
Journal of Scheduling (2022) 25:287–299
https://doi.org/10.1007/s10951-022-00737-7

Pseudo-Boolean optimisation for RobinX sports timetabling

Martin Mariusz Lester1

Accepted: 3 May 2022 / Published online: 18 June 2022
© The Author(s) 2022

Abstract
We report on the development of Reprobate, a tool for solving sports timetabling problems in a subset of the RobinX format.
Our tool is based around a monolithic translation of a sports timetabling instance into a pseudo-Boolean (PB) optimisation
problem; this instance can be solved using existing pseudo-Boolean solvers. Once the tool has found a feasible solution, it can
improve it using a second encoding that alters only the home/away pattern of games. We entered our tool into the International
Timetabling Competition 2021. While it was effective on many instances, it struggled to cope with schedules involving large
break constraints. However, among instances for which it could initially find a feasible solution, the combination of use of
a portfolio of solvers, a range of variations on the encoding and the aforementioned local improvement process yielded an
average reduction in solution cost of 23%.

Keywords Pseudo-Boolean constraints · Sports timetabling · International Timetabling Competition · RobinX

1 Introduction

Whereas previous instances of the International Timetabling
Competition (ITC) have been based mainly around educa-
tional timetabling, the ITC 2021 was based around sports
timetabling. The task for the competition was to produce
double round-robin (2RR) tournament timetables for 16, 18
or 20 teams satisfying a mixture of soft and hard constraints.
The goal was to produce a solution satisfying all hard con-
straints while minimising the sum of costs of violated soft
constraints. Constraints were specified in a restricted form of
theRobinX format; see the description ofRobinX (VanBulck
et al. 2020b), the competition problem specification (Van
Bulck et al. 2020a) and the competition report (Van Bulck et
al. 2021) for full details.

We approached the problem using an encoding with
Pseudo-Boolean (PB) constraints, which extend the ubiqui-
tous family of Boolean satisfiability (SAT) constraints. In our
previous experience of generating tournament schedules for
mahjong tournaments (Lester 2021), we found that this was
an effective way of generating a schedule satisfying a vari-
ety of complex and combinatorially hard constraints. The
use of an existing constraint family, with existing solvers,

B Martin Mariusz Lester
m.lester@reading.ac.uk

1 Department of Computer Science, University of Reading,
Reading, UK

removes the need to create a dedicated algorithm for solv-
ing the constraints and allows new constraints to be added
easily. However, some care is still needed, as solvers can be
sensitive to exactly howconstraints are encoded.AsPB is less
well-known than SAT, Sect. 2.1 gives an overview of PB con-
straints. Section 2.2 discusses some relevant previous work
on sports timetabling, including SAT-based approaches.

Our timetabling tool,Reprobate, uses amonolithic encod-
ing of a RobinX instance into a PB instance, specifically
a Weighted Boolean Optimisation (WBO) instance, as
described in Sects. 3.1–3.3. It solves this using a portfolio
of existing PB solvers, namely clasp (Gebser et al. 2012)
and Sat4J (Berre and Parrain 2010), with a range of different
settings. If a feasible solution is found, Reprobate extracts an
initial timetable from this.

While the monolithic encoding finds many feasible solu-
tions, they are far from optimal. To improve upon this, we use
an approach from our previous work (Lester 2021). Repro-
bate improves the initial timetable by generating a second
WBO instance in which the pairings of teams in each time
slot is fixed, but their home/away pattern is not; Sect. 3.4
describes this encoding. Again, it solves this using a PB
solver and extracts an improved timetable from the solution.
At a high level, our approach has some similarities with the
first-schedule-then-break method (Trick 2000).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-022-00737-7&domain=pdf
http://orcid.org/0000-0002-2323-1771

288 Journal of Scheduling (2022) 25:287–299

Our tool is written as a series of Perl scripts that call exist-
ing solvers. We give some details of our choice of solver
portfolio in Sect. 4.

We evaluateReprobate computationally on instances from
the ITC 2021 in Sect. 5, looking particularly at the effect of
using a portfolio and of some variations in the encoding in
Sect. 5.3, and at the local improvement process in Sect. 5.5.
In the context of the ITC 2021, its main weakness was han-
dling large break constraints, which restrict the number of
times teams may play consecutive games at home or consec-
utive games away. This is a known limitation of SAT-based
approaches, for which we have implemented some mitiga-
tions from previous work (Horbach et al. 2012).

Reprobate is the first PB-based tool for solving sports
timetabling problems presented in the RobinX format and,
to the best of our knowledge, the first general-purpose
sports timetabling tool that uses the OPB (Optimising with
Pseudo-Boolean) file format and its associated solvers for
Pseudo-Boolean Satisfaction (PBS), Pseudo-Boolean Opti-
misation (PBO) andWeighted BooleanOptimisation (WBO)
problems. Both the tool (Lester 2021) and our preferred
solver are available online under the open source MIT
License,making it easy for others to use or to develop further.

2 Previous work

2.1 Pseudo-Boolean constraints

The pseudo-Boolean constraint satisfaction problem (PBS)
(Manquinho and Roussel 2006) is a generalisation of the
well-known Boolean constraint satisfaction problem (SAT).
For Boolean variables Xi , a SAT constraint is the logical
OR of literals Xi or ¬Xi . Finding the solution to a set
of SAT constraints is the canonical NP-complete problem.
While there is no known polynomial-time solution method
for SAT, there are practical, highly optimised solvers that can
handle industrially relevant problems with millions of con-
straints. These solvers can sometimes be used as a “black
box” that solves problems with little or no configuration.
However, their performance is often highly dependent on
exactly how a problem is encoded. Most leading SAT solvers
are based around conflict-driven clause learning (CDCL), a
search algorithm that identifies the cause of conflicting con-
straints, backtracks, then continues in a way that avoids the
conflict.

A pseudo-Boolean (PB) constraint over Boolean variables
(interpreted as integers 0 or 1) has the normalised form

∑
i ci ·

Xi ≥ w, with integer coefficients ci and a positive integer
degreew. By interpreting Xi as 1 ·Xi and¬Xi as 1+−1 ·Xi ,
it is easy to translate a SAT constraint into a PB constraint,
rearranging the inequality to a normal form if necessary.

As a formalism for modelling real-world problems and
discrete puzzles, where one often encodes whether an ele-
ment is a member of a set using a Boolean variable, the
advantage of PB constraints (compared with SAT) is that
one can easily express constraints on the size of sets. For
example, it is easy to express that |A| ≤ |B|, that |A| ≥ k
or that |A| = 1. These kinds of constraints are extremely
common when one wishes to express that an object occupies
a particular position, or that all available positions are filled.
In the case of sports timetabling, we may wish to express
that a team must only play one game at a time, or that a team
plays in every time slot.

The pure PBS problem can be extended in two main
ways. Firstly, one can allow nonlinear constraints, such as
X1X2 + X3X4 = 1. Here, X1X2 is true just if both X1 and
X2 are true, and similarly for X3X4. Secondly, one can con-
sider optimisation problems. In the simple Pseudo-Boolean
Optimisation (PBO) case, a problem instance contains an
objective function, such as 5X1 + 2X2, which must be min-
imised. In the more general Weighted Boolean Optimisation
(WBO) case, individual constraints can be assigned a cost,
and the goal is to minimise the sum of costs of all violated
constraints. For example, the hard constraint X1 ≥ 1 can be
turned into a soft constraint with cost 5, which is denoted
�5� X1 ≥ 1.

From 2005 to 2016, the Pseudo-Boolean Competition
(Manquinho and Roussel 2006), a satellite to the high-profile
SAT Competition, evaluated and ranked PB solvers, and
helped to standardise an input format. PB solver technol-
ogy has continued to advance since then, but the MaxSAT
competition (Bacchus et al. 2019) has been more prominent.
MaxSAT adds costs to SAT constraints, in a similar way to
how WBO adds costs to PB. However, it does not allow for
easy expression of cardinality constraints.

In the absence of nonlinear constraints, PB constraints are
an equivalent formalism to 0–1 integer linear programming
(ILP). However, there is a practical distinction between PB
and 0–1 ILP in terms of the techniques used by the solvers
and hence effective encoding techniques. PB is viewed as a
generalisation of SAT and indeed, many PB solvers work by
translating the constraints into SAT (for example by encod-
ing an adder circuit) and using a CDCL SAT solver (Eén and
Sörensson 2006). The library PBLib even provides tools for
translating PBS and PBO problems into SAT and MaxSAT,
respectively (Philipp and Steinke 2015). Conversely, 0–1 ILP
is viewed as a restriction of mixed integer programming
(MIP), and many 0–1 ILP solvers use techniques from linear
programming (LP). Both kinds of solver may employ cutting
planes reasoning.

The strengths and weaknesses of these solving techniques
have been compared on several occasions. Coming from the
MIP world, Berthold et al. (2008) develop the MIP solver
SCIP, incorporating CDCL-style conflict analysis, and eval-

123

Journal of Scheduling (2022) 25:287–299 289

uate it on PB benchmarks. Coming from the SAT world,
Devriendt et al. (2021) compare running ILP solvers on PB
benchmarks and vice versa. They also develop a hybrid solver
based on the PB solver RoundingSat (Elffers and Nordström
2018), but incorporating SCIP’s LP solver, SoPlex. Elffers et
al. (2018) observe that many PB solvers perform poorly on
problems that should be easy using cutting planes reasoning
or linear programming.

2.2 s

There have been many different approaches to generating
sports tournament timetables by computer. Van Bulck et al.
(2020b) note that research publications tend to consistmainly
of case studies focusing on one specific application, which
makes them difficult to compare. Another common kind of
publication focuses on abstract problems that are essentially
mathematical puzzles. Rasmussen and Trick (2008) give an
extensive survey of different problems in round-robin tour-
nament timetabling and approaches to solving them.

We decided to focus on PB constraints because of our pre-
vious experience using them to generate timetables for one
specific application, namely partial round-robin timetables
for mahjong tournaments run in Europe (Lester 2021). We
used the same approach: a monolithic encoding, followed by
the ability to improve the timetable locally after opponent
allocation was fixed. Mahjong is an unusual game from the
perspective of sports timetabling because each game involves
4 competing players, rather than 2, and thus falls outside the
scope of RobinX. In this case, generating a partial round-
robin tournament timetable with no extra constraints is the
(abstract) Social Golfer Problem (SGP) (Harvey 1999). In
fact, the initial formulation of the SGP was in terms of PB
constraints (Walser 1998). There have been several effec-
tive formulations of the SGP in SAT (Gent and Lynce 2005;
Triska and Musliu 2012a; Lardeux and Monfroy 2015), but
the best computational approach uses a heuristic-guided tabu
search (Triska and Musliu 2012b).

We are unaware of any other work on sports timetabling
that directly targets the PB constraint format. On the other
hand, there is plenty of work discussing use of 0–1 integer
linear programming (ILP). For example, Ball and Webster
(1977) discussed formulation of round-robin tournament
timetabling as a 0–1 ILP. However, this is of limited rel-
evance, as 0–1 ILP solvers use different techniques to PB
solvers, and work better with different problem encodings.

Many constraint-based approaches to sports timetabling
decompose the problem into several smaller subproblems.
This is often more tractable than considering all constraints
in the whole problem simultaneously. For example, Trick
(2000) suggests a 2-phase “schedule-then-break” decom-
position: fix opponents in each slot, then decide home/
away patterns. Here, a home/away pattern is a sequence

describing only in which rounds a particular team plays at
home and in which it plays away. A break is when a team
plays two consecutive games at home or two consecutive
games away; the number of breaks a team has depends only
on its home/away pattern. As breaks can influence a team’s
performance, solutions to sports timetabling problems often
seek to minimise the number of breaks. Trick’s approach
has some similarities with our approach of using a mono-
lithic encoding, then locally improving home/away pattern.
However, our approach allows the home/away pattern to be
considered in both phases.

Conversely, Henz uses a 3-phrase decomposition in his
general-purpose sports timetabling tool Friar Tuck (Henz
1999, 2001): generate home/away patterns; generate
home/away pattern sets; and generate a timetable. In an early
application of SAT to sports timetabling, Zhang (2002) uses
the same 3-phrase decomposition.

A disadvantage to the decomposition approach is that fea-
sible solutions may be eliminated in each step, meaning that
the optimal solution to the final subproblem, if one exists,
is no longer necessarily an optimal solution to the original
problem. If the solution found is not satisfactory, the imple-
mentation may have to restart or backtrack. In later work,
Zhang et al. (2004) conclude that, if a timetabling tool is
to be used non-interactively, a monolithic approach may be
preferable. They develop a timetabling tool for a SAT solver
extended to deal with cardinality constraints, which are a
subset of PB constraints. It was available through a Web
interface, which allowed the user to choose between single,
double or partial double round-robin tournament and a com-
bination of 9 different constraints on home/away patterns.
Unfortunately, the Web page is no longer available.

One of the harder constraints in round-robin timetable
generation, as discussed extensively byRasmussen and Trick
(2008), is break minimisation. For common tournament
formats, there are well-known combinatorial designs that
minimise breaks, but these often cannot be used in the
presence of the complex combination of constraints that
occurs in real-world timetabling problems. Indeed, the addi-
tion of these constraints often makes timetabling problems
NP-complete. Many NP-complete problems are solvable in
practice using SAT solvers, so this is a reasonable approach
to try. Horbach et al. (2012) create a timetabling tool that
accommodates a range of user-specified hard and soft con-
straints and solves them using a SAT solver. They handle soft
constraints by adding them incrementally as necessary when
a solution does not meet the required bound. They do not
explain why they did not use an optimising MaxSAT or PB
solver.

Horbach et al. (2012) observe that SAT solvers often
perform badly at pigeonhole-type problems, of which con-
strained round-robin timetable generation is an example.
This weakness can often be ameliorated through symmetry

123

290 Journal of Scheduling (2022) 25:287–299

breaking. The tool BreakID (Devriendt et al. 2016) supports
symmetry breaking for SAT and PBS instances (although not
PBO/WBO), but is unlikely to be helpful in practice, as the
extra constraints in timetabling problems usually remove the
symmetry that it would break.

3 Methods

3.1 Monolithic encoding

The ITC 2021 considered only time-constrained double
round-robin tournaments (2RR) for an even number of teams.
Each problem instance required creation of a timetable for
n teams over 2(n − 1) = 2n − 2 time slots, with each team
playing each opponent exactly twice: once at home and once
away. Some problems required a phased schedule, meaning
that, for each pair of teams, the two games between them
must be in different halves of the schedule. Additionally,
each problem instance specified a range of other constraints.
In the first instance, our tool solves the problems using a
monolithic encoding with PB constraints. We now describe
this encoding.

We number the teams 0 to n − 1 and the slots 0 to 2n − 3.
We use the indices t , t1 and t2 to range over team numbers,
s to range over slot numbers and h to range over {0, 1, 2}.
Where not otherwise specified, quantification of these indices
is implicitly over these ranges, with t1 �= t2. Our encoding
uses the following sets of Boolean variables:

1. Mt1,t2,s—true just if team t1 plays home against team t2
in slot s;

2. Ht,s—true just if team t plays home in slot s;
3. Bt,s,h—true if team t has a home break (h = 1)/an away

break (h = 0) in slot s, with s > 0.

The timetable is determined entirely by the M variables.
The remaining variables are auxiliary variables used to make
expressing the constraints easier.

We generate some feasibility clause sets for all instances.
Each team plays exactly once in each slot:

∀s, t1.
∑

t2

(Mt1,t2,s + Mt2,t1,s) = 1

Each home/awaymatchup between two teams occurs exactly
once:

∀t1, t2.
∑

s

Mt1,t2,s = 1

(For phased schedules only:) Each pair of teams plays exactly
once in each half:

∀t1, t2.
∑

s∈[0,n−2]
Mt1,t2,s + Mt2,t1,s = 1

∀t1, t2.
∑

s∈[n−1,2n−3]
Mt1,t2,s + Mt2,t1,s = 1

Only one of these sets of constraints is necessary, as the other
is then implied by the requirement that each matchup occurs
exactly once. However, it is beneficial to include both sets,
as this enables solvers to spot conflicts more quickly.

The home/away variables must reflect the choice of
matches. If a team plays a specific home match in a slot,
then it plays at home in that slot; if a team plays a specific
away match in a slot, then it plays away in that slot:

∀s, t1, t2. − Mt1,t2,s + Ht1,s ≥ 0

∀s, t1, t2. − Mt1,t2,s + −Ht2,s ≥ −1

The break variables must be true when a team has a
home/away break in a slot. They need not be false when
a team has no break, as none of the constraints we consider
places a lower bound on the number of breaks permitted,
although we may wish to add these constraints too, as we
discuss later.

∀s > 0, t .Bt,s,1 + −Ht,s−1 + −Ht,s ≥ −1

∀s > 0, t .Bt,s,0 + Ht,s−1 + Ht,s ≥ 1

Next, we generate sets of constraints for each constraint
in the problem instance as shown in Fig. 1.

3.2 Soft constraints

In many problem instances, some of the constraints are soft,
meaning that they can be violated, but there is a penalty or
cost for doing so. Furthermore, the cost varies according to
how badly the constraint is violated. While the WBO format
we used to encode each problem supports soft constraints
with different weights, it does not directly support weights
that vary according to the degree of violation. But in most
cases, the variableweight could be encoded relatively simply.

Consider, for example, a CA1 home constraint encoded
as:

∑

s∈S
−Ht,s ≥ −max

If the constraint is violated, the deviation d is:

(
∑

s∈S
Ht,s

)

− max

123

Journal of Scheduling (2022) 25:287–299 291

Fig. 1 Encodings of instance-specific constraints

123

292 Journal of Scheduling (2022) 25:287–299

and the cost is d · w, where the constraint specifies w. The
maximum deviation, which we call dmax , is |S| − max. We
can express this as a soft constraint by changing the original
encoding (which remains a hard constraint) to:

∑

i∈[1,dmax]
Di +

∑

s∈S
−Ht,s ≥ −max

where D1, . . . , Dmax are fresh variables, and adding a sep-
arate soft constraint �w�−Di ≥ 0 for each i ∈ [1, dmax].
Then, we can always satisfy the hard constraint by setting
the Di variables to be true, but we pay a cost unit each time
we do so. In order to break symmetry in setting these devia-
tion variables, we can add the following clauses, which force
them to be set monotonically:

∀i ∈ [2, dmax]. − Di + Di−1 ≥ 0

If the size of deviations were large, it might be more effec-
tive to use a binary encoding of deviation, where �log2 dmax�
variables are introduced with cost 2iw. However, for the ITC
instances, the unary encoding we used seemed to work ade-
quately.

To get the encoding of deviation correct, one must cal-
culate the maximum possible deviation and generate the
corresponding number of fresh deviation variables. Once this
is done, thismethod is suitable for soft constraints of all types
except FA2 and SE1.

For FA2, the deviation is calculated for each pair of teams,
but we have separate clauses for t1 playingmore home games
and for t2 playing more home games. Therefore, in each pair
of clauses, we must use the same deviation variables. For
SE1, we have a separate clause for each violating inadequate
separation, so we set the cost of deviation directly on each
clause instead of introducing extra variables.

3.3 Variations in encoding

The ability of a SAT or PB solver to solve a problem can
be sensitive to exactly how it is encoded. We now consider
some variations on our encoding, which are implemented as
options inReprobate. For each option,we give the command-
line switch that forces its use. As we will show in Sect. 5.3,
each variation improves Reprobate’s performance on some
instances, but makes it worse on others.

We have already mentioned the possibility of adding extra
clauses to force break variables B to be false when a team
does not have a break (−−break−−sym); this made little
difference tomost ITC instances.We also described breaking
symmetry in the deviation variables by enforcingmonotonic-
ity (−−monotone); this can make a big difference in either
direction.

The SE1 constraints could potentially be large if the
required separation min were large. To counteract this, we
can introduce variables St1,t2,s , initially false, which flip to
true for the slot where t1 and t2 first play, then flip back to
false in the slot where they play a second time. This makes
the SE1 constraint a simple cardinality constraint on the
number of true S variables, as well as making the devia-
tion expressible using the same scheme as for most other
constraints (−−sep−−count). However, we did not find
that it led to any significant improvements, perhaps because
min is bounded by the number of rounds and hence is small
in all ITC instances.

Our monolithic encoding was relatively weak at deal-
ing with constraints on breaks. One variation that made
some improvement here was introducing separate variables
Bt,s,2 to indicate team t had a break of either kind in slot s
(−−ha−−break):

∀s > 0, t .Bt,s,2 + −Ht,s−1 + −Ht,s ≥ −1

∀s > 0, t .Bt,s,2 + Ht,s−1 + Ht,s ≥ 1

Then, in the encoding of BR1 and BR2 constraints, the term
−Bt,s,0 + −Bt,s,1 could be replaced with −Bt,s,2.

The use of −−ha−−break had the greatest impact
when combined with an idea taken from Horbach et al.
(2012).We can introduce variables Ps to track break periods.
Ps is true just if at least one team has a break in slot s:

∀s > 0, t . − Bt,s,2 + Ps ≥ 0

∀s > 0,−Ps +
∑

t

Bt,s,2 ≥ 0

Furthermore, there may never be 3 consecutive break periods
(−−triple):

∀s ∈ [1, 2n − 5]. − Ps + −Ps+1 + −Ps+2 ≥ −2

This constraint is not sound in general; it may conflict with
some constraints specified in a problem instance. However,
it is true for otherwise unconstrained round-robin timeta-
bles with the minimal number of breaks and for many other
timetables with a small number of breaks. Thus it is useful
for instances with a large BR2 constraint that restricts the
total number of breaks in a timetable, as it gives the solver
some local information about where breaks should occur.

Finally, it is possible to omit all soft constraints entirely
and encode only the hard constraints (−−hard). This may
help some solvers that fail to find a feasible solution because
they are distracted by attempting to satisfy a large number of
soft constraints.

123

Journal of Scheduling (2022) 25:287–299 293

3.4 Local improvement

WhenReprobate finds a solution using themonolithic encod-
ing, it will not necessarily be optimal. To improve upon this,
it can attempt to improve the timetable using a second encod-
ing, in which the opponent of each team in each slot is fixed
according to the initial timetable, but the home/away pattern
may change.

Now the H variables become the decision variables. Our
goal is to remove theM variables from the problemencoding.
We add extra clauses to express that, for any pair of teams,
their home/away status must swap between their games, and
when one team is at home, the other must be away. For any
teams t1 and t2, let S1(t1, t2) be the slot containing the first
game between t1 and t2 in the initial timetable; correspond-
ingly, let S2(t1, t2) be the second. Then:

∀t1, t2.Ht1,S1(t1,t2) + Ht1,S2(t1,t2) = 1

∀t1, t2 > t1.Ht1,S1(t1,t2) + Ht2,S1(t1,t2) = 1

∀t1, t2 > t1.Ht1,S2(t1,t2) + Ht2,S2(t1,t2) = 1

Note that fixing the home/away status of a team in a time
slot also determines the home/away status of the opposing
team and the home/away status of the return game, so only
1/4 of the H variables serve as decision variables; the rest
are auxiliary.

We can substitute 0 or Ht1,s for eachMt1,t2,s in the original
encoding, depending on the initial timetable. Of the feasibil-
ity clauses used for all instances, those that referred to M
variables become redundant and can be discarded; only the
clauses linking B and H variables remain.

Constraints of type CA1, BR1, BR2 and FA2 only refer to
home/awaypattern, so are unchanged.As the slots containing
matches between teams are fixed, constraints of type SE1
cannot be affected by altering home/away pattern and so can
be removed. This is also true for constraints of type CA2,
CA3 or CA4 that refer to games of any type, rather than
specifically home or away games. Constraints of type GA1
need to be modified, as do constraints of type CA2, CA3 or
CA4, if they refer specifically to home or away games.

The modified constraints are as in Fig. 2. We define
O(t1, s) to be the opponent of team t1 in slot s; that is,
O(t1, s) = t2 if, in the solution to the monolithic encod-
ing, either Mt1,t2,s or Mt2,t1,s . We write O(t1, S) to mean the
image {t2 | ∃s ∈ S.O(t1, s) = t2}. This is used in constraints
on the number of away games to express the number of rel-
evant games that might be at home; subtracting the number
of home games from this gives the number of away games.

Fixing the allocation of opponents significantly simplifies
many of the constraints, so it is reasonable to suppose that
a better solution might be found this way, even though it
would have been a valid solution to the initial encoding. The

optimal solution to the instance may not be possible within
the second encoding, but the first solution always remains
possible.

3.5 Beyond ITC 2021

At present, Reprobate only handles the subset of the RobinX
timetabling format (VanBulck et al. 2020b) considered in the
ITC 2021. That is, it only considers 2RR tournaments where
the objective is minimisation of sum of violated soft con-
straints and only a subset of constraint types are supported.
However, the tool could be extended to support all constraint
types, with varying levels of ease and performance.

Of the unimplemented constraint types, GA2, SE2 and
FA3 are straightforward SAT-style constraints that are easily
expressed in a PB encoding.

Some constraint types, like CA5, FA1, BR3 and BR4,
involve some kind of counting of slots or comparison of
numbers of breaks. These are slightly harder to encode, but
are essentially cardinality constraints, which are also easy to
express in a PB encoding. As with the already implemented
constraints FA2 and SE1, if the sizes of sets of teams or slots
involved in these constraints are large, the encoding will also
be large, and performance may suffer.

The RobinX constraint types most different from those in
the ITC 2021 are FA4, FA5 and FA6, all of which involve
addition of costs that, unlike a team’s number of games
played, need not be small integers. For example, FA5 con-
cerns the sumof distances travelled by teams, and can be used
to express instances of the travelling tournament problem
(TTP). Expressing the similar travelling salesman problem
(TSP) in SAT usually involves encoding binary adder cir-
cuits to sum the costs travelled (Zhou et al. 2015). However,
there is a more direct encoding of TSP/TTP into PB con-
straints, where the travel costs map directly onto coefficients
of variables (Manquinho and Roussel 2006). This approach
could be adapted to these constraint types, although neither
SAT nor PB encodings of TSP/TTP are very competitive in
practice.

4 Implementation details

Our tool, Reprobate, is implemented as a collection of Perl
scripts, which call existing PB solvers such as clasp. The
leading single-algorithm SAT and PB solvers have differ-
ent strengths and weaknesses, with regard to the problems
they can solve. The best practical SAT solvers are portfo-
lio solvers. They run a number of single-algorithm solvers
sequentially or in parallel, perhaps with different timeouts.
Reprobate uses a naive portfolio on the default problem
encoding: it runs two solvers (clasp and Sat4J) with a small
range of common settings and the same timeout and returns

123

294 Journal of Scheduling (2022) 25:287–299

Fig. 2 Encodings of instance-specific constraints for local improvement

the best solution found by any of them. In a similar vein, as
Reprobate supports some variations in the encoding, it tries
several combinations and returns the best solution foundwith
any of them. In order to keep running time reasonable, by
default Reprobate only uses a single solver for the improve-
ment process and for variations on the default encoding.

Our choice of solvers was somewhat limited, as there
are few solvers under active development that support the
WBO format. For clasp, we used the default and crafty
(combinatorially hard) presets. For Sat4J, we used the recent
2.3.6 release with the default algorithm as well as the new
CuttingPlanes and RoundingSat algorithms and hybrid Par-
tial algorithm. The only other current WBO solver we are
aware of, ToySolver, performed poorly, so we did not use
it. Other current OPB format solvers, such as OpenWBO,
RoundingSat, Exact and UWrMaxSat, do not support WBO
problems, although they can be used with Reprobate in com-
bination with the −−hard flag, which generates a PBS
problem with no soft constraints and in OPB format.

As mentioned in Sect. 2.1, a linear PB instance can also
be expressed as 0–1 integer linear programming instance, a
special case of mixed integer programming (MIP). To inves-
tigate performance of MIP solvers, we modified Reprobate

to output problem encodings in the widely supported MPS
format for MIP. This required several adaptations. We began
by converting soft clauses into an objective function. This
involved two steps: firstly, we changed the encoding of non-
unitary soft clauses from the SE2 constraints to use deviation
variables instead; secondly, we set the objective function to
be the sum of all deviation variables, appropriately weighted,
and removed the corresponding unitary soft clauses. Thenwe
output the clauses in CPLEX LP format, which is syntacti-
cally similar toOPB, before using the open sourceMIP solver
GLPK to convert this into MPS format.

5 Results

5.1 Baselinemonolithic encoding performance

In the ITC 2021, there were 45 problem instances. We ran
Reprobate on these during the competition. While it did not
place among the top half of the competition, it did manage to
generate feasible solutions for 29 out of 45 instances (64%).
Of these, 27 were generated with just 600 s of CPU time;
many entrants to the competition used much more. With the

123

Journal of Scheduling (2022) 25:287–299 295

addition after the competition of the “no triple break period”
constraint, we were able to solve 4 more, increasing that to
73%. According to the competition report (Van Bulck et al.
2021), “formost problem instances, a straightforward integer
programming formulation could not even generate a feasible
solution”, so Reprobate is superior to that.

Beforewe can consider the impact of variations in our con-
straint encoding and solving process, we need to establish a
baseline for comparison. Initial experiments suggested using
just clasp as the solver with the crafty preset (for combina-
torially hard problems) and a timeout of 600 s was adequate
for Reprobate to generate feasible solutions for most prob-
lems, so we adopt that as our baseline. Table 1 shows the ITC
2021 instances solved and their objective scores. All results
were generated on a machine running Debian Linux 10 with
a 3.4 GHz Intel Core i5-7500 CPU and 64 GB of RAM. Each
solver was run on a single core.

5.2 Improving feasibility

Let us firstly consider adjustments that improved feasibility.
The ITC did not specify any limits on computation time, and
many entrants used much more than us. Adopting a portfo-
lio of solvers allowed Reprobate to solve one more instance
using Sat4J-partial: Early 06. Increasing the timeout for all
solvers from 600 to 5000s (as used in the SAT Competi-
tion 2020) enabled Sat4J-rounding to find 2 more solutions:
Middle 14 and Late 12. Reverting to a timeout of 600s and
considering only hard constraints allowedReprobate to solve
another instance: Early 02. Finally, adopting the “no triple
consecutive break period” constraint after the competition
and using the cutting-edge PB solver Exact with hard con-
straints only enabled solution of 4 more instances: Early 01,
Early 11, Early 13 and Late 7. All these instances are marked
with an asterisk in Table 1. We also tried increasing the time
for our default encoding and solver to 36,000s, but this did
not yield any new solutions.

Out of the instances that Reprobate could not solve during
the competition, all except Middle 3 featured a large, hard
BR2 constraint that put a bound on the number of permissible
breaks over the whole timetable. We confirmed that this was
the source of the problem by removing constraints from the
instances, observing that an instance containing just the BR2

constraint was not solvable. This led us to implement the “no
triple consecutive break period” constraint, which we evalu-
ated using a sequence of artificially constructed instances for
phased tournaments with 2–20 teams. Each instance had a
BR2 constraint, restricting the number of breaks to 3(n−2).
This is relatively tight, as it is the minimum in a mirrored
tournament, with theminimum in a phased tournament being
2(n−2). With the above modification, Exact could solve the
cases for 12 and 14 teams in 7 and 65min, respectively, which
was an improvement, but still a long way off being able to
solve for 20 teams.

5.3 Improving objective

Now we consider how various factors affected the objective
in the monolithic encoding. We focus our attention on the
25 instances solvable in the baseline case. Firstly, we look at
howusing a portfolio of solvers affects the objective. Figure 3
shows the relative increase or decrease in objective value
attained, for each solver in our portfolio, compared with the
baseline. (Each solver finds its own solution independently;
it does not use the solution found by the baseline as a starting
point.) The bottom point for each column is thus the value
attained by using a portfolio of all solvers. Each solver per-
formed best on at least one instance, but clasp (crafty) had
thehighest number of best solutions.Sat4J-partial andSat4J-
rounding were similar in terms of feasible solutions, with 25
and 24 instances solved, respectively, but with a lower num-
ber of best solutions among the portfolio. Sat4J-default was
clearly the weakest, with only 6 feasible solutions, of which
1 was a best solution.

Next we consider the effect of variations in the encoding,
while keeping the solver as clasp (crafty). Figure 4 shows
how adopting each variation in isolation affects the objective.
Each variation improves the objective for some instances and
makes itworse for others.Aswith our choice of PB solver,we
can adopt a portfolio approach to choice of variations. How-
ever, we have not benchmarked combinations of variations,
which may well perform better than individual variations for
some instances. Themost dramatic improvements came from
enforcing monotonicity of deviation variables and from for-
bidding triple consecutive break periods. This is perhaps to be
expected, as the former breaks many symmetries, while the

Table 1 Baseline performance of Reprobate on ITC 2021 instances

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Early * * 4884 * 5584 4858 * 2070 * 3489 7443

Middle 99 2901 3235 8563 1189 3530 4263 4950 6199 * 7590

Late 3683 7784 0 3678 * 4583 2940 * 8564 3712 5910

Figures show objective score with default encoding, clasp (crafty) PB solver, a timeout of 600 s and no local improvement phase. Lower is better.
Instances marked with * can be solved using other settings

123

296 Journal of Scheduling (2022) 25:287–299

Fig. 3 Relative performance of
PB solvers in Reprobate’s
portfolio on ITC 2021 instances,
compared with baseline clasp
(crafty). Relative scores are
capped at 140%

Fig. 4 Effect of different
switches (turning on variations
on encoding) on objective,
relative to the baseline. Relative
scores are capped at 140%

latter directly addresses the biggest weakness of the mono-
lithic encoding. However, these also produced some of the
biggest regressions in performance, including instances that
ceased to be feasible. This is less surprising for the restriction
on break periods, as it is unsound. Also of note is that gener-
ating hard constraints only led to a better objective in some
cases, suggesting that the PB solvers often struggle to make
any improvement once they have found a feasible solution.

5.4 Comparison of PB andMIP solvers

Reprobate targets the WBO format, which allows us to use
specialised PB solvers, but this raises the question of how
well a MIP solver would perform on the equivalent formula-
tion. Berthold et al. (2008) argue that “feasibility problems
with many constraints that have 0/1 coefficients only” will
most likely work best with PB solvers, while “instances with
many inequalities with arbitrary coefficients” will work best

withMIP solvers.Our encodinguses only+/−1 coefficients,
so all constraints are either pure SAT constraints (as with the
constraints linking the M , H and B variables) or cardinality
constraints (which have efficient SAT encodings). Therefore,
we would expect the PB solvers to perform better.

We ran a range of popular MIP solvers on theMPS encod-
ings for the ITC instances. We tried: the open source solvers
lp_solve, glpsol from GLPK, and CBC from COIN-OR;
SCIP (source available, but free for academic use only); and
the commercial solvers Gurobi and CPLEX. We used the
same benchmark settings as our baseline: 600s of CPU time
on a single core. The non-commercial solvers failed to find
feasible solutions for any instances in this time.Gurobi found
1 feasible solution (Late 15), while CPLEX found 6 (Early
3, 14; Late 3, 4, 8, 15). So with our baseline time limit, the
best MIP solver was comparable to the worst PB solver in
our portfolio.

123

Journal of Scheduling (2022) 25:287–299 297

Fig. 5 Effect of local
improvement on objective, for
the baseline, the portfolio and
different switches. ITC best
solutions included for
comparison

Table 2 Effect of local improvement on objective, for the baseline, the portfolio and different switches

Instance Baseline Baseline-improve Portfolio Portfolio-improve Switches Switches-improve ITC-best

E03 4884 2757 3618 2321 2686 2689 1012

E08 5584 3603 4604 3212 4060 3380 1064

E09 4858 2988 1828 2118 2337 2933 108

E12 2070 2050 1895 1870 1555 1535 380

E14 3489 3395 2357 3351 1986 3395 4

E15 7443 7142 6957 6870 6551 6466 3368

M04 99 96 99 96 99 96 7

M05 2901 2747 2865 2337 2272 2016 413

M06 3235 3190 3235 3190 3200 3135 1125

M07 8563 8447 7954 7681 6769 6701 1784

M08 1189 1189 1133 1128 1002 997 129

M09 3530 3230 2340 2315 2625 2535 450

M11 4263 4233 4263 4223 4263 4233 2511

M12 4950 4061 4931 3817 3592 3614 911

M13 6199 6190 5793 5778 5785 5758 253

M15 7590 7153 7151 6947 7590 7931 495

L01 3683 3623 3201 3166 3385 3209 1969

L03 7784 7599 7784 7599 7308 7228 2369

L04 0 0 0 0 0 0 0

L06 3678 3590 3678 3590 2910 3320 923

L08 4583 4148 3895 3557 2766 2424 934

L09 2940 2925 2882 2837 2796 2691 563

L13 8564 8456 7357 7317 7482 7441 1820

L14 3712 3602 3583 3543 3646 3602 1206

L15 5910 4560 2765 3685 2030 2710 20

ITC best solutions included for comparison

The commercial solvers became more competitive when
given 5000s of CPU time. Gurobi found 6 feasible solu-
tions, and CPLEX found 18, but none were for previously

unsolvable instances. Some of the objective scores were bet-
ter than those we had previously found, so they might be
worthwhile additions to a portfolio where licensing allows.

123

298 Journal of Scheduling (2022) 25:287–299

In any case, our results agree with the claims of Berthold et
al. (2008).

5.5 Evaluation of local improvement

We now evaluate the effect of the local improvement pro-
cess. For this, we used the monotonic encoding of deviation
variables and clasp (crafty) with a timeout of 600s. Figure 5
shows the improvement when applying local improvement
just to the baseline and when applying it to the portfolio. The
process almost always improves the objective. The decrease
is usually less than 10%, but can be significantly more in
some cases. Note that the local improvement process does
not always find a solution as good as the original. In such
cases, Reprobate reverts to using the original solution.

Overall, if we look at the best solution found for each
instance, whether by using a portfolio of solvers with the
original encoding, or by using clasp (crafty) on a variation,
and whether locally improved or not, the average relative
objective, compared with just using clasp (crafty) on the
original encoding, is 77%. That is, our efforts to improve
the objective yielded an average decrease of 23%. This is
a significant improvement, although there is plenty of room
for more: the points at the bottom of Fig. 5 show the best
solutions submitted by any team to the ITC 2021. Table 2
shows the corresponding absolute numerical values.

6 Conclusion

We have developed and evaluated Reprobate, a tool that
solves the subset of RobinX format sports timetabling
problems considered in the International Timetabling Com-
petition 2021. The primary technique used by our tool is
a monolithic encoding using pseudo-Boolean constraints,
which can be solved using existing solvers, such as clasp.
This is augmentedby a second local improvement step,which
uses pseudo-Boolean constraints to adjust the home/away
pattern. Our toolwas effective onmany of the problems in the
ITC 2021, although it struggled with large break constraints.
Both Reprobate and clasp are distributed under the open
source MIT License, making our system readily available
for others to use or improve. Our work reaffirms the message
that pseudo-Boolean constraints are a powerful and expres-
sive formalism for modelling many real-world problems, for
which high-quality off-the-shelf solvers are available. It also
demonstrates the value of using a portfolio of solvers, rather
than relying on a single good solver. However, more work
is needed to understand how best to encode and solve break
minimisation constraints using a SAT or PB solver. There is
also scope for extending Reprobate to handle those RobinX

constraints and tournament formats that were not considered
in the ITC 2021.

Data Availability Statement Source code and data supporting the
results in this article are available from a repository (Lester 2021) hosted
on Zenodo.

Declarations

Conflict of interest The author has no relevant financial or non-financial
interests to disclose.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Bacchus, F., Järvisalo, M., & Martins, R. (2019). MaxSAT evaluation
2018: New developments and detailed results. Journal on Satisfia-
bility, BooleanModeling and Computation, 11(1), 99–131. https://
doi.org/10.3233/SAT190119.

Ball, B. C., & Webster, D. B. (1977). Optimal scheduling for even-
numbered team athletic conferences. AIIE Transactions, 9(2),
161–169. https://doi.org/10.1080/05695557708975138.

Berre, D. L.,&Parrain, A. (2010). The Sat4j library, release 2.2. Journal
on Satisfiability, BooleanModeling and Computation, 7(2–3), 59–
64. https://doi.org/10.3233/sat190075.

Berthold, T., Heinz, S., & Pfetsch, M. (2008). Solving pseudo-Boolean
problems with SCIP. Technical Report 08-12, ZIB, Takustr.
7, 14195 Berlin. https://nbn-resolving.org/urn:nbn:de:0297-zib-
10671.

Devriendt, J., Bogaerts, B., Bruynooghe, M., & Denecker, M. (2016).
Improved static symmetry breaking for SAT. In N. Creignou, & D.
L. Berre (Eds.), Theory and applications of satisfiability testing—
SAT 2016–19th international conference, Bordeaux, France, July
5–8, 2016, proceedings. Lecture notes in computer science (Vol.
9710, pp. 104–122). Springer. https://doi.org/10.1007/978-3-319-
40970-2_8.

Devriendt, J., Gleixner, A. M., & Nordström, J. (2021). Learn to relax:
Integrating 0–1 integer linear programming with pseudo-Boolean
conflict-driven search. Constraints, 26(1), 26–55. https://doi.org/
10.1007/s10601-020-09318-x.

Eén, N., & Sörensson, N. (2006). Translating pseudo-Boolean con-
straints into SAT. Journal on Satisfiability, Boolean Modeling and
Computation, 2(1–4), 1–26. https://doi.org/10.3233/sat190014.

Elffers, J., & Nordström, J. (2018). Divide and conquer: Towards faster
pseudo-Boolean solving. In J. Lang (Ed.), Proceedings of the
twenty-seventh international joint conference on artificial intel-
ligence, IJCAI 2018, July 13–19, 2018, Stockholm, Sweden (pp.
1291–1299). ijcai.org. https://doi.org/10.24963/ijcai.2018/180.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3233/SAT190119
https://doi.org/10.3233/SAT190119
https://doi.org/10.1080/05695557708975138
https://doi.org/10.3233/sat190075
https://nbn-resolving.org/urn:nbn:de:0297-zib-10671
https://nbn-resolving.org/urn:nbn:de:0297-zib-10671
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/s10601-020-09318-x
https://doi.org/10.1007/s10601-020-09318-x
https://doi.org/10.3233/sat190014
https://doi.org/10.24963/ijcai.2018/180

Journal of Scheduling (2022) 25:287–299 299

Elffers, J., Giráldez-Cru, J., Nordström, J., & Vinyals, M. (2018).
Using combinatorial benchmarks to probe the reasoning power of
pseudo-Boolean solvers. In O. Beyersdorff, & C.M.Wintersteiger
(Eds.), Theory and applications of satisfiability testing—SAT
2018—21st international conference, SAT 2018, held as part of
the federated logic conference, FloC 2018, Oxford, UK, July 9–
12, 2018, proceedings. Lecture notes in computer science (Vol.
10929, pp. 75–93). Springer. https://doi.org/10.1007/978-3-319-
94144-8_5.

Gebser, M., Kaufmann, B., & Schaub, T. (2012). Conflict-driven
answer set solving: From theory to practice. Artificial Intelligence,
187(52–89), 10. https://doi.org/10.1016/j.artint.2012.04.001.

Gent, I. P., & Lynce, I. (2005). A SAT encoding for the social
golfer problem. In IJCAI’05 Workshop on modelling and solv-
ing problems with constraints. https://www.inesc-id.pt/ficheiros/
publicacoes/2516.pdf.

Harvey, W. (1999). CSPLib Problem 010: Social Golfers problem.
http://www.csplib.org/Problems/prob010.

Henz, M. (1999). Constraint-based round robin tournament planning.
In D.D. Schreye (Ed.), Logic programming: The 1999 interna-
tional conference, Las Cruces, New Mexico, USA, November
29–December 4, 1999 (pp. 545–557). MIT Press. https://doi.org/
10.5555/341176.341272.

Henz, M. (2001). Scheduling a major college basketball conference-
revisited. Operations Research, 49(1), 163–168. http://www.jstor.
org/stable/222963.

Horbach, A., Bartsch, T., & Briskorn, D. (2012). Using a SAT-solver to
schedule sports leagues. Journal of Scheduling, 15(1), 117–125.
https://doi.org/10.1007/s10951-010-0194-9.

Lardeux, F., & Monfroy, E. (2015). Expressively modeling the social
golfer problem in SAT. In S. Koziel, L. Leifsson, M. Lees, V. V.
Krzhizhanovskaya, J. J. Dongarra, & P. M. A. Sloot (Eds.), Pro-
ceedings of the international conference on computational science,
ICCS 2015, computational science at the gates of nature, Reyk-
javík, Iceland, 1–3 June, 2015, 2014. Procedia computer science
(Vol. 51, pp. 336–345). Elsevier. https://doi.org/10.1016/j.procs.
2015.05.252.

Lester, M. (2021). Reprobate. https://doi.org/10.5281/zenodo.5084254
Lester, M. M. (2021). Scheduling reach mahjong tournaments using

pseudoboolean constraints. In C. Li, & F. Manyà (Eds.), Theory
and applications of satisfiability testing—SAT2021—24th interna-
tional conference, Barcelona, Spain, July 5–9, 2021, proceedings.
Lecture notes in computer science (Vol. 12831, pp. 349–358).
Springer. https://doi.org/10.1007/978-3-030-80223-3_24.

Manquinho,V.M.,&Roussel, O. (2006). The first evaluation of pseudo-
Boolean solvers (PB’05). Journal on Satisfiability, Boolean Mod-
eling and Computation, 2(1–4), 103–143. https://doi.org/10.3233/
sat190018.

Philipp, T., & Steinke, P. (2015). PBLib—A library for encoding
pseudo-Boolean constraints intoCNF. InM.Heule,&S.A.Weaver
(Eds.), Theory and applications of satisfiability testing—SAT
2015—18th international conference, Austin, TX, USA, Septem-
ber 24–27, 2015, proceedings. Lecture notes in computer science
(Vol. 9340, pp. 9–16). Springer. https://doi.org/10.1007/978-3-
319-24318-4_2

Rasmussen, R. V., & Trick, M. A. (2008). Round robin scheduling–a
survey. European Journal of Operational Research, 188(3), 617–
636. https://doi.org/10.1016/j.ejor.2007.05.046.

Trick, M. A. (2000). A schedule-then-break approach to sports
timetabling. In E. K. Burke, & W. Erben (Eds.), Practice and the-
ory of automated timetabling III, third international conference,
PATAT 2000, Konstanz, Germany, August 16–18, 2000, selected
papers. Lecture notes in computer science (Vol. 2079, pp. 242–
253). Springer. https://doi.org/10.1007/3-540-44629-X_15.

Triska, M., & Musliu, N. (2012a). An improved SAT formulation for
the social golfer problem. Annals of Operations Research, 194(1),
427–438. https://doi.org/10.1007/s10479-010-0702-5.

Triska, M., & Musliu, N. (2012b). An effective greedy heuristic for
the social golfer problem. Annals of Operations Research, 194(1),
413–425. https://doi.org/10.1007/s10479-011-0866-7.

Van Bulck, D., Goossens, D. R., Beliën, J., & Davari, M. (2020a).
ITC2021—Sports Timetabling Problem Description and File
Format. https://www.sportscheduling.ugent.be/ITC2021/images/
OrganizationITC2021_V7.pdf.

Van Bulck, D., Goossens, D. R., Beliën, J., & Davari, M. (2021). The
fifth International Timetabling Competition (ITC 2021): Sports
timetabling. In Proceedings of MathSport international 2021 con-
ference (pp. 117–122). http://www.mathsportinternational.com/
MathSport2021Proceedings.pdf.

Van Bulck, D., Goossens, D. R., Schönberger, J., & Guajardo, M.
(2020b). RobinX: A three-field classification and unified data
format for round-robin sports timetabling. European Journal of
Operational Research, 280(2), 568–580. https://doi.org/10.1016/
j.ejor.2019.07.023.

Walser, J. P. (1998) AMPL model of ‘Maximum socializing on the
golf course’. https://www.csplib.org/Problems/prob010/models/
AMPLmodel.txt.html.

Zhang, H. (2002). Generating college conference basketball schedules
by a SAT solver. In Proceedings of the fifth international sym-
posium on the theory and applications of satisfiability testing,
Cincinnati (pp. 281–291). http://gauss.ececs.uc.edu/Conferences/
SAT2002/Abstracts/zhang.ps.

Zhang, H., Li, D., & Shen, H. (2004). A SAT based scheduler for
tournament schedules. In SAT 2004—the seventh international
conference on theory and applications of satisfiability testing, 10–
13 May 2004, Vancouver, BC, Canada, online proceedings. http://
www.satisfiability.org/SAT04/programme/74.pdf.

Zhou, N.-F., Kjellerstrand, H., & Fruhman, J. (2015). Encodings for the
traveling salesman problem (pp. 129–139). Springer. https://doi.
org/10.1007/978-3-319-25883-6_7.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-94144-8_5
https://doi.org/10.1007/978-3-319-94144-8_5
https://doi.org/10.1016/j.artint.2012.04.001
https://www.inesc-id.pt/ficheiros/publicacoes/2516.pdf
https://www.inesc-id.pt/ficheiros/publicacoes/2516.pdf
http://www.csplib.org/Problems/prob010
https://doi.org/10.5555/341176.341272
https://doi.org/10.5555/341176.341272
http://www.jstor.org/stable/222963
http://www.jstor.org/stable/222963
https://doi.org/10.1007/s10951-010-0194-9
https://doi.org/10.1016/j.procs.2015.05.252
https://doi.org/10.1016/j.procs.2015.05.252
https://doi.org/10.5281/zenodo.5084254
https://doi.org/10.1007/978-3-030-80223-3_24
https://doi.org/10.3233/sat190018
https://doi.org/10.3233/sat190018
https://doi.org/10.1007/978-3-319-24318-4_2
https://doi.org/10.1007/978-3-319-24318-4_2
https://doi.org/10.1016/j.ejor.2007.05.046
https://doi.org/10.1007/3-540-44629-X_15
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-011-0866-7
https://www.sportscheduling.ugent.be/ITC2021/images/OrganizationITC2021_V7.pdf
https://www.sportscheduling.ugent.be/ITC2021/images/OrganizationITC2021_V7.pdf
http://www.mathsportinternational.com/MathSport2021Proceedings.pdf
http://www.mathsportinternational.com/MathSport2021Proceedings.pdf
https://doi.org/10.1016/j.ejor.2019.07.023
https://doi.org/10.1016/j.ejor.2019.07.023
https://www.csplib.org/Problems/prob010/models/AMPLmodel.txt.html
https://www.csplib.org/Problems/prob010/models/AMPLmodel.txt.html
http://gauss.ececs.uc.edu/Conferences/SAT2002/Abstracts/zhang.ps
http://gauss.ececs.uc.edu/Conferences/SAT2002/Abstracts/zhang.ps
http://www.satisfiability.org/SAT04/programme/74.pdf
http://www.satisfiability.org/SAT04/programme/74.pdf
https://doi.org/10.1007/978-3-319-25883-6_7
https://doi.org/10.1007/978-3-319-25883-6_7

	Pseudo-Boolean optimisation for RobinX sports timetabling
	Abstract
	1 Introduction
	2 Previous work
	2.1 Pseudo-Boolean constraints
	2.2 s

	3 Methods
	3.1 Monolithic encoding
	3.2 Soft constraints
	3.3 Variations in encoding
	3.4 Local improvement
	3.5 Beyond ITC 2021

	4 Implementation details
	5 Results
	5.1 Baseline monolithic encoding performance
	5.2 Improving feasibility
	5.3 Improving objective
	5.4 Comparison of PB and MIP solvers
	5.5 Evaluation of local improvement

	6 Conclusion
	References

