
Journal of Scheduling (2022) 25:3–34
https://doi.org/10.1007/s10951-021-00710-w

Twin-crane scheduling during seaside workload peaks with a
dedicated handshake area

Lennart Zey1 · Dirk Briskorn1 · Nils Boysen2

Accepted: 7 September 2021 / Published online: 15 October 2021
© The Author(s) 2021

Abstract
To enable the efficient division of labor in container yards,many large ports apply twin cranes, two identical automated stacking
cranes each dedicated to one of the transfer zones on the seaside and landside. The use of a handshake area, a bay of containers
that separates the dedicated areas of the two cranes, is a simple means to avoid crane interference. Inbound containers arriving
in the transfer zone of one crane and dedicated to a stacking position of the other crane’s area are placed intermediately in the
handshake area by the first crane and then taken over by the second crane, and vice versa for outbound containers. Existing
research only evaluates simple heuristics and rule-based approaches for the coordination of twin cranes interconnected by
a handshake area. For this setting, accounting for precedence constraints due to stacking containers in the handshake area,
we derive exact solution procedures under a makespan minimization objective. In this way, a comprehensive computational
evaluation is enabled, which benchmarks heuristics with optimal solutions and additionally compares alternative crane settings
(i.e., without workload sharing and cooperation with flexible handover). We further provide insights into where to position
the handshake area. Our results reveal that when planning is too simple (i.e., with a rule-based approach), optimality gaps
become large, but with sophisticated optimization, the price of a simplified crane coordination via a handshake area is low.

Keywords Port operations · Container logistics · Twin cranes · Crane scheduling

1 Introduction

Economies of scale in transportation coupled with modern,
more fuel-efficient engines have led to increased ship sizes.
In 2017, the largest container ships surpassed the 20,000

The authors have been supported by the German Research Foundation
(DFG) through the grant “Scheduling mechanisms for rail mounted
gantries with respect to crane interdependencies” (BR 3873/7-1).

B Lennart Zey
zey@wiwi.uni-wuppertal.de
http://www.prodlog.uni-wuppertal.de/

Dirk Briskorn
briskorn@wiwi.uni-wuppertal.de
http://www.prodlog.uni-wuppertal.de/

Nils Boysen
nils.boysen@uni-jena.de
http://www.om.uni-jena.de/

1 Bergische Universität Wuppertal Professur für BWL,
insbesondere Produktion und Logistik, Gaußstraße 20, 42119
Wuppertal, Germany

2 Friedrich-Schiller-Universität Jena Lehrstuhl für Operations
Management, Carl-Zeiß-Straße 3, 07743 Jena, Germany

TEU (twenty-foot equivalent unit) capacity mark, and the
currently largest vessels, theMSCGülsün and its sister ships,
transport up to 23,756 TEU (Schuler, 2019). Any additional
hour of berth time in a port causes tremendous opportunity
costs for these mega vessels. Thus, to keep these profitable
ships returning, there is fierce competition among ports to
offer the best cost–performance ratio to the shipping com-
panies. To enable efficient port processes, all subsystems,
starting with the huge quay cranes at the seaside, the inter-
mediate storage yards for containers, up to the hinterland
access (e.g., toward the railway system), and the automated
guided vehicles (AGVs) or yard trucks connecting these sub-
systems, have to contribute. These subsystems, arranged in
the so-called European setup with container blocks posi-
tioned perpendicular to the quay (Carlo et al., 2014a), are
depicted in Fig. 1.

This paper focuses the storage yard subsystem, which has
to ensure that it is not the bottleneck of the whole process,
especially during peak hours with huge vessels berthed. Note
that the great impact of an efficient crane operations sched-
ule on total performance has for instance been shown by the
extensive simulation study provided by Speer and Fischer

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-021-00710-w&domain=pdf
http://orcid.org/0000-0001-8329-4320

4 Journal of Scheduling (2022) 25:3–34

Fig. 1 Schematic layout of a container terminal

(2017). A storage yard is subdivided into multiple blocks of
containers each spanned by one ormultiple automated gantry
cranes. Figure 1 depicts container blocks each operated by
two identical twin cranes, which is a common configura-
tion in many ports worldwide [e.g., at Euromax terminal
(Rotterdam) (Carlo et al., 2014a), Port of Virginia (Norfolk)
(Briskorn et al., 2016), or Yangsha Terminal (Shanghai) (Hu
et al., 2016)]. In this paper, we focus on a single container
block operated by twin cranes during peak hours. In this crane
configuration, the two identical cranes cannot pass eachother,
so that each of them exclusively serves one of the access
points, also known as transfer points or input/output (I/O)
points, at the seaside and landside, respectively.

During seasideworkload peaks with huge vessels berthed,
efficiently storing and retrieving inbound and outbound con-
tainers unloaded from ships and to be loaded onto them,
respectively, is of utmost importance. To increase the con-
tainer throughput during these peak times, the landside crane,
although being blocked from direct access to the seaside
transfer point, should support the seaside crane and share
some of the workload. Cooperation between twin cranes is
enabled if the seaside crane takes over an inbound container
at the seaside access point but, instead of directly deliver-
ing the container toward its dedicated storage position in
the block, places the box in an intermediate storage position
between the seaside access point and final storage position.
Then, the seaside crane can prematurely return to the sea-
side access point, whereas the landside crane completes the
previous container move and delivers the box from its inter-
mediate storage position to its dedicated storage position.
We call this type of cooperation, where any open storage

position is a potential intermediate storage position for a con-
tainer move subdivided into two legs operated by different
cranes, any-bay handover. Sophisticated scheduling proce-
dures coordinating twin cranes with any-bay handover have,
for instance, been introduced by Briskorn et al. (2016), Jaehn
and Kress (2018) and Kress et al. (2019).

Because of the interference of the twin cranes when hand-
ing over boxes in arbitrary bays, these scheduling approaches
are very challenging optimization tasks, especiallywhen exe-
cuted in a real-time environment where any change in the
input data requires an (almost) instantaneous plan adaptation.
Furthermore, monitoring the execution of such schedules
in the real world, for example to avoid collisions, is more
complicated if neither crane has a dedicated operating area.
Consequently, in order to reduce this type of organizational
complexity, a separation of blocks into dedicated crane areas
interconnected by a so-called handshake area (see Fig. 2)
has been discussed in the literature, e.g., Gharehgozli et
al. (2017), XiaoLong et al. (2019), and is reported to be
applied, for instance, in the port of Rotterdam (Carlo &
Vis, 2010) and in practice in general (Dell et al., 2009).
A handshake area restricts the handover of containers to a
fixed, predefined bay within each block. Each crane has its
dedicated area, which it operates exclusively without inter-
ference, and only when entering the handshake area to hand
over or take over a container is it necessary to ensure that
the cranes try not to do so simultaneously. Most scheduling
approaches prioritize cranes simultaneously claiming access
to the handshake area by simple decision rules, for example,
by giving preference to the crane with the larger remaining
workload (Gharehgozli et al., 2017). Consequently, existing

123

Journal of Scheduling (2022) 25:3–34 5

Fig. 2 Schematic layout of a container block with twin cranes and a handshake area

research on handshake areas has mainly evaluated differ-
ent rules for prioritizing cranes (Carlo &Martínez-Acevedo,
2015) embedded into simple heuristics for sequencing the
container moves per crane in simulation studies (Gharehgo-
zli et al., 2017; XiaoLong et al. 2019).

The organizational complexity of container handling is
reduced when restricting handovers to a handshake area,
because collisions can occur only in this area. This facil-
itates collision avoidance and interference handling. The
scheduling task is further simplified because there is much
less flexibility in the choice of where to hand over a con-
tainer from one crane to another. Hence, the solution space
decreases. Even with a handshake area, however, schedul-
ing cooperative twin cranes and avoiding their interference
in the shared area remains a complex and challenging opti-
mization task. This paper introduces three alternative branch
and bound approaches to solve the resulting optimization
problem to optimality. Once a suitable exact solution proce-
dure is available (and proven to solve instances of practical
size), for the first time, we can quantify the price for planning
simply. By benchmarking the simple rule-based approaches
commonly applied in real-world terminals with our optimal
algorithms, the optimality gaps of these simple rules can be
quantified. Furthermore, we benchmark the application of a
handshake area with an any-bay handover. In this way, prac-
titioners under high competitive pressure to ensure fast and
reliable container handling processes, especially during sea-
side workload peaks, receive some decision support on how
to operate their twin cranes efficiently.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews the related literature. Section 3 defines our
optimization problem (i.e., twin crane scheduling with a
handshake area) and states its computational complexity.
Three alternative branch and bound procedures are intro-
duced inSect. 4.Our computational study presented in Sect. 5
is subdivided into three parts. First, we evaluate the computa-
tional performance of our solution algorithms (see Sect. 5.1).

We also explore where to position the handshake area under
seaside workload peaks (see Sect. 5.2). We then benchmark
our sophisticated optimization approaches with simple rule-
based solution methods taken from the literature and with
any-bay handover in Sect. 5.3. Finally, Sect. 6 concludes the
paper.

2 Literature review

Ocean-based container transport is the backbone of a glob-
alized society. Therefore, it is anything but surprising that a
huge body of scientific literature on container transport and
port operations has accumulated during the past decades.
Instead of trying to summarize this vast field, we only
refer to the latest survey papers on port operations in gen-
eral (Stahlbock & Voß, 2008; Steenken et al., 2004; Vis &
de Koster, 2003), and on seaside operations (Bierwirth &
Meisel, 2015; Carlo et al., 2015), intermediate storage in con-
tainer yards (Carlo et al., 2014b), ground container transport
in ports (Carlo et al., 2014c), and hinterland railway access
(Boysen et al., 2013) in particular.

We concentrate our literature survey on workload sharing
of multiple cooperative cranes in container yards. Cooper-
ation is, obviously, not given if only a single gantry crane
operates a container block. Crane scheduling approaches
for this setting are provided for instance by Gharehgozli
et al. (2014b) and Boysen and Stephan (2016). But twin
cranes (without handshake area or any-bay handover) where
one crane is fixedly assigned to all seaside-related con-
tainer moves and the other to all landside-related moves,
so that crane scheduling has to avoid interference whenever
both cranes meet (e.g., see Boysen et al., 2015; Briskorn &
Angeloudis, 2016; Gharehgozli et al., 2014a; Kovalyov et al.,
2018), also do not cooperate in the strict sensewe presuppose
in this paper. Cooperation between cranes requires that there
is (at least some) flexibility in the assignment of container

123

6 Journal of Scheduling (2022) 25:3–34

moves to cranes, so that by varying these assignments the
division of labor between cranes can be altered. This kind
of cooperation, which is especially valuable during seaside
workload peaks, can be achieved by the following settings:

• Front evasion By extending the transfer points at both
ends of a container block (and the rail tracks rail-mounted
gantry cranes move on), transfer point access even for
the remote twin crane is enabled (see Fig. 1(right)). This
requires that the blocking crane always gives way and
moves to the foremost position of the transfer pointwhen-
ever the remote crane has to receive or supply a container
to a subsequent position that is still part of the transfer
point. This type ofworkload sharing has rarely been stud-
ied. The simulation study of Gharehgozli et al. (2017)
where cranes are steered by simple rule-based heuris-
tics indicates that a front evasion leads to a slightly better
throughput performance than applying a handshake area.
More elaborate heuristics and a mixed-integer program-
ming (MIP) model are presented by Emde and Boysen (
2014).

• Cross-over cranes Instead of applying two identical-
sized twin cranes, some terminals apply two different-
sized cranes, for example, CTA Altenwerder terminal
(Hamburg), or even triple (i.e., two small twins spanned
by one large crane) cross-over cranes, such as CTB Bur-
chardkai terminal (Hamburg) (Kemme, 2012).Acrossing
of different-sized cranes is possible if the trolley of the
larger crane is moved to the crossing position located
at the side of the large crane, beyond the profile of the
small one. In this way, both transfer areas can be reached
by multiple cranes, and workload sharing is enabled. A
simulation studywith simple rule-based approaches com-
paring these different crane configurations is provided
by Kemme (2012). More sophisticated optimization
approaches coordinating two cross-over cranes are, for
instance, introduced by Briskorn (2021), Briskorn and
Angeloudis (2016) and Nossack et al. (2018). Schedul-
ing procedures for triple cross-over cranes are provided
by Briskorn and Zey (2018) and Dorndorf and Schneider
(2010).

• Any-bayhandoverWorkload sharingbetween twin cranes
can be enabled by a preemptive container processing,
which means that one crane receives a container at its
dedicated access point and moves the box to an interme-
diate storage position where the other crane takes over.
Any-bay handover allows intermediate storage wher-
ever empty stacking space in the block can be found.
Thus, optimization procedures scheduling a preemptive
container processing of cooperative twin cranes must
additionally decide on appropriate intermediate storage
positions or alternatively whether a single crane should
execute the move un-preempted. A heuristic procedure

based on the famous bucket-brigade protocol (Bartholdi
& Eisenstein, 1996) is provided by Briskorn et al. (2016).
Their approach is extended by Jaehn and Kress (2018).
They consider the case where in addition to a given
sequence of seaside-related container moves, a sequence
of landside-related operations occurs. An exact solution
procedure for this optimization task is introduced by
Kress et al. (2019).

• Handshake area In this paper, we only allow intermediate
storage of containers processed in a preemptivemode in a
dedicated area, the handshake area. Carlo and Martinez-
Acevedo (2015) consider 14 different priority rules for
avoiding interference of cranes in the handshake area
if both cranes claim access simultaneously. They com-
pare these rules with a branch and bound procedure and
identify some rules that lead to small optimality gaps
well below 5%. Their study, however, assumes given
sequences of container moves, which removes much of
the complexity from the scheduling task. Deciding on
the sequences of container moves is integrated into the
solution approaches of Gharehgozli et al. (2017) and
XiaoLong et al. (2019). Both apply a rule-based avoid-
ance of crane interference in the handshake area and
integrate them into straightforward heuristics determin-
ing the sequences of container moves. The optimality
gaps of these approaches are not quantified.

This paper is the first to derive exact solution approaches
for scheduling the cooperation of twin cranes with a hand-
shake area. The finding of our own literature search is
supported by the recent survey paper on crane scheduling
with interference by Boysen et al. (2017), who also establish
a gap in the literature here.

Note that another lever to equally distribute the work-
load between cranes is the storage assignment decision,
which either assigns each inbound container an initial stor-
age position in the block after arrival or reassigns a container
during restacking, typically executed during off-peak hours.
By assigning storage positions closer to either the seaside
or landside, the workload division between twin cranes is
affected. A survey paper on container stacking and the result-
ing decision problems is provided by Lehnfeld and Knust (
2014). We assume that the dedicated stacking positions of
all containers are fixed and given. Only the decision on
the intermediate stacking positions in the rows of the hand-
shake area is part of our optimization problem. A handshake
area confines intermediate container storage to a restricted
area, so that reshuffles may become necessary if the other
crane does not remove some boxes early enough. Therefore,
we also integrate the storage decision within the handshake
area into our optimization task. Such an integrated approach
of stacking and crane scheduling was recently introduced

123

Journal of Scheduling (2022) 25:3–34 7

by Galle et al. (2018), although only in a single-crane set-
ting.

3 Problem description

For defining our twin crane scheduling problem (TCSP) in
the presence of a dedicated handshake area, we consider
a single yard block, two identical twin cranes, and two
access points from sea- and landside, respectively. The stor-
age positions of the yard block are arranged according to
a two-dimensional grid (see Fig. 2). The slots in the first
dimension are passed by the complete crane body, and we
refer to them as bays b = 1, . . . , B. The slots in the second
dimension, passed by a crane’s trolley and container spreader,
are referred to as rows r = 1, . . . , R. Consequently, each
storage position can be identified by a tuple (b, r) ∈ P :=
{1, . . . , R}×{1, . . . , B}. Additionally,we havemultiple slots
aligned at the smallest bay. They are located in positions
(0, 1), . . . , (0, R) and determine the seaside access point.
The handshake area is given by a single bay located at prede-
fined position bh , 1 ≤ bh ≤ B and, consequently, consists of
positions (bh, 1), . . . , (bh, R). In the handshake area, con-
tainers may be handed over from one crane to the other. This
is realized by one crane setting down the container in a posi-
tion (bh, r), r = 1, . . . , R, and the other crane picking up the
container in (bh, r) later on. Each stacking position (bh, r),
r = 1, . . . , R, of the handshake area has a free capacity Ch

r
defined by the maximum stacking height minus the number
of containers fixedly stacked in this position. We assume that
we have a partition of the positions in the handshake area into
two subsets H1 = {(bh, 1), (bh, 3), . . . , (bh, 2 �R/2� − 1

)}
and H2 = {(bh, 2), (bh, 4), . . . , (bh, 2 �R/2�)} being used
exclusively by cranes 1 and 2 for dropping off a container.

We only consider moves to and from the seaside during
workload peaks caused by one or multiple berthing vessels,
such that we have two sets of container moves, inbound con-
tainers I i and outbound containers I o, all being available
at the beginning of the planning horizon. Note that crane
scheduling is typically executed under a rolling planning
horizon, so this assumption does not mean that we consider
an unrealistically long time span. Each container i is associ-
ated with two positions. The origin position oi = (obi , o

r
i) is

where the container needs to be picked up by a crane. After-
wards, it is transported to destination position di = (dbi , dri),
where it is dropped off. For an inbound container i , the origin
position oi is located at the seaside access point, such that it
can be defined by (0, ori), o

r
i ∈ {1, . . . , R}. The respective

destination position di is then a position in P . An outbound
container i has its origin position in P and its destination
position at the seaside access point, i.e., in (0, dri).

Two identical gantry cranes operate on the yard block,
each moving with the whole crane body along the bays of

the first dimension. To reach a storage position, a trolley
runs along the horizontal beam of the gantry and passes the
rows of the second dimension. A spreader can be lowered
from the trolley to pick up or drop off containers at a spe-
cific slot. We refer to the seaside crane and landside crane as
crane 1 and crane 2 and assume that the operation areas are
separated by the handshake area, so that they operate in bays
0, . . . , bh and bh, . . . , B + 1, respectively. The only shared
bay is the handshake area where, however, both cranes can-
not be present at the same time. Thus, crane 1 (2) has to be
located in a bay b ≤ bh − 1 (b ≥ bh + 1) while crane 2 (1)
operates in bh .

Because of the separate areas in which the two cranes
operate, it is implied for each container whether or not it
is intermediately dropped off in the handshake area. We,
consequently, refer to the set of inbound (outbound) con-
tainers that need to be handled by the landside crane as
I i,l ⊆ I i (I o,l ⊆ I o) and to the set of remaining containers
as I i,s = I i \ I i,l (I o,s = I o \ I o,l).

For each container, we derive one or two transport jobs
that are necessary to transport it from its origin to its desti-
nation, depending on whether it is intermediately stored in
the handshake area. Let Jc be the set of transport jobs of
crane c. For each container i in I i,s and I o,s , we have a sin-
gle transport job j(i) in J1. It consists of two operations,
the pickup operation in position ô j(i) = (ôbj(i), ô

r
j(i)) = oi

and the drop-off operation in d̂ j(i) = (d̂bj(i), d̂
r
j(i)) = di . For

each container i in I i,l (I o,l), we have two transport jobs
j1(i) ∈ J1 and j2(i) ∈ J2 (j1(i) ∈ J2 and j2(i) ∈ J1),
referred to as the storage job and the retrieval job. Storage
job j1(i) corresponds to the transport from ô j1(i) = oi to

d̂ j1(i) = (bh, d̂r
j1(i)

), d̂r
j1(i)

∈ H1 (d̂rj1(i) ∈ H2). Retrieval job

j2(i) has its pickup position in ô j2(i) = d̂ j1(i) and the drop-

off position in d̂ j2(i) = di . Note that the row d̂r
j1(i)

= ô j2(i)
of the intermediate storage position in the handshake area is
not given in advance but is part of the optimization.

At the beginning of the planning horizon, crane c ∈ {1, 2}
is located in o0c = (o0,bc , or ,0c). We assume that both trol-
leys can move one row per period and both gantries can
move one bay per period, and they can do so simultane-
ously.Hence, if no interference of cranes occurs, thenmoving
gantry and trolley from position (b, r) to position (b′, r ′)
takes max

{|b − b′|, |r − r ′|} periods. The spreader can be
lowered only after the gantry and trolley are in their intended
position, and it has to be fully up before the trolley and gantry
can move. We assume that lifting and lowering takes p time
periods independent of the current stacking height.

In the setup described above, we have four simplifying
assumptions (in addition to those already explained in Sect. 1,
i.e., given handshake area and container movement related
to the seaside only), which need further justification.

123

8 Journal of Scheduling (2022) 25:3–34

(a) The partition of the handshake area into two subsets
of stacking positions to be exclusively used for either
inbound or outbound containers reduces the computa-
tional and organizational burden. While it decreases the
flexibility in where to intermediately stack containers,
deadlock prevention in particular becomes much eas-
ier. We exclude, furthermore, the possibility of multiple
alternative handshake bays the cranes may choose from,
e.g., depending on the current workload. Also, mixed
policies are excluded, where, for instance, most of the
time a handshake area is applied, but exceptionally a
direct delivery into the other cranes area is allowed. We
leave these extensions to future research.

(b) The time for moving a crane body by one bay and a
trolley by one row is assumed to be identical. In the
current crane generation, the crane gantry is much faster
than the trolley. This, however, is counterbalanced by the
larger distance gantries have to coverwhenmoving along
the length of a container of a bay (compared to the much
shorter container width passed by the trolley). Given the
crane speed specifications by Briskorn et al. (2019), for
instance, the time difference for crane travel along both
dimensions of a TEU container is less than 0.5 seconds.
Compared to themuch longer pickup and drop-off times,
which according to Briskorn et al. (2019) range between
20 and 40 seconds, the time difference is thus negligible,
and this assumption is often made in crane scheduling
research (see Kellner & Boysen, 2015; Boysen et al.,
2017; Ehleiter & Jaehn, 2018).

(c) The spreader can be lifted or lowered only while the
gantry and trolley stand still, and vice versa, the latter
two can start moving only once the spreader is back in
its upmost position. This is a technical prerequisite of
many cranes and a safety restriction in most yards. Note,
however, that even if a simultaneous movement is possi-
ble and allowed, this feature is seldom used in practice,
because block utilization is usually high and crowded
bays can only be passed with a lifted spreader (Ehleiter
& Jaehn, 2018). Consequently, this assumption is often
applied in crane scheduling research (Jaehn & Kress,
2018; Kress et al., 2019).

(d) The duration of pickup and drop-off may be position-
dependent, because positions may differ in their current
stacking heights. However, large parts of these durations
account for accelerating and slowing down the spreader,
adjusting it to the container, and locking or unlocking the
spreader to/from the container. Since these parts do not
depend on the very positions and their stacking heights,
real-world differences are small, and setting pickup and
drop-off time p constant seems a pardonable simplifica-
tion (see also Boysen & Fliedner, 2010).

We consider a continuous time horizon where both cranes
can move to adjacent bays in a single time unit, and refer
to the time interval [t − 1, t] with t ∈ N as period t . Note
that periods refer to parts of the planning horizon but do
not imply a discretization of the planning horizon. Within
this problem setting, we seek crane schedules defining the
activities of both cranes for any period. In order to constitute
a crane schedule, we have to make a four-part decision.

1. For each container i ∈ I i,l ∪ I o,l that requires a han-
dover between seaside and landside crane, we have to
decide inwhich row it is intermediately stored in the hand-
shake area. Thus, we define the stacking positions for the
respective jobs in J1 and J2. Note that tracking the row of
each container not only allows us to reduce vertical crane
travel across the bays, but is also the prerequisite to track
whether a box is actually available at a certain point in
time or currently blocked by another container.

2. We have to determine a sequence of jobs in J2 implying
the order in which the landside crane executes the corre-
sponding transport jobs.

3. We have to determine a sequence of transport jobs in J1
implying the order in which the seaside crane executes
the corresponding transport jobs.

4. We have to coordinate the prioritization of pickups and
drop-offs in the handshake area, because no two such
operations can be carried out in parallel, due to crane
interference. Such a prioritization sequence has to be con-
sistent with the sequences in points 2 and 3; that is, the
sequences in points 2 and 3 imply the order of operations
carried out by the same crane. Furthermore, retrieving a
container i ∈ I i,l ∪ I o,l from the handshake area has to
succeed previous storage and can only be conducted as
long as no other container is placed on top of it. Finally,
at each point in time and in each position (bh, r) in the
handshake area, there must not be more than Ch

r contain-
ers intermediately stored at the same time.

Weaimat aminimummakespan schedule; that is, the point
in time when the last container is dropped off at its destina-
tion position should be as early as possible. This objective
frees the cranes as early as possible from the current work-
load, so that they are readily available to process the next set
of container moves of the subsequent planning run. Further-
more, this objective also tends to reduce energy consumption
(Speer & Fischer, 2017). Note that He et al. (2015) bench-
mark time-efficient and energy-efficient schedules and their
impact on either objective. Their computational study, which
however treats another yard crane setting, concludes that
the two objectives are strongly related. Further research is
certainly required here. We, however, follow the majority
of papers—see the review papers of Boysen et al. (2017),

123

Journal of Scheduling (2022) 25:3–34 9

Carlo et al. (2014a)—and target an efficient crane utilization
enabled by the minimum makespan objective. But there are
also alternative objectives, such asminimizing the lateness of
jobs in relation to predetermined handover times to external
transport devices (e.g., AGVs). We focus on the makespan,
but would like to emphasize that extending crane schedul-
ing with a handshake area to other objectives is a valid task
for future research. We can assume that each crane proceeds
along its sequenceof operations (see points 2 and3) as rapidly
as possible (given the travel times between each pair of posi-
tions), which may be delayed only by interference from the
other crane. That is, crane 1 (2) may have to wait for crane 2
(1) to complete one or more operations in the handshake area
before proceeding to the handshake area itself. Moreover, it
may be necessary to leave the handshake area between two
operations in order to prioritize the other crane. However,
these two types of delay are determined by the prioritiza-
tion sequence of decision 4. Thus, once all four parts of the
decision are made, we can easily determine the minimum
makespan. The TCSP is to make our four-part decision such
that an overall minimummakespan can be achieved. We pro-
vide a MIP model representing the TCSP in Appendix C.

Theorem 1 The TCSP is strongly NP-hard even if I i,l =
I o,l = ∅ and p = 0.

We abstain from a formal proof and refer to Gharehgo-
zli et al. (2014b) instead. Note that the problem setting of
Gharehgozli et al. (2014b) assumes pickup and drop-off time
p = 0, considers only a single crane, and addresses container
movement via both access points. However, our setting with
I i,l = I o,l = ∅ renders crane 2 irrelevant, which leaves us
with crane 1 only. Furthermore, Gharehgozli et al. (2014b)
show (although they do not emphasize it) that their problem
isNP-hard even if only a single access point on one side of the
block is used only. This setting is equivalent to a special case
of our problem with I i,l = I o,l = ∅ and p = 0. Clearly, our
problemsetting ismore involveddue to the need to coordinate
the operations of both cranes with respect to both physical
and temporal interference in the handshake area. Obviously,
these issues do not simplify the problem setting.

Note that the proof of Gharehgozli et al. (2014b) relies on
the number of rows being part of the input of the problem.
Clearly, in the real world, the number of rows in blocks is
rather small. In the following, we thus show that TCSP is
strongly NP-hard even for R = 2.

Theorem 2 The TCSP is strongly NP-hard even if R = 2,
p = 0, and Ch

1 = Ch
2 > 0 is fixed.

Proof See Appendix A.

Note that Theorem 2 covers the cases where capacity in
the handshake bay is not tight or stacking is not allowed due
to Ch

1 = Ch
2 = 1.

4 Branch and bound procedures

We present three branch and bound (B&B) approaches in
order to solve our TCSP. These approaches determine the
stacking positions of jobs in I i,l ∪ I o,l and the sequences
of jobs for both cranes (parts 1 to 3 of the decision) in the
course of branching. Decision part 4, i.e., the prioritization of
pickups and drop-offs in the handshake area, is determined
by a polynomial-time routing algorithm.

In the B&B approach of Sect. 4.1, we simultaneously con-
sider the job sequences and the possible stacking positions of
handshake operations. The approach in Sect. 4.2.1 proceeds
by determining job sequences completely before deciding
stacking positions, while the B&B approach in Sect. 4.2.2
determines these decisions in reverse.

4.1 Simultaneous sequencing and determination of
stacking positions

In this section, we propose a B&B algorithm which simul-
taneously constructs job sequences and determines stacking
positions (parts 1 to 3 of the decision) by branching. As we
will show in Sect. 4.1.1, taking these parts of the decision
partially implies part 4 of the decision, namely the prioriti-
zation within the handshake area. However, some portion of
part 4 remains to be taken. We introduce a strongly polyno-
mial routing approach that determines the optimal sequence
of operations in the handshake area (part 4 of the decision) for
given sequences of operations for both cranes in Sect. 4.1.2.
Finally, in Sects. 4.1.3 and 4.1.4, we describe how we deter-
mine lower and upper bounds, respectively. An overview of
the approach is given in Algorithm 1.

4.1.1 Branching

The branching scheme in this section follows the common
idea of building sequences of jobs from start to end by
appending jobs one by one. Consequently, we maintain a
(partial) sequence nc of jobs for each crane c, c ∈ {1, 2}, in
a node. We branch by deciding the next job to be handled
by one of the cranes, and if it is a job with an operation in
the handshake area, we also determine the stacking position
of the container in bh . For containers that have to cross the
handshake area, it suffices to explicitly determine the stack-
ing position for either of the resulting storage and retrieval
jobs, and we do so for the first job being appended. Since a
container can only be retrieved from a position where it had
been stored by the other crane, we implicitly determine the
stacking position for both jobs. Consequently, our search tree
might reach a depth of |J1| + |J2|, and each node may have
up to |I i,s ∪ I o,s | + �R/2� · |I i,l ∪ I o,l | child nodes.

While the branching scheme explicitly considers parts 1 to
3 of the decision, it is open so far regarding how the remaining

123

10 Journal of Scheduling (2022) 25:3–34

Algorithm 1 Simultaneous sequencing and determination of
stacking positions
1: initialize root node with empty job sequences n1 and n2 and no

container in I i,l ∪ I o,l having a stack assigned; determine initial
upper bound

2: while there are nodes in the search tree not yet considered do
3: select node r
4: for each crane c and job j associated with container i of c not in

nc in r do
5: if i ∈ I i,s ∪ I o,s then
6: create a child node (append j to n1) observing Rule 4 (see

Sect. 4.1.1)
7: else if i is assigned to stack s in b then
8: create a child node (append j to nc) observing Rules 1 to 4

(see Sect. 4.1.1)
9: else
10: for each stack s ∈ Hc do
11: create a child node (assign i to s and append j to nc)

observing Rules 1 to 4
12: end for
13: end if
14: end for
15: for each child node s do
16: determine upper bound (see Sect. 4.1.4) and update global

upper bound
17: determine lower bound (seeSect. 4.1.3) and add s to the search

tree as appropriate
18: end for
19: end while

fourth part is to be taken. In the following, we distinguish
between the order of operations in the handshake area that
take place in the same row and the order of those that occur in
different stacking positions. With respect to the former, the
following lemma implies a strong connection between parts
1 to 3 and part 4 of the decision.

Lemma 1 With parts 1 to 3 of the decision taken, a sequence
of operations is implied for each pair of containers interme-
diately stored in the same stacking position.

Proof See Appendix A.

In the following, it will be handier to talk about prece-
dence relations between jobs which we interpret with regard
to operations as follows. For a pair of jobs j and j ′, j is a
predecessor of j ′ if

• both j and j ′ are in nc, c ∈ {1, 2}, and j precedes j ′ in
nc, which means that the drop-off operation of j has to
be conducted before the pickup operation of j ′ or

• j and j ′ are jobs in different job sequences, have oper-
ations in the same stacking position, and among these
operations, j’s operation has to be conducted first accord-
ing to Lemma 1.

In the first case, j is conducted completely before the first
operation of j ′ begins. In the second case, only the two

operations within the stacking position are affected by the
precedence relation. The other operations of j and j ′ hav-
ing a position outside of the handshake area are not directly
affected by the precedence relation. Note that we have cyclic
(acyclic) precedence relations between jobs if and only if
we have cyclic (acyclic) precedence relations between oper-
ations.

While Lemma 1 states that there is a sequence of oper-
ations for each pair of containers, the entirety of sequences
of operations in the same stack might be in conflict. This is
the case if they imply cyclic precedence constraints between
jobs. Otherwise, they imply a unique sequence of all oper-
ations for each stacking position in the handshake area,
referred to as stacking position sequence in the following.
For such a sequence, we can then determine the number of
containers in a stacking position at any time and hence check
whether or not the capacity of the position is violated. We
say a stacking position sequence is feasible if capacity con-
straints are not violated.

If we apply the proposed branching scheme and append
jobs one by one and successively define storage positions
in the handshake area, we can construct every pair of job
sequences with different stacking positions for jobs. How-
ever, such a brute-force branching scheme potentially yields
duplicate nodes in the search tree and requires extensive
feasibility checks in each step. Therefore, we introduce
branching rules restricting the number of child nodes to be
created while implicitly ensuring feasibility. Moreover, we
employ an additional rule that enables us to prevent dupli-
cate nodes in the search tree [i.e., distinct nodes representing
the same (partial) job sequences for cranes].

In order to specify these rules, let us first refine the types
of jobs in Jc, c ∈ {1, 2}, that we consider in a node. We say
that the jobs in Nc ⊆ Jc are the jobs that are handled only by
crane c. We introduce N2 simply for notational convenience
(note that N2 = ∅). Further, the jobs in Sc ⊆ Jc are the jobs
that imply the storage of a container in the handshake area,
while Rc ⊆ Jc are the retrieval jobs. We determine stack-
ing positions by branching, and hence, the origin position
of some retrieval jobs and the destination position of some
storage jobs may not yet have been determined in a node of
the search tree. We focus on a single node in the following
and say that the jobs in Skc ⊆ Sc (Rk

c ⊆ Rc) have a row
position in the handshake area determined, while the jobs in
Suc = Sc \ Skc (Ru

c = Rc \ Rk
c) have not.

The basic idea for implicitly ensuring feasibility while
branching is to make sure that by building job sequences
from start to end, all implied sequences of operations for
stacking positions are built from start to end as well. We
first introduce the rules and afterwards show that we actually
reach our goal.

123

Journal of Scheduling (2022) 25:3–34 11

Rule 1 A retrieval job in Rc can be appended to nc only if the
associated storage job is already appended to the sequence
of the other crane 3 − c.

This rule allows us to append retrieval jobs only after the
respective storage job is appended. Consequently, we allow
only jobs from Rk

c to be appended. Rule 1 is obviously in line
with our goal, because a container can be retrieved from the
handover bay only after it has been stored there.

Rule 2 Retrieval job j2(i) can be appended to nc only if for
each storage job j1(i ′) succeeding j1(i) in the same stacking
position in n3−c the corresponding retrieval job j2(i ′) is in
nc.

This rule is also in line with our goal, because a container
can be retrieved from the handover bay only if it is the top
container at that moment. We will give an explanatory exam-
ple of rules 1 and 2 in the following.

Example Let us consider four containers d, e, f , and g,
and their respective storage and retrieval jobs. Assume that
they are stored in the same stacking position by crane c;
j1(d), j1(e), and j1(f) are already in nc, and d is the first
container to be stored, followed by e and finally f . Further
assume that they are the only jobs that are stored in the stack-
ing position and that only j2(d) is in n3−c. This implies that
d is stored first and retrieved first, which means that d is
retrieved before e is stored. The next allowed retrieval job
addressing the stacking position then is j2(f). For j1(e),
there exists a job (j1(f)) succeeding j1(e) in nc with its
retrieval job not yet in n3−c. If j2(e) precedes j2(f), then e
is retrieved before f is stored, and we do not construct the
sequence of operations in that stack from start to end. Hence,
Rule 2 demands that between j2(e) and j2(f), only j2(f)
can be appended next. For j2(g), the respective storage job is
not yet in n3−c, such that it also cannot be appended accord-
ing to Rule 1. Consequently, when resolving the stacking
position sequence, e and f are stored such that container f
indeed is the top container for the given sequence pair. More-
over, j2(d)must have been appended to nc′ during branching
before j1(e), and j1(f) were appended to nc, again due to
Rule 2.

We will now show that Rules 1 and 2 indeed allow us
to construct the implied sequences of operations in stacking
positions.

Lemma 2 When appending jobs according to Rules 1 and
2, the order in which operations within the same stacking
position are carried out is exactly the order in which the
respective jobs are appended to the job sequences.

Proof See Appendix A.

Lemma 2 implies that there cannot be cyclic precedence
constraints among jobs related to the same stacking position

and allows us to define a state of each stacking position in
a node as being the current fill level and current stacking
order of containers in a position. Such a state allows us to
define an earliest possible starting time of the next operation
in the stacking position. Further, we define precedence rela-
tions related to containers that are stored in a stack for a given
state. That is, if containers are stored on top of each other,
we cannot retrieve the lower container before the upper con-
tainer has been retrieved. We incorporate both aspects when
determining bounds, as is detailed in Sect. 4.1.3.

Continuing the previous example, the stack is filled with
container d after appending j1(d) and is emptied after
appending j2(d). Then e and f are stored before they are
retrieved in reverse order.

The preceding rules ensure acyclic precedence relations
for jobs implying operating within the same stacking posi-
tion. However, even if we obtain stacking position sequences,
we have to maintain overall feasible pairs of job sequences.
That is, we have to make sure that the entirety of precedence
relations between jobs is acyclic.

Let us therefore show that the proposed branching scheme
ensures acyclic precedence relations. We consider the set of
precedence relations among jobs given by crane sequences
and implied by Lemma 1.

Lemma 3 By applying Rules 1 and 2, we obtain acyclic
precedence relations.

Proof See Appendix A.

The definition of a state resulting from Rules 1 and 2
allows us to define the third rule regarding the jobs that can
be appended to nc in a node.

Rule 3 When appending a storage job, we can only select
stacking positions with sufficient capacity.

It is obvious that Rule 3 restricts the subset of stacking posi-
tions that can be selected for a storage job to be appended
to nc and, hence, allows us to refrain from further capacity
checks.

Lastly, we say a pair of (partial) job sequences is feasible
if

• all (partial) stacking position sequences are feasible and
• precedence relations among jobs are acyclic.

Due to Lemma 1, Rules 1 and 2 ensure unique stacking
sequences. Using Rule 3, obviously, only feasible stacking
sequences are constructed. Lemma 3 shows that due to Rules
1 and 2,we obtain acyclic precedence relations. Hence, Rules
1 to 3 ensure feasible (partial) job sequences.

All feasible pairs of sequences can now be constructed as
follows. Based on an ancestor node, Rules 1 and 2 define a
subset of jobs to be appended,whileRule 3 limits the stacking

123

12 Journal of Scheduling (2022) 25:3–34

positions to be selected. We create all child nodes, such that
in each of them we

• append a job from N1 not in n1 to n1 that, consequently,
is not related to a stacking position,

• append a job from Rk
c not innc tonc, c ∈ {1, 2}, according

to Rules 1 and 2, and
• append a job from Suc , c ∈ {1, 2} to nc, storing a container
in every stacking position from Hc as long as Rule 3 is
fulfilled.

However, if we apply the branching scheme as described
above, we potentially create duplicate nodes in the search
tree; for example, if we first append a job from N1 to n1 and
afterwards append a job from S2 to n2, we construct the same
node as if we branch in reverse order. Hence, we propose a
final rule in order to prevent this type of redundancy.

Rule 4 If the last job assigned to a crane has been appended
to n2, we can append a job to n1 only if both jobs imply
operating in the same stacking position.

We will show that applying Rules 1 to 4 indeed allows us
to construct every feasible pair of sequences. Furthermore,
these rules ensure that no two different nodes in the search
tree represent the same pair of sequences. For the proof, we
introduce branching order σ , being the sequence in which
jobs are appended one by one by branching, which yields a
pair of sequences (n1, n2).

Theorem 3 For each pair of sequences (n1, n2), there is
exactly one σ following Rules 1 to 4 yielding it.

Proof See Appendix A. �
The above enables us to fully specify a node in the

search tree as the pair of (partial) sequences (n1, n2), which
allows us to derive all information necessary for applying the
branching scheme. However, the branching scheme only par-
tially covers part 4 of the decision, namely the sequencing of
operations in the same stacking position. Hence, it remains
for us to determine the sequences of operations in different
stacking positions and processed by different cranes.We pro-
pose a strongly polynomial routing approach in Sect. 4.1.2
and incorporate this approach in Sect. 4.1.3 when determin-
ing bounds. Consequently, a leaf in the search tree represents
a feasible solution for TCSP. We denote this B&B approach
as SIM throughout the computational study presented in
Sect. 5.

We branch by following a best-first search based on the
lower bounds presented in Sect. 4.1.3. Among nodes hav-
ing the same lower bound, we select the one on the largest
level in the search tree. To avoid out-of-memory errors, we
deviate from the best-first-search policy whenever the size

of the search tree exceeds 150,000 nodes. Then, we branch
only the best node on subsequent levels while keeping all
remaining ones and return to previous levels only when no
nodes are left on the current level. Such an approach resem-
bles a depth-first search and keeps the number of nodes in the
tree relatively stable. We provide an initial upper bound on
the makespan and upper bounds for each node by applying a
straightforward heuristic presented in Sect. 4.1.4.

4.1.2 Routing

In this section, we describe how the routing of cranes is
determined. For two (not necessarily complete) sequences of
transport jobs n1 and n2, we can determine the routing with
minimum makespan by means of a dynamic program (DP)
resembling the one in Briskorn and Angeloudis (2016) for
scheduling twin cranes with given job sequences but with-
out workload sharing. Here, we consider the sequence of
lifting or releasing operations rather than the sequence of
jobs.We number the operations of a crane in increasing order
according to nc. For two such sequences (and implied stack-
ing position sequences) given, we determine the order of
operations in the handshake area but in different stacking
positions. This is sufficient to deduce an accurate routing for
both cranes, since all other operations can be conducted by
the cranes independently and, thus, without any waiting time
or detours.

Within our DP, we have a state s for each conflicting pair
of operations within the handshake area. Such a state is spec-
ified by (c, f1, f2), with f1 and f2 being the two conflicting
operations of cranes 1 and 2 and c being the crane that is
prioritized with respect to this conflict. It implies that crane
c has just finished operation fc and crane 3− c is positioned
right next to the handshake area, with its trolley in the posi-
tion according to f3−c. Furthermore, we have an initial state
si defining the cranes’ initial positions and a final state s f

defining crane positions just after having conducted their very
last operation in nc.

Naturally, we can restrict ourselves to only a subset of
states when determining a routing, because of existing prece-
dence relations. Hence, for two conflicting operations fc and
f3−c, we have only a single state if one is a (not necessarily
immediate) predecessor of the other.

A transition (s, s′) from one state s = (c, f1, f2) to
another state s′ = (c′, f ′

1, f ′
2) then implies that

• crane c′ conducts all operations not yet conducted in
[fc′ , . . . , f ′

c′] as early as possible without waiting, start-
ing from its implied position in s, and

• if f3−c′ is f ′
3−c′ , crane 3− c′ simply stays in the bay next

to bh . Otherwise it processes all operations not yet con-
ducted in [f3−c′, . . . , f3−c′ − 1] without waiting, moves

123

Journal of Scheduling (2022) 25:3–34 13

to the bay next to bh , and positions the trolley according
to f ′

3−c′ .

Obviously,we cannot have a transition for every pair of states.
A transition (s, s′) exists if and only if

• fc < f ′
c and f3−c ≤ f ′

3−c holds, and
• assuming that cranes 1 and 2 process nc and n2 from

s onward and are interrupted only by waiting due to
precedence constraints, they would be present in bh

simultaneously for the first time when conducting f ′
1 and

f ′
2.

The first requirement simply states that no crane c goes
backward in nc, and that the crane given priority with respect
to the second conflict makes actual progress. The second
requirement states that the conflict between f ′

1 and f ′
2 is

the first one that actually materializes and, thus, has to be
resolved by the routing procedure. Here, we assume that a
crane moves to the handshake area only after bringing the
trolley next to or in the right position. This ensures that
crane interference is as small as possible without delaying
the actual operation.

Note thatwe cannot benefit from letting a cranewait for the
other crane to work in the handshake area first if it could have
worked there first without delaying the other crane. Since for
a transition (s, s′) the cranes would interfere in the absence
of a decision about prioritization with respect to f ′

1 and f ′
2, it

is implied that crane 3 − c′ can indeed move to the bay next
to bh and position its trolley according to f ′

3−c′ while c′ is
conducting the operation.

The duration t(s, s′) associated with transition (s, s′) is
the time span required by crane c′ to conduct all oper-
ations not yet conducted in [fc′, . . . , f ′

c′], starting from
its progress implied by s. Now, we are ready to define
the makespan t(s′) associated with state s′ as t(s′) =
min

{
t(s) + t(s, s′)|s ∈ P(s′)

}
, with P(s′) being the set of

states from which a transition to s′ exists.
This leads to the following runtime complexity of our DP.

We have O((|I i,l |+ |I o,l |)2) potential states and transitions.
We can determine whether a transition exists (and compute
the corresponding duration) in O(|I i,l |+|I o,l |) steps by iter-
atively checking whether the respective pairs of operations
are in conflict with each other. Hence, we obtain a complexity
of O((|I i,l | + |I o,l |)3).

4.1.3 Lower bounds

In this section, we describe how we determine lower bounds
on the makespan in a node that is a makespan for the pair of
partial sequences corresponding to the node. A bound con-
sists of two parts, namely a lower bound on the lengths of
the partial sequences and the duration necessary to conduct

Algorithm 2 The routing algorithm

1: add initial state si to the set of states
2: while there are unhandled states to consider do
3: select the next (e.g., in lexigographical order) unhandled state

s = (c, f1, f2)
4: let both cranes process n1 and n2 based on s
5: if both cranes interfere due to operations f ′

1 and f ′
2 then

6: add (or update, if appropriate) (1, f ′
1, f ′

2) and (2, f ′
1, f ′

2)

7: else
8: add (or update, if appropriate) s f if appropriate
9: end if
10: end while

the remaining jobs that are not yet in the sequences. In the
following, we detail how we account for the second part and
how we then use the DP approach presented in Sect. 4.1.2 to
derive a lower bound for each node.

For the second part, we determine two lower bounds on
the time necessary to conduct the non-sequenced jobs in Ac,
being the jobs in Jc but not in nc for each crane c. The nec-
essary time depends, then, on four factors:

1. the workload of a job, being the laden travel that is neces-
sary to transport jobs k ∈ Ac from origin ôk to destination
d̂k plus the time necessary to conduct both operations,

2. the empty travel that can occur between dropping off a
container in its storage position and picking up the next
container in its origin position,

3. waiting times due to precedence relations between jobs,
and

4. waiting times due to interference between cranes.

We focus only on the first two factors when determining
bounds. Then, we can determine a lower bound 2 · p +
max{|ôbk − d̂bk |, rk} on the workload wk for each job k ∈ Ac

with

rk =
{

|ôrk − d̂rk | for k ∈ Nc ∪ Skc ∪ Rk
c

1 else.
(1)

Here, rk is a lower bound on the time necessary for the
trolley to reach the row where the container is dropped off
after picking it up. Note that for jobs in Suc ∪ Ru

c , the row
in the handshake area is not yet determined. Thus, we have
to assume that the closest row is chosen ultimately. Further
note that in TCSP, we do not have reshuffling jobs, such
that |ôrk − d̂rk | equals at least one. Finally, we can define
Wc = ∑

k∈Ac
wk as a lower bound on the total workload

resulting from jobs in Ac of crane c.
Furthermore, we develop two lower bounds on the total

unavoidable empty travel time to process the jobs in Ac.

123

14 Journal of Scheduling (2022) 25:3–34

• We consider a bipartite graph where nodes in the first
set correspond to drop-off operation of jobs in Ac or the
last job in nc, and nodes in the second set correspond
to pickup operations of jobs in Ac or a dummy end job.
An edge between a drop-off operation k and a pickup
operation k′ represents k′ being carried out immediately
after k and, therefore, implies a lower bound (similar to
the one in (1)) on the empty travel duration. This lower
bound is represented by the edge’s weight. Note that nc
and n3−c might imply precedence relations between jobs
in Ac or between jobs in A3−c. If pickup operation k ∈ Ac

is a predecessor of drop-off operation k′ ∈ Ac, then we
can drop the edge connecting k′ and k fromconsideration.
Similar to the approach of Gharehgozli et al. (2014b), we
then determine a minimumweight perfect matching. The
minimum weight is a lower bound on the total empty
travel time. Note that the matching might not imply a
proper sequence, and we can determine it in O(|Ac|3).

• Ignoring the time necessary to adjust the trolley position,
we can derive a lower bound by applying the approach
from Gilmore and Gomory (1964) in order to determine
a sequence for the jobs in Ac with minimum empty travel
time. Gilmore and Gomory (1964) consider a scheduling
problem where a machine (crane) has to process a set of
jobs (corresponding to Ac) in a sequence that minimizes
the total setup time. Here, every job j has a starting state
S j (corresponding to ôbk , with k ∈ Ac) that the machine
needs to be set up to in order to process the job. After
finishing j , the machine is left in state E j (correspond-
ing to d̂bk for k ∈ Ac). The setup time between jobs j
and m amounts to |E j − Sm |. Furthermore, the machine
has a starting state (being related to the last job in either
nc or o0c) and a predetermined ending state that it has to
reach after finishing all jobs.Gilmore andGomory (1964)
developed an optimal algorithm that runs in O(|Ac|2)
time. Note, however, that we do not know the final posi-
tion of a crane in advance. A straightforward approach
would be to fix each job to be the last one in a separate
run and end up with a runtime complexity of O(|Ac|3).
This type of approach was applied by Briskorn and Zey
(2020) and performed well. However, we can adapt our
branching scheme to construct sequence nc from end to
start, which gives us the final position of each crane after
the first couple of branching steps. We can then straight-
forwardly apply the approach by Gilmore and Gomory
(1964) in O(|Ac|2) time.

Let lbec be the larger of the lower bounds for empty travel
for crane c and Ac. A lower bound for the time span necessary
to conduct all jobs in Ac is then given as lbec + Wc. We
now integrate this lower bound with the routing for partial
sequences n1 and n2. We apply a slight adaptation of the DP

approach presented in Sect. 4.1.2 for routing (n1, n2) aiming
at a minimum makespan assuming that crane c, c ∈ {1, 2}
completes its last job lbec + Wc time units later than implied
by the routing. This makespan implies a lower bound on the
minimum feasible makespan associated with the node of the
search tree at hand.

4.1.4 Upper bounds

We apply an approach loosely based on the work of Ghare-
hgozli et al. (2017) to determine upper bounds. First, for
each container that has no stacking position assigned yet we
choose one that minimizes the laden travel duration associ-
ated with either the storage job or the retrieval job. In case
of a tie, we choose the one closest to the middle row (R/2).
By storing the containers closely together, we aim to reduce
the time necessary to adjust the trolley between consecutive
operations in bh .

Now, for this set of jobs, let c be the crane having the larger
lower bound on the workload, that is, Wc ≥ W3−c (with an
arbitrary tiebreaker).

We determine sequences withminimum empty travel time
with respect to either bay distances or row distances using
the approach by Gilmore and Gomory (1964). Between the
two sequences, we choose the one having smaller total empty
travel time (with respect to both bay distances and row dis-
tances) as job sequence of crane c. We then construct the job
sequence of crane 3 − c using a nearest-neighbor approach.
We require containers assigned to the same stacking position
to appear in the same order in both job sequences in increas-
ing likelihood of the pairs of sequences being feasible. If
we obtain a feasible pair of job sequences, the remaining
fourth part of the decision is then determined by the routing
approach from Sect. 4.1.2.

4.2 Non-simultaneous sequencing and determining
of stacking positions

In this section, we present two alternative B&B approaches
where we decide on the job sequences of cranes and stack-
ing positions of containers sequentially. Since most of the
ideas presented in Sect. 4.1 carry over in a straightforward
manner, we focus on highlighting the differences in the fol-
lowing. Themotivation for decoupling the two decisions is to
keep the width of the search tree small while achieving lower
bounds that are similarly tight. Upper bound determination
and node ordering is performed analogously to Sect. 4.1. The
approaches are illustrated in Algorithms 3 and 4

123

Journal of Scheduling (2022) 25:3–34 15

Algorithm 3 Determining job sequences first
1: initialize root node with empty job sequences n1 and n2 and no

container in I i,l ∪ I o,l having a stack assigned; determine initial
upper bound

2: while there are nodes in the search tree not yet considered do
3: select node r
4: if r is on a level smaller |J1| + |J2| (n1 or n2 is not complete)

then
5: for each crane c and job j of c not in nc in r do
6: create a child node (append j to nc) observing Rules 1 (see

Sect. 4.1.1) and 5
7: end for
8: else if r is on a level smaller |J1|+ |J2|+ |I i,l | (some containers

have no stack assigned) then
9: for each stack s ∈ H1 do
10: create a child node (assign first container i ∈ I i,l in n1

with no stack assigned to s)
11: end for
12: else
13: for each stack s ∈ H2 do
14: create a child node (assign first container i ∈ I o,l in n2

with no stack assigned to s)
15: end for
16: end if
17: for each child node s with feasible (partial) job sequences do
18: determine an upper bound (see Sect. 4.1.4)
19: determine a lower bound (see Sect. 4.1.3) and add s to the

search tree as appropriate
20: end for
21: end while

4.2.1 Determining job sequences first

In this section, we present a B&B algorithmwhere we decide
on the sequences of jobs of each crane on the first levels of
the search tree, and then determine the stacking positions
of containers on the last levels. The prioritization of jobs in
the handshake area (part 4 of the decision) is determined as
described in Sect. 4.1.2.

We append one job to n1 or n2 on the first |J1| + |J2|
levels of the search tree. After having determined the order
of all jobs in the respective sequence, we next determine
the stacking position of each intermediately stored container.
Thus, the search tree has a depth of |J1|+|J2|+|I o,l |+|I i,l |.
On levels 1, . . . , |J1| + |J2|, we have up to |J1| + |J2| child
nodes; on larger levels we have up to �R/2� successors.

On each of the first |J1| + |J2| levels of the search tree,
we append one job to the sequence of a crane. Since we do
not determine the stacking positions, we only apply branch-
ing Rule 1 from Sect. 4.1.1. Hence, we allow a retrieval job
to be appended to nc only if the corresponding storage job
is already in n3−c. Based on Rule 1 only, we can formu-
late a similar lemma analogous to Lemma 3 and show that
the sequences obtained contain only acyclic precedence rela-
tions. Rule 1, again, restricts the set of jobs to be appended,
such that on levels 1, . . . , |J1| + |J2| − 1 we create child
nodes by

• appending a job from N1 not in n1 to n1,
• appending a job from Sc not in nc to nc, c ∈ {1, 2}, and
• appending a job from Rc not in nc to nc, c ∈ {1, 2},
according to Rule 1.

On levels |J1|+|J2|, . . . , |J1|+|J2|+|I o,l |+|I i,l |−1, we
determine the stacking positions of containers in I o,l and I i,l .
On levels |J1|+|J2|, . . . , |I i,l |−1, we construct child nodes
by assigning containers from |I i,l | to stacking positions in
H1. In a node, we do so in the order in which the storage jobs
are sequenced in n1. On the succeeding |I o,l | levels, we con-
secutively assign containers from I o,l to stacking positions
in H2 and do so in the order in which the storage jobs are
sequenced in n2.

Based on Lemma 1, we define precedence relations for
jobs assigned to the same stacking position. If necessary, we
discard nodes with cyclic precedence relations or stacking
position sequences violating capacity constraints.

Again, such a scheme potentially yields duplicate nodes
on levels 1, . . . , |J1| + |J2| in the search tree. Hence, we
propose the following rule, closely related to Rule 4, in order
to construct unique nodes only.

Rule 5 If the last job on levels l = 1, . . . , |J1|+ |J2|− 1 has
been appended to n2, we can append a job to n1 only if the
last job in n2 is a storage job and the next job in n1 is its
retrieval.

Wecan show thatwe can indeed construct every pair of job
sequences by a unique sequence of branching steps similar
to the proof of Theorem 3.

Even if not every row position is defined, we can apply an
adaptation of the routing approach presented in Sect. 4.1.2
for a pair of job sequences (n1, n2). Here, we employ lower
bounds on the time necessary for a trolley to reach a row
within the handshake area, as presented in Sect. 4.1.3. Addi-
tionally, for levels 1, . . . , |J1| + |J2| − 1, we determine
lbec + Wc as detailed in Sect. 4.1.3. The completion time of
c’s last operation in a routing is then increased accordingly
to obtain a lower bound on the makespan for a node.

A node in the search tree is then defined by (n1, n2). We
cannot always derive a certain state of the stacking positions
as long as not all jobs taking place in Hc, c ∈ {1, 2}, have
a defined position. During the first phase of the branching,
however, (n1, n2) suffices to determine the set of jobs Ac that
have yet to be scheduled. During the second phase, we can
determine the jobs that lack a definition of stacking positions.

Wedenote thisB&BapproachSEQJS throughout the com-
putational study of Sect. 5.

4.2.2 Determining stacking positions first

In this section, we reverse both decisions and present a B&B
algorithm where we determine stacking positions (part 1 of

123

16 Journal of Scheduling (2022) 25:3–34

Algorithm 4 Determining stacking positions first
1: initialize root node with empty job sequences n1 and n2 and no

container in I i,l ∪ I o,l having a stack assigned; determine initial
upper bound

2: while there are nodes in the search tree not yet considered do
3: select node r
4: if r is on a level smaller |I i,l |+|I o,l | (some containers in I i,l∪ I o,l

have no stack assigned) then
5: choose first container i ∈ I i,l ∪ I o,l with no stack assigned
6: create child nodes by assigning i to each feasible stack in H1

(if i ∈ I i,l) or H2 (else)
7: else
8: for each crane c and job j of c not in nc in r do
9: create a child node (append j to nc) observing Rules 1 to 4

(see Sect. 4.1.1)
10: end for
11: end if
12: for each childnode s do
13: determine an upper bound (see Sect. 4.1.4)
14: determine a lower bound (see Sect. 4.1.3) and add c to the

search tree as appropriate
15: end for
16: end while

the TCSP decisions) of jobs in a first phase of the branch-
ing scheme. The second phase determines job sequences
(parts 2 and 3 of the decision) based on the stacking position
assignments. Part 4 of the decision is made as described in
Sect. 4.1.2.

On the first |I i,l | + |I o,l | levels of the search tree, we
determine the stacking positions of containers in I i,l and I o,l .
On the subsequent |J1|+ |J2| levels, we construct sequences
of jobs with already defined stacking positions by appending
a job to n1 or n2 on each level of the search tree. Hence, in
the first level, we can have up to �R/2� child nodes, while
we have at most |J1| + |J2| child nodes in the second phase.

In the root node, we fix arbitrary orders for containers in
I i,l and I o,l . Then, on the first |I i,l | levels, we create child
nodes by consecutively assigning a container, following the
order defined in the root node, in I i,l to stacking positions in
H1. On levels |I i,l | to |I i,l | + |I o,l | − 1, we then define the
stackingpositions for containers in I o,l and create child nodes
by assigning them to every position in H2, again following
the predefined order. Note that by defining the stacking posi-
tion of a container i , we consequently define the stacking
positions for jobs j1(i) and j2(i) in J1 and J2.

Starting from level |I i,l | + |I o,l |, we determine job
sequences. Each node in this phase has an ancestor node
on level |I i,l |+ |I o,l |− 1 with already defined rows for each
job. Hence, for nodes in this phase, Ru

c and Suc are empty.
We then apply a slight modification of the branching scheme
from Sect. 4.1.1 in order to branch while avoiding dupli-
cate nodes. Bounding and routing are done using identical
(or slightly adapted) approaches as in Sect. 4.1. Having all
rows of jobs defined allows us to employ the approach from

Gilmore and Gomory (1964) in order to obtain a sequence
for jobs in Ac with minimum empty row travel time as an
additional lower bound. We dub this B&B algorithm SEQSJ.

5 Computational study

Our computational study presented in this section consists of
three parts. First, we benchmark the solution performance of
our three B&B procedures in Sect. 5.1. Here, we determine
which of them is best suited for solving real-world TCSP
instances. Then, in Sect. 5.2, we explore the best position
of the handshake area and its impact on throughput per-
formance. Finally, we challenge our best B&B procedure
with simple heuristic approaches taken from the literature.
By determining the optimality gaps of these straightforward
solution methods, we quantify the price of simple planning.
Introducing a handshake area is an operational simplification
by itself compared with a more flexible any-bay handover
(see Sect. 2), where any available stacking position is a
possible intermediate stacking position for a preemptive con-
tainer processing. Therefore, we also quantify the gap of
our optimization approach with handshake area with a previ-
ous algorithm from the literature for any-bay handover. Both
competitors are benchmarked with our best B&B procedure
in Sect. 5.3.

We have executed all tests on an Intel Core i7-4790 CPU
with 3.6 GHz and 32 GB of RAM running Windows 7, and
all approaches have been implemented in Java 8. All tests
in our computational study are based on randomly gener-
ated instances, applying the widely accepted data generator
of Briskorn et al. (2019) for container yards. According to
their definition of widespread real-world block settings, we
assume 30 bays and 10 rows. Initially, crane 1 (2) is posi-
tioned in bay 0 (30), and the initial trolley positions are in
row 1. The time to pick up or drop off a container is p = 3
time units.

To obtain different-sized test instances, we vary the num-
ber of containers to be processed. They are set to 10, 20, 30,
and 40 containers, where we assume an equal share between
inbound and outbound containers, i.e., |I i | = |I o| holds for
any instance. The storage positions of all containers are ran-
domly drawn with uniform distribution from the complete
block, except for the handshake area, where no containers
can be stored permanently. Note that we also experimented
with other test instances where the probability of the bays
decreases the farther they are from the seaside access point.
This could, for instance, arise in practical situations if out-
bound containers havebeenpre-marshaled into advantageous
positions the night before (Lehnfeld & Knust, 2014). How-
ever, the optimization results obtained for these deviating bay
distributions were not substantially different, so we decided
to keep the test design as clear as possible and opted for the

123

Journal of Scheduling (2022) 25:3–34 17

Table 1 IDs for instance reproduction via the publicly available
instance generator of Briskorn et al. (2019) at URL: instances.de/dfg

|I o| + |I i | 10 20 30 40

ID zBZr2Ll SRHiXWG cPIxDoT ddX4GoY

most basic way of generating data, i.e., based on a uniform
distribution of container bays. For each number of contain-
ers, instance generation has been carried out 30 times, so
that in total 120 different container sets have been obtained.
These instances can be retrieved from the internet by replac-
ing placeholder “INSTID” with the IDs provided in Table 1
within the following URL: instances.de/dfg/loadinstance.
php?id=INSTID&instances=30.

For further details on the instance generator we refer the
reader to Briskorn et al. (2019). Each of the instances is to
be processed by the twin cranes with five different positions
of the handshake area, i.e., bh ∈ {5, 10, 15, 20, 25}, and in
two capacity situations in the handshake area. We distin-
guish between a low-capacity setting, where the free capacity
of each storage position in the handshake area is randomly
drawn from {1, 2, 3}, and a high-capacity setting where the
capacity is drawn from {3, 4, 5} (with uniform distribution).
In total, we have obtained 1200 instances.

Note that in addition to our B&B procedures, we also
developed a time-based MIP model and solved it using
CPLEX 12.6 (see Appendix C). During some preliminary
testing, the model was clearly outperformed by our algorith-
mic approaches, and optimal solutions were not obtainable
within a time limit of 1 hour even for the smallest test
instances. Even when providing the default solver with tight
upper bounds, this result did not improve. Thus, we abstain
from further benchmarking of our model in the following
computational study.

5.1 Computational performance of our B&B
procedures

To benchmark our three B&B procedures, i.e., SIM (simul-
taneous sequencing and determining stacking positions, see
Sect. 4.1), SEQJS (job sequencing first, see Sect. 4.2.1), and
SEQSJ (determining stacking positions first, see Sect. 4.2.2),
we solve our test instanceswith different runtime limits of 10,
300, and 600 seconds. In Table 2, we report the gaps of each
B&Bapproachwith the given runtime to the optimal solution.
Whenever optimal solutions are not available because none
of the three competitors could prove an optimal solution, we
report the gap to the maximum lower bound obtained by our
three B&Bs when having a runtime of 600 seconds. These
gaps are reported in columns “Avg. relative gap LB %” for
five alternative positions bh ∈ {5, 10, . . . , 25} of the hand-
shake bay. Furthermore, we report the average runtime in

CPU seconds, in columns “Avg. runtime s,” and differentiate
between high- and low-capacity situations in the handshake
area at the left and right of Table 2, respectively. The fol-
lowing conclusions can be drawn from these computational
results:

• A first expected result is that all three B&Bs suffer from
an increasing solution space. Gaps and runtimes increase
the greater the number of containers to be handled and
the higher the capacity in the handshake area. A higher
capacity increases the alternative intermediate stacking
positions to be evaluated for each container move.

• The same impact is seen moving the handshake area
closer to the seaside access point. Recall that the dis-
tance from the seaside access point to the handshake
area, and thus the workload of crane 1, increases with
bh . Our detailed investigation of the position of the hand-
shake area in Sect. 5.2 will show that its optimal location
under seaside workload peaks is somewhere between
bays 7 and 10. Any (considerable) deviation from this
positionwill cause one of the cranes to become the bottle-
neck resource, which reduces throughput performance.A
handshake position of bh > 10 leads to crane 1 having to
shoulder the lion’s share of the workload, whereas crane
2 is idle most of the time. In these settings, themain focus
is on reducing the empty travel and idle time of crane 1,
which obviously facilitates the work of all three B&Bs.

• Naturally, a longer runtime improves the solution quality.
Increasing the runtime from300 to 600 seconds, however,
leads to only a minor improvement in solution quality
in most cases. Astoundingly, the jump from 10 to 300
seconds also leads to only a relatively small gain, espe-
cially for all instances with a badly placed handshake
area (bh ≥ 15) and few containers (|I i | + |I o| ≤ 30).
Only if the handshake area is closer to the seaside, such
that the workloads of the two cranes are on a comparable
level, and a greater number of container moves increases
sequencing flexibility, may more computational time be
well spent. We will investigate the development of the
solution quality over time in more detail below.

• When benchmarking our three B&Bs, we can observe
that SIM,which sequences and determines stacking posi-
tions simultaneously, is clearly outperformed by its two
sequential competitors SEQJS and SEQSJ. Incorporating
both types of information, i.e., crane sequences and stack-
ing positions, simultaneously leads to a wider search tree
already at the early levels, which obviouslymakes itmore
difficult to identify promising parts of the solution space.

• SEQSJ and its approach of first determining the stack-
ing positions leads to the best results in most cases. One
key advantage of SEQSJ, as compared to SEQJS, is that
after the first phase of branching is completed, stacking
positions for all containers are given. This allows SEQSJ

123

instances.de/dfg/loadinstance.php?id=INSTID&instances=30
instances.de/dfg/loadinstance.php?id=INSTID&instances=30

18 Journal of Scheduling (2022) 25:3–34

Table 2 Comparison of B&Bs with regard to average relative gap in percent from best LB and average runtimes in seconds for different capacity
situations, numbers of containers |I o| + |I i |, and positions of the handshake area bh

|I o|+ Avg. relative gap LB % Avg. runtime s

|I i | Algori thm/bh 5 10 15 20 25 5 10 15 20 25

Runtime limit: 10s

10 SEQJS 0.23 0.02 0.03 0.00 0.00 1.90 0.81 0.73 0.03 0.03

SIM 2.23 0.35 0.09 0.00 0.00 4.95 3.82 2.03 0.10 0.04

SEQSJ 0.26 1.92 0.00 0.00 0.00 2.94 4.60 1.07 0.16 0.05

20 SEQJS 6.85 4.86 0.75 0.03 0.00 10.00 6.20 4.00 0.58 0.12

SIM 4.61 3.12 1.64 0.87 0.20 8.40 7.89 6.82 3.09 0.83

SEQSJ 4.55 1.82 0.23 0.00 0.00 7.43 5.22 3.53 0.16 0.30

30 SEQJS 9.18 10.95 5.42 0.66 0.08 10.00 9.62 9.04 3.15 1.20

SIM 6.73 18.43 9.39 3.87 0.65 8.98 10.00 9.91 7.63 3.36

SEQSJ 9.97 0.97 0.21 0.03 0.02 8.88 7.12 5.44 1.75 1.24

40 SEQJS 10.59 23.25 8.89 6.61 0.58 10.00 10.00 10.00 7.74 2.07

SIM 8.30 22.97 10.83 6.81 3.05 10.00 10.00 10.00 9.43 5.83

SEQSJ 17.27 5.15 1.12 0.36 0.02 10.00 9.18 6.92 3.91 1.94

Runtime limit: 300s

10 SEQJS 0.00 0.00 0.00 0.00 0.00 14.45 0.84 2.81 0.03 0.03

SIM 0.13 0.11 0.00 0.00 0.00 98.93 50.53 29.43 0.10 0.04

SEQSJ 0.00 0.12 0.00 0.00 0.00 80.28 104.56 21.37 0.16 0.05

20 SEQJS 5.69 2.61 0.17 0.01 0.00 300.00 133.06 78.84 10.25 0.12

SIM 3.55 1.69 0.40 0.10 0.00 242.32 187.54 135.30 23.20 1.69

SEQSJ 1.96 0.52 0.22 0.00 0.00 173.98 111.99 100.20 0.16 0.30

30 SEQJS 9.18 9.58 4.25 0.03 0.04 300.00 280.29 242.11 25.42 23.04

SIM 4.29 8.65 4.61 1.09 0.02 260.31 259.38 272.31 143.38 29.66

SEQSJ 4.79 0.65 0.17 0.03 0.01 226.27 154.04 111.78 30.75 21.28

40 SEQJS 10.59 18.26 7.18 3.87 0.04 300.00 300.00 300.00 157.04 31.15

SIM 6.41 16.04 6.40 3.77 0.40 300.00 300.00 290.56 261.96 76.93

SEQSJ 7.99 0.31 0.16 0.04 0.02 286.96 160.71 125.30 53.06 30.94

Runtime limit: 600s

10 SEQJS 0.00 0.00 0.00 0.00 0.00 14.45 0.84 2.81 0.03 0.03

SIM 0.07 0.11 0.00 0.00 0.00 144.76 80.53 49.43 0.10 0.04

SEQSJ 0.00 0.12 0.00 0.00 0.00 160.28 194.57 41.38 0.16 0.05

20 SEQJS 5.67 2.22 0.13 0.01 0.00 600.00 247.15 148.84 20.25 0.12

SIM 3.52 1.61 0.30 0.06 0.00 482.32 367.54 247.35 33.20 1.69

SEQSJ 1.85 0.39 0.18 0.00 0.00 335.41 222.00 191.66 0.16 0.30

30 SEQJS 9.18 9.47 3.87 0.03 0.04 600.00 560.29 482.11 45.42 43.04

SIM 4.24 8.48 4.13 0.86 0.02 520.31 509.38 539.48 253.38 47.60

SEQSJ 3.40 0.64 0.17 0.03 0.01 444.72 304.06 221.79 60.76 41.28

40 SEQJS 10.59 18.17 7.17 2.64 0.04 600.00 600.00 600.00 297.04 61.15

SIM 6.34 15.07 5.84 3.43 0.30 600.00 600.00 580.56 491.96 131.17

SEQSJ 7.69 0.28 0.16 0.04 0.01 567.03 307.17 245.31 103.06 55.99

123

Journal of Scheduling (2022) 25:3–34 19

Table 2 continued

|I o|+ Avg. relative gap LB % Avg. runtime s

|I i | Algori thm/bh 5 10 15 20 25 5 10 15 20 25

Runtime limit: 10s

10 SEQJS 0.13 0.02 0.03 0.00 0.00 1.94 0.83 0.72 0.04 0.03

SIM 2.41 0.35 0.09 0.00 0.00 5.06 3.96 2.06 0.10 0.04

SEQSJ 0.32 1.88 0.00 0.00 0.00 2.72 4.62 1.08 0.15 0.05

20 SEQJS 6.39 3.00 0.36 0.04 0.00 10.00 6.12 3.68 0.58 0.11

SIM 4.49 3.06 1.84 0.96 0.27 9.06 7.97 7.37 3.65 1.08

SEQSJ 5.54 2.23 0.25 0.00 0.00 8.34 5.52 4.09 0.31 0.32

30 SEQJS 8.08 7.51 3.36 0.67 0.17 10.00 9.62 9.02 3.14 1.20

SIM 6.67 18.38 8.85 4.45 0.72 8.98 10.00 10.00 7.80 3.67

SEQSJ 11.23 3.04 1.36 0.28 0.03 9.69 8.24 7.38 2.68 1.29

40 SEQJS 9.69 17.64 6.56 3.68 0.40 10.00 10.00 10.00 7.66 2.10

SIM 8.18 22.21 10.00 6.05 3.19 10.00 10.00 10.00 9.43 5.93

SEQSJ 17.82 12.79 4.99 2.33 0.38 10.00 9.99 9.52 6.89 2.58

Runtime limit: 300s

10 SEQJS 0.02 0.00 0.00 0.00 0.00 19.28 0.88 3.10 0.04 0.03

SIM 0.59 0.11 0.00 0.00 0.00 103.26 53.28 30.89 0.10 0.04

SEQSJ 0.00 0.16 0.00 0.00 0.00 80.05 106.16 21.43 0.15 0.05

20 SEQJS 5.23 1.15 0.17 0.01 0.00 300.00 128.65 80.81 10.25 0.11

SIM 3.53 1.69 0.43 0.17 0.00 263.67 188.71 142.46 30.36 2.29

SEQSJ 3.14 0.80 0.22 0.00 0.00 194.34 115.01 100.99 0.31 0.32

30 SEQJS 8.08 5.38 2.15 0.03 0.04 300.00 280.28 235.59 24.69 23.00

SIM 5.34 8.12 6.14 1.61 0.02 260.32 261.71 277.04 167.47 34.45

SEQSJ 7.79 1.21 0.18 0.02 0.01 266.82 166.33 119.46 22.58 21.34

40 SEQJS 9.69 11.96 5.00 1.95 0.01 300.00 300.00 291.04 150.81 31.22

SIM 7.26 17.08 6.31 4.32 0.70 300.00 300.00 290.73 271.19 86.81

SEQSJ 13.23 1.40 0.67 0.42 0.00 300.00 194.83 185.99 89.13 15.75

Runtime limit: 600s

10 SEQJS 0.02 0.00 0.00 0.00 0.00 29.28 0.88 3.10 0.04 0.03

SIM 0.38 0.11 0.00 0.00 0.00 172.55 83.28 50.89 0.10 0.04

SEQSJ 0.00 0.12 0.00 0.00 0.00 160.06 197.81 41.44 0.15 0.05

20 SEQJS 5.20 0.98 0.13 0.00 0.00 600.00 237.74 150.81 14.48 0.11

SIM 3.29 1.61 0.36 0.17 0.00 523.67 368.71 260.77 50.36 2.29

SEQSJ 2.86 0.76 0.18 0.00 0.00 384.36 225.02 192.71 0.31 0.32

30 SEQJS 8.08 5.12 2.15 0.03 0.04 600.00 560.28 465.59 44.69 43.00

SIM 5.33 7.82 5.17 1.28 0.02 520.32 501.71 547.04 296.04 52.99

SEQSJ 7.12 1.21 0.18 0.02 0.01 526.86 326.35 229.47 42.58 41.34

40 SEQJS 9.69 11.94 4.95 1.69 0.01 600.00 600.00 581.04 280.81 61.22

SIM 7.14 15.47 6.18 3.93 0.59 600.00 600.00 580.73 528.29 156.81

SEQSJ 11.56 1.40 0.53 0.35 0.00 600.06 364.86 341.16 159.14 25.75

123

20 Journal of Scheduling (2022) 25:3–34

Table 3 Total number of optimal solutions obtained after 600 CPU
seconds for different numbers of jobs |I o| + |I i | and positions of the
handshake area bh

|I o|+ Algorithm / bh # optimal solutions

|I i | 5 10 15 20 25

10 SEQJS 59 60 60 60 60

SIM 56 56 60 60 60

SEQSJ 60 54 60 60 60

20 SEQJS 2 41 46 59 60

SIM 10 24 38 57 60

SEQSJ 35 38 42 60 60

30 SEQJS 0 4 13 56 56

SIM 8 11 8 37 58

SEQSJ 13 29 38 55 58

40 SEQJS 0 0 1 33 54

SIM 0 0 2 13 48

SEQSJ 2 29 34 48 57

Fig. 3 Average gap of SEQSJ from lower bound (LB) over time

to determine tighter lower bounds using the approach
of Gilmore and Gomory (1964), see Sect. 4.1.3. Only
in the case where just a few containers are processed
(|I i | = |I o| = 10) will SEQJS and its approach of first
determining job sequences lead to slightly better results.
Due to the relatively small number of precedence rela-
tions occurring in these instances, an arbitrary pair of
sequences determined in the first phase of SEQJS can
more likely be complemented to a feasible schedule, and
the search is well guided, whereas this is less likely for
larger instances.

Our main finding of SEQSJ outperforming both competi-
tors in most cases is confirmed when comparing the number
of optimal solutions after 600 CPU seconds in Table 3.

In total, SEQSJ solves 892 out of the 1200 total instances
(i.e., 74.33%) to proven optimality. Thus, SEQSJ is our best-
performing B&B approach, and is applied in all further
computational tests.

Finally, we plot the development of the objective values
over time in Fig. 3. Specifically, we plot the average gaps of

Fig. 4 AveragemakespanCmax for different positions of the handshake
area

SEQSJ’s current objective value from the best lower bound
obtained by our three B&Bs after 600 seconds over time.
These graphs confirm that high-quality solutions well below
a 3% gap can be quickly obtained. Spending more than 50
seconds of computational time barely improves the results.
This is good news for the application of our B&B approach
in real-world yards. Crane scheduling is an operational deci-
sion task where only a few (dozens of) seconds are available
before the plan for the next set of container moves has to be
available. Thus, there may not be enough time to apply our
B&B as an exact approach. However, it seems well suited
to deliver solutions of acceptable quality if only very lim-
ited time is available, and even better solutions if a bit more
computational time is at hand.

5.2 Where to position the handshake area?

This section explores the question of where to position the
handshake area. Note that positioning the handshake area is
not a strategic decision, but rather a short-term choice that
can easily be altered on short notice. Once a large vessel
arrives, for instance, a new handover bay valid during the
forthcoming seaside workload peak can be fixed wherever
enough intermediate stacking space is available. Note that,
with all container moves being related with the seaside, it is
to be expected that a placement of the handshake area not
in the middle of the block but closer to the quay improves
performance. However, how far such a movement toward the
seaside is advisable is not that obvious and is the subject of
the following experiment.

For each of our 600 instances with low-capacity utiliza-
tion, we place the handshake bay at each possible position
1 ≤ bh ≤ 30, solve the resulting instance with our best-
performing B&B procedure SEQSJ, and determine which of
the alternative handover bay positions leads to the lowest
makespan. To keep the overall runtime of the experiment
within a reasonable time frame, we restrict the runtime of
each single optimization run to 150 seconds. Recall that our
performance tests in Sect. 5.1 showed that additional time

123

Journal of Scheduling (2022) 25:3–34 21

Table 4 Average makespan
Cmax and workloads W1 and W2
of crane 1 and 2, respectively,
for different positions of the
handshake area

|I o| + |I i | bh 4 5 6 7 8 9 10 11 12 13 14

5 Cmax 200 189 178 172 166 166 169 176 183 190 196

W1 100 109 118 126 134 141 148 155 161 167 173

W2 167 157 146 137 126 118 107 99 90 81 74

10 Cmax 401 381 366 347 327 322 328 340 354 368 381

W1 199 217 234 250 266 281 295 309 322 334 345

W2 346 324 304 283 263 244 225 208 190 174 159

15 Cmax 598 574 549 524 491 482 487 508 528 548 568

W1 299 326 351 376 399 421 443 463 483 501 519

W2 513 481 447 418 389 360 334 309 284 258 236

20 Cmax 799 771 751 726 679 627 638 666 693 720 744

W1 398 435 469 501 533 563 591 618 644 669 691

W2 687 642 599 558 521 482 447 410 376 343 311

Fig. 5 Average makespan Cmax for different capacity situations in the
handshake area

barely improved the results. The average makespans Cmax

obtained by B&B for the alternative positions of the hand-
shake area are plotted in Fig. 4. These results show that under
a seaside workload peak, the optimal handshake position is
in either the eighth or ninth bay.

In real-world operations, it seems rather unhandy to deter-
mine multiple detailed crane schedules just to (re)position
the handshake bay. A simpler rule-based approach seems
much more practicable. To derive such an approach, Table 4
lists the minimum average makespan Cmax for bay positions
4 ≤ bh ≤ 14 and the loaded workloads W1 and W2 for both
cranes. The loaded workload is schedule-independent and
only contains the workload where a crane travels loaded with
a container; idle time and empty travel, which are schedule-
dependent, are not considered. Thus, the loaded workload
for a given set of container moves—for instance, all those
container moves of a yard block related to the berthing
vessel—can easily be determined for different positions of
the handshake bay without having to determine detailed
schedules. The results of Table 4 show that the best handover
bay is at most a single bay next to the bay where the maxi-
mum loaded workload of both cranes max{W1;W2} reaches
its minimum (marked in bold).

Thus, the following simple rule can be applied to deter-
mine an approximated position for the handover bay: Select
a bay with sufficient stacking capacity as close to the bay
where the maximum loaded workload of both cranes reaches
its minimum. Repositioning the handover bay for varying
workload situations (e.g., during seaside peaks) according to
this rule holds a large potential for performance gains, which
is also indicated by the results of Table 4. For instance, a
permanent placement of the handover bay in the middle of
the container block, which seems a quite natural and obvious
choice, increases theworkload by about 20%compared to the
optimal placement. Note that a position of the handover bay
balancing workloads of both cranes has been shown to lead
to instances that are hard to solve in the proof of Theorem 2.

Naturally, flexibly repositioning the handshake area
requires that sufficient stacking space in the selected han-
dover bay is available. In the following experiment, however,
we show that a handful of open stacking positions is suf-
ficient, without substantial slowing of crane operations.
Specifically, we set up the following experiment. We solve
our instances with |I i | + |I o| = 20 and the handshake area
positioned in bay bh = 9 with our best-performing B&B
SEQSJ and a timeout of 300 seconds. Each of these instances
is solved multiple times with varying open stacking capac-
ity in the handshake bay. We start with an almost completely
filled handshake bay, where only two open stacking positions
are available (i.e., one for inbound and one for outbound con-
tainers), and determine the makespan for this setting. Then,
we randomly select and remove further containers from the
handover bay, one by one, so that additional open stack-
ing positions for intermediate placement of boxes are added
until, finally, the handshake area is completely empty. In this
way, we explore the impact of open stacking capacity on the
makespan, and we can answer the question as to the mini-
mum available capacity a bay must have to be considered a
valid candidate for a potential handshake bay.

123

22 Journal of Scheduling (2022) 25:3–34

The average makespan over all instances in relation to
the available open stacking capacity in the handshake area is
plotted in Fig. 5. Note that we skip the results for more than
25 open stacking spaces, since no further performance gains
are realized.

These results indicate that relatively little open stacking
space is required to relocate the handover bay to another
bay on short notice. More than five open stacking spaces do
not improve the performance noticeably. It can be concluded
that relocating the handshake area on short notice, even if
not much open stacking space is available, seems a good
strategy to improve throughput performance whenever there
is a structural change in the container workload (e.g., after
arrival of a large vessel).

5.3 Benchmark test

In this section, we benchmark our best B&B procedure when
sharing workload via a handshake area with three competi-
tors:

• NO-SHARING If both cranes are fixedly assigned to their
dedicated access point, we have no workload sharing
in the strict sense of our definition (see Sect. 2). Dur-
ing seaside workload peaks, the NO-SHARING policy
induces that seaside crane 1 has to process all inbound
and outbound moves exclusively, while landside crane 2
remains idle. The makespan minimization problem then
reduces to amatching of inbound and outbound container
moves jointly executed between any successive visits at
the access point (seeBoysen&Stephan, 2016). Note that,
since runtime is less of an issue in this experiment, we can
directly apply our B&B procedures for this optimization
task and only have tomanipulate the input data to a single
crane setting. This comparison clarifies research question
RQ1, whetherworkload sharing via a handshake area can
substantially improve yard throughput compared to the
NO-SHARING policy.

• ANY-BAY Furthermore, we also compare our optimized
crane scheduling with handshake area with an any-bay
handover (see Sect. 2). The latter policy allows us to hand
over containers between cranes in any bay where free
stacking space is available. A previous heuristic algo-
rithm from the literature coordinating twin cranes under
theANY-BAYpolicy is that of Briskorn et al. (2016). The
alterations necessary to adapt their heuristic to our setting
with inbound and outbound containers are elaborated in
AppendixB.Note, however, that thisANY-BAYheuristic
relaxes stacking capacities, so that the results are merely
a lower bound and tend to overestimate the advantages of
any-bay handover. This benchmark test clarifies research
questionRQ2, whether the simplified crane coordination

via a handshake area comes with the price of excessive
throughput loss compared to the more flexible (yet more
complicated) coordination of any-bay handover.

• HANDSHAKE-HEU Previous research on workload
sharing in container yards (e.g., Gharehgozli et al., 2017;
XiaoLong et al. 2019) mainly focuses on simple heuris-
tic procedures to coordinate container transfers between
cranes via a handshake area.Given our sophisticated opti-
mization approach, we benchmark these approaches. In
this way, we clarify research question RQ3, whether
simple heuristics are sufficient to schedule container
transfers via a handshake area or will produce large
optimality gaps, such that exact solution approaches
like our best-performing B&B approach are the better
choice. Specifically, we evaluate two approaches from
the literature: a straightforward nearest-neighbor heuris-
tic, where jobs are assigned in a greedy manner while
minimizing the empty travel between two consecutive
container transports (dubbedHANDSHAKE-HEU-NN),
and a local search procedure, which improves the ini-
tial solution obtained with HANDSHAKE-HEU-NN by
interchanging jobs in the cranes sequences (dubbed
HANDSHAKE-HEU-LS). Both approaches are based on
the work of Gharehgozli et al. (2017), and we describe
them in more detail in Appendix B.

We apply our best-performing B&B procedure SEQSJ
(with a timeout after 150 CPU seconds) as the optimiza-
tion approach for crane coordination via a handshake area.
In the following, we dub this approach HANDSHAKE-OPT.
The results of this benchmark test over our 1200 total data
instances are summarized in Table 5. Specifically, this table
reports the average relative gaps (in percent) in relation to
the results of our HANDSHAKE-OPT approach for a hand-
shake area optimally placed in bay bh = 9. In relation to this
benchmark, we report the relative performance loss of all
approaches listed above once for an optimally placed hand-
shake area in bay bh = 9 and for a handshake area in the
middle of the container block in bay bh = 15. Note that,
naturally, the approaches NO-SHARING and ANY-BAY do
not apply a handshake area, so their results are not impacted
by the placement of the handshake bay. Further note that
we execute heuristic HANDSHAKE-HEU-LS with 10,000
local searchmoves,which is considerablymore than the 1000
moves applied by Gharehgozli et al. (2017). The results of
this experiment are summarized in Table 5 and suggest the
following answers to our research questions:

• RQ 1 Workload sharing via a handshake area has the
potential to improve yard throughput substantially com-
pared to the NO-SHARING policy where both cranes are
fixedly assigned to their designated access points. The

123

Journal of Scheduling (2022) 25:3–34 23

Table 5 Average relative gap
(in percent) to the makespan
optimized according to
HANDSHAKE-OPT with the
handshake area positioned in
bay bh = 9

Algorithm |I i | + |I o|
10 20 30 40

NO-SHARING 50.01 52.33 51.02 50.80

ANY-BAY 0.04 1.35 0.83 3.00

bh = 9 HANDSHAKE-HEU-NN 65.53 76.44 78.05 81.88

HANDSHAKE-HEU-LS 4.67 8.24 7.80 19.25

HANDSHAKE-OPT 0 0 0 0

bh = 15 HANDSHAKE-HEU-NN 59.58 67.69 67.40 71.18

HANDSHAKE-HEU-LS 26.24 25.16 28.51 28.08

HANDSHAKE-OPT 22.93 22.53 22.15 22.72

makespan of NO-SHARING is more than 50% higher
than our optimization approach.

• RQ 2 On first sight, the benchmark test between work-
load sharing with handshake area and its more flexible
counterpart based on any-bay handover delivers a sur-
prising result. Although it provides greater flexibility,
any-bay handover leads to a slightly higher makespan
than its competitor. This is due to the heuristic gap of our
solution procedure applied for the ANY-BAY policy. We
adapt the heuristic procedure of Briskorn et al. (2016) to
our problem setting,which is based on the bucket-brigade
protocol (see Appendix B for more details). Obviously,
this heuristic is not able to deliver optimal results, because
optimal objective values for the ANY-BAY policy can-
not exceed those obtained with a handshake area, due
to the larger solution space. Thus, it remains a future
research task to benchmark HANDSHAKE-OPT with
optimal solutions for the ANY-BAY policy. Our results
suggest that a handshake area placed in optimal posi-
tion (i.e., in bay bh = 9 in the case of seaside workload
peaks) leads to a comparable yard throughput to that of
ANY-BAY.

• RQ 3 Coordinating workload sharing via a handshake
area with simple decision rules seems a bad idea. Apply-
ing a straightforward nearest-neighbor heuristic such
as HANDSHAKE-HEU-NN leads to an increase in
makespan of between 65.53 and 81.88% depending on
the number of container moves. Thus, planning that is
too simple comes at the price of considerable perfor-
mance loss. More elaborate heuristics based on local
search such as HANDSHAKE-HEU-LS reduce the gap,
but still reach a performance loss of 10% and greater
if many container moves need to be processed (|I i | +
|I o| = 40) and/or not enough local search moves are
executed. Note that increasing the number of local search
moves for HANDSHAKE-HEU-LS to 100,000 moves
did not significantly improve the results. Further note that
HANDSHAKE-HEU-LS applies our routing procedure
of Sect. 4.1.2 based on DP to coordinate the cranes for

given container sequences and stacking positions, so that
it already contains sophisticated optimization and goes
beyond those approaches presented in the literature.

To conclude, simplifying the coordination of twin cranes
via a handshake area does not lead to excessive perfor-
mance loss, as long as the position of the handshake area
is (re)located to an appropriate position that (roughly)
halves the workload for both cranes. Planning that is too
simple, however, may deteriorate throughput performance
considerably. Simple heuristics are clearly outperformed by
sophisticated optimization procedures.

6 Conclusions

In this paper, we treat crane scheduling in a container block
where twin cranes share container processing during sea-
side workload peaks via a handshake area. We develop three
alternative branch and bound approaches to minimize the
makespan of container processing. One of them in particular
is shown to deliver either optimal solutions for instances up
to 40 container moves if enough computational time is avail-
able, or near-optimal solutions if less time is at hand. This
paper is the first to derive optimal solution approaches for a
handshake setting, which allows us to derive the following
take-home messages from our computational study:

• Introducing a handshake area is an organizational deci-
sion to ease the coordination of twin cranes jointly
operating a container block. If the handshake bay is posi-
tioned in the optimal position, such that both cranes have a
similar workload, and their schedules are optimized (e.g.,
by our B&B approaches), the price for this organizational
simplification is low. Compared to an any-bay handover,
where each available stacking position is a potential han-
dover position between cranes, the loss in throughput
performance is small. Note, however, that our compu-
tational test applies a heuristic approach for scheduling

123

24 Journal of Scheduling (2022) 25:3–34

the cranes under any-bay handover. Thus, future research
must determine whether this finding still holds if two
exact solution procedures are benchmarked.

• This finding, however, is no longer true if the hand-
shake area is poorly placed, e.g., always in the middle
bay of the container block. In this case, one crane eas-
ily becomes the bottleneck resource and slows container
processing considerably. This is especially painful under
seaside workload peaks if large container vessels are to
be processed under great time pressure.

• Performance losses also arise when planning is too sim-
ple. Existing research only investigates the application
of a handshake area when coordinating both cranes with
simple rules for job sequencing and handshake access
prioritization. Our computational results show that these
approaches may lead to considerable performance loss.

Themain challenge we see for future research is a system-
atic comparison of all kinds of workload sharing in container
blocks. In Sect. 2, we elaborate the four basic kinds of work-
load sharing, i.e., front evasion, cross-over cranes, any-bay
handover, and handshake area. For each of these organi-
zational approaches, different exact and heuristic solution
algorithms have been introduced in the literature, and some
of these procedures have also been compared with one or
two alternatives of workload sharing. A systematic compar-
ison with exact methods (to exclude heuristic gaps) and with
state-of-the-art heuristics (whenever computational results
have to be obtained quickly) of all kinds of workload sharing
on a unique dataset is still lacking. Such a benchmark test
would provide great practical decision support for port man-
agers having to set up their container yards for a competitive
processing of today’s mega vessels.

Another viable direction for future research is to extend
our research in order to use a dedicated handshake area in a
more flexible manner. Specifically, we see four opportunities
to do so:

• First, a switching policy could be applied, where a
dedicated handshake area and any-bay handover are
employed during distinct time intervals. While crane
scheduling procedures exist for both operational regimes
in isolation (see Sect. 2), future research should investi-
gate the appropriate time for a switch.

• Under a mixed policy, a handshake area is the default
option, but the cranes are exceptionally allowed to cross
the handshake area whenever a direct delivery promises
a better performance and does not impact the other crane.
To account for themixed policy, our solution frameworks
require adaptation when determining the stacking posi-
tion of a container in I i,l∪I o,l . This additional option is to
not store the container intermediately. To do so, we see at

least two algorithmic components that require alteration
by future research: the lower bound for the makespan
and collision avoidance that is no longer restricted to the
handshake area.

• Another alternative for more flexible crane operations is
the application of multiple alternative handshake areas.
This requires the additional choice of the right handshake
area for each container move and adds potential crane
interference. The adaptations to be made to our solution
frameworks are similar to the ones sketched above. We
could consider each potential stacking position (in each
bay of the handshake area) as an optional stacking posi-
tion. Additionally, if there is at least one handshake area
beyond a container’s destination position, it is also pos-
sible to deliver it directly. That is, the container can be
handled by the seaside crane alone, unless the container
passes all bays of the handshake area. The algorithmic
components to be adapted are the same as those above.

• Finally, we can allow a crane to pick up a container a sec-
ond time for further transport (with or without a potential
crossing of the handshake bay). Obviously, in the former
case, we would lose the fixed assignment of a crane to
each transport job. Our frameworks, then, need an addi-
tional decision step of whether the same or the other
crane picks up a container after it has been intermediately
stored. Again, significant changes to our frameworks are
inevitable.

Each of these four opportunities promises an improvement
in container handling efficiency but adds much complexity
to the solution process. Thus, a handshake area remains a
challenging field for the port operations community in the
foreseeable future.

Funding Open access funding enabled andorganized byProjektDEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Scheduling (2022) 25:3–34 25

A Proofs

Proof of Theorem 2 The proof is by reduction from
3-PARTITION, which is known to be strongly NP-complete;
see Garey and Johnson (1979).
3-PARTITION Given 3m + 1 integers a1, . . . , a3m, A with
A
4 < ai < A

2 for each i = 1, . . . , 3m and
∑3m

i=1 ai =
mA. Does there exist a partition of set {1, 2, . . . , 3m} into
m subsets A1, . . . , Am such that

∑
i∈Al ai = A for each

l = 1, . . . ,m?
It is not hard to see that 3-PARTITION remains a complex

matter if A > 4m+3. In this case, we can simplymultiply all
numbers by 4(m+1)without changing the problem structure.

For a given instance of 3-PARTITION, we construct the
following instance of TCSP. We have B = 3A + 1, R = 2,
and a handshake area positioned in bay bh = A. We further-
more, have I i,s = {1, . . . , 3m}, I i,l = {3m+1, . . . , 4m+1},
I o,s = ∅, and I o,l = {4m+2, . . . , 5m+2}with the following
individual properties.

• For each i ∈ I i,s , we have oi = (0, 1) and di = (ai , 1).
• We have oi = (0, 1) for each i ∈ I i,l , d3m+1 = (2A +
1, 1), and di = (3A + 1, 1) for each other i ∈ I i,l .

• We have di = (0, 2) for each i ∈ I o,l , o5m+2 = (2A +
1, 2), and oi = (3A + 1, 2) for each other i ∈ I o,l .

Note that all inbound containers travel only through row
1, while all outbound containers travel only through row 2.
Initially, cranes are located in o01 = (0, 1) and o02 = (2A, 2).

Clearly, the construction of the instance of TCSP can be
done in polynomial time. We claim that the answer to the
instance of 3-PARTITION is yes if and only if a makespan
of

C = 4mA + 4m + 2A + 3

can be achieved in the instance of TCSP.
First, we assume that a makespan of C is achieved. Recall

that p = 0, and thus the only time-consuming activities of
cranes involve moving and waiting for the other crane to
move out of the way. Note that the total loaded travel time of
crane 2 amounts to

L2 =
∑

i∈I o,l
(obi − bh)) +

∑

i∈I i,l
(dbi − bh) = (m(2A + 1)

+(A + 1)) + ((A + 1) + m(2A + 1))

= 4mA + 2m + 2A + 2.

Furthermore, between handling an inbound container and an
outbound container, crane 2 needs at least one period for
adjusting its trolley, and hence, crane 2 needs at least

L2 + 2m + 1 = C

time units to accomplish all operations. Thus, for achieving
a makespan of C , crane 2 cannot wait at all or make any
empty moves involving the gantry. Note that containers in
both {3m + 2, . . . , 4m + 1} and {4m + 2, . . . , 5m + 1} are
identical, and therefore, we can assume that crane 2 handles
container 5m + 2 first, container 3m + 1 last, and containers
in {3m + 2, . . . , 5m + 1} in between (alternating between
inbound and outbound containers). This fixes the position
of the gantry of crane 2 over time throughout the planning
horizon. In particular, crane 2 is located in bay bh in time
interval [A+1+ k · (4A+4), A+2+ k · (4A+4)] for each
k = 0, . . . ,m, and thereby delivering a container in I o,l at
time A + 1 + k · (4A + 4) to (bh, 2), moving the trolley to
(bh, 1), andpickingup a container in I i,l at A+2+k·(4A+4).

Since crane 2 delivers the last container in I o,l to bh not
before A + 1 + m · (4A + 4), crane 1 picks it up not before

A + 1 + m · (4A + 4) + 2 = C − A

and, hence, crane 1 ends up in bay 0 after delivering this job
to position (0, 2) if a makespan of C is achieved.

The total loaded travel time of crane 1 amounts to

L1 = |I o,l ∪ I i,l | · A +
∑

i∈I i,s
dbi = (2m + 2)A + mA.

After delivering containers in I i,s , a total gantry empty travel
distance of E1

1 ≥ mA is due since, after delivering container
i ∈ I i,s to bay ai , the closest bay where a container can be
picked up is bay 0.

Since L1 + E1
1 ≥ C − (4m + 3) and A > 4m + 3, crane

1 cannot travel empty from bay bh to bay 0 if a makespan
of C is achieved. Thus, after delivering a container in I i,l , it
needs to pick up a container in I o,l before handling any other
container. This results in three extra time units for moving
from bay bh to bay bh −1, letting crane 2 deliver a container
to bh and pick up the container just delivered by crane 1, and
moving back to bay bh (recall that crane 2 does not make any
detours or waits if a makespan of C is achieved). Since we
havem+1, such encounters between cranes 1 and 2, we have
at least D1 ≥ 3(m + 1) time units for detours and waiting of
crane 1 while exchanging containers with crane 2.

Finally, after delivering a container to bay 0, we have an
empty travel time of at least one since crane 1 does not pick
up containers in position (0, 2). Since crane 1 deliversm+1
containers to bay 0, this results in an additional empty travel
time of at least E1

2 ≥ m.
Hence, in order to achieve a makespan ofC , crane 1 needs

at least

L1 + E1
1 + D1 + E2

1 = (2m + 2)A + mA

+mA + 3(m + 1) + m = 4mA + 4m + 2A + 3 = C

123

26 Journal of Scheduling (2022) 25:3–34

time units to accomplish all operations. Furthermore, it
accomplishes its operations in C time only if E1

1 = mA,
D1 = 3(m + 1), and E1

2 = m. The latter implies that crane 1
is busy delivering containers in I i,l ∪ I o,l each time interval
[0+ k · (4A+4), 2A+3+ k · (4A+4)], k = 0, . . . ,m. This
leaves time interval [2A+3+k ·(4A+4), (k+1) ·(4A+4)],
k = 0, . . . ,m − 1, for picking up and delivering containers
in I i,s plus an additional trolley adjustment before picking
up the first container in each interval. Hence, total travel
distance (loaded travel plus following empty travel) of con-
tainers delivered in each such interval does not exceed 2A.
Since total travel distance equals 2mA, the total travel dis-
tance of containers delivered in each such interval is exactly
2A and, thus, constitutes a yes certificate to the instance of
3-PARTITION.

Now, it is easy to see that if the answer to the instance of
3-PARTITION is yes, then we can achieve a makespan of C
using the structure outlined above. �

Figure 6 illustrates the structure of a solution certifying a
yes instance of 3-PARTITION. We see the time horizon on
the vertical axis and gantry positions on the horizontal axis.
The positions of cranes 1 and 2 over time are depicted as the
left line and the right line, respectively.

The position of crane 2 over time is fixed as outlined in
the proof. Also, travels of crane 1 starting at bay 0, visiting
bh , and returning to bay 0 are fixed. The encounters between
the two cranes are encircled and enlarged to provide greater
detail. The choice of containers handled by crane 1 in time
intervals of length 2A is not fixed and certifies a yes instance
of the 3-PARTITION if a makespan of C is achieved.

Proof of Lemma 1 For the proof, we focus on a single stack-
ing position and the operations of jobs taking place in that
stack. We consider two containers a and b that need to be
intermediately stored in the same stacking position, with
j1(a), j1(b), j2(a), and j2(b) being the corresponding stor-
age and retrieval jobs. Clearly, a and b can be picked up only
after they have been dropped off.

Let us assume, without loss of generality, that j1(a) pre-
cedes j1(b) in the job sequence of the crane handling both.
Now, we distinguish two cases. First, if job j2(a) precedes
j2(b) in the other crane’s job sequence as well, then a must
be retrieved before b can be stored, since otherwise b needs
to be retrieved before a can be retrieved. Second, if job j2(a)

succeeds j2(b) in the other crane’s job sequence, then b is
stored before a is retrieved. In both cases, we have a distinct
order in which the operations in the handshake area related
to a and b are conducted. �
Proof of Lemma 2 Weconsider two arbitrary containersa and
b that are intermediately stored in the same stacking position,
with j1(a), j1(b), j2(a), and j2(b) being the corresponding
storage and retrieval jobs. Due to Rule 1, j1(a) or j1(b) is
appended first. Without loss of generality, we assume that

j1(a) is appended first. Again, due to Rule 1, j2(a) or j1(b)
is appended next.

• If j2(a) is appended next, then the retrieval operation
of j2(a) precedes the storage operation of j1(b) in the
stacking position due to Lemma 1, and the order in which
operations related to a or b are carried out coincides with
the order in which the respective jobs are appended to the
job sequences.

• If j1(b) is appended next, there is then a storage job
(j1(a)) in the stacking position sequence preceding
j1(b) without the respective retrieval job (j2(a)) in the
sequence. Then, due to Rule 2, j2(b)must precede j2(a),
such that j1(b) precedes j2(a) as well and, again, both
orders coincide.

Summarizing, Rules 1 and 2 allow only two orders in which
jobs are appended for two arbitrary containers intermediately
stored in the same stacking position. For both, the order coin-
cides with the order in which the corresponding operations
are carried out. �
Proof of Lemma 3 Assume that the precedence relations con-
tain a cycle. Consider job j being the immediate predecessor
of job j ′ in the cycle but j ′ being appended to its crane’s
job sequence first. Such a pair exists since the order in which
jobs are appended is well defined. Then, j and j ′ are jobs
of different cranes since precedence relations are not in con-
flict with job sequences of cranes, and operations related to
j and j ′ are in the same stacking position. However, due to
Lemma 2, the precedence relations between operations in the
same stack are in line with the order in which corresponding
jobs are appended. �
Proof of Theorem 3 The proof is twofold. First, we show that
for any pair of job sequences constructed by our branching
scheme, σ is unique. Second, we show that, following the
scheme, we can indeed construct any arbitrary pair of sched-
ules.

For the first part, let us consider a pair (n1, n2) constructed
by the proposedbranching scheme.Assume thatn1 andn2 are
constructed up to a certain point, and let kc, with c ∈ {1, 2}, be
the next job in nc that is not yet in σ . Obviously, by appending
one job at each level in the search tree, a job from {k1, k2} is
the next job in σ .

We first show that, following Rules 1 to 4, only one job in
{k1, k2} can be the next job in σ . We do so by distinguishing
the following cases.

• If k1 ∈ N1, then k1 is the next job in σ , since k1 cannot
follow a job from J2 in σ due to Rule 4.

• If k1 /∈ N1 and k1 and k2 imply operations in the same
stacking position, then (n1, n2) together with Rules 1 and
2 implies the next job in σ due to Lemma 2.

123

Journal of Scheduling (2022) 25:3–34 27

Fig. 6 Solution structure in the proof of Theorem 2

• If k1 /∈ N1 and k1 and k2 imply operations in different
stacking positions, jobs are appended as follows.

– If any kc, c ∈ {1, 2} has a predecessor in n3−c not yet
in σ (all predecessors are implied by (n1, n2) due to
Lemma 1), this job cannot be the next job in σ due to
Lemma 2. Hence, only kc−1 can be the next job in σ .

– If both k1 and k2 have all their predecessors in σ , then
Rule 4 implies that k1 is the next job in σ . Assume
that k2 is the next job in σ . Then, Rule 4 requires that
k1 follows immediately after a job in J2, implying
an operation in the same stacking position. However,
such a job would be a predecessor of k1, which we
assumed does not exist.

Second, we show that for any feasible pair of job
sequences (n1, n2) there is a branching sequence σ leading

to (n1, n2). We do so by giving a procedure constructing σ

from (n1, n2) and obeying Rules 1 to 4

1. Let σ be empty.
2. Append jobs from n1 not yet in σ in the same order until

the next job k1 in n1 has a predecessor not yet in σ or all
jobs in n1 are appended. Go to 2.

3. Append jobs from n2 not yet in σ in the same order until
all jobs in n2 are appended or the predecessor of k1 is
appended. Go to 1.

This procedure is in line with the branching scheme. Obvi-
ously, the job sequence for each crane is regarded by keeping
jobs in the same relative order as in n1 and n2. Furthermore,
Rules 1 to 4 are accounted for.

123

28 Journal of Scheduling (2022) 25:3–34

• Rules 1 and 2 are being followed, since a job follows all
its predecessors in σ . This is explicitly ensured by step 2
for jobs in n1. Since jobs in n2 are appended to σ only if
necessary to proceed with n1, we do not have to ensure
this in step 3 due to acyclic precedence relations in a
feasible pair of job sequences (n1, n2).

• Rule 3 is followed, since feasible pair of job sequences
(n1, n2) implies a unique stacking position sequence
for each stacking position accounting for capacity con-
straints.

• Rule 4 is obeyed, since we switch back to step 2 imme-
diately after appending the predecessor of k1 to σ .

Concluding, the branching scheme ensures that each feasible
pair of job sequences (n1, n2) can be constructed. �

B Competitors of our B&B procedures

This appendix details the two competitors challenging our
B&B procedures. First, we address simple priority-rule-
based approaches for workload sharing via a handshake area
taken from the literature.We briefly explain these approaches
and adapt them to our more involved problem setting where
also the stacking positions in the handshake area are part
of the decision. Furthermore, we describe and adapt a solu-
tion procedure from the literature for any-bay handover (see
Sect. 2) where preemptive container handling is not restricted
to a dedicated handshake area, but can be split in any avail-
able stacking position in the yard.

B.1 Heuristics for workload sharing via handshake
area

In this section, we present two approaches closely follow-
ing the work in Gharehgozli et al. (2017). In particular, we
take the first three parts of the decision taking up ideas of
Gharehgozli et al. (2017) and deviate only where it becomes
necessary due to our problem setting differing in details.

First, we specify stacking positions of containers. While
Gharehgozli et al. (2017) do not distinguish different stacking
positions in a handshake area, the authors decide in which
of multiple handshake areas a container is stored (if there
exists more than one such area). They propose to minimize
the laden travel duration associated with either the storage
job or the retrieval job by choosing the stacking position. We
do exactly the same, except we choose a position within the
only handshake area this way. In the case of a tie between
positions, we choose the one closest to themiddle row (R/2).
By storing the containers closely together, we aim to reduce
the time necessary to adjust the trolley between consecutive
operations of the same crane in bh .

For the first part of the decision taken, we employ the two
heuristic approaches introduced byGharehgozli et al. (2017),
namely a nearest-neighbor and a local search heuristic, in
order to construct a feasible pair of job sequences.

• For thenearest-neighbor heuristic (dubbedHANDSHAKE-
HEU-NN within our computational study), we build a
sequence of jobs for crane c by consecutively appending
jobs to nc following the nearest-neighbor approach, i.e.,
we append the job adding the least empty travel. After-
wards, we determine a sequence for crane 3 − c, again,
following the nearest-neighbor approach. While Ghare-
hgozli et al. (2017) do not consider stacking sequences,
wemodify their approach in order to ensure feasible pairs
of sequences by requiring jobs corresponding to contain-
ers in I i,l ∪ I o,l to be handled in the same order by both
cranes. We run the approach once with c = 1 and once
with c = 2 for both strategies determining stacking posi-
tions and choose the best among the resulting schedules.

• The local search heuristic (dubbed HANDSHAKE-
HEU-LS within our computational study) applies the
solution obtained with HANDSHAKE-HEU-NN as its
initial solution. Then, for 10,000 iterations, we choose
two jobs randomly in each sequence and swap them.Note
that in Gharehgozli et al. (2017), the authors merely exe-
cute 1000 iterations. In our study, however, increasing the
number of iterations improved the performance consid-
erably, while the effect on runtimes is minor. The swap is
accepted whenever the pair of resulting sequences is fea-
sible and the makespan (evaluated by using the routing
approach in Sect. 4.1.2) decreases.

Deviating from Gharehgozli et al. (2017), the remaining
fourth part of the decision is then determined optimally by
the routing approach from Sect. 4.1.2.

B.2 A heuristic for any-bay handover

In this section, we present a heuristic optimization proce-
dure for any-bay handover in which the cranes are allowed
to intermediately store a container in every free stacking posi-
tion within the yard. It is based on the approach presented by
Briskorn et al. (2016). The authors tackle a settingwhere con-
tainers exclusively arrive at the seaside access point and need
to be storedwithin the yard. Hence, the containers considered
are only those in I i in our setting. The block is represented in
a one-dimensional model; that is, only bays are considered,
and trolley moves are neglected. Handovers between cranes
are not restricted to a handshake area but are allowed in any
bay, capacities are assumed to be infinite, and no stacking
sequences of containers within a bay are considered. Ini-
tially, containers are picked up by the seaside crane 1, which

123

Journal of Scheduling (2022) 25:3–34 29

is allowed to preempt a job and hand it over to the land-
side crane 2. The authors aim at minimizing the makespan
and develop—among others—a bucket-brigade scheduling
approach (see e.g., Bartholdi&Eisenstein, 1996) that obtains
near-optimal results. According to the bucket-brigade proto-
col, crane 1 hands over a container to crane 2 whenever the
cranes meet and crane 2 is not carrying a container. After-
wards, crane 2 transports the container to its final destination
and then heads back to toward crane 1 in order to receive the
next container.

For the approach proposed in this section, we neglect
capacities and precedence relations among jobs in the same
position and allow containers to be intermediately stored in
any position. Obviously, it does not yield feasible solutions
for the TCSP and serves as a benchmark only. Hence, we
explain the approach only briefly. Clearly, the optimal sched-
ule to this setting constitutes a lower bound to the TCSP. As
opposed to Briskorn et al. (2016), we consider two types
of containers, namely in I i and I o, as well as moves of
the trolley and, therefore, have to adapt the bucket-brigade
scheduling approach as presented in the following.

For the proposed approach, we omit determining all parts
of the decision in advance and only decide about the sequence
n1 in which crane 1 handles containers in I o ∪ I i , as detailed
at the end of this section. For such a sequence given, we
decide dynamically about the very next container to be han-
dled by crane 2. Such a decision is made at the beginning
of the planning horizon and every time crane 2 sets down a
container.

When deciding about the next container to be handled by
crane 2,we consider relocating containers in I o and receiving
a container in I i from crane 1 as options. For receiving a
container from crane 1 following the original approach from
Briskorn et al. (2016), we assume that crane 2 approaches
crane 1 as fast as possible and receives the first container that
crane 1 can hand over. For relocating containers in I o, we
consider all boxes that crane 1 has not yet transported.

We evaluate each of these options according to the benefit
of crane 1, that is, the reduction in workload of crane 1 by
crane 2 carrying a container, as compared to the cost of crane
2, that is, the empty travel time for crane 2 to approach the
container. Each option is evaluated by benefit minus costs,
and we choose the option having the highest evaluation. Fol-
lowing the proposed approach, the positions of containers
provided for the decisionmaking potentially deviate from the
original container positions, e.g., if a box has been relocated
by crane 2.Hence, duringdecisionmaking,weuse the incum-

bent container positions as oi = (obi , o
r
i) and di = (d

b
i , d

r
i).

We aim at handing over only containers for which crane
1 can actually gain a benefit. Hence, for two consecutive
containers i and i ′ in n1, focusing only on bay positions, we
say that

• crane 1 is allowed to hand over i ∈ I i only if obi ′ < d
b
i

holds, and
• crane 2 is allowed to relocate i ′ ∈ I o only if d

b
i < obi ′

holds.

If obi ′ ≥ d
b
i with i ∈ I i , then crane 1 moves beyond d

b
i

in order to pick up i ′ and, hence, passes d
b
i . If d

b
i ≥ obi ′

with i ′ ∈ I o, then crane 1 moves beyond obi ′ in order to
deliver i and, hence, passes obi ′ on its way back. Whenever
a container is intermediately stored or relocated, we say that
the crane carrying it begins to set it down when the cranes
are positioned at most p + 1 bays apart. While carrying a
container, crane 2 is prioritized in the case of a conflict, while
crane 1 is prioritized otherwise. The cranes position their
trolleys such that they do not extend the time necessary for
the other crane to transport a container to its final destination.
The makespan of a hereby determined schedule equals then
the point of time when all containers in n1 are dropped off in
their destination positions.

Let us now conclusively detail how we determine n1. We
do so by employing a simulated annealing approach resem-
bling the one in Briskorn et al. (2016). We set the initial
temperature T to three times the workload assuming that
only crane 1 handles containers. In each iteration, we gener-
ate |I i |+|I o| neighboring solutions for the current sequence
n1 by randomly swapping the position of two containers.
We replace the current solution with a neighboring solution
if rand(0, 1) < exp(−�/T) holds where � is the differ-
ence in makespans. After each iteration, we set T to 0.99 · T
and repeat the procedure unless T is smaller than 0.1. Then,
the container sequence with the best obtained makespan is
returned. The approach is denoted ANY-BAY within our
computational study.

C MIPmodel

AMIPmodel representing TCSP, has to account for collision
avoidance, the trolley position of cranes over time, temporal
interdependencies between drop-off and pickup operations
in the handshake area, and capacities in the handshake area.
While collision avoidance has been handled inmultiple other
models, e.g., in Briskorn and Zey (2020), the decision about
the intermediate stacking position and integrated tracking of
trolley positions, loads of stack capacities, and sequences
of operations in the handshake area have (to the best of the
authors’ knowledge) not yet been covered by MIP models
in the literature. This results in multiple new types of binary
variables representing, e.g., the stacking position of a con-
tainer and the time at which a container is removed from the
handshake area. We summarize the notation used in the MIP
model in Table 6.

123

30 Journal of Scheduling (2022) 25:3–34

Ta
bl
e
6

N
ot
at
io
n

Sy
m
bo
l

N
ot
at
io
n

C
m
a
x

M
ak
es
pa
n

I c
Se
to

f
co
nt
ai
ne
rs
th
at
ne
ed

to
be

ha
nd
le
d
by

cr
an
e
c
w
ith

I 1
=

I
an
d
I 2

=
I

\I
i,
s
∪
Io

,s

pb c,
t

C
on
tin

uo
us

va
ri
ab
le
,b
ay

po
si
tio

n
of

cr
an
e
c
at
tim

e
t

pr c,
t

C
on
tin

uo
us

va
ri
ab
le
,r
ow

po
si
tio

n
of

cr
an
e
c
at
tim

e
t

xo t,
i,
c

B
in
ar
y
va
ri
ab
le
,e
qu
al
s
1
if
an
d
on
ly

if
cr
an
e
c
co
m
pl
et
es

lif
tin

g
co
nt
ai
ne
r
i
∈
I c

in
t

xd t,
i,
c

B
in
ar
y
va
ri
ab
le
,e
qu
al
s
1
if
an
d
on
ly

if
cr
an
e
c
co
m
pl
et
es

re
le
as
in
g
co
nt
ai
ne
r
i
∈
I c

in
t

a i
,r

B
in
ar
y
va
ri
ab
le
,e
qu

al
s
1
if
an
d
on

ly
if
co
nt
ai
ne
r
i
∈
I 2

is
st
or
ed

in
ro
w
r

y i
,i

′ ,c
B
in
ar
y
va
ri
ab
le
,e
qu

al
s
1
if
an
d
on

ly
if
co
nt
ai
ne
r
i
∈
I 2

is
tr
an
sp
or
te
d
be
fo
re

co
nt
ai
ne
r
i′

∈
I c

by
cr
an
e
c

c+ t,
r

C
on
tin

uo
us

va
ri
ab
le
,e
qu
al
s
1
if
st
or
in
g
a
co
nt
ai
ne
r
in

(b
h
,
r)

is
co
m
pl
et
ed

at
tim

e
t

c− t,
i,
r

B
in
ar
y
va
ri
ab
le
,e
qu

al
s
0
if
re
tr
ie
va
lo

f
co
nt
ai
ne
r
i
fr
om

(b
h
,
r)

is
no

tc
om

pl
et
ed

at
tim

e
t

z i
,i

′
C
on
tin

uo
us

va
ri
ab
le
,e
qu
al
s
1
if
co
nt
ai
ne
r
i′

∈
I 2

is
in
te
rm

ed
ia
te
ly

st
or
ed

in
th
e
sa
m
e
st
ac
k
as

i
∈
I 2

bu
ta
ft
er

i
ha
s
be
en

re
tr
ie
ve
d

u r
,t

C
on
tin

uo
us

va
ri
ab
le
,n
um

be
r
of

co
nt
ai
ne
rs
st
or
ed

in
(b

h
,
r)

at
tim

e
t

bo i,
c,
bd i,

c
B
ay

po
si
tio

n
w
he
re

c
pi
ck
s
up

/r
el
ea
se
s
i
∈
I c

ro i,
c,
rd i,

c
R
ow

po
si
tio

n
w
he
re

c
pi
ck
s
up

/r
el
ea
se
s
i
∈
I c

ou
ts
id
e
th
e
ha
nd
sh
ak
e
ar
ea

Îh
Se

to
f
tr
ip
le
s
im

pl
yi
ng

op
er
at
io
ns

in
th
e
ha
nd

sh
ak
e
ar
ea

Î
Se
to

f
tr
ip
le
s
im

pl
yi
ng

op
er
at
io
ns

ou
ts
id
e
of

th
e
ha
nd
sh
ak
e
ar
ea

123

Journal of Scheduling (2022) 25:3–34 31

Sets

Î h : = {(i, d, 1), (i, o, 2) | i ∈ I i,l} ∪ {(i, o, 1), (i, d, 2) | i
∈ I o,l}

and

Î : = {(i, o, 2), (i, d, 1) | i ∈ I o,l} ∪ {(i, d, 2), (i, o, 1) | i
∈ I i,l} ∪ {(i, q, 1) | i ∈ I i,s ∪ I o,s, q ∈ {o, d}}

contain triples with the first entry referring to a container, the
second entry referring to the type of operation with q = o
for a pickup and q = d for a drop-off, and the third entry
referring to the crane involved. The MIP model can then be
formulated as objective function (2) and constraints (3) to
(45).

Min Cmax (2)

Cmax ≥
T∑

t=1

xdt,i,c · t

∀c ∈ {1, 2}, i ∈ Ic (3)
T∑

t=p

xqt,i,c = 1

∀c ∈ {1, 2}, q ∈ {o, d}, i ∈ Ic (4)
T∑

t=p

t · xot,i,c ≤
T∑

t=2p

(t − p) · xdt,i,c

∀c ∈ {1, 2}, i ∈ Ic (5)

min{t+p−1,T }∑

t ′=t

∑

i∈Ic

∑

q∈{o,d}
xqt ′,i,c ≤ 1

∀t = 1, . . . , T , c ∈ {1, 2} (6)
t∑

t ′=1

∑

i∈Ic
(xot ′,i,c − xdt ′,i,c) ≤ 1

∀t = 1, ..., T , c ∈ {1, 2} (7)

pb1,t ≤ pb2,t − 1

∀t = 1, ..., T (8)

pbc,0 = b0c

∀c ∈ {1, 2} (9)

prc,0 = r0c

∀c ∈ {1, 2} (10)

pkc,t − pkc,t−1 ≤ 1

∀c ∈ {1, 2}, t = 1, ..., T , k ∈ {b, r} (11)

pkc,t−1 − pkc,t ≤ 1

∀c ∈ {1, 2}, t = 1, ..., T , k ∈ {b, r} (12)

B + (bqc,i − B)

⎛

⎝
min{t+p,T }∑

t ′=t

xqt ′,i,c

⎞

⎠ ≥ pbc,t

∀t = 1, . . . , T , (i, q, c) ∈ Î h ∪ Î (13)

bqc,i ·
⎛

⎝
min{t+p,T }∑

t ′=t

xqt ′,i,c

⎞

⎠ ≤ pbc,t

∀t = 1, ..., T , (i, q, c) ∈ Î h ∪ Î (14)

R + (rqc,i − R) ·
⎛

⎝
min{t+p,T }∑

t ′=t

xqt ′,i,c

⎞

⎠ ≥ prc,t

∀t = 1, ..., T , (i, q, c) ∈ Î (15)

1 + (rqc,i − 1) ·
⎛

⎝
min{t+p,T }∑

t ′=t

xqt ′,i,c

⎞

⎠ ≤ prc,t

∀t = 1, ..., T , (i, q, c) ∈ Î (16)

R ·
⎛

⎝1 −
min{t+p,T }∑

t ′=t

xqt ′,i,c

⎞

⎠ +
R∑

r=1

r · ai,r ≥ prc,t

∀t = 1, ..., T , (i, q, c) ∈ Î h (17)

R ·
⎛

⎝
min{t+p,T }∑

t ′=t

xqt ′,i,c − 1

⎞

⎠ +
R∑

r=1

r · ai,r ≤ prc,t

∀t = 1, ..., T , (i, q, c) ∈ Î h (18)
∑

(bh ,r)∈H1

ai,r = 1

∀i ∈ I i,l (19)
∑

(bh ,r)∈H2

ai,r = 0

∀i ∈ I i,l (20)
∑

(bh ,r)∈H2

ai,r = 1

∀i ∈ I o,l (21)
∑

(bh ,r)∈H1

ai,r = 0

∀i ∈ I o,l (22)

T∑

t=p

t · xdt,i,1 ≤
T∑

t=p

t · xot,i,2

i ∈ I i,l (23)
T∑

t=p

t · xdt,i,2 ≤
T∑

t=p

t · xot,i,1

i ∈ I o,l (24)

123

32 Journal of Scheduling (2022) 25:3–34

T∑

t=p

t · xot,i ′,c −
T∑

t=p

t · xot,i,c ≤ yi,i ′,c · T

∀c ∈ {1, 2}, i, i ′ ∈ I2, i �= i ′ (25)
T∑

t=p

t · xot,i,c −
T∑

t=p

t · xot,i ′,c ≤ (1 − yi,i ′,c) · T

∀c ∈ {1, 2}, i, i ′ ∈ I2, i �= i ′ (26)

yi,i ′,1 + yi,i ′,2 + ai,r + ai ′,r ≤ 3 + zi,i ′

∀(bh, r) ∈ H1, i, i
′ ∈ I i,l , i �= i ′ (27)

yi,i ′,1 + yi,i ′,2 + ai,r + ai ′,r ≤ 3 + zi,i ′

∀(bh, r) ∈ H2, i, i
′ ∈ I o,l , i �= i ′ (28)

T∑

t=p

t · xot,i,2 ≤ (1 − zi,i ′) · T +
T∑

t=p

t · xdt,i ′,1

∀i, i ′ ∈ I i,l , i �= i ′ (29)

T∑

t=p

t · xot,i,1 ≤ (1 − zi,i ′) · T +
T∑

t=p

t · xdt,i ′,2

∀i, i ′ ∈ I o,l , i �= i ′ (30)

xdt,i,1 + ai,r ≤ 1 + c+
t,r

∀t = 1, . . . , T , (bh, r) ∈ H1, i ∈ I i,l (31)

xdt,i,2 + ai,r ≤ 1 + c+
t,r

∀t = 1, . . . , T , (bh, r) ∈ H2, i ∈ I o,l (32)

c−
t,i,r ≤ 0.5 · (xot,i,2 + ai,r)

∀t = 1, . . . , T , (bh, r) ∈ H1, i ∈ I i,l (33)

c−
t,i,r ≤ 0.5 · (xot,i,1 + ai,r)

∀t = 1, . . . , T , (bh, r) ∈ H2, i ∈ I o,l (34)

ur ,t = ur ,t−1 + c+
t,r −

∑

i∈I2
c−
t,i,r

∀r = 1, . . . , R, t = 1, . . . , T (35)

ur ,0 = 0∀r = 1, . . . , R (36)

ur ,t ≤ Ch
r ∀r = 1, . . . , R, t = 1, .., T (37)

xqt,i,c ∈ {0, 1}
∀t = 0, ..., T , i ∈ Ic, q ∈ {o, d}, c ∈ {1, 2} (38)

0 ≤ c+
t,r ≤ 1∀t = 1, . . . , T , r = 1, . . . , R (39)

c−
t,i,r ∈ {0, 1}∀t = 1, . . . , T , r = 1, . . . , R, i ∈ I2 (40)

ur ,t ≥ 0∀t = 1, . . . , T , r = 1, . . . , R (41)

yi,i ′,c ∈ {0, 1}∀c ∈ {1, 2}, i, i ′ ∈ I2, i �= i ′ (42)

0 ≤ zi,i ′ ≤ 1∀i, i ′ ∈ I i,l , i �= i ′ (43)

0 ≤ zi,i ′ ≤ 1∀i, i ′ ∈ I o,l , i �= i ′ (44)

ai,r ∈ {0, 1}∀i ∈ I2, r = 1, . . . , R (45)

Equation (3) bounds the makespan from below, while (4)
ensures that each operation is carried out exactly once. In (5),
we enforce each container to be picked up before it is dropped
off, while (6) ensures that a crane can complete at most one
operation in each time interval of length p. Constraint (7)
prohibits each crane from having more than one container
picked up at a time.

Constraint (8) implements the non-interference con-
straints, while (9) to (12) account for initial positions and
travel speed restricting the position of both cranes’ gantries
and trolleys over time.

Constraints (13) to (18) ensure that each crane stays in
the correct position while picking up or dropping off a con-
tainer. Here, (13) and (14) are concerned with the bay the
gantry is positioned in, while for operations outside the hand-
shake area, (15) and (16) are concerned with the row. Recall
that positions of operations outside the handshake area are
given as the origin position or the destination position of a
container. The row position for picking up or dropping off
container i in the handshake area depends on the stack it is
intermediately stored in and, thus, (17) and (18), concerned
with the row for those operations, take the corresponding
decision variables ai,1, . . . , ai,R into account. These vari-
ables reflect the stack assignment to containers in I2, which
is ensured by (19) to (22).

Constraints (23) to (30) represent the precedence con-
straints for operations in the handshake area. First, (23) and
(24) ensure that each container is retrieved from the hand-
shake area after being dropped off there. Second, variable
yi,i ′,c equals 1 if and only if container i is handled before
container i ′ by crane c due to (25) and (26). Constraints (27)
and (28) force variable zi,i ′ to take a value of 1 if both i and
i ′ are stored in the same stack and if i is dropped off and
retrieved first. Due to the proof of Lemma 1, i and i ′ are not
in the stack at the same time, and thus i is retrieved before i ′
is dropped off. The latter is implemented by (29) and (30).

Constraints (31) to (37) account for the stack capacities.
Variable c+

t,r is forced to take a value of 1 if a container
in I i,l ∪ I o,l is stored in position (bh, r) at time t by (31)
and (32). Furthermore, c−

t,i,r can take a value of 1 only if

container i is retrieved from position (bh, r) at time t . Then,
ur ,t constitutes an upper bound of the load of position (bh, r)
over time due to (35) and (36). Finally, (37) ensures it does
not exceed the capacity.

The domains of the decision variables are defined in (38)
to (45). Note that variables zi,i ′ and c+

t,r essentially function
as binary variables, but we do not need to define them as
such.

123

Journal of Scheduling (2022) 25:3–34 33

References

Bartholdi, J. J., & Eisenstein, D. D. (1996). A production line that
balances itself. Operations Research, 44(1), 21–34.

Bierwirth, C., & Meisel, F. (2015). A follow-up survey of berth alloca-
tion and quay crane scheduling problems in container terminals.
European Journal of Operational Research, 244(3), 675–689.

Boysen,N., Briskorn,D.,&Emde, S. (2015).A decomposition heuristic
for the twin robots scheduling problem. Naval Research Logistics,
62(1), 16–22.

Boysen, N., Briskorn, D., & Meisel, F. (2017). A generalized classifi-
cation scheme for crane scheduling with interference. European
Journal of Operational Research, 258(1), 343–357.

Boysen, N., & Fliedner, M. (2010). Determining crane areas in inter-
modal transshipment yards: The yard partition problem. European
Journal of Operational Research, 204(2), 336–342.

Boysen,N., Fliedner,M., Jaehn, F.,&Pesch, E. (2013).A survey on con-
tainer processing in railway yards. Transportation Science, 47(3),
312–329.

Boysen, N., & Stephan, K. (2016). A survey on single crane schedul-
ing in automated storage/retrieval systems. European Journal of
Operational Research, 254(3), 691–704.

Briskorn, D. (2021). Routing of two stacking craneswith predetermined
container sequences. Journal for Scheduling, 24(3), 367–380.

Briskorn, D., & Angeloudis, P. (2016). Scheduling co-operating stack-
ing cranes with predetermined container sequences. Discrete
Applied Mathematics, 201, 70–85.

Briskorn, D., Emde, S., & Boysen, N. (2016). Cooperative twin-crane
scheduling. Discrete Applied Mathematics, 211, 40–57.

Briskorn, D., Jaehn, F., & Wiehl, A. (2019). A generator for test
instances of scheduling problems concerning cranes in transship-
ment terminals. OR Spectrum, 41, 45–69.

Briskorn, D., & Zey, L. (2018). Resolving interferences of triple-
crossover-cranes by determining paths in networks. Naval
Research Logistics, 65(6–7), 477–498.

Briskorn, D., & Zey, L. (2020). Interference aware scheduling of triple-
crossover-cranes. Journal of Scheduling, 23(4), 465–485.

Carlo, H., Vis, I., & Roodbergen, K. (2015). Seaside operations in
container terminals: Literature overview, trends, and research
directions. Flexible Services and Manufacturing Journal, 27(2–
3), 224–262.

Carlo, H. J., & Martínez-Acevedo, F. L. (2015). Priority rules for twin
automated stacking cranes that collaborate. Computers & Indus-
trial Engineering, 89, 23–33.

Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2014a). Storage yard
operations in container terminals: Literature overview, trends, and
research directions. European Journal of Operational Research,
235(2), 412–430.

Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2014b). Storage yard
operations in container terminals: Literature overview, trends, and
research directions. European Journal of Operational Research,
235(2), 412–430.

Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2014c). Transport opera-
tions in container terminals: Literature overview, trends, research
directions and classification scheme. European Journal of Opera-
tional Research, 236(1), 1–13.

Carlo, H. J., & Vis, I. F. A. (2010). New initiatives in stacking crane
configurations. Port Technology International, 44, 32–37.

Dell, R. F., Royset, J. O., & Zyngiridis, I. (2009). Optimizing container
movements using one and two automated stacking cranes. Journal
of Industrial and Management Optimization, 5, 285–302.

Dorndorf, U., & Schneider, F. (2010). Scheduling automated triple
cross-over stacking cranes in a container yard. OR Spectrum, 32,
617–632.

Ehleiter, A., & Jaehn, F. (2018). Scheduling crossover cranes at con-
tainer terminals during seaside peak times. Journal of Heuristics,
24, 1–34.

Emde, S., & Boysen, N. (2014). One-dimensional vehicle scheduling
with a front-end depot and non-crossing constraints.ORSpectrum,
36(2), 381–400.

Galle, V., Barnhart, C., & Jaillet, P. (2018). Yard crane scheduling for
container storage, retrieval, and relocation. European Journal of
Operational Research, 271(1), 288–316.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability—
A guide to the theory of NP-completeness. W.H. Freemand and
Company.

Gharehgozli, A. H., Laporte, G., Yu, Y., & de Koster, R. (2014a).
Scheduling twin yard cranes in a container block. Transportation
Science, 49(3), 686–705.

Gharehgozli,A.H.,Vernooij, F.G.,&Zaerpour,N. (2017).A simulation
study of the performance of twin automated stacking cranes at
a seaport container terminal. European Journal of Operational
Research, 261(1), 108–128.

Gharehgozli, A. H., Yu, Y., de Koster, R., & Udding, J. T. (2014). An
exact method for scheduling a yard crane. European Journal of
Operational Research, 235(2), 431–447.

Gilmore, P. C., & Gomory, R. (1964). Sequencing a one state-variable
machine: A solvable case of the traveling salesman problem.Oper-
ations Research, 12(5), 655–679.

He, J., Huang, Y., & Yan, W. (2015). Yard crane scheduling in a con-
tainer terminal for the trade-off between efficiency and energy
consumption. Advanced Engineering Informatics, 29(1), 59–75.

Hu, Z.-H., Sheu, J.-B., & Luo, J. X. (2016). Sequencing twin automated
stacking cranes in a block at automated container terminal. Trans-
portation Research Part C: Emerging Technologies, 69, 208–227.

Jaehn, F., & Kress, D. (2018). Scheduling cooperative gantry cranes
with seaside and landside jobs. Discrete Applied Mathematics,
242, 53–68.

Kellner, M., & Boysen, N. (2015). RMG vs. DRMG: An evaluation of
different crane configurations in intermodal transshipment yards.
EURO Journal on Transportation and Logistics, 4(3), 355–377.

Kemme, N. (2012). Effects of storage block layout and automated yard
crane systems on the performance of seaport container terminals.
OR Spectrum, 34(3), 563–591.

Kovalyov, M. Y., Pesch, E., & Ryzhikov, A. (2018). A note on schedul-
ing container storage operations of two non-passing stacking
cranes. Networks, 71(3), 271–280.

Kress, D., Dornseifer, J., & Jaehn, F. (2019). An exact solution approach
for scheduling cooperative gantry cranes. European Journal of
Operational Research, 273(1), 82–101.

Lehnfeld, J., & Knust, S. (2014). Loading, unloading and premar-
shalling of stacks in storage areas: Survey and classification.
European Journal of Operational Research, 239(2), 297–312.

Nossack, J., Briskorn,D.,&Pesch, E. (2018).Container dispatching and
conflict-free yard crane routing in an automated container terminal.
Transportation Science, 52(5), 1059–1076.

Schuler, M. (2019). World’s largest containership completes maiden
voyage from China to Europe. https://gcaptain.com/worlds-
largest-containership-completes-maiden-voyage-from-china-to-
europe/. Accessed February 2020.

Speer, U., & Fischer, K. (2017). Scheduling of different automated
yard crane systems at container terminals. Transportation Science,
51(1), 305–324.

Stahlbock, R., & Voß, S. (2008). Operations research at container ter-
minals: A literature update. OR Spectrum, 30, 1–52.

Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal
operations and operations research—A classification and litera-
ture review. OR Spectrum, 26, 3–49.

123

https://gcaptain.com/worlds-largest-containership-completes-maiden-voyage-from-china-to-europe/
https://gcaptain.com/worlds-largest-containership-completes-maiden-voyage-from-china-to-europe/
https://gcaptain.com/worlds-largest-containership-completes-maiden-voyage-from-china-to-europe/

34 Journal of Scheduling (2022) 25:3–34

Vis, I. F. A., & de Koster, R. (2003). Transshipment of containers at a
container terminal:Anoverview.European Journal ofOperational
Research, 147, 1–16.

XiaoLong, H., Qianqian, W., & JiWei, H. (2019). Scheduling coop-
erative twin automated stacking cranes in automated container
terminals. Computers & Industrial Engineering, 128, 553-558.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Twin-crane scheduling during seaside workload peaks with a dedicated handshake area
	Abstract
	1 Introduction
	2 Literature review
	3 Problem description
	4 Branch and bound procedures
	4.1 Simultaneous sequencing and determination of stacking positions
	4.1.1 Branching
	4.1.2 Routing
	4.1.3 Lower bounds
	4.1.4 Upper bounds

	4.2 Non-simultaneous sequencing and determining of stacking positions
	4.2.1 Determining job sequences first
	4.2.2 Determining stacking positions first

	5 Computational study
	5.1 Computational performance of our B&B procedures
	5.2 Where to position the handshake area?
	5.3 Benchmark test

	6 Conclusions
	A Proofs
	B Competitors of our B&B procedures
	B.1 Heuristics for workload sharing via handshake area
	B.2 A heuristic for any-bay handover

	C MIP model
	References

