interval (2B, 3B].
Therefore,maxJ j∈J1{

∣
∣L j

∣
∣} = max{∣∣2B + p[2] − 2.5B

∣
∣ ,

3B − 2.5B}, where [ j] is the index of the j th job in the
processing order. The fact that p[2] = a[2] < B implies
that maxJ j∈J1{

∣
∣L j

∣
∣} = 3B − 2.5B = 0.5B.

• Job J2t+2 is scheduled during time interval (3B, 5B].
Thus, |L2t+2| = |5B − 5.5B| = 0.5B.

• Job set J2 is scheduled during time interval (5B, 6B].
Therefore,maxJ j∈J2

∣
∣L j

∣
∣ = max{∣∣5B + p[t+3] − 5.5B

∣
∣ ,

6B − 5.5B}. The fact that p[t+3] = a[t+3] < B implies
that maxJ j∈J2{

∣
∣L j

∣
∣} = 6B − 5.5B = 0.5B.

It follows that in schedule S, maxJ j∈J {∣∣L j
∣
∣} = 0.5B,

and we have a YES answer for the constructed instance of
our 1 |gdd|max{∣∣L j

∣
∣} problem.

Consider next a solution S that provides a YES answer for
the constructed instance of our 1 |gdd|max{∣∣L j

∣
∣} problem.

Lemma 1 In S, there are no machine idle times.

Proof If S includes machine idle times of a total length of
� > 0, then the last job is completed at time 6B + �. As
the last scheduled job is assigned a due-date of δ = 5.5B,
its absolute lateness equals to 0.5B + � > 0.5B, con-
tradicting the fact that S provides a YES answer for the
1 |gdd|max{∣∣L j

∣
∣} problem. ��

Now, let J1 be the set of t +1 jobs that are scheduled first
in S, and let J2 be the set of t +1 jobs that are scheduled last
in S. All jobs in J1 share the same due-date of δ = 2.5B,
and all jobs in J2 share the same due-date of δ = 5.5B.

Lemma 2 Set J1 includes exactly a single job out of the pair
{J2t+1, J2t+2}.
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Proof By contradiction, assume that set J1 includes either
none or both jobs in {J2t+1, J2t+2}. If J1 includes none
of the two jobs in {J2t+1, J2t+2}, then based on Lemma 1
the first job to be schedule will complete at time C[1] =
a[1] < B. Then,

∣
∣L [1]

∣
∣ = ∣

∣C[1] − δ1
∣
∣ > |B − 2.5B| =

1.5B, contradicting the fact that S provides a YES answer
for the 1 |gdd|max{∣∣L j

∣
∣} problem. If J1 includes both

{J2t+1, J2t+2}, the completion of the last job in J1 will be at
time C[t+1] > p2t+1 + p2t+2 = 4B. Therefore,

∣
∣L [t+1]

∣
∣ =

∣
∣C[t+1] − δt+1

∣
∣ > |4B − 2.5B| = 1.5B, contradicting the

fact that S provides a YES answer for the 1 |gdd|max{∣∣L j
∣
∣}

problem. AccordinglyJ1 includes exactly a single job out of
the pair {J2t+1, J2t+2}. ��

Following Lemma 2, and without loss of generality,
assume that J2t+1 is included in J1. Moreover, let Ĵ1 =
J1 \ {J2t+1}. Note that

∣
∣Ĵ1

∣
∣ = t .

Lemma 3 In schedule S, the total processing time of all jobs
in Ĵ1 is exactly B (i.e., �J j∈Ĵ1

p j = B).

Proof By contradiction, assume that �J j∈Ĵ1
p j > B. In

such a case C[t+1] = p2t+1 + �J j∈Ĵ1
p j > 2B + B =

3B. Thus,
∣
∣L [t+1]

∣
∣ = ∣

∣C[t+1] − δt+1
∣
∣ > |3B − 2.5B| =

0.5B, contradicting the fact that S provides a YES answer
for the 1 |gdd|max{∣∣L j

∣
∣} problem. On the other hand, if

�J j∈Ĵ1
p j < B, it implies (based on Lemma 1) that job

J[t+2] will start at time p2t+1 + �J j∈Ĵ1
p j < 3B. Thus,

C[t+2] = p2t+1 + �J j∈Ĵ1
p j + p[t+2] < 3B + 2B = 5B.

Therefore,
∣
∣L [t+2]

∣
∣ = ∣

∣C[t+2] − δt+2
∣
∣ > |5B − 5.5B| =

0.5B, contradicting the fact that S provides a YES answer for
the 1 |gdd|max{∣∣L j

∣
∣} problem. ��

Now, letA1 = {a j | J j ∈ Ĵ1} andA2 = A�A1. The fact
that |A1| = ∣

∣Ĵ1
∣
∣ = t and that �a j∈A1a j = �J j∈Ĵ1

p j = B

implies that we have a YES answer for the Equal Size
Partition problem. ��

2.2 A pseudo-polynomial time algorithm for a
constant number of different due-dates

In this section, we develop a pseudo-polynomial time algo-
rithm to solve the 1 |gdd|max{∣∣L j

∣
∣} problem when the

number of different due-dates, νd , is bounded by a constant.
We assume that δ1 < δ2 < · · · < δνd , and begin with few
notations. Let mi denote the number of positions in the job
processing order having a due-date of δi for i = 1, . . . , νd .
Moreover, let lr = �r

i=1mi denote the number of positions
having due-date not greater than δr for r = 1, . . . , νd , with
lνd = n by definition. Given a solution, by Ji we denote the
set of mi jobs assigned to due-date δi (i = 1, . . . , νd ). Our
pseudo-polynomial time algorithm exploits the properties in
following two lemmas:

Lemma 4 There exists an optimal schedule for the 1 |gdd|
max{∣∣L j

∣
∣} problem, which includes no machine idle times

between the processing of any two consecutive jobs in each
Ji (i = 1, . . . , νd ).

Proof Consider an optimal solution S∗, which includes
machine idle time of duration � between the processing of
jobs J[ j] and J[ j+1] both belong to the same set Ji (i.e.,
j ∈ {li−1 + 1, . . . , li }). Define an alternative solution S′ out
of S∗, by starting the processing of jobs {J[ j+1], .., J[li ]} �

time units earlier (i.e., by eliminating the idle time between
jobs J[ j] and J[ j+1]), while keeping the schedule of all other
jobs unchanged.

As all jobs inJi share the same due-date of di , job J[li−1+1]
has the maximum earliness value among all jobs inJi , while
job J[li ] has the maximal tardiness value among all jobs in
Ji . As the schedule of job J[li−1+1] is identical in both S′ and
S∗, the maximum earliness among all jobs in Ji is the same
in both S′ and S∗. However, job J[li ] is completed � earlier
in S′ comparing to its completion time in S∗. Therefore, the
maximum tardiness among all jobs in Ji is not greater in S′
than it is in S∗. Thus, the absolute lateness among all jobs in
S′ is not greater than it is in S∗. Accordingly, schedule S′ is
optimal as well. By repeating this procedure for any pair of
consecutive jobs in S∗ sharing the same due-date and having
idle time between them, we complete the proof. ��
Lemma 5 There exists an optimal schedule for the 1 |gdd|
max{∣∣L j

∣
∣} problem,where the jobwith the largest processing

time among all jobs in each set Ji is scheduled first (within
its job set), while the processing order of all other jobs in Ji

can be arbitrary.

Proof As all jobs inJi share the same due-date of di , the first
scheduled job in Ji , which is job J[li−1+1], has the maximum
earliness value among all jobs inJi , while the last scheduled
job in Ji , which is job J[li ], has the maximal tardiness value
among all jobs in Ji . Consider now an optimal solution, S∗,
which follows the property in Lemma 4. It follows that in S∗

max
J j∈Ji

{∣∣L j
∣
∣} = max{E[li−1+1], T[li ]}

= max{max{0, δi − Ai − p[li−1+1]},
max{0, Ai + P(Ji ) − δi }},

where Ai is the start time of set Ji in S∗, and P(Ji ) =
�J j∈Ji p j . The lemma now follows from the fact the value
of T[li ] is independent of the internal schedule of the jobs in
Ji , and that the value of E[li−1+1] is a non-increasing function
of p[li−1+1]. ��

Consider now a feasible partition of job setJ into the sub-
sets J1,J2, . . . ,Jνd , and let (i) Pi = �J j∈Ji p j represent
the total processing time of all jobs assigned to set Ji ; and

123



Journal of Scheduling (2022) 25:577–587 581

(i i) and αi = maxJ j∈Ji p j represent themaximal processing
time among all jobs assigned to set Ji . Given the values of
Pi and αi for i = 1, . . . , νd , we can compute the optimal
starting times of job sets J1,J2, . . . ,Jνd by using a Linear
Programming (LP) formulation, consisting solely of contin-
uous variables. In the formulation, Si is a continuous variable
representing the start time of set Ji on the single machine
(i = 1, . . . , νd ), and Z is a continuous variable representing
the value of the maximum absolute lateness. To ensure that
the processing intervals of the sets do not overlap, we include
the set of constraints that

Si ≥ Si−1 + Pi−1 for i ∈ {1, . . . , νd} (3)

with S0 = P0 = 0 by definition. Due to Lemmas 4 and 5,
and due to the fact that all jobs in Ji share the same due-date
of δi , the maximal earliness value of a job belonging to Ji

is equal to max{0, δi − Si − αi }, and the maximal tardiness
value of a job belonging toJi is equal tomax{0, Si+Pi−δi }.
Therefore, we include the following set of constraints as well

Z ≥ δi − Si − αi for i ∈ {1, . . . , νd}, (4)

and

Z ≥ Si + Pi − δi for i ∈ {1, . . . , νd}. (5)

Thus, given a feasible partition of job set J into the subsets
J1,J2, . . . ,Jνd represented by the vector (P1, P2, . . . , Pνd ,

α1, α2, . . . , ανd ), one can compute the optimal starting time
of the job sets, and the minimal objective value by solving a
LP problem of finding a solution that minimizes Z , subject to
the set of constraints in (3)–(5). Using Karmarkar’s Method
(seeKarmarkar, 1984), this can be done in O(ν3.5d ) time (note
that we have νd continuous variables in the LP formulation).
Thus, the following holds:

Lemma 6 Given a vector (P1, P2, . . . , Pνd , α1, α2, . . . , ανd )
representing a feasible partition of J into the sets J1 ,J2 ,

. . . ,Jνd , one can compute the optimal starting time of each
of the setsJi ,J2 , . . . ,Jνd , and the minimal objective value
in O(ν3.5d ) time.

It follows from Lemma 6 that we can solve our 1 |gdd|
max{∣∣L j

∣
∣} problem, by finding all possible

(P1, P2, . . . , Pνd , α1, α2, . . . , ανd ) vectors, each represent-
ing at least a single feasible partition of J into the sets
Ji ,J2 , . . . ,Jνd . Then, for each such vector, we can find
the optimal objective value by solving the LP formulation.
Following this process, we select as an optimal solution a
schedule that corresponds to the vector which yields the min-
imum objective value among all the vectors.

Next, we present a state generation process that con-
structs all possible (P1, P2, . . . , Pνd , α1, α2, . . . , ανd ) vec-
tors representing feasible partitions of J into the sets
J1 ,J2 , . . . ,Jνd . We begin by re-indexing our jobs accord-
ing to the longest processing time (LPT ) rule such that p1 ≥
p2 ≥ · · · ≥ pn . Now, let state ( j, k1, . . . , kνd , P1, . . . , Pνd ,

α1, . . . , ανd ) represent a feasible partition of job set {J1,
. . . , J j } into the sets J1 ,J2 , . . . ,Jνd , where ki ≤ mi rep-
resents the number of jobs assigned to Ji (i ∈ {1, . . . , νd}).
Let L j represent all possible states on job set {J1, . . . , J j }.

We initialize our state generation process by includ-
ing a single state (0, k1 = 0, . . . , kνd = 0, P1 =
0, . . . , Pνd = 0, α1 = 0, . . . , ανd = 0) in L0. Then, for
j = 1, . . . , n, we constructL j fromL j−1 as follows: starting
from each ( j − 1, k1, . . . , kνd , P1, . . . , Pνd , α1, . . . , ανd ) ∈
L j−1, we include at most νd states in L j each repre-
senting a feasible assignment of J j into one of the sets,
J1 ,J2 , . . . ,Jνd . Accordingly, for r = 1, . . . , νd , if kr <

mr we assign job J j to set Jr and therefore include the
state ( j, k′

1, . . . , k
′
νd

, P ′
1, . . . , P

′
νd

, α′
1, . . . , α

′
νd

) in L j with
(i) k′

i = ki , P ′
i = Pi and α′

i = αi for i ∈ {1, . . . , νd}�{r};
(i i) k′

r = kr + 1; (i i i) P ′
r = Pr + p j ; and (iv) α′

r = p j if
αr = 0 and α′

r = αr if αr > 0. At the end of the state gen-
eration process, set Ln includes the set of all possible state
vectors. To conclude the above analysis, the following algo-
rithm can be used to solve the 1 |gdd|max{∣∣L j

∣
∣} problem:
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Algorithm 1 An optimization algorithm for solving the 1 |gdd|max{∣∣L j
∣
∣} problem.

Input: n, (δ1, ..., δνd ), (m1, ...,mνd ), (p1, ..., pn).
Initialization:

Set L0 = {(0, k1 = 0, ..., kνd = 0, P1 = 0, ..., Pνd = 0, α1 = 0, ..., ανd = 0)}
and L j = ∅ for j = 1, ..., n. Set Opt = ∅ and Opt_value = ∞ .

Step 1: Re-index the jobs according to the LPT rule such that p1 ≥ p2 ≥ ... ≥ pn.
Step 2:

For j = 1 to n do
For any ( j − 1, k1, ..., kνd , P1, ..., Pνd , α1, , ..., ανd ) ∈ L j−1 do

For r = 1 to νd do
If kr < mr then

Include state ( j, k′
1, ..., k

′
νd

, P ′
1, ..., P

′
νd

, α′
1, ..., α

′
νd

) in L j , where
k′
i = ki , P ′

i = Pi and α′
i = αi for i ∈ {1, ..., νd}�{r}; k′

r = kr + 1; P ′
r = Pr + p j ; and

α′
r = p j if αr = 0 and α′

r = αr if αr > 0.
End if

End For
End For

End For
Step 3: For any (n,m1, ...,mνd , P1, P2, ..., Pνd , α1, α2, ..., ανd ) ∈ Ln solve the LP formulation of minimizing

Z, subject to the set of constraints in (3)-(5). Let Z∗ be the optimal solution value.
If Z∗ < Opt_value, set Opt = (n,m1, ...,mνd , P1, P2, ..., Pνd , α1, α2, ..., ανd ) and Opt_value = Z∗.

Step 4: Track back the optimal assignment of jobs into the job sets J1 ,J2 , ...,Jνd out of Opt.

Theorem 2 Algorithm 1 solves the 1 |gdd|max{∣∣L j
∣
∣} prob-

lem in pseudo-polynomial time when the value of νd is upper
bounded by a constant.

Proof The correctness of the algorithm follows from the dis-
cussion in this section. Step 1 requires a sorting operation,
and therefore can be done in O(n log n) time. The facts that
(i) the value of Pi (i ∈ {1, . . . , νd}) is upper bounded by
P� = ∑

J j∈J p j , and that (i i) there are O(n) different
possible values for each αi , implies that there are at most
O((nP�)νd ) states in eachL j . In Step 2, we construct atmost
νd states in L j out of state in L j−1, each of which requires
O(νd) time. Thus, each iteration j ∈ {1, . . . , n} of Step 2
requires O((νd)

2(nP�)νd ) time, and the overall complexity
of Step 2 is O((νd)

2nνd+1(P�)νd ). In Step 3, for each state in
Ln , we solve an LP formulation, which requires O(ν3.5d ) time
(see Lemma 6). The fact that we have O((nP�)νd ) states in
each L j , implies that Step 3 can be done in O(ν3.5d (nP�)νd )

time. In Step 4 we track back the optimal assignment of
jobs into the job sets J1 ,J2 , . . . ,Jνd out of Opt . This can
easily be done in a linear time, and therefore the time com-
plexity of Algorithm 1 is O((νd)

2 max{n, (νd)
1.5}(nP�)νd ).

If the value of νd is upper bounded by a constant, this time
complexity reduces to O(nνd+1(P�)νd ), which is pseudo-
polynomial. ��

2.3 An FPT algorithm for the combined parameter
(�d, �p)

In this section, we prove that the following result holds:

Theorem 3 The 1 |gdd|maxJ j∈J {∣∣L j
∣
∣} problem is FPTwrt.

the combined parameter (νd , νp).

The proof of Theorem 3 is done by providing a Mixed
Integer Linear Programming (MILP) formulation for the
1 |gdd|maxJ j∈J {∣∣L j

∣
∣} problem with O(νdνp) integer vari-

ables. Then, Theorem 3 directly holds from the result by
Lenstra (1983) who showed that the problem of solving an
MILP is FPT wrt. the number of integer variables.

For ease of presentation, we represent the vector of n
due-dates in a modified manner by two vectors of size νd :
(δ1, δ2, . . . , δνd ) and (m1,m2, . . . ,mνd ). The first includes
the νd distinct due-dates in the instance. In the second, mi

represents the number of positions in the sequence having
a due-date of δi . We also represent the vector of n pro-
cessing times in a modified manner by two vectors of size
νp: (p1, p2, . . . , pνp ) and (n1, n2, . . . , nνp ), where the first
includes the νp distinct processing times in the instance,
and ni is the number of jobs having processing time of pi
for i = 1, . . . , νp . Without loss of generality, we assume
that the due-dates are numbered according to the EDD rule,
such that δ1 < δ2 < · · · < δνd , and that the processing
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times are numbered according to the SPT rule, such that
p1 < p2 < · · · < pνp .

Now, let xi j be an integer decision variable representing
the number of jobs with processing time p j allocated to due-
date δi (i ∈ {1, . . . , νd}, j ∈ {1, . . . , νp}). Accordingly, we
have the following set of constraints:

∑νd
i=1 xi j = n j for j = 1, . . . , νp , (6)

and

∑νp
j=1 xi j = mi for i = 1, . . . , νd (7)

Now, let Si (i = 1, . . . , νd ) be a continuous decision vari-
able representing the start time of the jobs in set Ji . Due to
Lemma 4, the completion time of all jobs in set Ji is at time
Si +∑νp

j=1 p j xi j . Therefore, we include the following set of
constraints that ensures that processing time intervals do not
overlap:

Si+1 ≥ Si + ∑νp
j=1 p j xi j for i = 0, . . . , νd − 1, (8)

with S0 = 0 by definition.
Let Z be a continuous decision variable representing the

maximum absolute lateness, and let αi be a continuous deci-
sion variable representing the largest processing time among
all processing times of the jobs in Ji (i ∈ {1, . . . , νd}). Due
to Lemma 5, and the fact that the first scheduled job in Ji

has the maximum earliness value among all jobs in Ji , we
include the set of constraints that

Z ≥ δi − Si − αi for i = 1, . . . , νd . (9)

Moreover, due to Lemmas 4–5, and the fact that the last
scheduled job in Ji has the maximal tardiness value among
all jobs inJi , we also include the following set of constraints
as well

Z ≥ Si + ∑νp
j=1 p j xi j − δi for i = 1, . . . , νd . (10)

To ensure that αi is indeed the largest processing time among
all processing times of the jobs in Ji , we define yi j as a
binary variable that is equal to 1 when xi j ≥ 1 and is equal
0 otherwise (i ∈ {1, . . . , νd}, j ∈ {1, . . . , νp}). Then, we
include the following set of constraints:

yi j ≤ xi j for i = 1, . . . , νd and j = 1, . . . , νp; (11)

and also the following set of constraints:

αi ≤ p j + ∑νp
l= j+1 pl yil for i = 1, . . . , νd and

j = 1, . . . , νp. (12)

Now, consider the problem P of minimizing Z subject to
the set of constraints in (6)–(12). It implies from the objec-
tive, and the set of constraints in (9)–(10) that in an optimal
solution for P

Z = max
i=1,...,νd

{δi − Si − αi , Si + ∑νp
j=1 p j xi j − δi }, (13)

which is exactly the value of the maximal absolute lateness
of any solution that satisfy the properties in Lemmas 4 and
5 if indeed αi receives the largest processing time among all
processing times of the jobs in Ji . To prove that, we note
that Z is a non-increasing function of αi for i = 1, .., n.
Therefore, there exists an optimal solution for problem P,

where αi is the largest value satisfying the set of constraints
in (12). As the right hand side of the set of constraints in (12)
is an increasing function of the yil variables, there exists an
optimal solution in which yi j = 1 if xi j ≥ 1, and yi j = 0 if
xi j = 0.

Assume now that pq is the largest processing time among
all processing times of the jobs assigned to Ji (q ∈
{1, . . . , νp}). It follows that yiq = 1, and that yi j = 0 for
j = q + 1, . . . , νp. Therefore, p j + ∑νp

l= j+1 pl yil > pq
for any j ∈ {1, . . . , q − 1}, pq + ∑νp

l=q+1 pl yil = pq and

p j +∑νp
l= j+1 pl yil = p j > pq for any j ∈ {q +1, . . . , νp}.

Thus, the set of constraints in (12) reduces to αi ≤ pq , and
since the value of Z is a non-increasing function of αi for
i = 1, .., n, there exists an optimal solution for P in which
αi = pq .

The fact that solving P provides an optimal solu-
tion for the 1 |gdd|maxJ j∈J {∣∣L j

∣
∣} problem, and that P

includes O(νdνp) integer variables, implies that we can
use Lenstra’s algorithm (1983) algorithm to solve the
1 |gdd|maxJ j∈J {∣∣L j

∣
∣} problem wrt. the combined parame-

ter (νd , νp), and Theorem 3 follows.

3 Maximal weighted number of JIT Jobs

Gerstl andMosheiov (2020) prove that the following theorem
holds:

Theorem 4 (Gerstl &Mosheiov, 2020) The 1 |gdd| |E | prob-
lem is strongly NP-hard when the number of due-dates is
arbitrary.

Consider next the case where all due-dates are common,
i.e., δ j = δ for j = 1, . . . , n. For this case, it is obvious
that at most a single job can be a JIT job, i.e., that for any
feasible schedule we have that |E | ≤ 1. Now, let J ′ = {J j ∈
J ∣

∣p j ≤ δ } be the subset of jobs which can be scheduled
in a JIT mode. It implies that among all jobs in J ′ it is
optimal to schedule the one ofmaximalweight in a JIT mode.
Therefore, the following corollary holds:
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Corollary 1 The 1 |gdd| �J j∈Ew j problem is solvable in
O(n) time when νd = 1.

In the following three subsections, we complement the
results in Theorem 4 and Corollary 1 by showing that (i) the
1 |gdd| |E |problem isNP -hard evenwhenwehaveonly two
distinct due-dates in the instance; (i i) the 1 |gdd| �J j∈Ew j

problem is solvable in pseudo-polynomial time when the
value of νd is upper bounded by a constant; and (i i i) the
1 |gdd| |E | problem is FPT wrt. (νd , νp). We leave the ques-
tion of whether the 1 |gdd| �J j∈Ew j is FPT wrt. (νd , νp)
open.

3.1 NP-hardness for the two distinct due-dates
case

In this subsection, we show that the 1 |gdd| |E | is NP-hard
even when νd = 2. The reduction is done from the ordinary
NP-hard Partition problem, which is defined below.

Definition 2 Partition: Given a set of t positive integers
A = {a1, a2, . . . , at } with �t

j=1a j = 2B and 0 < a j < B .
Can A be partitioned into two subsets A1 and A2 such that
�a j∈Ai a j = B for i = 1, 2?

Theorem 5 The 1 |gdd| |E | problem is NP-hard even when
there are only twodistinct due-dates (i.e., evenwhen νd = 2).

Proof The proof is based on a reduction from the NP-hard
Partition problem. Given an instance for the Partition
problem, we construct the following instance to our schedul-
ing problem with a set J = {J1, . . . , Jn} of n = t jobs. The
processing times are

p j = a j (14)

for j = 1, . . . , t . The due-dates are

δ j =
{

B for j = 1, . . . , t − 1
2B for j = t

. (15)

In the decision version of the problem, we ask whether there
is a feasible schedule with |E | = 2. Note that there are
only two distinct due-dates in the constructed instance of
the 1 |gdd| |E | problem. Therefore, |E | ≤ 2 in any feasible
schedule.

Consider a solution that provides a YES answer for the
Partition problem, we construct the following solution S
to our 1 |gdd| |E | problem. We set Ji = {J j

∣
∣a j ∈ Ai } for

i = 1, 2.Then,we schedule all jobs inJ1 before any job inJ2

with nomachine idle times. The processing orderwithin each
Ji (i = 1, 2) is arbitrary. As �J j∈Ji p j = �J j∈Ai a j = B,
the completion time of the last job in J1 is exactly at time B.

Moreover, the fact that |J1| < n, implies that the last job to

be scheduled in J1 is assigned with a due-date of B (see eq.
(15)). Therefore, the last scheduled job in J1 is completed
in a JIT mode. Moreover, as we schedule all jobs with no
idle times, the last job to be scheduled in J2 is completed
at time 2B, which is also the due-date of the last scheduled
job (see eq. (15)). Accordingly, in S we have that |E | = 2,
and therefore S provides a YES answer for the constructed
instance of our 1 |gdd| |E | problem.

Consider next a solution S that provides a YES answer
for the constructed instance of our 1 |gdd| |E | problem. It
implies that the last scheduled job is completed exactly at
time 2B. Thus, in S, there are nomachine idle times. The fact
that |E | = 2 in S implies that there is job which completes
exactly at time B in schedule S. Let J1 be the set of jobs
that are completed no later than time B in S, and let J2 be
the set of all other jobs. As there are no machine idle time in
S, we have that �J j∈Ji p j = B for i = 1, 2. Therefore, by
setting Ai = {a j

∣
∣J j ∈ Ji } for i = 1, 2, we have a solution

that provides a YES answer for the Partition problem. ��

3.2 A pseudo-polynomial time algorithm for a
constant number of different due-dates

Let L be the set of all l = (l1, l2, . . . , lr ) vectors satisfying
that (i) li ∈ {1, . . . , n}; and (i i) δli−1 < δli for i = 1, . . . , r
with l0 = 0 bydefinition (note that r ≤ νd ). There areO(nνd )

such vectors, each includes a subset of positions in the job
sequence having different due-dates. It implies that any fea-
sible E set includes jobs that are scheduled in the positions
of some l ∈ L. Therefore, we solve the 1 |gdd| �J j∈Ew j

problem, by partitioning it into a set of O(nk) (where k is
the number of due-dates) subproblems each corresponding
to a different (l1, l2, . . . , lr ) ∈ L. Let P(l) be the subprob-
lemcorresponding to vector l. Our 1 |gdd| �J j∈Ew j problem
reduces to finding the vector l ∈ Lwith the best feasible solu-
tion (if such a solution exists) satisfying that the set of JIT
jobs are scheduled in positions l1, l2, . . . , lr .

Given a subproblem P(l), corresponding to vector (l1, l2,
. . . , lr ) ∈ L, we let ni = li −li−1 for i = 1, . . . , r+1,where
lr+1 = n by definition. Let S be a feasible solution for the
corresponding subproblem with Ai being the set of ni jobs
scheduled in positions {li−1+1, . . . , li } for i = 1, . . . , r+1.
Note that all jobs in each Ai (i = 1, ..., r ) share the same
due-date of δli . Accordingly, only a single job in each Ai

(i = 1, ..., r ) can be completed at the common due-date, δli .
It follows that �J j∈Ai p j ≤ δli − δli−1 for i = 1, . . . , r , as
otherwise we cannot complete the last job in Ai at time δli ,
given that the last job inAi−1 is completed at time δli−1. The
following lemma obviously holds:

Lemma 7 Given a feasible solution S for problem P(l) with
ni jobs in each set Ai and with �J j∈Ai p j ≤ δli − δli−1 for
i = 1, . . . , r , it is optimal to schedule all jobs in Ai during
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time interval (δli − �J j∈Ai p j , δli ] with the last job, which is
the only one inAi being scheduled in a JIT mode, is the one
of maximal weight among all jobs in Ai .

We solve each subproblem P(l) by using a dynamic pro-
gramming procedure, which starts by re-indexing the jobs in
a non-increasing order ofweight, such thatw1 ≥ w2 ≥ · · · ≥
wn . Now, let Fj (x1, . . . , xr+1, q1, . . . , qr+1) be themaximal
gain that can be obtained out of all feasible partial schedule
on job set J j = {J1, . . . , J j } with qi jobs the assigned to
set Ai and xi = �J j∈Ai p j for i = 1, . . . , r + 1. It follows
from the feasibility of the partial schedule that the following
conditions holds:

Condition 1 xi ≤ δli − δli−1 for i = 1, . . . , r , as otherwise
we cannot complete the last job in Ai at time δli , given that
the last job in Ai−1 is completed at time δli−1.

Condition 2 xr+1 = �
j
l=1 pl − �r

i=1xi , and qr+1 = j −
�r
i=1qi as any job has to be assigned to one of the Ai sets

(i = 1, . . . , r + 1).

Condition 3 For any j = 1, . . . , n and i = 1, . . . , r + 1,
qi ≤ ni and qi + (n − j) ≥ ni ; as otherwise we cannot
construct a complete solution with ni jobs in Ai for i =
1, . . . , r .

Based on Lemma 7 and the fact that the jobs are re-
indexed such that w1 ≥ w2 · · · ≥ wn , we can compute

Fj (x1, . . . , xr+1, q1, . . . , qr+1) for j = 1, . . . , n and for any
set of xi and qi values satisfying the conditions in (1)–( 3)
by using the following recursion:

Fj (x1, . . . , xr+1, q1, . . . , qr+1)

= max
i=1,...,r+1

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fj−1(x1, . . . , xi − p j ,

. . . , xr+1, q1, . . . , qi if i < r + 1

−1, . . . , qr+1) + w j and qi = 1

Fj−1(x1, . . . , xi − p j ,

. . . , xr+1, q1, . . . ,

qi − 1, . . . , qr+1) otherwise

(16)

with the initial condition that

F0(x1, . . . , xr+1, q1, . . . , qr+1)

=
{

0 if xi = qi = 0 for i = 1, . . . , r + 1
−∞ otherwise

(17)

At the end of the computing process, the optimal solution for
P(l) is given by

F∗(l) = max{Fn(x1, . . . , xr+1, n1, . . . , nr+1)

| xi ≤ δli − δli−1 for i = 1, . . . , r and

�r+1
i=1 xi = �n

l=1 pl}. (18)

To conclude, we can use the following algorithm to solve our
1 |gdd| �J j∈Ew j problem:

Algorithm 2 An optimization algorithm for solving the 1 |gdd| �J j∈Ew j problem.
Initialization Set F∗ = 0.
Step 1 Determine L which is the set of all l = (l1, l2, ..., lr ) vectors satisfying that (i) li ∈ {1, ..., n}; and (i i) δli−1 < δli for
i = 1, ..., r with l0 = 0 by definition.
Step 2

For any l ∈ L do:
Calculate ni = li − li−1 for i = 1, ..., r + 1, with l0 = 0 and lr+1 = n.
For j = 1 up to j = n do

For any set of non-negative integers (x1, ..., xr , q1, ..., qr ) satisfying xi ≤ δli − δli−1, that

j ≥ �r
i=1qi , that �

j
l=1 pl ≥ �r

i=1xi , and that qi ≤ ni and qi + (n − j + 1) ≥ ni for i = 1, ..., r do:

Compute xr+1 = �
j
l=1 pl − �r

i=1xi , and qr+1 = j − �r
i=1qi .

Compute Fj (x1, ..., xr+1, q1, ..., qr+1) by (16), with the initial condition in (17).
End For

End For
Calculate F∗(l) by (18).
If F∗(l) > F∗, then update F∗ = F∗(l).

Step 3 Determine the optimal assignment of jobs to sets Ai for i = 1, ..., r + 1 by tracking the decisions that lead to the
optimal solution value, F∗.
Output The optimal solution value is F∗. For i = 1, .., r schedule the jobs in eachAi during time interval (δli −�J j∈Ai p j , δli ]
where the last schedule job in each interval (δli −�J j∈Ai p j , δli ] is the job of maximal weight (smallest index) among all jobs
in Ai . Schedule the jobs in Ar+1 during time interval (δlr , δlr + �J j∈Ai p j ].
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Theorem 6 Algorithm2 solves the1 |gdd|�J j∈Ew j problem

in O(νdn2νd+1�
νd
i=1δli ).

Proof The fact that Algorithm 2 provides the optimal solu-
tion follows from the discussion in this section. Step 1
requires O(nνd ) time as the number of possible l vectors. In
Step 2, for any l ∈ L, we compute Fj (x1, . . . , xr+1, q1, . . . ,
qr+1) by (16). The fact that r = O(νd), that δli − δli−1 =
O(δli ) and that qi ≤ ni = O(n), implies that we compute
O(nνd�

νd
i=1δli ) different values of Fj (x1, . . . , xr+1, q1, . . . ,

qr+1) at any stage j ∈ {1, . . . , n}, and O(nνd+1�
νd
i=1δli )

values of Fj (x1, x2, . . . , xr+1, q1, q2, . . . , qr+1) in total. As
the computation of each Fj (x1, . . . , xr+1, q1, . . . , qr+1) by
(16) requires O(νd) time, the time required in Step 2 to com-
pute all Fj (x1, . . . , xr+1, q1, . . . , qr+1) values for a given
l ∈ L is O(νdnνd+1�

νd
i=1δli ). As calculating F∗(l) by (18)

can be done in O(nνd�
νd
i=1δli ) time, applying Step 2 for a

given l vector requires O(νdnνd+1�
νd
i=1δli ) time. The fact

that we repeat Step 2, for any l ∈ L, and that |L| = O(nνd ),
implies that Step 2 requires O(νdn2νd+1�

νd
i=1δli ) time. This

time complexity reduces to O(nνd+1�
νd
i=1δli )when the value

of νd is upper bounded by a constant. The theorem now fol-
lows from the fact that tracking the decisions that lead to the
optimal solution value in Step 3 require only linear time. ��

3.3 An FPT algorithm for the 1
∣
∣gdd

∣
∣ |E| problem

wrt. the combined parameter (�d, �p)

In this section, we prove that the following result holds:

Theorem 7 The 1 |gdd| |E | problem is FPT wrt. the com-
bined parameter (νd , νp).

The proof of Theorem 7 is based on breaking down the
1 |gdd| |E | problem into a set of O(2νd ) subproblems and
providing a MILP formulation with O(νdνp) integer vari-
ables for each of the subproblems. Then the fact that Theorem
7 holds follows directly from the result by Lenstra (1983) that
shows that the problem of solving an MILP is FPT wrt. the
number of integer variables.

For ease of presentation, we represent the vector of n
due-dates in a modified manner by two vectors of size νd :
(δ1, δ2, .., δνd ) and (m1,m2, ..,mνd ). The first includes the νd
distinct due-dates in the instance. In the second,mi represents
the number of positions in the sequence having a due-date
not greater than δi . We order the due-dates in the first vector
according to the EDD rule, such that δ1 < δ2 < · · · < δνd .
By definition, we also have that m1 < m2 < · · · < mνd

with mνd = n. We also represent the vector of n process-
ing times in a modified manner by two vectors of size νp:
(p1, p2, .., pνp ) and (n1, n2, .., nνp ), where the first includes
the νp distinct processing times in the instance, and ni
is the number of jobs having processing time of pi for
i = 1, . . . , νp.

Given a feasible schedule, we say that due-date δi is active
if there exists a job completed exactly at time δi . Now, let�be
a set that includes all subsets of set (δ1, δ2, .., δνd ). Note that
|�| = O(2νd ).Wepartition our 1 |gdd| |E | problem into a set
of O(2νd ) subproblems, each corresponding to a specific set
of distinct due-dates δ ∈ �. In each such subproblem,we aim
to find if there exists a feasible solution with all due-dates in
δ being active. Let P(δ) be the subproblem that corresponds
to vector δ. Our 1 |gdd| |E | problem reduces to finding the
set δ ∈ � of maximal cardinality for which there is a feasible
solution for P(δ).

Given δ ∈ �, we next show that each P(δ) problem can be
represented as anMILPwith only O(νdνp) integer variables.
Let δ = (δ[1], δ[2], . . . , δ[k]) (note that k ≤ νd ). We define xi
as a positive integer variable that represents the position in
the sequence of the job completed at δ[i] for i = 1, .., k. As
there are exactlymi positionswith due-date not larger than δi ,
we include the following set of constraints for i = 1, . . . , k:

m[i−1] + 1 ≤ xi ≤ m[i].

We also define yi j as a nonnegative integer variable which
represents the number of jobs having processing time of p j

that are assigned to positions xi−1+1, . . . , xi in the sequence.
Accordingly, for each i = 1, . . . , k we include the constraint
that

νp∑

j=1
yi j = xi − xi−1,

with xi = 0 by definition. To make sure that δ[i] is indeed
an active due-date, we also include the following set of con-
straints for i = 1, . . . , k:

νp∑

j=1
p j yi j ≤ δ[i] − δ[i−1].

Finally, to ensure that we do not assign more than n j jobs
with processing time p j , up to position k, we include the
following set of constraints for j = 1, . . . , νp:

k∑

i=1
yi j ≤ n j .

As k ≤ νd , the above formulation includes O(νd + νdνp) =
O(νdνp) integer variables in each subproblem P(δ).

4 Summary and future research

Many scheduling problems with due-date related objective
function are NP-hard when the number of different due-
dates in the instance, νd , is arbitrary. However, in many real-
life problems the number of due-dates is a bounded parameter
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due to many reasons, such as high shipment costs, and work
agreements. Therefore, there is great interest in studying
the complexity of such NP-hard problems with respect to
the number of due-dates in the instance. We consider two
such single-machine scheduling problems with generalized
due-dates. The first, denoted by 1 |gdd|max{∣∣L j

∣
∣}, focuses

on minimizing the maximal absolute lateness, and the sec-
ond, denoted by 1 |gdd| �J j∈Ew j , consists of maximizing
the weighted number of jobs completed in a JIT mode (i.e.,
exactly at their due-date). Both problems are known to be
strongly NP-hard for arbitrary values of νd . We show that
both problems are solvable in polynomial time when νd = 1.
Moreover, we show that problems 1 |gdd|max{∣∣L j

∣
∣} and

1 |gdd| |E | areNP-hardwhen νd = 2.We compliment these
two results by showing that problems 1 |gdd|max{∣∣L j

∣
∣} and

1 |gdd| �J j∈Ew j are solvable in pseudo-polynomial time
when the value of νd is bounded by a constant.

The fact that problems 1 |gdd|max{∣∣L j
∣
∣} and 1 |gdd| |E |

are NP-hard even if νd = 2 rules out the possibility of
constructing an FPT algorithm for neither problem wrt. νd ,
unless P = NP . We show, however, that both problems
are FPT wrt. the combined parameter (νd , νp) where νp is
the number of different processing times in the instance. We
leave open the question whether the 1 |gdd| �J j∈Ew j prob-
lem is FPT when we combine parameters νd and νp.

In future research, we aim to study the complexity sta-
tus of other NP-hard scheduling problems with due-date
related objective function wrt. to νd , hoping to provide effi-
cient algorithms to solve practical instances with limited νd
values.
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