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Abstract
The International Timetabling Competition 2019 (ITC 2019) presents a novel and generalized university timetabling problem
composed of traditional class time and room assignment and student sectioning. In this paper, we present a parallelized
matheuristic tailored to the ITC 2019 problem. The matheuristic is composed of multiple methods using the graph-based
mixed-integer programming (MIP)model defined for the ITC 2019 problem byHolm et al. (A graph-basedMIP formulation of
the International Timetabling Competition 2019. J Sched, 2022. https://doi.org/10.1007/s10951-022-00724-y). We detail all
methods included in the parallelized matheuristic and the collaboration between them. The parallelized matheuristic includes
two methods for producing initial solutions and uses a fix-and-optimize matheuristic to improve solutions. Additionally, the
method uses the full MIP model to calculate lower bounds. We describe how the methods perform collaboratively through
solution sharing, and a diversification scheme invokedwhen the search stagnates. Furthermore, we explain howwe decompose
the problem for instances with a large number of students. We evaluate components of the parallelized matheuristic using the
30 benchmark instances of the ITC 2019. The complete parallelized matheuristic performs well, even solving some instances
to proven optimality. The presented method is the winning algorithm of the competition, further demonstrating its quality.

Keywords Mixed-integer programming · Parallelized matheuristic · Fix-and-optimize · University timetabling · International
Timetabling Competition 2019 · ITC 2019

1 Introduction

University timetabling is a complex scheduling problem that
all universities must regularly solve in practice. The classical
university course timetabling problem consists of develop-
ing a semester timetable such that all course events (lectures,
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exercises, etc.) are assigned a room and time. The goal is
to make a feasible high-quality timetable. A timetable is
feasible if it satisfies all hard constraints, and its quality is
measured by the violations of soft constraints. Timetables of
higher quality have fewer undesirable features and lead to
better utilization of resources and more preferable schedules
for teachers and students.

The International Timetabling Competition 2019 (ITC
2019) presents a university course timetabling problem gen-
eral enough that it can encompass many practical university
timetabling problems, as evident by the competition using
real-world data from ten different universities in eight coun-
tries on five continents. The problem definition is also novel
as it combines student sectioning and classical course time
and room assignment (Müller et al. 2018a). Thus, solution
approaches that work well on this problem definition should
be usable in many practical cases.

This paper describes a parallelized matheuristic for the
university timetabling problem presented at the ITC 2019.
Our solution approach combines multiple methods based on
mixed-integer programming (MIP). Most notably, we use
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simultaneous searches using a fix-and-optimize matheuristic
combined with solving the full MIPmodel using a black-box
solver.Weuse thematheuristics to find high-quality solutions
and primarily use the full MIP model to provide lower bound
information. The parallelized matheuristic shares solutions
between search methods to accelerate the combined search
and implements a diversification scheme to escape local
optima. Additionally, the parallelized matheuristic includes
a special setup for data instances with a large number of stu-
dents.

The proposed solution approach presents a general frame-
work that can be applied to anyMIPmodel.One simply needs
to define neighborhoods for the fix-and-optimize matheuris-
tics and methods for constructing initial solutions. However,
since many MIP models need to be solved, the framework’s
performance is directly tied to the strength of the MIP for-
mulation. Here, we use the MIP model presented by Holm
et al. (2020), which uses data reductions and different graph
structures to provide a strong MIP formulation.

The paper is organized as follows. In Sect. 2, we discuss
related work. Section 3 presents the ITC 2019 problem. In
Sect. 4, we give a short introduction to the MIP model. Sec-
tion 5 thoroughly details the fix-and-optimize matheuristic.
In Sect. 6, we describe the complete parallelized matheuris-
tic. Section 7 evaluates the method through computational
results, and Sect. 8 concludes.

2 Related work

The university course timetabling problem is a long-studied,
practical timetablingproblem.The course timetabling require-
ments can vary significantly for different universities, result-
ing in many problem variants (Tripathy 1992; Schaerf 1999).
The InternationalTimetablingCompetitions 2007 (ITC2007)
introduced two university course timetabling benchmark
problems: post-enrollment-based (track 2) and curriculum-
based (track 3) (McCollum et al. 2010; Lewis et al. 2007;
Di Gaspero et al. 2007). Common benchmark problems
are essential for driving the research field forward, and the
curriculum-based problem of the ITC2007 in particular has
received much attention. Researchers have applied many dif-
ferent solution techniques to the problem, but metaheuristic
approaches havebeen especially popular (Kristiansen&Stid-
sen 2013; Bettinelli et al. 2015).

The hybridization of metaheuristics and exact methods
results in matheuristics. Matheuristics presents a powerful
solution approach in which the goal typically is to gain
the speed of heuristics while retaining the desirable prop-
erties of exact methods, such as bounding information. In
recent years, mathematical programming-based approaches
have become increasingly popular and have attained state-
of-the-art results for high school timetabling (Fonseca et al.

2016; Tan et al. 2021). Mathematical programming-based
approaches for course timetabling have also achieved good
results, see, e.g., Burke et al. (2010); Lach and Lübbecke
(2012); Burke et al. (2012). However, much research using
exact methods has focused on improving lower bounds (Bet-
tinelli et al. 2015).

Lindahl et al. (2018) introduced the fix-and-optimize
matheuristic applied to the curriculum-based course timetabling
problem of the ITC2007, producing better results than the
competition-winning algorithm. The authors also describe an
approach for adapting the neighborhood size using the rel-
ative gap of the incumbent solution and the lower bound of
each subproblem. The fix-and-optimizematheuristic has also
achieved state-of-the-art results on other scheduling prob-
lems, such as high school timetabling (Dorneles et al. 2014)
and capacitated lot-sizing problems (Lang and Shen 2011;
Helber and Sahling 2010).

3 Problem definition

The ITC 2019 problem defines a novel university timetabling
problem combining classical course time and room assign-
ment and student sectioning. Courses consist of one or more
classes that must all be assigned one of their predefined times
and available rooms (if requested), each defined with a non-
negative integer penalty. The course classes are separated into
configurations, which are further divided into subparts, and
this hierarchical structure is important for student sectioning.
Students request courses which theymust attend. A valid stu-
dent assignment observes that each student attends precisely
one class of each subpart of a single configuration for each
requested course and that any class does not exceed its atten-
dance limit. Configurations and subparts are designed so that
students enrolled in a course are guaranteed to attend a valid
combination of the course’s classes.

Distribution constraints place restrictions on the assign-
ment between two or more classes and can be either
hard or soft. There are 19 different types of distribution
constraints, e.g., forbid/penalize temporal overlap between
classes, enforce/prefer classes to be scheduled on the same
day.Most distribution constraint types are evaluated pairwise
for the affected classes, but four are evaluatedusing all classes
for which they are defined. Soft distribution constraints have
a nonnegative penalty value.

A feasible solution satisfies all hard constraints concerning
class, time, and room assignment and student sectioning, and
all hard distribution constraints. We measure the quality of a
solution by the weighted sum of soft distribution constraint
penalties, class time and room assignment penalties, and the
number of student conflicts. A student conflict occurs when a
student attends two classes that overlap in time or are sched-
uled such that it is impossible to arrive in time for the second
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class due to travel distance. The university defines weights
for time assignment, room assignment, student sectioning,
and distribution constraints according to their priorities and
preferences.

The competition consists of 30 instances (see Table 1)
made publicly available in three separate stages: Early, Mid-
dle, and Late. The competition’s goal is to find the best
possible solutions for each instance before the competition
deadline. The ranking of competitors is determined using a
scoring schemewhere instances released later in the competi-
tion are given a higher score. The Late instances are released
10 days before the final deadline.

The instances vary significantly in terms of size, char-
acteristics, and complexity. For example, one of the Early
instances, tg-fal17, consists of only 36 courses with 711
classes, 15 rooms, and no student sectioning. This is
contrasted by the Middle instance pu-proj-fal19, which
includes a staggering 2839 courses with 8813 classes, 768
rooms, and 38,437 students. However, the complexity of an
instance is not only determined by the number of classes,
rooms, students, etc. Other aspects such as the types and
number of distribution constraints, course structures, and
class/room/student utilization have a significant effect.

The problem presented by the ITC 2019 is fascinating as
it provides a unified problem definition that can encompass
the practical timetabling problem arising at many different
universities. This enables the competition to use real-world
data, which the organizers collected using the timetabling
system UniTime (Müller et al. 2018b). The ITC 2019 prob-
lem is based on the model used in UniTime, with some
simplifications to reduce modeling complexity while retain-
ing hardness. For a complete problem description, we refer
the reader to Müller et al. (2018a).

4 Mixed-integer programmingmodel

The core part of our solution approach is the graph-basedMIP
model (referred to as the full MIP model) defined by Holm
et al. (2020). The full MIP model is very comprehensive and
beyond the scope of this paper. Thus,we settle for introducing
themaindecisionvariables required for thiswork andprovide
a minimal overview of the MIP model.

The ITC 2019 problem is defined by a set of classes C
where each class c ∈ C must be assigned one of its available
times t ∈ Tc and rooms r ∈ Rc. If the class does not need
a room, then Rc = {r̃}, where r̃ is a dummy room. Addi-
tionally, each student s ∈ S must be assigned classes such
that they attend their required courses. The problem includes
some basic feasibility constraints, e.g., student sectioning
constraints to observe specific course/class structures, no
room double-booking, and we must schedule all classes. In
addition, distribution constraints restrict/penalize the assign-

Table 1 Some characteristics of all 30 competition instances

Instance Courses Classes Rooms Students

agh-fis-spr17 340 1239 80 1641

agh-ggis-spr17 272 1852 44 2116

bet-fal17 353 983 62 3018

iku-fal17 1206 2641 214 –

mary-spr17 544 882 90 3666

muni-fi-spr16 228 575 35 1543

muni-fsps-spr17 226 561 44 865

muni-pdf-spr16c 1089 2526 70 2938

pu-llr-spr17 687 1001 75 27,018

tg-fal17 36 711 15 –

agh-ggos-spr17 406 1144 84 2254

agh-h-spr17 234 460 39 1988

lums-spr18 313 487 73 –

muni-fi-spr17 186 516 35 1469

muni-fsps-spr17c 116 650 29 395

muni-pdf-spr16 881 1515 83 3443

nbi-spr18 404 782 67 2293

pu-d5-spr17 212 1061 84 13,497

pu-proj-fal19 2839 8813 770 38,437

yach-fal17 91 417 33 821

agh-fal17 1363 5081 327 6925

bet-spr18 357 1083 63 2921

iku-spr18 1290 2782 208 –

lums-fal17 328 502 97 –

mary-fal18 540 951 93 5051

muni-fi-fal17 188 535 36 1685

muni-fspsx-fal17 515 1623 33 1152

muni-pdfx-fal17 1635 3717 86 5651

pu-d9-fal19 1154 2798 224 35,213

tg-spr18 44 676 24 –

ment between two or more classes. We define Cδ as the set of
classes that are part of distribution constraint δ ∈ �, where
� is the set of all distribution constraints.

Assignment of classes to times and rooms is a major part
of the problem, which naturally leads to the main decision
variable xc,t,r ∈ {0, 1} defined as

xc,t,r =
{
1 if class c is scheduled in time t in room r
0 otherwise

Additionally, we define auxiliary variable yc,t ∈ {0, 1} as

yc,t =
{
1 if class c is scheduled in time t
0 otherwise

The yc,t variable makes defining some constraints much
more straightforward andhelps reduce the number of nonzero
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values in the model. Additionally, we focus on these two sets
of variables in the implemented fix-and-optimize matheuris-
tic.

Student sectioning is the other major part of the problem,
for which we have defined es,c ∈ {0, 1} to be 1 if student
s attends class c and 0 otherwise. For most instances, the
student sectioning part is not difficult compared to the class
assignment. However, for instances like pu-proj-fal19, which
has 38,437 students, it becomes quite complex and computer
memory-intensive.

Therefore, we define a version of the MIP model that
applies the student sectioning to a known, feasible timetable.
For a fixed timetable, we know which class pairs overlap
in time or have a large enough travel distance such that a
student conflict is possible. Thereby, we can avoid gener-
ating numerous redundant student sectioning variables and
constraints. Additionally, we can ignore the class assignment
part of the problem, including distribution constraints, result-
ing in amuchmoremanageablemodel.We refer to thismodel
as the student sectioning MIP model. The student sectioning
MIP model is thus similar to the full MIP model, but where
the full model has variables related to the timetable, these
are fixed and presented as parameters to the student section-
ing MIP model. Thus, the student sectioning MIP model has
only onemain decision variable, the student-class assignment
variable es,c.

5 Fix-and-optimize matheuristic

The fix-and-optimize matheuristic can be considered to be
a large neighborhood search heuristic. The algorithm takes
an initial solution and iteratively improves it by searching a
large neighborhood around the current solution. The neigh-
borhood is defined and explored usingMIP by fixing a subset
of variables before solving the model using a MIP solver.
Therefore, the matheuristic is very applicable to problems
where small instances can be solved to optimality, but large
instances cannot. Fixing variables results in a subproblem
with a smaller solution neighborhood, effectively reducing
the more difficult MIP model to be more easily solved. The
fix-and-optimizematheuristic uses this idea by iteratively fix-
ing a subset of variables and solving the resultingMIPmodel.
Any improving solution is used to warm-start theMIPmodel
in the next iteration.

This approach has a few benefits. Since the algorithm is
MIP-based and only fixes/unfixes variables, no direct delib-
eration is given to the constraints or the structure of the
problem. Therefore, constraints can be added, removed, or
changed, and the algorithm still works. This is in direct con-
trast to many move-based metaheuristics, in which some
moves may rely greatly on specific constraints of the prob-
lem and can easily become obsolete as a result of a model

change. The fix-and-optimize matheuristic always works on
the same model, and therefore it is only necessary to build
the MIP model once. Variable fixing is done so that a solu-
tion found in one iteration is always feasible regarding the
variable fixing in the next iteration. Thus, the MIP solver is
warm-started in each iteration, providing great performance
benefits. Also, since a MIP model is solved in each iteration,
we know the subproblem’s lower bound,which can be used to
guide the search on a higher level. Lastly, an implementedfix-
and-optimize will automatically have performance increases
as MIP solvers are themselves improved.

As fix-and-optimize can only improve known solutions, it
must be given an initial solution. Therefore, it is dependent on
other methods for generating an initial solution. We discuss
the heuristics used for generating initial solutions in Sect. 6.1.

An important aspect of fix and optimize is the searched
neighborhood, i.e., how andwhich variableswe choose to fix.
In Sect. 5.1, we discuss our implemented neighborhoods and
a strategy for updating the neighborhood size dynamically
throughout the search.

Algorithm 1 shows the implemented fix-and-optimize.
The input is the problem instance, an initial solution, a neigh-
borhood specification, and an initial neighborhood size. First,
in line 1, the algorithm builds the MIP model for the given
instance and sets the warm-start values of the initial solution.
In the loop, using the given neighborhood and neighborhood
size, the algorithm chooses a subset of variables to allow to
remain free, and fixes all other variables of the neighborhood
to their given values (lines 3 and 4). In line 5, the algorithm
solves the resulting subproblem and updates the best solution
if it finds an improving solution. Finally, in lines 6 and 7, the
algorithm updates the neighborhood size based on the perfor-
mance of the optimization process and unfixes all previously
fixed variables. Note that we only update the size during the
search, and the algorithm continues to use the same neigh-
borhood.

Algorithm 1 Fix-and-optimize
Input: Instance I , Initial solution S, Neighborhood N and initial

neighborhood size P
Output: Solution S

1: M ← Build MIP for I and set warm-start for S
2: while termination condition not met do
3: V = GetVariablesToRemainFree(N , P)
4: Fix all variables of N \ V
5: S ← Solve M
6: P ← UpdateNeighborhoodSize()
7: Unfix all fixed variables
8: end while
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5.1 Neighborhoods

As stated in Sect. 4, the implemented fix-and-optimize
focuses on the classes’ time and room assignments, which
the developed neighborhoods reflect. Each neighborhood is
defined by a heuristic for choosing classes to allow reschedul-
ing and the variables considered for fixing. Common to
all class-choosing heuristics is that classes are considered
course-wise; a list of all courses is randomized, and classes
are picked by going through this list and extracting all classes
associatedwith the given courses. This continues until the list
includes enough classes to satisfy the size parameter (P in
Algorithm 1). This parameter defines the percent of classes
that should remain unfixed. Picking all classes associated
with a course ensures some connection in the unfixed vari-
ables, as these classes are closely related andgreatly influence
each other.

Each class-choosingheuristic separates itself from theoth-
ers by how it includes extra classes when considering a given
course. Three heuristics for picking classes to remain unfixed
are defined: standard (S), common (C), and adjacent (A).

The standard heuristic goes through the randomized
course list, extracting all course classes.No additional classes
are chosen. The common heuristic additionally includes
classes that have common distribution constraints with any
course classes. Thus, for every class of the course, we
examine all distribution constraints containing that class and
extract the other classes of those constraints. Note that we
only extract the additional individual classes and do not con-
sider the rest of their associated courses.

The adjacent heuristic uses a class-time conflict graph for
including additional classes to unfix. We use the class-time
conflict graph described by Holm et al. (2020), in which we
define vertices to represent yc,t variables and have an edge
between two vertices if the associated yc,t variables conflict
with each other.We use information from almost all hard dis-
tribution constraints to define the class-time conflict graph,
and therefore an edge may cover multiple different hard con-
flicts. In the adjacent heuristic, when considering a course,
we also extract all classes adjacent to any vertex related to
that course. Thus, using a conflict graph is similar to con-
sidering common distribution constraints, but only includes
hard constraints and some additional information of classes
with fixed times. As such, this heuristic focuses on unfix-
ing class assignment variables that interdependently affect
feasibility.

Our neighborhoods use one of the described heuristics,
and they consider either the class-time assignment vari-
ables (yc,t ) or the class-time-room variables (xc,t,r ) for
fixing/unfixing. Using the yc,t variable allows for room
changes of all classes (even those with fixed time) in every
iteration, while this is not possible when using the xc,t,r
variables. We never fix the student-class assignment variable

Table 2 Six defined neighborhoods using three heuristics and two vari-
able sets

Neighborhood Heuristic Variable set

SX Standard (S) xc,t,r

SY Standard (S) yc,t

CX Common (C) xc,t,r

CY Common (C) yc,t

AX Adjacent (A) xc,t,r

AY Adjacent (A) yc,t

(es,c), and the student sectioning part of the problem is always
left free. The combination of the class-choosing heuristic and
assignment variables defines our neighborhoods, resulting in
the six neighborhoods shown in Table 2.

5.1.1 Updating neighborhood size

It is vital to continually control the neighborhood’s size,
as this has a significant effect on the difficulty of the sub-
problems. The goal is to have problems that are neither too
hard nor too easy to solve; the neighborhood should be large
enough to include new (hopefully improving) solutions but
not so large that they are exceedingly time-consuming to
find. Hence, we dynamically update the neighborhood size
throughout the search to strike such a balance. Dynamically
updating the neighborhood size is especially important for
problems such as the ITC 2019 problem since theMIPmodel
complexity varies greatly from instance to instance and may
benefit from vastly different neighborhood size parameters.

We focus the implementation on solving the ITC 2019
problem in the competitive setting defined for the release of
the 10 Late instances, which is 10 days before the competi-
tion deadline. Therefore, we have tuned the implementation
toward a 10-day time frame to find the best possible solu-
tions for each instance. Some instances lead to MIP models
that are very difficult to solve, resulting in iterations where
the solver spends much time on pre-solving the model and
solving the root node linear program (LP) relaxation. We are
more willing to spend some time solving easier subproblems
than wasting much time trying and failing to solve difficult
subproblems. Therefore,we implement a conservative neigh-
borhood size updating scheme, such that we are more willing
to decrease the neighborhood size than increase it. Addi-
tionally, the neighborhood size is drastically reduced if the
solution process has not completed the pre-solve and solved
the root node LP after an hour. The solving process is given
a time limit of 1h to reach the branch-and-bound tree’s root
node and 30min to explore the branch-and-bound tree.

Algorithm2adetails how the neighborhood size is updated
based on the solver performance. We update the neigh-
borhood size by considering (a) how quickly the solver
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progresses through the solving process, (b) whether any
improving solutions are found, and (c) the optimality gap.
We check the decision conditions in a prioritized manner
(lines 1, 4, and 6), such that when any condition is satisfied,
we make the corresponding decision immediately. We return
to the conditions shortly.

The initial size is P = 25%, meaning that 25% of the
variable set is left free, and we adjust the neighborhood size
in steps of d (set to 5%). We settled on an initial size of 25%
through preliminary experiments. The update algorithm has
a Boolean list H to save previous neighborhood update deci-
sions. In each iteration, we add true to the H list if the size
should increase and false otherwise. The neighborhood size
is updated conservatively, favoring decreasing by doing so
immediately upon such a decision (Algorithm 2b). Alterna-
tively, if the neighborhood size should increase, we check the
H list and increase the size if three of the last five inputs are
true, i.e., if the last few iterations heavily favor increasing
(Algorithm 2c).

Regarding the decision conditions, in line 1 of Algo-
rithm2a,we consider a special casewhere the solvingprocess
does not reach the root node of the branch-and-bound tree
within an hour. In such cases, the model is far too difficult to
solve, and we drastically reduce the neighborhood by divid-
ing the current size by two and rounding down to the nearest
divisor of d. Additionally, we reset the H list since the infor-
mation from previous iterations is of little value following
such a substantial change. In lines 4–5, we decide to decrease
the neighborhood size if it takes longer than 30min to reach
the root node when solving the subproblem. In lines 6–11,
we consider the case where no solutions are found and decide
to increase the neighborhood size if the relative optimality
gap is less than 5% and decrease otherwise.

If none of the checked conditions are satisfied, i.e., the
solver quickly reached the root node and found improving
solutions, we do not change the neighborhood size and add
false to H (line 13). Finally, we return the potentially updated
neighborhood size in line 15.

6 Parallelizedmatheuristic

In this section, we describe the parallelized matheuristic, in
which we run multiple search methods in parallel. First, we
provide abrief overview todemonstrate the basics of the algo-
rithm. In the subsequent subsections, we thoroughly describe
individual aspects of the complete algorithm.

Figure 1 shows the general flow of the parallelized
matheuristic. Rounded boxes and rectangles represent meth-
ods/algorithms and types of solutions, respectively. Given a
new instance, we first reduce it as described by Holm et al.
(2020) to remove redundancies and tighten the instance data.
Afterward, we start all methods in parallel:

Algorithm 2a UpdateNeighborhoodSize()
Given: Neighborhood size P and boolean list H

1: if Not reached root node in one hour then
2: P ← P/2 rounded down to nearest divisor of d without remain-

der
3: Reset H
4: else if Time to root node > 30 minutes then
5: Decrease(P , H )
6: else if Found no improving solutions then
7: if Gap < 0.05 then
8: Increase(P , H )
9: else
10: Decrease(P , H )
11: end if
12: else
13: Add false to H
14: end if
15: return P

Algorithm 2b Decrease(P , H )
1: Add false to H
2: P ← P − d

Algorithm 2c Increase(P , H )
1: Add true to H
2: if at least 3 of last 5 inputs in H are true then
3: P ← P + d
4: end if

– The 2SCAand the 3SCAmethods (described in Sect. 6.1)
produce initial solutions.

– A MIP solver starts solving the full MIP model.
– A number of fix-and-optimize processes prepare for an
initial solution by building the MIP model.

As discussed in Sect. 5, the fix-and-optimize processes
require an initial solution to begin the search. Thus, once
a fix-and-optimize method is initialized, it looks for and uses
the current best-known solution as its initial solution. Early
in the search, the current best-known solution is typically an
initial solution produced by the initial solution heuristics, but
the full MIP solver could also produce it.

While the search is moving forward, i.e., the best-known
solution is regularly updated, the fix-and-optimize processes
collectively remain in a state of intensification. In this state,
the fix-and-optimize processes and the full MIP solver col-
laborate through solution sharing, as detailed in Sect. 6.2. If
the search stagnates, the parallelized algorithm enters the
diversification state described in Sect. 6.3. Here, the fix-
and-optimize searches abandon solution sharing, and each
process separately starts a new search using individual initial
solutions.When the best-known solution is improved (by any
method), the fix-and-optimize processes reset to this solution
and resume solution sharing (intensification).

For instances with many students, the algorithm includes
changes and additions shown as the Large Student Sectioning
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Initial
Solutions

2SCA
3SCA

Best Solution

MIP

Large Student Sectioning

Initial No Students
Solutions

No Student
Solutions

Fix-and-optimize
No Students

Add students 
using ASST

Diversification

Fix-and-optimize

Fix-and-optimize

Fix-and-optimize

Intensification

Fix-and-optimize

Fig. 1 Flowchart illustrating the parallelized matheuristic, showing the solution flow, method collaboration, and the changes imposed by the “Large
Student Sectioning” and “Diversification” modes

part of Fig. 1. In essence, the parallelized algorithmdecouples
producing timetables and solving student sectioning when
generating initial solutions. Section 6.4 discusses the Large
Student Sectioning setup.

6.1 Initial solutions

Weuse twoMIP-based constructive heuristics to generate ini-
tial solutions: the two-stage constructive algorithm (2SCA)
and the three-stage constructive algorithm (3SCA). In these
methods, we assume that there always exists a feasible stu-
dent sectioning, since the problemdefines student conflicts as
soft violations. For valid data, the hard constraints associated
with student sectioning, i.e., class limits and valid student-
course-class assignments, can always be satisfied. Therefore,
given any feasible timetable, students can always be added
afterward without losing feasibility, although it may cause a
significant number of student conflicts.

The 2SCA (shown in Algorithm 3) constructs a feasible
solution in two stages by first generating a feasible timetable
(lines 1–2) and then adding student sectioning (lines 3–4).

Algorithm 3 Two-Stage Constructive Algorithm
Input: Instance I
Output: Solution S

1: M ← Build MIP for I with only unassigned classes objective and
no student sectioning

2: SM ← Solve M to optimality
3: Ms ← Build student sectioning MIP for I from SM
4: S ← Solve Ms with time limit of five minutes and relative gap of

0.01, or until a solution is found

The 2SCA uses a modified MIP model to generate a feasible
timetable. ThemodifiedMIPmodel ignores students and soft
constraints, allows unscheduled classes, and the objective
function only includes the number of unscheduled classes.
Thus, a solution with an objective value of 0 is a feasible
timetable for the full MIP model. When the algorithm finds
such a solution, it uses the student sectioning MIP model to
create a student sectioning for the given timetable. The result
is a feasible timetable with student sectioning.

The 3SCA (shown in Algorithm 4) constructs a feasible
solution in three stages. The first two stages use a modi-
fied MIP model that ignores soft distribution constraints,
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Algorithm 4 Three-Stage Constructive Algorithm
Input: Instance I
Output: Solution S

1: M ← Build MIP for I with no soft distribution constraints, no
student sectioning, and only time and room assignment penalties as
objectives

2: do
3: Amend M to allow for unassigned rooms
4: S1 ← Solve M
5: Fix time-assignment of M from S1 using yc,t
6: Amend M to not allow for unassigned rooms
7: S2 ← Solve M
8: if M is infeasible then
9: Unfix and cut off current time-assignment in M
10: end if
11: while M is infeasible
12: Ms ← Build student sectioning MIP for I from S2
13: S ← Solve Ms with time limit of five minutes and relative gap of

0.01, or until a solution is found

students, and only has class time and room assignment penal-
ties in the objective function. The first stage assigns classes
to times by using a version of the MIP model that allows
for not assigning classes to a room (lines 3–4). Stage 2 fixes
the class-time assignment of stage 1 and forbids classes with
unassigned rooms (lines 5–7). Solving the MIP model of
stage 2 results in either a feasible timetable or an infeasible
model. In the case of an infeasiblemodel, we cut off the class-
time assignment before going back to stage 1 (lines 8–10).
When the algorithm finds a feasible timetable, it proceeds to
stage 3, where it uses the student sectioning MIP model to
add student sectioning to the found timetable (lines 12–13).

When solving the first MIP model in the 2SCA, we allow
the MIP solver to run until a solution is found with an objec-
tive value of 0 (solved to optimality). When solving the
models in stages 1 and 2 of the 3SCA, we give the MIP
solver a time limit of 5min and a relative optimality gap of
0.05. However, since we need a solution to proceed to the
next stage, we force the search to continue if the solver does
not produce a solution within the time limit. Specifically, we
use callbacks to override the solver time limit and only allow
the search to terminate if it has found a solution. In cases
where we extend the search, we end the search immediately
upon the first solution found. Both the 2SCA and the 3SCA
add students to the found timetables by solving the student
sectioning MIP with a time limit of 5min and a relative opti-
mality gap of 0.01. Similarly, as described above, we force
the search to continue until it finds a feasible solution.

Comparatively, the 2SCA randomly chooses a feasible
timetable, and the 3SCA considers quality by using a greedy
approach for assigning times and then rooms.Thus, the 3SCA
might prove to be slower, but it should have a higher prob-
ability of providing higher-quality initial solutions than the
2SCA.

We enable the 2SCA and the 3SCA to produce additional
initial solutions by allowing them to run multiple times. In
such cases, they add a cut after finding a feasible timetable,
forbidding the previous solution, forcing the algorithm tofind
a new feasible timetable. We show the cut used in the 2SCA
below. Sn is the set of xc,t,r variables set to 1 in stage 1 in
the nth iteration of the 2SCA. The cut for the 3SCA uses yc,t
instead of xc,t,r .

∑
Sn

xc,t,r ≤ |Sn| − 1

Furthermore, the 2SCA and the 3SCA can skip the last
stage and only generate timetables without assigning stu-
dents. As mentioned, the produced timetables are feasible in
the full MIP model, and student sectioning cannot make the
complete solution infeasible (can only add penalties through
student conflicts). This fact is an important feature that we
use in Sect. 6.4.

6.2 Solution sharing

For the fix-and-optimize matheuristic, we use several neigh-
borhoods that may have varied performance on different
instances. We have no clear way to determine a priori which
neighborhood is better suited for a given instance and there-
fore opt to use them all, with a single fix-and-optimize
process using each neighborhood. Naturally, it would be ben-
eficial to share good solutions between each search, to ensure
that none falls significantly behind. This also enables us to
use each neighborhood to continually improve the best-found
solution with their different focuses and strengths.

In such a scheme, it is crucial to strike a balance between
allowing each fix-and-optimize process to search its own
neighborhood and simultaneously not waste time where no
improvements are possible. Therefore, eachfix-and-optimize
search checks whether there is a better-known solution every
five iterations. If such a solution exists, the fix-and-optimize
uses it going forward. Each fix-and-optimize iteration uses a
maximum of 1.5h, and therefore the process performs such
a check at most every 7.5h.

The parallelized algorithm also solves the full MIP model
in parallel to the fix-and-optimize searches. As the MIP
model is likely only competitive with fix-and-optimize pro-
cesses on smaller instances, we run the MIP solver tuned
to focus on improving the lower bound, as this information
is very valuable for evaluating the state of the search. The
MIP solver continually watches for and sets any new best-
known solution (using callbacks), as this can be useful for
managing the size of the branch-and-bound tree and speeds
up the search. However, the MIP solver requires some time
for reading and setting new solutions, which does take time
away from improving the bound.
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6.3 Diversification

Even with solution sharing, there is a risk of the fix-
and-optimize searches getting stuck in a local optimum.
Therefore, we include a diversification scheme to attempt to
escape from such a local optimum and continue the search.
However, in cases where the collaborative search stagnates,
and the method begins the diversification search, we find it
unlikely that we can find considerably better solutions. Thus,
we include this diversification scheme in an attempt to find
the best solutions possible but do not expect it to have a sig-
nificant impact on the average performance of our method.

The implemented parallelized matheuristic focuses on the
final 10 days of the competition, where the goal is to find the
best possible solutions on the Late instances. With this in
mind, we have chosen that the fix-and-optimize processes
enter diversification mode after 12h with no improving
solution. When diversifying, the fix-and-optimize processes
“scramble.” They each reset to a random new initial solu-
tion (generated by the 2SCA or the 3SCA) and use that as a
starting point for a new search. They stop solution sharing,
and eachfix-and-optimize process uses all three heuristics for
choosing classes to unfix, chosen at random in each iteration.
The fix-and-optimize processes use all heuristics to counter
the effects of turning solution sharing off by not limiting a
search using a heuristic that may not be well suited for a
given instance. We make no change to the variable set used
for fixing, so we only allow the class-choosing heuristic part
of the neighborhood to change.

Each fix-and-optimize process needs to determine when
to abandon the current diversification search and reset to a
new initial solution. Once more, it is essential to strike a bal-
ance between giving the search a chance and not wasting too
much time where success is unlikely. Algorithm 5a details
the heuristic used for determining when to abandon the cur-
rent diversification search and try again from another initial
solution. If no new initial solution is available when the algo-
rithm determines to restart, the search simply continues and
resets to a new solution when one becomes available, unless
we have found an improving solution in the meantime. This
is the role of input parameter F , which is used in line 3 and
updated in line 7. Lines 3–5 check whether it was previously
decided to abandon the search (F = true), and the current
solution is non-improving. Lines 6–9 are relevant when the
new solution improves, and F is updated to allow the search
to continue normally and returns not to abandon the search.
The diversifying search is always allowed to continue for at
least five iterations, which is ensured by lines 10–12. Finally,
we impose a limit on the number of consecutive iterations
where the search does not find improving solutions. This
limit is dependent on the gap between the best solution of
the current diversifying search and the best-known solution.
Algorithm 5b shows the limits used (ranging from two to

five), which are defined to allow for more leniency as the
search gets closer to the best-known solution value. When-
ever the search resets to a new initial solution, the algorithm
resets all parameters to their default values and clears the
diversification-solution value list (B).

Algorithm 5a AbandonDiversifySolution(S, S∗, B, F)
Input: New solution S, best-known solution S∗, list of previous

solution values B, boolean F stating if failed to get new initial solution
Output: Boolean value stating whether to get a new solution for

diversification
1: B∗ ← min(B) � Best solution found in this search
2: Add S to B
3: if F and S ≥ B∗ then
4: return true
5: end if
6: if S < B∗ then
7: F ← false
8: return false
9: end if
10: if length of B ≤ 5 then
11: return false
12: end if
13: L ←GetConsecutiveNonImprovementLimit(B∗, S∗)
14: return If last L solutions in B have equal values

Algorithm 5b
GetConsecutiveNonImprovementLimit(B∗, S∗)

Input: Current best solution B∗, best known solution S∗
Output: Integer number of consecutive non-improvement limit

1: G ← gap from B∗ to S∗
2: if G ≥ 20% then
3: return 2
4: else if G ≥ 10% then
5: return 3
6: else if G ≥ 5% then
7: return 4
8: else
9: return 5
10: end if

When the parallelized matheuristic finds a new best-
known solution, all fix-and-optimize processes jump to this
solution and reset all parameters. The search continues
normally with solution sharing turned on and each fix-and-
optimize process using its designated heuristic for choosing
classes to unfix.

6.4 Large student sectioning

Some competition instances include a very large number of
students, which causes problems with regard to computa-
tional memory and time when using the full MIP model.
This is at least the case with pu-proj-fal19, which has the
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largest number of courses, classes, and students of all com-
petition instances. Holm et al. (2020) noted that the full MIP
model for pu-proj-fal19 requires more than 256 GB of RAM
to store in memory. Therefore, we include some additional
methods and a special setup for such instances, allowing for
decoupling timetable development and student sectioning.

By separating the class assignment and student sectioning
problems, the respective MIP models become much more
manageable. However, solving the class assignment problem
without considering students comes at the cost of no look-
ahead, which may result in poor solutions. It may be the case
that high-quality timetables disregarding students yieldmany
student conflicts, which is especially unfortunate if student
conflicts have a relatively large weight. Therefore, the aim
of the extension is not to pursue the best possible solutions
in general, but to improve the chances of finding feasible
solutions for large and difficult instances.

For instances with 30,000 students or more, we invoke
a unique setup with a few changes/additions. We denote
this setup Large Student Sectioning (LSS). One addition is
the Add Student Sectioning to Timetables (ASST) method,
which takes a timetable as input and adds students using the
student sectioning MIP described in Sect. 4. We generate
valid timetables without students using the 2SCA and the
3SCA heuristics by each heuristic skipping their last stage.
Furthermore, we run two additional fix-and-optimize pro-
cesses which both ignore student sectioning. One uses yc,t
and the other uses xc,t,r for variable fixing. We include these
two searches to produce timetables of highquality (disregard-
ing student sectioning). In order to produce many feasible
timetables, these two fix-and-optimize processes are always
in diversification mode, meaning that there is no solution
sharing, and they use all heuristics for getting classes to
unfix. Additionally, we make these two searches more will-
ing to abandon a diversification search, doing so immediately
when they find a non-improving solution after the first five
iterations.

The ASST method prioritizes using timetables produced
by the two special fix-and-optimize processes. If none are
available, it chooses a timetable produced by the 2SCA or
the 3SCA. We solve the student sectioning MIP model with
a time limit of 10min, but if it finds no solution in that time,
we force the solver to continue until it produces a feasible
solution. We run five ASST in parallel, and they share a list
of timetables that have had students added, such that they
collectively only consider the same timetable once. We run
multiple ASST processes because we have observed cases
where the ASST method has difficulty keeping up with the
influx of input solutions. The parallelized matheuristic con-
siders the solutions produced by the ASSTmethods as initial
solutions.

In summary, for instances with 30,000 students or more,
we run the default setupwith the addition ofLSS.The result is

that the constructive heuristics skip their last stage of adding
students and only produce feasible timetables. Instead, five
ASST processes add students to the timetables in a priori-
tized manner. To improve the relatively random timetables
produced by the 2SCA and the 3SCA, we include two fix-
and-optimize searches that ignore student sectioning. Hence,
we run the default setup with some additional methods to
increase the likelihood of finding feasible solutions.

6.5 Competition setup

For completeness, we describe the computational setup we
used to find solutions for the Late instances during the final
10 days of the competition. As soon as the competition orga-
nizers made the data publicly available, we reduced each
instance using the preprocessing techniques discussed by
Holm et al. (2020). We then ran the complete parallelized
matheuristic simultaneously on each Late instance for the
remaining timeof the competition, or until the fullMIP solver
had proven optimality.

We ran all algorithms in a cluster setting on 64 bit com-
puters running Scientific Linux 7.7 equipped with 256 GB
of RAM and two Intel Xeon E5-2650 v4 CPUs clocked at
2.20 GHz. We used Gurobi 8.1.1 as the MIP solver and had
the following setup:

– One 2SCA and one 3SCA both producing at most 200
initial solutions and both using four threads

– One full MIP model solve with focus on bound using 16
threads

– Six fix-and-optimize processes, one using each combi-
nation of class-choosing heuristic (standard, common,
adjacent) and variable set (xc,t,r , yc,t ), all using four
threads.

For instances with 30,000 or more students, we had the fol-
lowing changes/additions:

– The solution limit for the 2SCA and the 3SCA increased
to 1000 initial solutions (without students)

– Two fix-and-optimize processes ignoring students, both
using four threads

– Five ASST processes adding students to timetables, each
using a single thread.

7 Computational results

This section evaluates the parallelized matheuristic through
computational tests on all 30 instances used for ranking in the
ITC 2019. Similarly as during the competition, we perform
all computational tests in a cluster setting. However, here we
use computers equipped with 756 GB of RAM and two Intel
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Xeon Gold 6226R CPUs clocked at 2.90 GHz. Addition-
ally, we use Gurobi 9.0 as the MIP solver using four threads
(unless stated otherwise).

Although we have more RAM available here than during
the competition, we are still unable to build the full MIP
for pu-proj-fal19. We have implemented the algorithm in the
.NET Framework 4.8 and, for these tests, run it through the
Mono 6.8 runtime, which unfortunately consistently crashes
while building the full MIP model after using approximately
350 GB of RAM. Therefore, in the following tests where we
use the full MIP model, we have not gathered any data for
pu-proj-fal19.

In the following, we investigate different aspects of the
complete parallelized algorithm. Section 7.1 examines the
initial solution heuristics. In Sect. 7.2, we evaluate the per-
formance of the fix-and-optimize matheuristic. Section 7.3
considers the effects of solution sharing, and Sect. 7.4 exam-
ines the Large Student Sectioning setup. Finally, in Sect. 7.5,
we examine the effects of the implemented diversification
scheme.

7.1 Initial solutions

In the parallelized matheuristic, we use both the 2SCA and
the 3SCA to generate initial solutions. We run the 2SCA and
the 3SCA five times on each instance, and Table 3 shows
the average objective cost and time to find the first solu-
tion. As expected, the 2SCA finds solutions more quickly
than the 3SCA, but they are generally of lesser quality. The
3SCA is only quicker to find the first solution for one instance
(muni-fsps-spr17), but in this case, both methods require lit-
tle time, with only 39 and 157s for the 3SCA and the 2SCA,
respectively. Conversely, the 2SCA is many hours faster
than the 3SCA for some instances. Instances iku-spr18 and
muni-pdfx-fal17 represent extreme cases, where the 3SCA
is not able to find a single feasible solution within 5 days,
and the 2SCA does so in 21,564 and 5828s, respectively.
For most other instances, the 3SCA produces a solution
of higher quality. The notable exception is the three muni-
fsps instances, where the 2SCA produced better solutions.
These three instances give much greater weight to student
conflicts than all other timetable penalties. Thus, the extra
time spent in the 3SCA on improving the timetable’s qual-
ity without considering students is counterproductive as it
increases the number of student conflicts, which is much
more costly. Additionally, we note that the time-consuming
and challenging part is to find a feasible timetable. For exam-
ple, on bet-fal17, the last stage of building and solving the
student sectioning MIP model for both heuristics requires
less than a minute.

Figure 2 shows the solution values with and without
students for the 2SCA and the 3SCA for instances agh-ggis-
spr17,pu-llr-spr17,muni-fsps-spr17c, andagh-fis-spr17.We

Table 3 An objective and time comparison of the first solution found
by the 2SCA and the 3SCA on all 30 instances. Bold results are the best
objective/time for that instance

Instance 2SCA 3SCA

Objective Time (s) Objective Time (s)

agh-fis-spr17 39,210 6768 27,339 21,315

agh-ggis-spr17 183,854 85 174,288 604

bet-fal17 376,666 42,032 331,940 275,946

iku-fal17 161,312 8208 32,078 69,807

mary-spr17 70,194 53 37,024 210

muni-fi-spr16 16,519 19 9402 116

muni-fsps-spr17 115,797 157 142,878 39

muni-pdf-spr16c 542,507 2209 503,734 51,682

pu-llr-spr17 92,625 83 24,859 138

tg-fal17 30,036 20 9921 22

agh-ggos-spr17 95,185 1305 71,515 3075

agh-h-spr17 64,317 11,304 49,885 13,401

lums-spr18 1892 196 394 804

muni-fi-spr17 16,792 29 10,056 168

muni-fsps-spr17c 506,576 264 751,055 1297

muni-pdf-spr16 288,154 335 132,251 11,688

nbi-spr18 130,939 35 43,151 81

pu-d5-spr17 44,064 139 28,216 321

pu-proj-fal19 564,671 21,398 – –

yach-fal17 18,210 351 18,529 654

agh-fal17 538,236 5807 489,711 25,024

bet-spr18 448,581 7749 391,124 95,225

iku-spr18 188,769 21,564 – –

lums-fal17 2969 233 1128 1151

mary-fal18 29,505 352 12,588 700

muni-fi-fal17 21,462 33 9761 96

muni-fspsx-fal17 845,095 1411 1,015,658 8466

muni-pdfx-fal17 804,202 5828 – –

pu-d9-fal19 327,100 837 107,983 4420

tg-spr18 101,058 14 73,586 19

run both the 2SCA and the 3SCA using a time limit of 24h
and a solution limit of 100 solutions. All plots show that the
2SCA is faster at generating solutions but varies more in the
objective value, which we expected since the first stage of the
2SCA produces timetables without considering any normal
timetable-related objectives. Since the 3SCA does consider
timetable quality, the solutions it produces are ofmore similar
quality, which we see in particular in the plots for agh-ggis-
spr17 and pu-llr-spr17. These two plots also show a great
difference in solution quality between the two algorithms,
especially on pu-llr-spr17, where the 3SCA finds much bet-
ter solutions. The plot formuni-fsps-spr17c shows the special
case where the 2SCA consistently finds better solutions. For
this instance, the 3SCA finds timetables (excluding students)
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with an objective value between 5000 and 10,000 less than
the 2SCA. However, the cost of adding students to these
timetables outweighs these differences. The plot for agh-fis-
spr17 shows how the 3SCA is only able to find three solutions
within the 24-h time limit, as opposed to the 2SCA, which
finds 75. However, these few solutions are of much greater
quality than any produced by the 2SCA.

Although the 2SCA and the 3SCA have varying perfor-
mance for different instances, the general observation is that
the 2SCA is quicker to find solutions but of lower quality than
the 3SCA. These two methods aim to quickly find an initial
solution that the fix-and-optimize search can improve. How-
ever, it is perhaps more beneficial to wait longer for the better
3SCA solution than proceeding with the first 2SCA solution.
To investigate, we run an experimentwherewe allowfix-and-
optimize to run for 24h, minus the time required to produce
the initial solution.

Table 4 shows the averagebest solution found, runningfive
separate fix-and-optimize searches using the initial solutions
of the 2SCA and the 3SCA and the altered running times.We
use the SY and SX neighborhoods to obtain fair results for
the default fix-and-optimize search setting. The 2SCA ini-
tial solution results in the best average solution eight and ten
times for SY and SX , respectively. Similarly, the 3SCA ini-
tial solution yields the best average solution eight and nine
times for SY and SX , respectively. Thus, the results show
no clear superiority between the two initial solution heuris-
tics. For only producing an initial solution, the 2SCA does
so more robustly and quickly, producing an initial solution
for all instances. However, the 3SCA is not without merit, as
there are cases where it provides an initial solution of much
better quality only shortly after the 2SCA, resulting in bet-
ter performance for the following fix-and-optimize search.
Additionally, we use the initial solutions generated as new
initial solutions for fix-and-optimize during diversification,
where it is typically better to use higher-quality solutions.

7.2 Fix-and-optimize processes

Using different heuristics for choosing classes to unfix is only
relevant if these heuristics achieve different results. We com-
pare the chosen classes to remain unfixed from each heuristic
pair, using the same course list as input and extracting 25%
of all instance classes. Table 5 shows the average percent-
age overlap in chosen classes for five different course list
inputs. We expect some overlap because we give the same
input to each heuristic, and all heuristics include all classes
when considering a course. The overlap between the standard
heuristic and the others is approximately 50%. Asmentioned
in Sect. 5.1, the adjacent heuristic is somewhat similar to
the common heuristic, as it focuses mainly on hard distribu-
tion constraints. This similarity leads to an increased overlap,
averaging 72.3% for all instances. Three instances havemore

Fig. 2 Solution values per time for solutions generated by the 2SCA
and the 3SCA on agh-ggis-spr17, mary-fal18, muni-fspsx-fal17 and
agh-fis-spr17
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Table 4 Average best solution
found by fix-and-optimize
processes using 2SCA and
3SCA initial solutions. We run
each fix-and-optimize search for
24h minus the time required to
find the initial solution (shown
in Table 3)

Instance 2SCA 3SCA

SY SX SY SX

agh-fis-spr17 5,156.0 4,518.0 5,536.6 4,337.6

agh-ggis-spr17 46,204.2 46,487.6 49,098.6 46,294.6

bet-fal17 345,482.4 327,404.0 – –

iku-fal17 30,805.2 24,483.8 23,176.0 21,307.4

mary-spr17 16,358.0 15,762.2 15,425.8 15,444.8

muni-fi-spr16 3940.8 3988.4 3,900.8 3937.8

muni-fsps-spr17 870.6 870.2 870.8 868.6

muni-pdf-spr16c 121,942.2 86,645.6 225,511.4 146,454.4

pu-llr-spr17 10,143.0 10,184.6 10,112.2 10,157.0

tg-fal17 4215.0 4215.0 4215.0 4215.0

agh-ggos-spr17 11,381.4 6754.6 14,330.2 7386.6

agh-h-spr17 27,361.6 27,173.6 26,974.8 26,614.2

lums-spr18 99.0 98.2 99.6 95.8

muni-fi-spr17 4227.0 4369.6 4241.4 4,192.8

muni-fsps-spr17c 21,370.2 10,102.8 31,753.0 7,061.0

muni-pdf-spr16 34,173.8 28,103.6 34,709.4 22,231.4

nbi-spr18 18,032.0 18,171.0 18,097.4 18,064.6

pu-d5-spr17 20,366.0 22,321.8 18,108.8 20,009.4

pu-proj-fal19 – – – –

yach-fal17 4353.6 5251.8 4882.0 5260.2

agh-fal17 333,869.4 285,111.6 348,112.6 311,511.6

bet-spr18 390,160.0 389,610.6 – –

iku-spr18 39,325.6 51,181.8 – –

lums-fal17 358.4 358.0 358.0 360.4

mary-fal18 5291.0 5684.8 5,446.4 5313.2

muni-fi-fal17 3531.2 3602.6 3595.0 3575.8

muni-fspsx-fal17 172,442.2 40,678.0 213,343.6 57,734.8

muni-pdfx-fal17 421,507.2 162,142.4 – –

pu-d9-fal19 143,942.6 141,219.0 56,230.2 65,756.0

tg-spr18 12,704.0 12,704.0 12,704.0 12,772.0

Bold results shows the best for that instance

than 90% overlap due to the instances having a large per-
centage of hard constraints used in the conflict graph. For
example, in lums-fal17, 91% of its distribution constraints
are hard and are of types which contribute to the conflict
graph.

To compare neighborhood and algorithmperformance,we
run the fix-and-optimize search using each neighborhood on
all instances. We use the first initial solution available as
shown in Table 3, i.e., the 2SCA solution for all but muni-
fsps-spr17, which uses the 3SCA solution. When solving
subproblems in the fix-and-optimize algorithm, we set the
MIP focus parameter to “feasibility” (MIPFocus=1 for
Gurobi), prioritizing finding feasible solutions quickly. We
compare the fix-and-optimize searches to the fullMIPmodel,
solved using default settings. To have a fair comparison, we

warm-start the MIP solver with the same initial solution. We
run all experiments for 24h and using four threads.

Table 6 shows the average best solutions obtained for each
neighborhood and the full MIP model solver. We run each
test five times and highlight the best results using boldface.
As expected, when comparing fix-and-optimize search and
solving the full MIPmodel, the matheuristic generally yields
much better results. For many instances, the full MIP model
is simply too comprehensive for the solver to handle. All val-
ues marked with an asterisk in the UB column show cases
where theMIP solver found only one or two solutions, where
the first is the initial warm-started solution, and the second
is a heuristic solution found during the pre-solve phase. In
some cases, the solver did not even finish solving the root
node relaxation. However, we also see cases where the MIP
solver produces the best average results, most notably for
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Table 5 Percentage overlap of classes for each neighborhood pair using
the same course list input and extracting 25% of all classes

Instance S–C S–A C–A

agh-fis-spr17 40.6 45.0 72.6

agh-ggis-spr17 45.3 65.3 52.0

bet-fal17 50.6 50.9 86.7

iku-fal17 34.4 33.1 69.3

mary-spr17 48.5 59.5 63.7

muni-fi-spr16 46.0 57.3 62.1

muni-fsps-spr17 45.4 45.8 79.4

muni-pdf-spr16c 37.3 42.3 73.4

pu-llr-spr17 61.9 56.4 55.7

tg-fal17 39.4 27.2 81.1

agh-ggos-spr17 44.2 44.3 83.2

agh-h-spr17 40.1 43.0 85.8

lums-spr18 35.8 37.3 94.0

muni-fi-spr17 59.5 60.5 78.2

muni-fsps-spr17c 57.6 58.7 90.9

muni-pdf-spr16 41.9 42.7 80.2

nbi-spr18 50.7 50.5 85.1

pu-d5-spr17 81.8 84.9 78.9

pu-proj-fal19 68.5 57.9 51.8

yach-fal17 59.6 67.2 71.4

agh-fal17 41.3 54.1 68.1

bet-spr18 47.1 48.3 89.0

iku-spr18 33.7 32.3 61.8

lums-fal17 37.3 38.0 99.1

mary-fal18 55.4 69.9 62.0

muni-fi-fal17 55.1 58.3 69.7

muni-fspsx-fal17 33.7 47.8 44.4

muni-pdfx-fal17 32.9 39.1 58.6

pu-d9-fal19 71.8 72.8 69.6

tg-spr18 27.0 30.8 50.8

Average 47.5 50.7 72.3

instance iku-fal17, where it has substantially better average
performance than the fix-and-optimize searches. Addition-
ally, the lower bound information provided by theMIP solver
is valuable, indicating that we solve at least one instance to
optimality and others with a small optimality gap.

The table also shows that the neighborhoods based on the
standard heuristic generally have better performance than
the others, finding a majority of the best average solutions.
In fact, S-based neighborhoods resulted in the best average
solution on 20 instances, C-based neighborhoods on five
instance, and A-based neighborhoods on nine instances. In
particular, CY and AX have poor performance, finding the
best average solution only on tg-fal17, which all methods
individually solve to optimality. In most cases where either
C or A has the best performance, the solutions of S are not

far behind. The most notable exceptions are pu-d5-spr17,
iku-spr18, and pu-d9-fal19, with gaps of 9.9%, 11.5%, and
13.3%, respectively, between the best-performing S-based
neighborhood and the best-performing neighborhood. For
pu-d5-spr17, the results are relatively stable, as the neigh-
borhood with the largest relative standard deviation (RSD) is
SX , with a value of 3.81%, which is very stable. The results
are less stable for iku-spr18 and pu-d9-fal19, where SX and
AY , result in the largest RSD values of 28.97 and 13.63%,
respectively.

In general, it seems that S-based neighborhoods result
in the best performance of the fix-and-optimize search. The
success of the S heuristic compared to the others may be
because we give all methods an initial solution of low quality
and a relatively short running time, considering that we have
tuned the heuristic to a 10-day run. Perhaps the standard
heuristic is especially good for an initial dive,while the others
are better for thoroughly searching the solution space, once
improving solutions are more difficult to find. Conversely,
C and A may be well suited only for specific cases. For
example, there certainly seems to be a pattern of AY resulting
in good performance onmuni-fi-* and pu-d* instances. In the
future, we could investigate the connection between well-
performing neighborhoods and instance characteristics.

We also see that for a given instance, fix-and-optimizewill
generally have better performance using either xc,t,r or yc,t
for fixing, regardless of the class-choosing heuristic; i.e., if
SX ≥ SY , then we likely have that CX ≥ CY and AX ≥ AY .
It appears that the favorable variable set is mostly related
to the size of the instance and MIP model, such that large
instances achieve better performance using xc,t,r and smaller
instances using yc,t . This separation makes sense, as using
xc,t,r on difficult instances results in more constrained and
more easily solved subproblems. Conversely, using yc,t on
more easily handled problems results in subproblems with a
larger solution space and allows for greater flexibility in the
search.

Finally, for the fix-and-optimize matheuristic, we inves-
tigate the effects of dynamically updating the neighborhood
size throughout the search. We do so by running fix-and-
optimize using different fixed neighborhood sizes (5, 15, 25,
35, and 45%). To limit the number of runs, we settle for
using only the best-performing neighborhood as shown in
Table 6. Table 7 shows the average results of five 24-h runs
compared to the default setting where the size starts at 25%
and is dynamically updated (values taken from Table 6).

The results show that dynamic neighborhood sizes result
in the best performance on nine instances. On the remain-
ing 20 tested instances, a fixed neighborhood size results in
the best performance, with nine instances favoring 15% and
the other 11 instances distributed almost evenly among the
other fixed sizes. However, dynamically updating the size
is almost as good as the best fixed neighborhood size in all
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Table 6 Best average solution and bound values found in 24h

Instance Fix-and-optimize MIP

SY SX CY CX AY AX UB LB

agh-fis-spr17 5380.8 4512.0 5955.0 5173.6 5204.6 5133.6 17,129.0 875.0

agh-ggis-spr17 46,793.6 43,564.2 43,704.0 40,861.4 48,784.4 46,748.6 161,115.0 12,241.6

bet-fal17 323,545.2 309,112.2 348,339.2 327,760.0 345,421.4 327,480.0 375,833.0∗ 21,288.0

iku-fal17 28,848.6 24,355.4 28,594.6 24,134.4 23,164.6 28,287.2 20,256.0 16,151.2

mary-spr17 15,658.2 17,364.2 20,899.2 21,581.8 15,293.6 16,106.2 15,367.6 14,064.0

muni-fi-spr16 3957.0 3942.0 4196.0 4294.4 3852.8 4194.8 14,566.0 3301.0

muni-fsps-spr17 870.8 868.6 2391.2 4268.8 869.2 869.6 868.0 867.0

muni-pdf-spr16c 113,079.2 82,564.2 146,395.4 98,361.8 146,361.2 100,031.8 519,123.0∗ 0.0

pu-llr-spr17 10,183.2 10,221.4 24,925.2 35,823.2 10,119.4 17,643.8 10,057.2 9864.8

tg-fal17 4215.0 4215.0 4215.0 4215.0 4215.0 4215.0 4215.0 4215.0

agh-ggos-spr17 10,122.0 6888.6 13,889.8 9552.4 13,110.4 9695.8 59,472.0 851.0

agh-h-spr17 27,145.6 26,255.8 32,263.4 30,895.6 28,447.0 28,761.0 43,076.0 7222.0

lums-spr18 98.0 98.4 189.4 199.6 122.4 125.6 95.0 24.0

muni-fi-spr17 4371.8 4336.8 5080.8 5338.6 4238.8 4554.4 15,232.0 2249.0

muni-fsps-spr17c 22,234.0 10,531.2 31,002.8 15,592.4 29,360.2 19,485.0 469,457.0 246.0

muni-pdf-spr16 44,524.8 29,486.0 51,321.8 38,663.4 53,810.4 38,900.8 288,154.0∗ 0.0

nbi-spr18 18,073.8 18,096.8 18,284.6 18,323.0 18,105.4 18,337.2 18,181.0 17,646.6

pu-d5-spr17 21,201.6 23,774.6 22,014.0 24,021.2 19,288.0 22,194.4 27,007.0 4474.0

pu-proj-fal19 – – – – – – – –

yach-fal17 3795.0 4444.0 4223.2 5816.0 4011.6 5949.2 16,217.0 514.0

agh-fal17 334,852.6 286,555.2 355,222.6 317,845.4 376,150.4 319,616.4 538,236.0∗ 1125.0

bet-spr18 392,999.2 383,667.6 408,694.4 394,488.6 410,585.0 395,778.6 448,581.0∗ 19,326.0

iku-spr18 38,532.4 39,503.6 37,572.4 34,553.2 36,984.6 39,968.2 35,126.2 20,607.2

lums-fal17 357.6 357.6 464.6 505.6 371.8 371.8 460.6 250.0

mary-fal18 5355.0 6161.8 8763.2 9516.6 5459.8 6605.8 13,783.0 2926.4

muni-fi-fal17 3764.4 3546.8 4346.4 4277.8 3541.4 3582.4 21,462.0∗ 1610.8

muni-fspsx-fal17 170,151.8 44,470.0 177,999.8 104,173.6 165,552.8 142,950.6 804,607.0∗ 1,406.4

muni-pdfx-fal17 402,218.0 170,695.8 461,588.0 219,444.2 490,537.8 248,263.8 778,492.0∗ 0.0

pu-d9-fal19 137,127.2 139,684.2 164,506.8 184,878.0 121,022.4 127,100.8 316,313.0∗ 0.0

tg-spr18 12,704.0 12,704.0 12,908.0 12,704.0 12,704.0 17,900.0 12,704.0 12,389.6

Bold results shows the best for that instance
∗where the MIP solver found no solutions or a single heuristic solution during the presolve phase

cases, achieving the second-best performance on 16 out of
the 20 instances.

Figure 3 shows the solution value progression of a single
comparison run of the dynamic and fixed sizes searches and
the dynamic neighborhood size for instances yach-fal17, tg-
fal17, and agh-ggos-spr17.

The plots for yach-fal17 and tg-fal19 show opposite sit-
uations where fix-and-optimize obtains better results from a
small and large neighborhood size, respectively. On yach-
fal17, 5 and 15% yield the best results, and we see the
dynamic neighborhood gradually reducing its size to a mini-
mum of 5%, which allows it to lag less behind than the other
runs. Conversely, the plot for tg-fal17 shows the dynamic
neighborhood increasing its size to 85%, allowing the fix-

and-optimize search to produce an (optimal) solution costing
4215 in 32 iterations. The searches limited to a fixed neigh-
borhood size havemuchworse performance. Unsurprisingly,
the largest fixed neighborhood of 45% returns the second-
best result, finding a solution costing 4357 in 7799 iterations.

The plot for agh-ggos-spr17 shows a more balanced situ-
ation. For this instance, a fixed size of 15% results in the best
average performance, followed closely by 25% and dynamic
setting. The figure supports this, showing a quick dive in
solution value for most settings but with the 15%, 25%, and
dynamic runs the most persistent. The figure also shows the
dynamic neighborhood size decreasing from the initial 25 to
10%, with a 5% decrease at iterations 7, 15, and 26. Thus,
the dynamic neighborhood size does not quickly decrease but
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Table 7 Best average solution values in 24h for different fixed and dynamic neighborhood sizes

Instance Neighborhood No update Dynamic

5% 15% 25% 35% 45%

agh-fis-spr17 SX 8287.4 5217.6 4559.0 5280.4 6831.0 4512.0

agh-ggis-spr17 CX 51,991.8 42,155.0 42,030.4 45,238.0 57,988.2 40,861.4

bet-fal17 SX 322,693.0 308,225.4 329,497.2 356,191.6 365,520.6 309,112.2

iku-fal17 AY 36,018.6 24,568.8 23,275.6 23,446.0 23,807.4 23,164.6

mary-spr17 AY 18,889.4 15,521.8 15,426.0 15,442.6 15,425.4 15,293.6

muni-fi-spr16 AY 3968.2 3849.8 3819.8 3975.0 7461.8 3852.8

muni-fsps-spr17 SX 1506.4 876.0 872.6 873.0 871.0 868.6

muni-pdf-spr16c SX 134,328.4 75,917.0 85,483.8 107,368.0 141,031.0 82,564.2

pu-llr-spr17 AY 10,345.4 10,237.6 10,168.6 10,108.2 10,176.6 10,119.4

tg-fal17 SY 8506.4 5449.0 4978.8 4707.4 4375.0 4215.0

agh-ggos-spr17 SX 15,577.0 6,381.6 7,338.6 16,328.4 28,663.2 6888.6

agh-h-spr17 SX 29,578.2 26,525.4 26,481.4 24,465.2 26,283.4 26,255.8

lums-spr18 SY 123.6 103.8 101.0 99.6 97.6 98.0

muni-fi-spr17 AY 5060.4 4260.4 4206.8 6421.4 8749.6 4238.8

muni-fsps-spr17c SX 19,699.8 11,174.0 7,136.2 49,897.0 225,230.0 10,531.2

muni-pdf-spr16 SX 65,957.0 34,477.4 28,038.8 53,604.8 93,544.2 29,486.0

nbi-spr18 SY 21,755.8 19,403.8 18,436.4 18,311.2 18,174.2 18,073.8

pu-d5-spr17 AY 20,299.6 19,230.0 21,595.4 24,844.4 34,175.2 19,288.0

pu-proj-fal19 – – – – – – –

yach-fal17 SY 2810.4 2929.2 6684.4 7755.8 7954.8 3795.0

agh-fal17 SX 295,353.4 316,191.4 340,419.0 464,210.4 482,725.0 286,555.2

bet-spr18 SX 386,302.8 381,474.8 403,388.4 422,996.2 441,730.4 383,667.6

iku-spr18 CX 44,922.2 37,993.0 33,326.6 32,575.2 34,089.6 34,553.2

lums-fal17 SY 458.4 384.8 381.6 363.4 357.0 357.6

mary-fal18 SY 7472.8 5130.8 6748.8 9253.2 13,952.2 5355.0

muni-fi-fal17 AY 3474.2 3461.0 3888.0 6232.4 11,294.0 3541.4

muni-fspsx-fal17 SX 124,667.4 39,755.2 57,901.0 298,199.8 491,193.4 44,470.0

muni-pdfx-fal17 SX 254,471.0 147,203.8 201,668.4 279,862.6 715,373.2 170,695.8

pu-d9-fal19 AY 120,455.4 203,953.2 296,574.6 323,173.2 327,100.0 121,022.4

tg-spr18 SY 20,498.0 17,952.8 17,732.4 16,724.8 12,874.0 12,704.0

Bold results shows the best for that instance

strikes some balance, consistent with the 15 and 25% fixed
size having the best performance. In this particular compar-
ison, the searches using the dynamic and 25% fixed sizes
actually end up finding better solutions than the 15% run.

7.3 Solution sharing

In the parallelized matheuristic, we share solutions between
the fix-and-optimize searches and the full MIP model solver
such thatmost computational time can be spentwhere there is
a chance ofmoving the search forward.Doing so is especially
important for fix-and-optimize, where an individual search
may fall behind due to a poor neighborhood fit or misfortune.
By periodically moving the fix-and-optimize search to the
best-known solution, we increase its chance of contributing

to the overall search.While we also continually feed the best-
known solution to the full MIPmodel solver, this is primarily
to help prune nodes in the branch-and-bound tree.

To investigate the effects of solution sharing, we repeat the
experiments of Table 6, with the same settings except that we
include solution sharing. That is, we have five runs with six
fix-and-optimize searches (one for each neighborhood) and
one full MIP model solve for 24h and have them share solu-
tions as described in Sect. 6.2. Table 8 shows the average
results, demonstrating that solution sharing yields better or
similar results compared to no sharing in all cases except one.
The exception is pu-llr-spr17, for which solution sharing in
this experiment resulted in an average best solution value that
is 0.6 worse than no sharing. However, this is a minute differ-
ence, and it is dramatically outweighed by the considerable
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Fig. 3 Solution values and neighborhood size (P) per iteration for the dynamic and fixed neighborhood size fix-and-optimize searches on yach-fal17,
tg-fal17, and agh-ggos-spr17

improvements seen for many other instances. The average
improvement for all instances in the best-found solutionvalue
is 12.2%. This improvement rate is quite significant, espe-
cially considering that we have solved some instances to (or
close to) optimality, and the room for improvement is thus
relatively small. Of the 29 instances considered, 13 saw an
improvement in the best-found solution value of more than
10%.

Table 8 also includes the average best-found lower bounds
of the full MIP solver, for which we see no major change,
with an average improvement of only 0.1%. However, this is
not surprising considering the short running time. Solution
sharing is beneficial for improving the boundwhen new solu-
tions can help prune nodes in the branch-and-bound tree. The
MIP solver begins branching for only nine of the instances.
All others are working in the root node of the tree, some even
still solving the root node linear relaxation. Some instances
achieve a worse lower bound when sharing solutions, which
may be a consequence of the MIP solver spending time
parsing and handling past solutions, resulting in the solver
changing its search strategy. However, given the short run-
ning time and the fact that we do not tune the MIP solver to

focus on improving the lower bound, these results regarding
the change in the lower bound produced are nonessential.

In all, solution sharing improves the overall search speed
and consistently achieves better results within the first 24h.
Furthermore, although we see no improvement in the lower
bound, this would be expected for longer running times.

7.4 Large student sectioning

TheMIP model for pu-proj-fal19 is massive, requiring a sig-
nificant amount of RAM and making it intractable to solve
both the full MIP model and the significantly constrained
MIP model used in fix-and-optimize. To counter this prob-
lem, we introduced some additions that decouple timetable
development and student sectioning. By using these meth-
ods, we can find feasible solutions for pu-proj-fal19. The
additions are invoked for instances with 30,000 students or
more, meaning that pu-proj-fal19 and pu-d9-fal19 are the
only affected instances.

Table 9 shows the best solution values found in 24h using
three different setups on pu-proj-fal19 and pu-d9-fal19 five
times. The tested setups are as follows. The default paral-
lelized matheuristic where we run the 2SCA, the 3SCA, six
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Table 8 Best solution and
bound values found in 24h with
and without solution sharing

Instance No sharing Sharing Improvement (%)

UB LB UB LB UB LB

agh-fis-spr17 4512.0 875.0 3631.2 875.0 19.5 0.0

agh-ggis-spr17 40,861.4 12,241.6 38,772.6 12,146.0 5.1 −0.8

bet-fal17 309,112.2 21,288.0 305,422.0 21,288.0 1.2 0.0

iku-fal17 20,256.0 16,151.2 19,227.0 16,166.2 5.1 0.1

mary-spr17 15,293.6 14,064.0 14,927.2 14,026.4 2.4 −0.3

muni-fi-spr16 3852.8 3301.0 3831.6 3279.8 0.6 −0.6

muni-fsps-spr17 868.0 867.0 868.0 867.2 0.0 0.0

muni-pdf-spr16c 82,564.2 0.0 62,797.2 0.0 23.9 0.0

pu-llr-spr17 10,057.2 9864.8 10,057.8 9905.4 0.0 0.4

tg-fal17 4215.0 4215.0 4215.0 4215.0 0.0 0.0

agh-ggos-spr17 6888.6 851.0 4,854.2 851.0 29.5 0.0

agh-h-spr17 26,255.8 7222.0 22,601.0 7222.0 13.9 0.0

lums-spr18 95.0 24.0 95.0 19.8 0.0 −17.5

muni-fi-spr17 4238.8 2249.0 3972.4 2255.0 6.3 0.3

muni-fsps-spr17c 10,531.2 246.0 4,340.6 246.0 58.8 0.0

muni-pdf-spr16 29,486.0 0.0 23,496.6 0.0 20.3 0.0

nbi-spr18 18,073.8 17,646.6 18,015.2 17,663.0 0.3 0.1

pu-d5-spr17 19,288.0 4474.0 18,214.4 4474.0 5.6 0.0

pu-proj-fal19 – – – – – –

yach-fal17 3795.0 514.0 2213.4 514.6 41.7 0.1

agh-fal17 286,555.2 1125.0 269,101.4 1125.0 6.1 0.0

bet-spr18 383,667.6 19,326.0 373,840.2 19,326.0 2.6 0.0

iku-spr18 34,553.2 20,607.2 27,684.0 20,360.0 19.9 −1.2

lums-fal17 357.6 250.0 349.8 250.6 2.2 0.2

mary-fal18 5355.0 2926.4 4640.8 2901.0 13.3 −0.9

muni-fi-fal17 3541.4 1610.8 3173.4 1591.0 10.4 −1.2

muni-fspsx-fal17 44,470.0 1406.4 33,306.6 1,758.0 25.1 25.0

muni-pdfx-fal17 170,695.8 0.0 143,734.2 0.0 15.8 0.0

pu-d9-fal19 121,022.4 0.0 90,635.2 0.0 25.1 0.0

tg-spr18 12,704.0 12,389.6 12,704.0 12,299.2 0.0 −0.7

fix-and-optimize, and one fullMIP solve and include solution
sharing. LSS has the 2SCA and the 3SCA skipping student
sectioning, two fix-and-optimize improving those solutions
(ignoring student sectioning), and fiveASST adding students
to the timetables produced. The last setup is “Default+LSS,”
in which we combine the two, such that we also include the
six fix-and-optimize searches and the full MIP solver.

The best solutions produced for pu-proj-fal19 using the
LSS setup vary somewhat in solution value; the average value
is 204,011.2, but the greatest difference is 30,963. The solu-
tions found for pu-d9-fal19 using LSS are more consistent
(the largest difference is 6017) but of much worse quality
than those produced by the other setups. For pu-d9-fal19, we
observe a slight benefit to using the default setup without
the addition of LSS, with average best-found solution val-
ues of 48,333.4 and 52,748.6, respectively. We explain the

difference due to the high quality of the first initial solution
found by the 3SCA, which costs on average 107,983 and
is found after 4420s. In the default setup, this initial solu-
tion is significantly better than any solution found so far, and
due to solution sharing, the fix-and-optimize searches soon
afterward “jump” to this solution and continue the search
from a much better solution. When using the LSS methods,
the 3SCA skips the last stage of adding students, which the
ASST methods instead handle. However, since the ASST
methods prioritize investigating solutions produced by the
specialized fix-and-optimize searches (that ignore students),
the excellent 3SCA solution never has students added. Thus,
the collective search does not have a chance for the same
initial significant dive and instead has a more uniform search
progression. However, it is interesting that the differences are
almost negated within the 24-h time limit.
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Table 9 Best solutions found for five runs of 24h on the pu-proj-fal19
and pu-d9-fal19 instances using different setups

Run pu-proj-fal19 pu-d9-fal19

LSS Default LSS Default+LSS

1 188,892 48,348 88,598 53,147

2 219,855 46,147 94,615 53,540

3 199,040 49,657 92,027 50,449

4 198,095 48,449 88,799 54,781

5 214,174 49,066 89,305 51,821

Average 204,011.2 48,333.4 90,668.8 52,747.6

Finally, we note that the three tested setups for pu-d9-
fal19 achieved comparable or better results than those shown
in Table 8, which is because those tests use the much worse
2SCA initial solution. It is noteworthy that given a time frame
of 24h, the LSS setup alone, i.e., methods designed to pro-
duce initial solutions, achieve the same solution quality as
the default setup limited to using the weaker 2SCA initial
solution.

7.5 Full setup with diversification

Here, we run the complete setup on all instances for a total
of 10 days, closely mimicking the setup used during the final
part of the competition. That is, we run the 2SCA and the
3SCA producing up to 200 initial solutions (both using four
threads), a single MIP solver focusing on improving bound
(using four threads instead of the 16 used in the competition),
and six fix-and-optimize processes (each using a different
neighborhood and four threads). Additionally, for pu-proj-
fal19 and pu-d9-fal19, we include the LLS setup. However,
compared to the process during the competition, we use dif-
ferent computers and MIP model solver as described at the
beginning of Sect. 7.

Table 10 shows the results of a single 10-day run of
the complete parallelized matheuristic on all competition
instances. We show both the best-known solution after the
first 24h and 10 days and the lower bound provided by
the MIP solver. The algorithm has solved three instances
to proven optimality and six other instances to an optimality
gap of less than 5%. There are also instances where there is
little to no difference between the best-known solution after
24h and 10 days. However, there are a few difficult instances
for which there is considerable improvement after the initial
24h.

To investigate the effects of diversification, we exam-
ine the progression of solution values per time. Figure 4
shows such plots for instances agh-h-spr17, iku-spr18, and
agh-fal17, respectively. The search stagnates and begins
diversification for the first two instances. Note that since fix-

and-optimize uses all heuristics for choosing classes while
diversifying, the plots do not reflect the actual heuristic used
during diversification but keep their original format for clar-
ity.

For agh-h-spr17, the parallelized matheuristic enters
diversification twice during the search. The best solution
of the initial dive is found after approximately 78h, with
an objective value of 22,372. Diversification begins 12h
later, and at approximately 126h (36h into diversifica-
tion), the search finds a new best-known solution with an
objective value of 22,350. As seen in the figure, all fix-
and-optimize searches reset to this solution and continue a
collaborated search. The fix-and-optimize searches collabo-
ratively improve the solution 84 times during the next 48h,
before once again stagnating (at a solution costing 21,559),
resulting in a new diversification search that does not find
any improving solutions for the remaining 54h. However, the
first diversification search indeed helped to move the search
forward.

The searchon iku-spr18 showsclose collaborationbetween
the fullMIP solver and the fix-and-optimize searches and that
the full MIP solver can be extremely effective for pushing
the search forward once improving solutions become chal-
lenging to find. The fix-and-optimize searches collectively
enable rapid improvement of the initial solution, and after
approximately 19h, the full MIP solver processes its first
best-known solution. From then on, the MIP solver and the
fix-and-optimize searches all slowly improve upon the best-
known solution. The fix-and-optimize searches find their last
improving solution after 122h, but the full MIP solver pro-
duces two additional improving solutions. The best-known
solution of the initial dive was found after 129h with a value
of 25,875, and at that time, the best-known lower bound was
25,621, resulting in a relative optimality gap of 0.98%. The
fix-and-optimize searches then enter the diversificationmode
but do not produce any new best-known solution. Instead, at
approximately 215h into the run, the full MIP solver alone
pushes the search forward, finding a newbest-known solution
(costing 25,865). Since the best-known solution is improved,
the fix-and-optimize searches stop diversification and resume
the search from the solution. Shortly afterward, the full MIP
solver again improves the best-known solution (to 25,864),
providing a new solution for the fix-and-optimize searches to
use. Still, they cannot produce improving solutions and begin
diversifying again after approximately 232h. However, the
full MIP solver alone improves the best-known solution once
more, and the fix-and-optimize searches begin intensifica-
tion from that solution for the remaining time. In summary,
this 10-day run of the parallelized matheuristic on iku-spr18
resulted in a solution costing 25,863 and a lower bound of
25,752, yielding a relative optimality gap of 0.43%.

The search on agh-fal17 does not begin diversification
within the 10-day running time. Instead, the search pro-
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Fig. 4 Solution values per time using the complete parallelized matheuristic with diversification for 10 days on agh-h-spr17, iku-spr18, and
agh-fal17
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Table 10 Results of a single
10-day run of the complete
parallelized matheuristic on all
competition instances

Instance Best solution Lower bound Gap (%)

24h 10 days

agh-fis-spr17 3463 3094 1336 56.8

agh-ggis-spr17 38,026 35,147 16,556 52.9

bet-fal17 319,059 290,127 22,248 92.3

iku-fal17 19,498 18,989 18,069 4.8

mary-spr17 14,924 14,922 14,289 4.2

muni-fi-spr16 3766 3764 3602 4.3

muni-fsps-spr17 868 868 868 0.0

muni-pdf-spr16c 66,812 35,731 0 100.0

pu-llr-spr17 10,055 10,038 10,010 0.3

tg-fal17 4215 4215 4215 0.0

agh-ggos-spr17 4652 3237 1577 51.3

agh-h-spr17 23,883 21,559 7705 64.3

lums-spr18 95 95 24 74.7

muni-fi-spr17 3845 3796 2478 34.7

muni-fsps-spr17c 3777 2780 1360 51.1

muni-pdf-spr16 22,533 19,320 10,402 46.2

nbi-spr18 18,014 18,014 17,924 0.5

pu-d5-spr17 17,731 15,842 5923 62.6

pu-proj-fal19 219,832 178,135 0 100.0

yach-fal17 1717 1410 516 63.4

agh-fal17 261,826 140,194 1125 99.2

bet-spr18 375,677 350,410 61,821 82.4

iku-spr18 28,436 25,863 25,752 0.4

lums-fal17 349 349 252 27.8

mary-fal18 4546 4331 3385 21.8

muni-fi-fal17 3199 3129 1786 42.9

muni-fspsx-fal17 36,461 12,390 6328 48.9

muni-pdfx-fal17 138,916 84,703 0 100.0

pu-d9-fal19 47,938 39,251 0 100.0

tg-spr18 12,704 12,704 12,704 0.0

gresses slowly, and progressive improvements are visible in
the plot until the end. No bound data are available, as theMIP
did not finish solving the root node linear relaxation. Thus,
on large instances like agh-fal17, the collaborative fix-and-
optimize searches are essential for the complete parallelized
matheuristic to produce high-quality solutions. In this run,
the fix-and-optimize searches start from an initial solution
costing 538,236 and produce a solution costing 140,194.

8 Conclusion

We have proposed a parallelized matheuristic for the ITC
2019 problem. The combined approach uses multiple differ-
ent methods, all using the graph-based MIP model detailed
by Holm et al. (2020). We use two different construc-

tive heuristics to quickly find an initial solution and find
additional solutions for future diversification. We run mul-
tiple fix-and-optimize searches in parallel and solve the
full MIP model to obtain bounding information, continu-
ally sharing the best-known solution between each search
to push the search forward more quickly. We have also
proposed a diversification scheme which the parallelized
matheuristic invokes when the search stagnates. Addition-
ally, we have implemented a unique setup for instances
with a considerable number of students, which decouples
class assignments and student sectioning to find initial solu-
tions.

Computational results show that the implemented fix-
and-optimize matheuristic performs well in advancing the
search. We investigated several aspects of fix-and-optimize,
including the effects of the initial solution, the neighbor-

123



450 Journal of Scheduling (2022) 25:429–452

hood, and dynamically updating the neighborhood size.
We could not determine any definitive best initial solution
heuristic but found that the choice of neighborhood and
dynamically updating its size is essential for excellent per-
formance.

Experiments also show that collaboration between mul-
tiple fix-and-optimize searches and the full MIP model
solver is especially helpful in moving the search forward.
Sharing solutions resulted in better performance on all but
one instance compared to no solution sharing. The inclu-
sion of a unique setup for instances with a large student
sectioning was also beneficial. This addition enables the par-
allelized matheuristic to find feasible solutions on instances
like pu-proj-fal19, which proved too memory-intensive for
the other methods used. However, for the other affected
instance (pu-d9-fal19), it provided no benefit. We also ran
the complete parallelized matheuristic for 10 days, show-
casing situations where the diversification scheme helped
move an otherwise stuck search forward. Additionally, on
the iku-spr18 instance, this experiment showed a situation
where the fix-and-optimize searches were likely incapable
of moving the search forward but where the full MIP
model solver did, further validating the solver’s inclu-
sion.

The proposed parallelized matheuristic has proved to be
a competitive solution approach to the problem posed in the
ITC 2019. It can find solutions for all competition instances,
with some even to proven optimality. The merit of the
approach is further attested to by the fact that it is the win-
ning algorithm of the ITC 2019. In Appendix 1, we show the
objective values of our submitted solutions and bounds at the
time of writing.1

8.1 Future research

Although the parallelized matheuristic was proven to per-
form well, we have identified some immediate avenues for
improvement, which we should address in future research.

We can improve the performance of an individual fix-and-
optimize search by refining how it dynamically updates its
neighborhood size. We should allow it to update the neigh-
borhood size more fluidly and with smaller/larger changes
than the implemented fixed increase/decrease of 5%. Fur-
thermore, the algorithm should try to set an appropriate
initial neighborhood size based on the instance instead of
using a fixed initial size of 25%. In particular for very
hard instances, this leads to wasted time, as the algorithm
has to spend several iterations decreasing the neighborhood
size to an appropriate level. Additionally, it might be a
good idea to dynamically update other algorithm param-
eters during the search, especially the subproblem’s time

1 An updated table is available at https://dsumsoftware.com/itc2019/.

limit. For example, in cases where the algorithm converges
and it becomes more challenging to find improving solu-
tions, the algorithm should be given more time to thoroughly
explore each subproblem. In such cases, the neighbor-
hood size updating heuristic could also use other criteria
for making decisions. For example, when the search con-
verges toward the optimal solution, an initial low gap is
unavoidable and should not be used in the decision-making
process.

We can improve the complete parallelized matheuristic
by further developing the diversification scheme. In the cur-
rent implementation, the fix-and-optimize processes simply
search individually and hope to find a new best-known solu-
tion, an approach that is somewhat dependent on randomness.
Perhaps it would be beneficial to divide diversification into
two phases. First, each fix-and-optimize would search indi-
vidually and produce some high-quality solutions, and in
phase 2, the fix-and-optimize processes would start shar-
ing solutions again, using the potential solutions from phase
1 as starting points. Another interesting option is applying
methods like path relinking (Glover et al. 2000) to combine
high-quality solutions andusing the results for further search-
ing.

However, another option is to dedicate a single fix-and-
optimize process to generating high-quality diversification
solutions from the beginning. Then, once diversification is
necessary, the other fix-and-optimize processes use these
solutions instead of random initial solutions. Saviniec et
al. (2018) describes such an approach for the high school
timetabling problem, and it achieves state-of-the-art perfor-
mance.

Each fix-and-optimize search uses only a single neigh-
borhood during the default intensification search in our
implementation. Solution sharing is one approach for coun-
tering problems resulting from such a rigid setting. Another
option is to look into each search using multiple or all
neighborhoods, and then to adaptively update how often it
uses each neighborhood, similar to an adaptive large neigh-
borhood search (Røpke and Pisinger 2006). That way, the
fix-and-optimize search uses neighborhoods that consistently
move the search forward more often than the underperform-
ing neighborhoods. Such a design should help find better
solutions more quickly.

We tried decomposing the problem into class assignments
and student sectioning for instances with 30,000 or more
students. This affected two instances: pu-proj-fal19 and pu-
d9-fal19. For pu-proj-fal19, the decomposition proved to be
invaluable, but it provided no benefit for pu-d9-fal19. Per-
haps the number of students should not be the only deciding
factor for determiningwhen to use this decoupling. For exam-
ple, the search on agh-fal17 showed moderate progression
after many days of running the full parallelized matheuris-
tic, indicating that it is an especially challenging instance to
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solve. This instance is also substantial (has the largest number
of classes besides pu-proj-fal19) and could perhaps benefit
from the same decoupling, even though it has “only” 6925
students. Additionally, we would like to examine other forms
of problem decomposition.

Finally, we should also investigate how to improve the col-
laboration between search methods. Experiments show that
solution sharing on average improves performance given a
24-h time frame. However, we could investigate more bal-
anced collaboration. For example, in the experiment where
we run the algorithm for 10 days on agh-h-spr17 (see Fig. 4),
we see a case where no collaboration yielded a better result
more quickly. The initial dive of the search took about 78h,
with very slow progression after the first 36h, meaning that
the algorithm spends about 42h on only very slight improve-
ments. However, when the search begins diversifying and
each fix-and-optimize searches individually, the algorithm
finds a better solution in only 36h. Therefore, we could
investigate obtaining a better balance between intensification
and diversification instead of simply turning solution sharing
(collaboration) on or off.

Appendix A: Our submitted solutions and
bounds

Table 11 shows the results submitted during the competi-
tion, the 10-day results from Sect. 7.5 (Table 10), and our
best-known lower bounds. During the competition, we pro-
duced the results for the Late instances using the described
parallelized matheuristic with the precise setup detailed in
Sect. 6.5. Since the competition organizers published theLate
instances 10 days before the deadline, we know that we pro-
duced our submitted results in less than that. However, we
cannot say anything for sure regarding the time to produce
our other results. The competition organizers released the
Early and Middle instances earlier during the competition,
and we have developed the parallelized matheuristic and its
components using those instances. Consequently, we have
often used previously found solutions for warm-startingMIP
solvers and as initial solutions for fix-and-optimize searches
and different parameter settings for our methods, including
the number of cores.

Therefore, for comparison, Table 11 also shows the results
of the 10-day runs produced for this paper. Here, we use
hardware and software slightly different from what we used
during the competition. Comparing the 10-day and competi-
tion results, we see that the presented parallelized algorithm
can produce solutions comparable to those submitted in the
competition on all instances.

Finally, the table also reports our best-known lower
bounds, some of which we have produced with methods not
discussed in this paper. Using these lower bounds, we see

Table 11 An overview of the best solution we submitted during the
competition, the results of the single 10-day run (Table 10), and our
best-known lower bounds

Instance Best solution Lower bound

Competition 10-day run

agh-fis-spr17 3081 3094 1336

agh-ggis-spr17 35,808 35,147 23,164

bet-fal17 290,086 290,127 89,278

iku-fal17 18,968 18,989 18,021

mary-spr17 14,910 14,922 14,359

muni-fi-spr16 3756 3764 3602

muni-fsps-spr17 868 868 868

muni-pdf-spr16c 36,487 35,731 14,279

pu-llr-spr17 10,038 10,038 10,038

tg-fal17 4215 4215 4215

agh-ggos-spr17 3055 3237 1982

agh-h-spr17 23,502 21,559 8,945

lums-spr18 95 95 24

muni-fi-spr17 3825 3796 2500

muni-fsps-spr17c 2596 2780 1361

muni-pdf-spr16 18,151 19,320 13,008

nbi-spr18 18,014 18,014 18,014

pu-d5-spr17 15,910 15,842 6981

pu-proj-fal19 148,016 178,135 54,872

yach-fal17 1239 1410 516

agh-fal17 186,200 140,194 5,728

bet-spr18 348,589 350,410 63,444

iku-spr18 25,878 25,863 25,781

lums-fal17 349 349 254

mary-fal18 4423 4331 3496

muni-fi-fal17 2999 3129 1890

muni-fspsx-fal17 17,074 12,390 7,747

muni-pdfx-fal17 117,412 84,703 26,711

pu-d9-fal19 43,006 39,251 28,000

tg-spr18 12,704 12,704 12,704

that we solved five instances to optimality both during the
competition and in the 10-day runs.
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