
Journal of Scheduling (2021) 24:663–680
https://doi.org/10.1007/s10951-021-00707-5

Optimally rescheduling jobs with a Last-In-First-Out buffer

Gaia Nicosia1 · Andrea Pacifici2 · Ulrich Pferschy3 · Julia Resch3 · Giovanni Righini4

Accepted: 13 August 2021 / Published online: 21 September 2021
© The Author(s) 2021

Abstract
This paper considers single-machine scheduling problems in which a given solution, i.e., an ordered set of jobs, has to be
improved as much as possible by re-sequencing the jobs. The need for rescheduling may arise in different contexts, e.g., due
to changes in the job data or because of the local objective in a stage of a supply chain that is not aligned with the given
sequence. A common production setting entails the movement of jobs (or parts) on a conveyor. This is reflected in our model
by facilitating the re-sequencing of jobs via a buffer of limited capacity accessible by a LIFO policy. We consider the classical
objective functions of total weighted completion time, maximum lateness and (weighted) number of late jobs and study their
complexity. For three of these problems, we present strictly polynomial-time dynamic programming algorithms, while for
the case of minimizing the weighted number of late jobs NP-hardness is proven and a pseudo-polynomial algorithm is given.

Keywords Scheduling · Rescheduling · Sequence coordination · Supply chain sustainability · Dynamic programming
algorithms · Complexity

1 Introduction

Classical single-machine scheduling problems aim at find-
ing an optimal sequence to process a set of jobs with given
processing times possibly subject to additional constraints
concerning, for instance, release dates, due dates, etc.

B Gaia Nicosia
gaia.nicosia@uniroma3.it

Andrea Pacifici
andrea.pacifici@uniroma2.it

Ulrich Pferschy
ulrich.pferschy@uni-graz.at

Julia Resch
julia.resch@uni-graz.at

Giovanni Righini
giovanni.righini@unimi.it

1 Dipartimento di Ingegneria, Università Roma Tre, Via della
Vasca Navale 79, 00146 Rome, Italy

2 Dipartimento di Ingegneria Civile e Ingegneria Informatica,
Università di Roma “Tor Vergata”, Via del Politecnico 1,
00133 Rome, Italy

3 Department of Operations and Information Systems,
University of Graz, Universitaetsstrasse 15, 8010 Graz,
Austria

4 Dipartimento di Informatica, Università degli Studi di
Milano, Via Celoria 18, 20100 Milan, Italy

In several industrial settings, different unforeseen phe-
nomena, such as data-obsolescence or disruptions, could
deteriorate the performance (or optimality) of the planned
ahead schedule. In this case, it is sometimes possible—or
even necessary—to compute a new schedule by rearrang-
ing the previous job sequence. A similar situation frequently
occurs, e.g., in lot production or in operating-rooms schedul-
ing. In the first case, lots must typically go through several
working stages: Between two of them, it may be beneficial
to reorganize the sequence, owing to, for instance, different
characteristics of the lots in the next stage. In the second case,
a tentative schedule for a certain planning period is built in
advance and, later on, the final schedule is output trying to
minimize changes with respect to the original plan.

In this context, we are interested in the following problem:
We are provided with an initial job sequence to feed a sin-
gle processing resource; we need to rearrange the jobs such
that the new sequence performs well in terms of some given
criterion. Depending on the considered setting, we also need
to deal with a given set of feasible reconfigurations (such
restrictions may be imposed, e.g., by the physical handling
system of the plant) which are, somehow, not too distant from
the original sequence. A special version of this problem is
also considered in Alfieri et al. (2018a, b). The authors stud-
ied a rescheduling problem with the constraint that the jobs
extracted from the given initial sequence can be re-inserted

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-021-00707-5&domain=pdf
http://orcid.org/0000-0003-4043-2812
http://orcid.org/0000-0001-6144-0024
http://orcid.org/0000-0001-8881-1497

664 Journal of Scheduling (2021) 24:663–680

only in later positions, i.e., jobs can be postponed but not
moved ahead of the schedule. This corresponds to a physical
setting where jobs are transported on a conveyor that feeds a
single processor and a robot or worker can pick them up and
reinsert them later in the queue.

In this paper, we adopt a similar setting but with an
additional set of restrictions. In particular, we consider the
scenario in which the handling mechanism consists of a con-
veyor that feeds a single machine in a given sequence and a
robot, placed along the line, that is able to alter this sequence.
The robot may pick parts from the conveyor as they are mov-
ing, stacks them on a buffer of finite capacity from which
it takes the parts and places them back on the conveyor, in
their final positions (which is later in the original sequence
due to the conveyor movement). Since the stack is managed
according to a Last-In-First-Out (LIFO) policy, only the last
part put into the stack can be extracted and re-inserted in the
new sequence. This setting has been introduced in Nicosia
et al. (2019) where the authors present some preliminary
results on the corresponding rescheduling problem.

An area of research which is strictly related to the problem
we address in this article, dealswith sequence coordination in
supply chain (SC). One of the main tasks in SC management
is indeed coordination of several activities performed at dif-
ferent stages of the chain. An obvious overall goal consists in
successfully meeting customers needs and achieving a good
level of efficiency and performance.Usually, in a coordinated
SC, two or more processes subject to their mutual coordi-
nation are considered. This involves fitting the schedules
of different manufacturers together when some planned or
unexpected schedule changes are experienced by one ormore
of them (Ivanov and Sokolov 2015). In this context, Agnetis
et al. (2006) consider twoconsecutive stages of a supply chain
where ideal job sequences (typically, different for the two
stages) are given. The authors address a supply chain schedul-
ing coordination problem consisting in finding a trade-off
schedule that takes into account the ideal schedules of both
stages. They propose a number of polynomial-time algo-
rithms for different versions of the problem, namely from
the point of view of the manufacturer, then from that of the
supplier, and, finally, they consider the situation when both
stages cooperate to obtain a satisfactory compromise sched-
ule. A related coordination problem is addressed in Agnetis
et al. (2001) where two departments in amanufacturing facil-
ity process the jobs in batches. In a first department, a setup is
paid whenever a certain attribute changes from one batch to
another, whereas in a second department, the setup is associ-
ated to a different attribute. The problem of finding a unique
sequence of jobs in order to minimize the overall setup cost
arises. The authors prove that the problem is NP-hard and
propose an effective heuristic approach. The above coordina-
tion problems are also tightly connected to those addressed
in multi-agent scheduling, a research field which received

great attention more recently: Two or more agents have to
agree on a fair, i.e., acceptable schedule of their distinct sets
of jobs on a common processing resource [see, for instance,
Leung et al. (2010), Perez-Gonzalez and Framinan (2014)
and Agnetis et al. (2019)].

Another important and fruitful research stream, con-
nected to the problem addressed here, concerns the so-called
rescheduling (or dynamic scheduling). In many real-world
scenarios, scheduling is an activity requiring frequent revi-
sions due to unexpected changes such as, for instance,
machine breakdown or unavailability, delay in the arrival of
materials, job cancellation, due date changes, etc. With the
terms rescheduling and dynamic scheduling, many authors
indicate the problem of scheduling in the presence of real-
time events; this includes the process of updating the current
schedule to face previously unknown events such as the
arrival of new jobs (Hall et al. 2007), disruptions (Nouiri
et al. 2018), perturbation of the originally given or estimated
data (Hall and Potts 2010), etc. A recent and effective appli-
cation of these concepts in the health care sector can be
found in Ballestín et al. (2019). Two different reviews of the
state-of-the-art of currently developing research on dynamic
scheduling are given in Ouelhadj and Petrovic (2009) and
Vieira et al. (2003).

The most common strategies (called predictive-reactive),
when facing any unexpected change in the scenario, consider
both the possibility of local adjustments and a whole re-
computation of the current schedule with the aim of (locally)
improving shop efficiency. Together with the latter objective,
it is also of interest to measure how much the new schedule
deviates from the original schedule. This concept (usually
referred to as stability) is important since, typically, modifi-
cation costs increase with the magnitude of such deviation,
whereas big and frequent schedule changes often may cause
undesired nervousness phenomena due to a lack of continu-
ity.

From the pioneering works by Daniels and Kouvelis
(1995) and Wu et al. (1993) up to the most recent papers
(see, e.g., Detti et al. 2019; Niu et al. 2019), robustness is a
widely adopted concept in scheduling and it is an alternative
(pro-active) approach that tries to design a schedule which
a priori guarantees a certain level of efficiency, given a set
of possible scenarios. This way stability is preserved while
performance is kept above a fixed level.

Indeed, our problemcan be viewed in the framework of the
so-called recoverable robustness, see Liebchen et al. (2009).
A recoverable robust solution is not necessarily feasible in all
scenarios of a robust optimization problem, but it can bemade
feasible by applying a (simple, quick) recovery algorithm to
it. This concept has been investigated in several application
contexts (mostly in transportation problems) and there is a
limited literature also in scheduling. For instance, in van den
Akker et al. (2018) an initial solution of a scheduling prob-

123

Journal of Scheduling (2021) 24:663–680 665

lem is given and in each scenario some recovery actions are
performed to make the solution acceptable again.

The algorithms presented in this work can be regarded as
recovery algorithms to achieve certain objective benchmarks
(rather than feasibility) in different problem settings which
are illustrated below.

In the special rescheduling problem addressed in this
paper, we consider several objective functions, namely total
weighted completion time, maximum lateness, number of
late jobs and weighted number of late jobs.We devise strictly
polynomial-time optimization algorithms based on dynamic
programming recursions for the first three objectives. In con-
trast, we prove that the problem is NP-hard whenminimizing
the weighted number of late jobs, but still permits a pseudo-
polynomial dynamic programming algorithm in that case.
The remainder of this work is organized as follows: After a
rigorous statement of the problem in Sects. 2, 3, 4 and 5 are
devoted to the first three objective functions and describe the
corresponding efficient solution algorithms. For the problem
with the weighted number of late jobs objective, in Section 6,
we prove its complexity and propose a pseudo-polynomial
algorithm. Section 7 illustrates by a short experimental study
the behavior of the rescheduling process depending on the
stack size. Finally, concluding remarks are given in Sect. 8.

2 Problem statement

In this section, we give a formal statement of the problem
under consideration and introduce the notation used through-
out the paper. Hereafter, we use the term “job” to refer to
both, a physical piece ofmaterial which is processed by some
machine or resource and the process itself (characterized by
a certain duration and possible additional data).

Let us consider a deterministic single-machine environ-
ment where we are given a set J of n jobs that have to
be scheduled according to a regular, i.e., non-decreasing,
objective function f (σ) of the job completion times C j (σ),
j = 1, . . . , n. For such a schedule σ = 〈σ1, σ2, . . . , σn〉
with σk ∈ J , k = 1, . . . , n, if i ≤ j , we refer to the ordered
set of jobs 〈σi , σi+1, . . . , σ j 〉 as the subsequence σ(i, j).
Moreover, for each job j ∈ J we know its processing time
p j and, possibly, a due date d j and a weight w j . As usual
for scheduling problems, we will assume that all these val-
ues are nonnegative integers. However, this property will
be required only for the dynamic programming algorithm
in Sect. 6. Additionally, we are given an initial sequence
σ0 in which the n jobs of set J are numbered from 1 to
n. So, σ0 = 〈1, 2, . . . , n〉 and we say that job j is placed
in the j-th position to indicate that it is the j-th job of
the sequence σ0. Clearly, if i, j ∈ J and i ≤ j , we have
σ0(i, j) = 〈i, i + 1, . . . , j〉.

In the problem addressed here, we look for a new job
sequence σ such that

(i) f (σ) is minimum and
(ii) σ can be derived from σ0 by applying a (constrained)

number of feasible moves.

Any move in this scheduling environment is performed by a
physical device (e.g., a robot arm) that operates on a sequence
of parts, each associated to one job, arranged in an ordered
sequence along a line (e.g., on a moving conveyor). The ini-
tial sequence on this line corresponds to σ0. The considered
device (i) picks up a job j ; (ii) places j in the stack with
bounded capacity S; (iii) possibly picks up other jobs and
places them in the stack; (iv) picks the jobs from the stack,
according to a LIFO policy, and places them back (on the
conveyor) at a suitable position later in the sequence. We
assume that there is always enough space between jobs to
place even the whole content of the stack between any two
jobs on the line.

In this setting,moved jobs can only be postponed, as in fact
the robot arm picks the jobs from the line while the conveyor
feeding the processor moves ahead. Hence, reinsertion can
only happen in a later position of the sequence.

Definition 1 A move i → j , i < j , consists of deleting job
i from a given sequence and reinserting it immediately after
all jobs of the subsequence σ0(i + 1, j).

Figure 1 illustrates the process for three consecutive moves
on a sequenceσ0 with n = 9 jobs. The picture emphasizes the
characteristics of two types of feasible moves for the above
mentioned physical device. A move 1 → 3 in which job 1
is placed immediately after job 3 is performed first. Then,
moves 5 → 9 and 7 → 9 are done: Job 5 is loaded into the
stack directly before 7, which is then extracted from the stack
and placed just after job 9. After that, 5 is placed back on the
line, right after 9 and 7. It is clear that the latter operations
require that the stack capacity S is at least 2.

Observe that, if we start from σ0, due to the stack LIFO
policy,Definition1 is consistent even after a number ofmoves
has been performed.

Following the above considerations, we are now charac-
terizing the compatibility of two moves.

Definition 2 Two moves i1 → j1 and i2 → j2 with i1 < i2
are feasible if:

(i) either j1 < i2, i.e., i1 < j1 < i2 < j2, and the moves
are called sequential;

(ii) or i1 < i2 < j2 ≤ j1, and move i2 → j2 is nested in
move i1 → j1.

123

666 Journal of Scheduling (2021) 24:663–680

Fig. 1 Three feasible moves
1 2 3 4 5 6 7 8 9

12 3 4 56 78 9

σ0

σ

Note that, as a consequence of Definition 1, it is easy to see
that

– when move i2 → j2 is nested in move i1 → j1, i2
precedes i1 in the final sequence even if j1 = j2;

– although the device picks jobs in increasing index order,
the sequence σ , obtained after a set of feasible moves
considering the LIFO policy of the stack, is independent
from the particular order in which the moves are per-
formed.

– given a sequence σ �= σ0, if there exists a set of feasible
moves to reach σ starting from σ0, then such a set is
unique.

We next define the level of a move:

Definition 3 A move that does not contain nested moves is
said to be at level 1. Recursively, a move m is at level � > 1
if � is the smallest value such that m contains feasible nested
moves at level up to � − 1.

Clearly, a move at level � is feasible only if � ≤ S. In the
example shown in Fig. 1, 1 → 3 and 5 → 9 are sequential
moves while 7 → 9 is nested in 5 → 9. In particular, 5 → 9
is at level 2.

In the remainder of this paper, we adopt the following
definition for a move.

Definition 4 A move i → j at level � is denoted as (i, j, �).
For notational convenience, we also define (i, i, �) for every
level �, meaning that job i is not moved at all.

Note that in our setting the stack capacity constraint
imposes the index � to be an integer within the range 1 to
S, i.e., there must not be more than S moves nested inside
each other.

Definition 5 The set of feasible schedules FS for the
rescheduling problem where the stack capacity is limited by
S, is comprised of all the schedules resulting from a set of
feasible moves at levels up to a maximum of S starting from
σ0.

In this paper, we consider the minimization of three clas-
sical objective functions in scheduling theory to evaluate the
sequence obtained from σ0 through the LIFO-constrained
moves: total weighted completion time, maximum lateness
(with extension to any regular function) and number of late

jobs. For the latter, we consider both, the weighted and
unweighted case.

For any feasible schedule σ of the jobs of J and any job
j ∈ J , we define the following quantities: C j (σ) is the
completion time of j in σ , L j (σ) = C j (σ) − d j is the
lateness of job j in σ and

Uj (σ) =
{
1, if C j (σ) > d j ,

0, otherwise,

indicates if job j is late.Note that the completion time of job j
in the initial sequence σ0 is given byC j (σ0) = ∑ j

k=1 pk and

its lateness by L j (σ0). We indicate with P(i, j) = ∑ j
k=i pk

the total processing time of the subsequence σ0(i, j) and
with W (i, j) = ∑ j

k=i wk its total weight. Moreover, for a
given subsequence σ(i, j), the maximum lateness within the
subsequence is

Lmax(σ (i, j)) = max
k=σi ,...,σ j

{Lk(σ)} .

Furthermore, if φ j : R≥0 → R, j ∈ J , are given regu-
lar functions, we denote the maximum of regular function
objective as

�max(σ) = max
j∈J

{φ j (C j (σ))}.

In accordancewith the standardGraham’s three field nota-
tion, we indicate the problems addressed in this paper as
follows: 1|resch-LIFO|∑ w jC j , 1|resch-LIFO|Lmax,
1|resch-LIFO|�max, 1|resch-LIFO|∑Uj and
1|resch-LIFO|∑w jU j where the last field refers to the par-
ticular objectivewewant tominimize in rearranging thegiven
initial schedule σ0 through the above described mechanism.

In this paper, we also consider the following special gener-
alization of the above problems. Let� ⊆ J be a given subset
of movable jobs and consider as feasible solutions only the
schedules obtained from σ0 by a set of feasible moves (at
levels up to a maximum of S), where only moves i → j
with i ∈ � are involved. Jobs from J \ � cannot be moved,
whereas jobs from � may be moved but it is not manda-
tory to move them. In the remainder of the paper, we will
refer to this variant as �-constrained problem. Observe that
our original rescheduling problems are special cases of these
�-constrained problems in which � = J .

123

Journal of Scheduling (2021) 24:663–680 667

3 Total weighted completion time

We start our study by considering the minimization of the
weighted sum of job completion times, for which we present
a polynomial time dynamic program.

First, we can observe that for any partition of a sched-
ule σ = 〈σ1, σ2, . . . , σn〉 in Q adjacent subsequences
σ(uq , vq) = 〈σuq , . . . , σvq 〉 with uq ≤ vq such that u1 = 1,
vQ = n and uq = vq−1 + 1 for all q = 2, . . . , Q, the objec-
tive function can be expressed as follows:

f (1) (σ) =
∑
j∈J

w jC j (σ) =
Q∑

q=1

f (1)(σ (uq , vq)), (1)

where the term f (1)
(
σ(uq , vq)

)
denotes the total weighted

completion time for the subsequenceσ(uq , vq), which in turn
is the sum of the weighted completion times of the jobs in the
subsequence. Denoting by Jq the set of jobs of subsequence
σ(uq , vq), clearly we have:

f (1) (
σ(uq , vq)

) =
∑
j∈Jq

w jC j (σ) ∀ q = 1, . . . , Q. (2)

Consider the set M of all feasible moves (i, j, �) that
allows to reach σ starting from σ0. Let M̃ ⊆ M indicate
the set of moves (i, j, �) which are not nested in any other
move (h, k, �′) ∈ M at a higher level �′ > �. By definition,
the moves M̃ are sequential moves. In M̃, we also include
identitymoves (i, i, 1)which correspond to notmoving job i .
(Clearly, parts of σ which are unchanged with respect to σ0,
i.e., if the subsequenceσ(i, j) = σ0(i, j), can be represented
by a set of consecutive identity moves (k, k, 1) with k =
i, . . . , j .) Let us denote M̃ as follows:

M̃ = {(u1, v1, �1), (u2, v2, �2), . . . , (ur , vr , �r)} (3)

with 1 = u1 ≤ v1, vr = n, vq−1 + 1 = uq ≤ vq , q =
2, . . . , r . (Note that r in (3) plays a different role than Q in
(2).) Because of the additivity principle (1), the cost f (1)(σ)

of schedule σ can be computed by adding—to the cost of
σ0—the contributions of the r feasible moves of M̃. Note
that in (3) eachmove (uq , vq , �q)may contain nested moves,
so that its contribution depends on these nested moves as
well. For instance, the sequential moves ofM̃ in the example
illustrated by Fig. 1 are (1, 3, 1), (4, 4, 1) and (5, 9, 2). Move
(5, 9, 2) contains the nested move (7, 9, 1), and therefore, its
contribution must also account for the one of (7, 9, 1).

Hereafter, we present a dynamic programming algorithm
for determining the optimal set of moves yielding a mini-
mum cost schedule σ ∗, starting from σ0. The correctness of
this algorithm straightforwardly follows from the following

observation which corresponds to a standard optimality prin-
ciple: In any optimal schedule σ ∗, there exists a partition as
in (3), such that each subsequence in the partition is optimal
for the subproblem containing only the jobs of that subse-
quence. The basic step of the dynamic program consists of
computing the cost of a move (i, j, �), at level � based on the
knowledge of optimal costs for any subsequence of σ(i, j)
in which the stack capacity is � − 1.

Definition 6 The cost c(i, j, �) is defined as the mini-
mum total weighted completion time variation when a move
(i, j, �′) at some level �′ ≤ � is performed. The cost
μ∗(i, j, �) is the minimum cost variation of subsequence
σ0(i, j), when the stack capacity is equal to �.

Observe that c(i, j, �) includes the optimal cost variation
produced by all possible nested moves at lower levels, and
hence, it takes into account information of all c(h, k, � − 1)
for i < h ≤ k ≤ j which in turn are summed up into
μ∗(i + 1, j, � − 1). While μ∗(i, j, �) gives the optimal cost
variation for the subproblem implied by i and j , c(i, j, �)
considers the particular solution where the move i → j must
be performed.

Hereafter, we show how to compute the variations in the
schedule overall cost, for different moves and their combi-
nations. We first consider the effect of single moves on the
total weighted completion time. In this context, the following
statement results directly from the definition of the comple-
tion time.

Observation 7 The completion time of each job preceding i
and following j in the initial sequence σ0 is not affected by
the move (i, j, �).

Based on the initial schedule σ0, the cost variation m(i, j)
due to moving job i after job j is expressed as

m(i, j) = wi

j∑
k=i+1

pk − pi

j∑
k=i+1

wk ∀ i, j ∈ J , i < j .

(4)

The first term in (4) indicates the increase of the weighted
completion time of job i , while the second term indicates the
total decrease of the weighted completion times of the jobs
in σ0(i + 1, j). In addition, because of the definition of the
cost of a move (4), it is easy to verify the following:

Observation 8 The effect of a move (i, j, �) at any level � >

1 does not depend on the order of the jobs in the subsequence
σ0 (i + 1, j).

As a consequence, because of the LIFO constraint, the cost
variation due to a single move (i, j, �) is always equal to
m(i, j), for all possible levels �.

123

668 Journal of Scheduling (2021) 24:663–680

As far as sequential moves are concerned, we recall
that, owing to Eq. (1), the effect of two sequential moves
(i1, j1, �1) and (i2, j2, �2), j1 < i2, on the objective f (1)

equals the sum of the effects of each move.
Moves at level � = 1 cannot contain any nested moves, so

the cost c(i, j, 1) of a move is equal to m(i, j). Obviously,
when a job i is not moved, the associated cost is null and
c(i, i, 1) = 0. Hence, we may give a recursive expression
of the optimal cost variation for the subsequence σ0(i, j) as
follows:

⎧⎨
⎩

μ∗(i, i, 1) = 0 ∀ i ∈ J
μ∗(i, j, 1) = min{mink∈σ0(i, j−1){c(i, k, 1) ∀ i, j ∈ J , i < j .

+μ∗(k + 1, j, 1)}, c(i, j, 1)}
(5)

Even when dealing with nested moves, i.e., for � > 1,
the cost variation of a set of moves is additive: Following the
same line of arguments yielding toObservation 8 and Eq. (4),
the overall effect on f (1) of two (or more) nested moves is
equal to the sum of the effects of each move.

In order to compute the cost c(i, j, �) for a move
(i, j, �′) with �′ ≤ �, one clearly has to take into account
the possibility of optimally rearranging the subsequence
σ0(i + 1, j) with moves at levels lower than �′. Thus,
after computing all optimal cost variations μ∗(i, j, � −
1) obtainable from a set of moves up to level � − 1
for the subsequence σ0(i, j), it is possible to determine
the (optimal) cost c(i, j, �). This in turn allows to com-
pute the optimal cost variation μ∗(i, j, �) for the subse-
quence σ0(i, j) at level �. Formally, the following recursion
holds:

⎧⎪⎪⎨
⎪⎪⎩

c(i, j, 1) = m(i, j) ∀ i, j ∈ J , i < j
c(i, i, �) = 0 ∀ i ∈ J , ∀ � = 1, . . . , S
c(i, j, �) = m(i, j) ∀ i, j ∈ J , i < j, ∀ � = 2, . . . , S.

+ μ∗(i + 1, j, � − 1)
(6)

In Eq. (6), μ∗(i, j, �) is computed in a similar way as
in (5):

⎧⎨
⎩

μ∗(i, i, �) = 0 ∀ i ∈ J
μ∗(i, j, �) = min{mink∈σ0(i, j−1){c(i, k, �) ∀ i, j ∈ J , i < j .

+μ∗(k + 1, j, �)}, c(i, j, �)}
(7)

Finally, the optimal solution value is found by comput-
ing μ∗(1, n, S) such that the objective function value of the
optimal schedule equals

f (1)(σ ∗) = f (1)(σ0) + μ∗(1, n, S).

As for the computational complexity of the above dynamic
program, we observe that the computation of allm(i, j), i.e.,
the costs at level � = 1, requires O(n2) time. For each level

� = 1, . . . , S and for eachordered pair of jobs (i, j), the algo-
rithm must compute the cost c(i, j, �) of the corresponding
move and the optimal subsequence cost μ∗(i, j, �). Com-
puting all c values requires O(n2) time at each level, since
each value is computed in O(1), while the computation of
μ∗(i, j, �) in Eq. (7) has a cost of O(n3) time for each level
�. Hence, the overall complexity of the algorithm is O(n3S)

which is upper bounded by O(n4).
The results above can be summarized as follows.

Theorem 9 Problem 1|resch-LIFO|∑w jC j is polynomi-
ally solvable in time O(n4).

3.1 Extension to theÄ-constrained problem

It is easy to handle the special case in which only jobs from
a given subset � ⊆ J of the jobs can be moved. For this
purpose, we just make moves of jobs in � extremely costly.
Hence, we can still use Recursions (6) and (7) but with the
following adjusted costs at level � = 1 for a large enough
constant M :

c(i, j, 1) =
{
M, if i ∈ J \ �, i < j,
as in Expression (6), otherwise,

for all i, j ∈ J with i ≤ j .

4 Maximum of regular functions
minimization

In this section,wefirst focus on theminimization of themaxi-
mum lateness of the jobs andpresent a dynamic programming
solution algorithm related to the one presented in the previ-
ous Sect. 3. We then discuss how the same algorithm can be
used to solve the more general problem 1|resch-LIFO|�max.

4.1 Minimization of maximum lateness

Recall that for a given schedule σ , we indicate by L j (σ) =
C j (σ)−d j , Lmax(σ) = max j∈J {L j (σ)}, and Lmax(σ (i, j))
= maxk=σi ,...,σ j {Lk(σ)}.

Here, the objective function for any partition of a sched-
ule σ = 〈σ1, σ2, . . . , σn〉 in Q adjacent subsequences
σ(uq , vq) = 〈σuq , . . . , σvq 〉 with uq ≤ vq such that u1 = 1,
vQ = n and uq = vq−1 + 1 for all q = 2, . . . , Q, fulfills the
following decomposition property:

Lmax(σ) = max
q=1,...,Q

{
Lmax(σ (uq , vq))

}
.

We first consider the effect of single moves on the
maximum lateness.A straightforward consequence ofObser-
vation 7 is that a move (i, j, �) does not affect the lateness

123

Journal of Scheduling (2021) 24:663–680 669

of any job preceding i and following j in the initial sequence
σ0. Hence, even in this case, moves involving disjoint subse-
quences can be evaluated independently.

Differently from Eq. (4), we are not looking at the vari-
ation in the objective function due to a move (i, j, �), but
rather at the optimal value that the objective function would
take if move (i, j, �) were executed. Hence, we define the
cost g(i, j, �) as the minimum value of the maximum late-
ness in subsequence σ(i, j) when moves up to level � are
done within it. For a single move (i, j, �), at any level, the
lateness of all jobs in σ0(i + 1, j) decreases by pi while the
lateness of job i increases by P(i + 1, j) = ∑ j

k=i+1 pk .
As a consequence, we may compute the cost at level 1 as
follows:

g(i, j, 1) = max{Li (σ0) + P(i + 1, j),

Lmax(σ0(i + 1, j)) − pi } ∀ i, j ∈ J , i < j .

The term Li (σ0) + P(i + 1, j) indicates the new lateness of
job i while the term Lmax(σ (i+1, j))− pi indicates the new
maximum lateness of the subsequence σ0(i + 1, j). We also
define the cost of not moving a job i :

g(i, i, 1) = Li (σ0) ∀ i ∈ J .

Similar to the problem with total weighted completion
time objective, also in this case the dynamic programming
algorithm is based on computing the cost of a move (i, j, �),
at level � starting from the optimal costs of any subsequence
of σ(i, j) at level � − 1.

Definition 10 The cost λ∗(i, j, �) is the value of the optimal
solutionof the subproblemrestricted to subsequenceσ0(i, j),
when the stack capacity is equal to �.

Note that, as before, for � > 1 the computation of g(i, j, �)
takes into account the lateness values producedbyall possible
nestedmoves at lower levels, i.e., the quantities g(h, k, �−1)
for i < h ≤ k ≤ j which in turn yield the value λ∗(i +
1, j, � − 1).

In general, different orders of the jobs in the subsequence
σ0(i + 1, j) imply different effects of a move (i, j, �) on the
objective function. Similar to the total weighted completion
time case, when computing the cost g(i, j, �) we need to
take into account the possibility of optimally rearranging the
subsequence σ0(i + 1, j) with moves at lower levels. Thus,
only after computing the optimal cost λ∗(i + 1, j, � − 1),
obtainable from a set of moves at level at most � − 1 for the
subsequenceσ0(i+1, j), it is possible to determine g(i, j, �).

Starting from the g(·) values at level �, it is then possible to
compute the optimal costs λ∗(i, j, �) for each subsequence
σ0(i, j) at level �.

In conclusion, the following recursion holds:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(i, j, 1) = max{Li (σ0) + P(i + 1, j),
Lmax(σ0(i + 1, j)) − pi } ∀ i, j ∈ J , i < j

g(i, i, �) = Li (σ0) ∀ i ∈ J , ∀ � = 1, . . . , S
g(i, j, �) = max{Li (σ0) + P(i + 1, j),

λ∗(i + 1, j, � − 1) − pi } ∀ i ∈ J , i < j, ∀ � = 2, . . . , S.

(8)

With Eq. (8), λ∗(i, j, �) is computed in an analogous way as
done in (5):

⎧⎪⎪⎨
⎪⎪⎩

λ∗(i, i, �) = Li (σ0) ∀ i ∈ J , ∀ � = 1, . . . , S
λ∗(i, j, �) = min{mink∈σ0(i, j−1) ∀ i, j ∈ J , i < j, ∀ � = 1, . . . , S.

{max{g(i, k, �), λ∗(k + 1, j, �)}},
g(i, j, �)}

(9)

In the above Eq. (9), λ∗(i, i, �) always equals the “initial”
value Li (σ0) while, only when we consider a (proper) sub-
sequence with more than one job, the actual costs associated
with moves are accounted for. In particular, the optimal solu-
tion value λ∗(i, j, �) can be computed as the best alternative
among the solutions in which a move (i, k, �), k = i, . . . , j ,
is done: option k = i corresponds to a solution in which
job i is not moved; if the best alternative is k = j , then
λ∗(i, j, �) = g(i, j, �); if i < k < j , the maximum lateness
is the largest between the cost of move i → k at level at most
� and the optimal cost of the subsequence σ0(k + 1, j) at
level at most �. Finally, the optimal solution value is found
by computing f (2)(σ ∗) = λ∗(1, n, S).

The computational complexity can be computed as in Sec-
tion 3. The initialization, i.e., the computation of costs at level
� = 1, requires O(n2) time. For each level � = 1, . . . , S the
algorithm must compute the costs g(·) and λ∗(·) for each
pair of jobs (i, j) (with i preceding j in σ0). Computing all
g values requires O(n2) time at each level since each value
is computed in O(1). The optimal costs λ∗(i, j, �) can be
computed, through Recursion (9), in O(n3) for each level
�. Hence, the overall complexity of the algorithm is O(n3S)

which is upper bounded by O(n4).
Summarizing, we have the following result:

Theorem 11 Problem 1|resch-LIFO|Lmax is polynomially
solvable in time O(n4).

4.2 Extension tomaximum of regular functions
objective

The correctness of the above dynamic programming algo-
rithm is based on a decomposition principle, ensuring that
parts of an optimal schedule are also optimal for the sub-
problems containing only the jobs of those parts. This in turn
implies that an optimal subsequence is independent of its
starting time. In other words, consider an optimal schedule
σ ∗ and one of its subsequences σ ∗(i, j) starting at, say, time

123

670 Journal of Scheduling (2021) 24:663–680

t . Then, the same sequence σ ∗(i, j) is optimal for the sub-
problem pertaining only jobs {i, i + 1, . . . , j} (starting, e.g.,
at time t = 0).

Unfortunately, when dealing with the minimization of the
maximum of regular functions of the job completion times,
such a property does not hold anymore. In fact, consider as
an example the following trivial (sub-)problemwith only two
jobs {1, 2}, with p1 = 1, p2 = 4 and linear regular functions
φ1(x) = 0.2x + 15, φ2(x) = 2x . The optimal schedule
starting, e.g., at time t = 0 is 〈1, 2〉, while when the starting
time is t = 10, the optimal sequence becomes 〈2, 1〉. As
a consequence, no immediate generalization of the efficient
dynamic programming approach illustrated Recursions (8)
and (9) may guarantee optimality.

However, problem 1|resch-LIFO|�max is still efficiently
solvable by using a simple alternative procedure presented
hereafter. The idea is to perform a binary search over the
optimal objective values �max, each time solving a suitable
instance of 1|resch-LIFO|Lmax.

First observe that we may compute an interval in which
the optimal value of the objective varies:

α = max
j∈J

{φ j (p j)} ≤ �max ≤ max
j∈J

{φ j (P(1, j))} = ω. (10)

Let I be an instance of 1|resch-LIFO|�max and �̄ be
a fixed target value for the optimal objective value of I .
Clearly, �̄ must be chosen in the interval [α,ω]. We are
asking if there exist solution schedules for our instance of
1|resch-LIFO|�max with optimal objective value not larger
than �̄. We refer to such an instance as a YES-instance for
�̄.

For all jobs j ∈ J , compute a deadline τ j (�̄) =
maxt≥0{φ j (t) ≤ �̄}. In general, since φ j (·) is non-
decreasing, each such deadline may be efficiently computed
in time, say, c. In theworst case, c is O(log(

∑
j∈J p j)); how-

ever, it is a reasonable to think of special cases where c is
constant. Then solve an instance of 1|resch-LIFO|Lmax with
due date d j = τ j (�̄) for j ∈ J . Let σ ∗(�̄) be an optimal
solution and Lmax(�̄) be the corresponding optimal objec-
tive value. If Lmax(�̄) ≤ 0, then I is a YES-instance for �̄

and σ ∗(�̄) is a solution of 1|resch-LIFO|�max with objective
not larger than �̄.

Then, an optimal solution for our instance I of
1|resch-LIFO|�max can be found by looking for the mini-
mum value of �̄ such that Lmax(�̄) ≤ 0. As we already
mentioned, this can be done by performing a binary search
over the interval [α,ω] of Expression (10).

The overall complexity of the above procedure depends
on the computational costs of the dynamic programming for
the 1|resch-LIFO|Lmax problem, the deadlines computation
and the binary search. In conclusion, assuming that we are
able to efficiently compute the values φ j (·) and τ j (·) for all

j ∈ J , and the values of suitable bounds for the objective α

and ω, we may state that:

Theorem 12 Problem 1|resch-LIFO|�max is polynomially
solvable in time O((n · c + n4) log(ω − α)) where c is the
cost for computing a job deadline.

4.3 Extension to theÄ-constrained problem

Similar to Sect. 3.1, in order to handle the special case where
not all jobs are movable, the initialization in Recursion (8) is
adjusted as follows (for a large enough constant M):

g(i, j, 1) =
{
M, if i ∈ J \ �, i < j,
as in Expression (8), otherwise,

for all i, j ∈ J with i ≤ j .

5 Minimization of the number of late jobs

This section provides a dynamic programming algorithm to
minimize the number of late jobs, f (3)(σ) = ∑

j∈J U j (σ),
where the quantity Uj (σ) assumes value 1 if and only if job
j is late in schedule σ , i.e., if its lateness L j (σ) is strictly
positive.

Given a subsequence of a schedule, the number of late jobs
in this subsequence depends not only on the processing times
and due dates of the jobs in this subsequence, but generally
also on its starting time. As a consequence, an (optimal) rear-
rangement of a subsequence that minimizes the number of
late jobs depends on its starting time. This is illustrated in
the following example: consider the sequence σ = 〈1, 2, 3〉
with p1 = 7, p2 = p3 = 10, d1 = d2 = 25 and d3 = 15.
It is easy to see that, in order to minimize the number of late
jobs in the subsequence σ(2, 3), the ordering 〈3, 2〉 should be
preferred if the sequence starts at t = 0 (i.e., move 1 → 3 is
performed), whereas for t = 7 (i.e., job 1 is not moved) the
arrangement 〈2, 3〉 is better. However, the following result
indicates that the relative order of the lateness values is inde-
pendent from the starting time of a subsequence.

Observation 13 Let σq(i, j) be a feasible arrangement of
the subsequence σ(i, j) that minimizes the q-th largest late-
ness value, q = 1, . . . , j − i + 1. Then, σq(i, j) does not
depend on the starting time of σq(i, j).

Note that in general the arrangements minimizing the q-th
largest lateness are different for different values of q. How-
ever, when a subsequence is moved earlier (or delayed), all
lateness values decrease (or increase) by the same amount,
and hence, their order remains unchanged. Observation 13
holds for anypossible definitionof “feasible arrangement”; in
particular, in this paperwe clearly refer to the set of sequences

123

Journal of Scheduling (2021) 24:663–680 671

resulting from a set of feasible moves at levels up to a given
maximum.

In the reminder of this section,we refer to�-rearrangement
to indicate a feasible rearrangement of a subsequence that can
be obtained by moves up to level �.

5.1 Dynamic programming

By exploiting Observation 13, we subsequently devise a
strongly polynomial time dynamic program for minimizing
the number of late jobs.

In the dynamic program, we store for each subsequence
of jobs not only the current number of late jobs, but we also
record the minimum required reduction of the starting time
for this subsequence to reach any number of late jobs, as we
formally define below:

Definition 14 For each i, j ∈ J with i ≤ j , m = 0, . . . , j−
i and � = 0, . . . , S, let s(i, j,m, �) be theminimumdecrease
of the starting time of the subsequence σ0(i, j) to obtain m
late jobs in it when the subsequence can be rearranged with
moves up to level �.

Hereinafter, wewill refer to this information as the state of
the dynamic programming algorithm. Note that s(i, j,m, �)

may also be negative (i.e., an increase of the starting time) if
the number of late jobs in σ0(i, j) is smaller than m.

Definition 14 does not include the case m = j − i + 1
since the case where all jobs in a subsequence are late never
requires reducing the starting time of the subsequence and
thus is not relevant for a LIFO rearrangement.

Due to Observation 13, all �-rearrangements of a subse-
quence σ0(i, j) that allow us to obtainm late jobs in it, when
the subsequence is moved earlier by s′, are dominated by the
�-rearrangements of σ0(i, j) that allow to obtain the same
number of m late jobs in it when the subsequence is moved
by s′′ < s′. By this dominance relation between rearrange-
ments, we can restrict ourselves to recording the minimum
decrease of the starting time1 and thus avoid the combinato-
rial explosion of the problem.

For every given number m, the value of state s(i, j,m, �)

is obtained by taking the minimum reduction of the starting
time over all possible moves (i, k, �′) for k = i, . . . , j at
some level �′ ≤ � that produce (at most) m late jobs in
σ0(i, j). (Note that if k = i we are looking at an identity
move, while if k > i we are considering all possible moves
nested in i → k.)

For each candidate k, we compute three multi-sets of late-
ness values, coming from three job subsets: namely the jobs
nested in the move, the moved job and the other jobs. From

1 Clearly, the values s(i, j,m, �) are finite, even if they are negative.
Since m < j − i + 1, there always remains at least one on-time job
which forbids an arbitrarily large increase of the starting time.

the multi-set obtained by the union of these multi-sets, we
select the minimum reduction in time that is needed to have
m late jobs in σ0(i, j) for each value of m. In particular,
some late jobs can be obtained from subsequence σ0(i+1, k)
after reducing its starting time by pi ; some late jobs can be
obtained from subsequence σ0(k + 1, j) whose starting time
has not changed; and an additional late job is possibly the
moved job i that is delayed by P(i + 1, k).

Hereafter, we use the notation max[q](A) to indicate the
q-th largest value in the multi-set of integer values A. To
be precise, we refer to the q-th entry in the non-increasingly
sorted multi-set.

At level � = 0, the values s(i, j,m, 0) are evaluated on the
initial sequence using the lateness values of the jobs in it. Let
L(σ0(i, j)) be the multi-set of lateness values {Lk(σ0) : k ∈
σ0(i, j)}. With the notation introduced above, we initialize

s(i, j,m, 0) = max[m+1](L(σ0(i, j)))

∀ i, j ∈ J , i ≤ j, ∀m = 0, . . . , j − i . (11)

For levels � ≥ 1, the recursive extension rule is as fol-
lows. For each subsequence σ0(i, j) and for each level � =
1, . . . , S,wefirst consider all possibleways inwhich this sub-
sequence can be feasibly rearrangedwithmoves up to level �.
For this purpose, we compute the multi-set S(i, j, k, �) con-
taining, for each possible move (i, k, �′) at any level �′ ≤ �,
the s(·) values for all numbersm = 0, . . . , j − i of late jobs:

S(i, j, k, �) =
k−i−1⋃
u=0

{s(i + 1, k, u, � − 1) − pi }

∪
j−k−1⋃
u=0

{s(k + 1, j, u, �)}

∪{Ck(σ0) − di }. (12)

In (12), we distinguish the union of three multi-sets: The first
one contains k− i values computed from the non-dominated
(�−1)-rearrangements of the subsequenceσ0(i+1, k)whose
jobs, due to the move i → k, start earlier by pi time units.
The secondmulti-set refers to the s(·) values of the jobs from
k + 1 to j whose starting times are not affected by the move.
Finally, the third termcorresponds to the lateness of job i after
move i → k is performed.Recall thatObservation13guaran-
tees that a (�−1)-rearrangement of subsequence σ0(i+1, k)
producing (at most) m late jobs does not change when the
subsequence is moved earlier by pi .

The (m + 1)-largest entry of the multi-set S(i, j, k, �)
represents the necessary amount of time by which we need
to bring forward σ0(i, j) after a move (i, k, �′) with �′ ≤ �,
in order to have m late jobs. Thus, the value of the new state
corresponds to the move i → k such that this decrease of the

123

672 Journal of Scheduling (2021) 24:663–680

Table 1 Processing times, due
dates, completion times and
lateness values of an initial
schedule σ0 = 〈1, 2, 3, 4〉 with 3
late jobs

job 1 2 3 4

pi 25 10 5 10

di 45 15 10 30

Ci (σ0) 25 35 40 50

Li (σ0) − 20 20 30 20

Table 2 State values s(i, j,m, 0) for all i, j ∈ {1, 2, 3, 4} with i ≤ j
and m ∈ {0, . . . , j − i}

m
0 1 2 3

j = 1 i = 1 s(1, 1,m, 0) − 20

j = 2 i = 2 s(2, 2,m, 0) 20

i = 1 s(1, 2,m, 0) 20 − 20

j = 3 i = 3 s(3, 3,m, 0) 30

i = 2 s(2, 3,m, 0) 30 20

i = 1 s(1, 3,m, 0) 30 20 − 20

j = 4 i = 4 s(4, 4,m, 0) 20

i = 3 s(3, 4,m, 0) 30 20

i = 2 s(2, 4,m, 0) 30 20 20

i = 1 s(1, 4,m, 0) 30 20 20 − 20

starting time is minimum and can be computed as follows:

s(i, j,m, �) = min
k∈σ0(i, j)

{
max[m+1](S(i, j, k, �))

}
. (13)

In computing the s(i, j,m, �) values, we keep a specific
order for i , j , and �: This is illustrated in theRecursion pro-
cedure of Algorithm 1. The optimal solution value, f (3)(σ ∗)
= ∑

j∈J U j (σ
∗), is finally given bymin{m : s(1, n,m, S) ≤

0}.
To illustrate the non-trivial handling of multi-sets in the

dynamic programming recursion, we give the following
example.

Example Consider a schedule σ0 = 〈1, 2, 3, 4〉 with 4 jobs.
The respective processing times and due dates are given in
Table 1. Since the example is intended to illustrate how a state
value is computed, we restrict ourselves to the case S = 1.
An analogous procedure is to be used for larger values of S.

In order to compute the minimum number of late jobs in
the sequenceσ0 withmoves up to level 1,we have to calculate
all state values s(i, j,m, �) with i, j ∈ {1, 2, 3, 4}, i ≤ j ,
m = 0, . . . , j − i and � ∈ {0, 1}.

At level � = 0, the initialization according to (11) needs
to be performed. Since the lateness value of each job in σ0
is already given in Table 1, the s(·) values can easily be
obtained. For example, s(1, 4, 2, 0) corresponds to the third
largest value in the multi-set {30, 20, 20,−20} which is 20.
All state values at level 0 are presented in Table 2.

At level � = 1, the subsequences are examined in a specific
order as shown by the rows in Table 3: In an outer loop, index
j spans the range 1 to 4 while in an inner loop index i runs
from j down to 1. In order to compute s(i, j,m, 1)with (13),
we first have to compute S(i, j, k, 1) for all k ∈ σ0(i, j)
according to (12).

AsS(i, j, k, 1) is the union of threemulti-sets, each of the
three sets is given separately in the middle part of Table 3:
On the left, indicated by s(i + 1, k, u, 0) − pi from (12),
the lateness values of the jobs in the subsequence, which are
moved to an earlier starting time, are shown. In the middle,
the lateness values s(k + 1, j, u, 1) of the jobs in the later
part of the subsequence are given. These values come from
the previous rows in the table. For this reason, the s(·) values
need to be evaluated in the order stated above. On the right,
the lateness value Ck(σ0) − di corresponding to the moved
job is given.

The detailed description of the computation of a selected
multi-set follows on the basis of Figure 2: As illustrated,
when move 1 → 2 at level � = 1 is performed in the
sequence σ0(1, 4), the values of the multi-set S(1, 4, 2, 1)
are computed according to (12) as follows: The first multi-
set contains the lateness value of job 2 when it is moved
forward by p1 due to the movement of job 1. In this exam-
ple

⋃0
u=0{s(2, 2, u, 0) − p1} = {−5}. The second multi-set

contains the lateness values of jobs 3 and 4 when they are
optimally rearranged by moves up to level l = 1. Therefore,
s(3, 4, 0, 1) = 30 (obtained by the identical move 3 → 3)
and s(3, 4, 1, 1) = 15 (obtained by move 3 → 4). The third
term in (12) is the lateness value of the moved job 1 in its
new position which is C2(σ0)−d1 = 35−45 = −10. Thus,
(12) defines the multi-set S(1, 4, 2, 1) = {30, 15,−5,−10}
which is also presented in Table 3 together with all other
multi-sets S(·).

After calculatingS(i, j, k, 1) for all k ∈ σ0(i, j), the state
values s(i, j,m, 1) can be obtained from (13). For this pur-
pose, the values in the multi-set S(i, j, k, 1) are sorted in
non-increasing order, as shown in the right part of Table 3.
The value s(i, j,m, 1) is then obtained by talking the mini-
mum value of all (m + 1)-largest values from the multi-sets
S(i, j, k, 1). Using the table, this can be performed by calcu-
lating theminimum value of the corresponding j−i+1 rows
in the column with the corresponding m-value. For exam-
ple, s(1, 4, 2, 1) corresponds to theminimum of themulti-set
{10,−5,−5,−5} which is −5.

As we can see in the last row of Table 3, the optimal
solution for stack capacity S = 1 has two late jobs since
m = 2 is theminimum value which fulfills s(1, 4,m, 1) ≤ 0,
i.e., a schedule with two late jobs can be obtained at level
� = 1 starting at time 0. In this example, multiple optimal
schedules exist. One of them, for instance, is the schedule
σ = 〈2, 1, 3, 4〉 in which jobs 3 and 4 are late. It can be
obtained by the single move 1 → 2.

123

Journal of Scheduling (2021) 24:663–680 673

Table 3 State values s(i, j,m, 1) for all i, j ∈ {1, 2, 3, 4} with i ≤ j and m ∈ {0, . . . , j − i}
move i → k s(i + 1, k, u, 0) − pi s(k + 1, j, u, 1) Ck(σ0) − di m

u = 0, . . . , k − i − 1 u = 0, . . . , j − k − 1 0 1 2 3

j = 1 i = 1 k = 1 − 20 − 20

s(1, 1,m, 1) − 20

j = 2 i = 2 k = 2 20 20

s(2, 2,m, 1) 20

i = 1 k = 1 20 − 20 20 − 20

k = 2 −5 − 10 − 5 − 10

s(1, 2,m, 1) − 5 − 20

j = 3 i = 3 k = 3 30 30

s(3, 3,m, 1) 30

i = 2 k = 2 30 20 30 20

k = 3 20 25 25 20

s(2, 3,m, 1) 25 20

i = 1 k = 1 25, 20 − 20 25 20 − 20

k = 2 − 5 30 − 10 30 − 5 − 10

k = 3 5, −5 − 5 5 − 5 − 5

s(1, 3,m, 1) 5 − 5 − 20

j = 4 i = 4 k = 4 20 20

s(4, 4,m, 1) 20

i = 3 k = 3 20 30 30 20

k = 4 15 40 40 15

s(3, 4,m, 1) 30 15

i = 2 k = 2 30, 15 20 30 20 15

k = 3 20 20 25 25 20 20

k = 4 20, 10 35 35 20 10

s(2, 4,m, 1) 25 20 10

i = 1 k = 1 25, 20, 10 − 20 25 20 10 − 20

k = 2 − 5 30, 15 − 10 30 15 − 5 − 10

k = 3 5, − 5 20 − 5 20 5 − 5 − 5

k = 4 5, − 5,− 5 5 5 5 − 5 − 5

s(1, 4,m, 1) 5 5 − 5 − 20

5.1.1 Algorithmic realization of the dynamic program

In this section,we illustrate a straightforward implementation
of the algorithm sketched in Section 5.1. The corresponding
pseudocode is presented in Algorithm 1.

The recursion requires the generation of the states from
level � = 0 up to S to ensure that the effects of moves nested
in any move of level � have already been examined. Fur-
thermore, for each level, the subsequences are examined in
a given order: In an outer loop (Steps 8–17), the index j
spans the range 1 to n while in an inner loop the index i runs
from j down to 1 (Steps 9–17). This guarantees that when
move (i, k, �) is considered, the effects of all moves (i ′, k′, �)
with k < i ′ ≤ k′, have already been computed. For a given
triple (i, j, �), all multi-sets S(i, j, k, �), k = i, . . . , j , are
temporarily stored in the lists Sk . Note that Steps 12–14

implement the union of the three multi-sets of Equation (12)
and the procedureAppend, used in the algorithm, simply adds
an element to the end of a linked list.

The running time complexity of Algorithm 1 can be ana-
lyzed as follows. The main computation, executed in Loop
1 (Steps 10–14) and Loop 2 (Steps 15–17) of procedure
Recursion, is performed O(Sn2) times, namely for all lev-
els � and over all ordered pairs (i, j). Both, Loop 1 and
Loop 2, have total cost O(n2) since each iteration in those
loops requires O(n) time. Thus, the overall worst-case time
complexity is O(n4S) which can be bounded by O(n5). The
above discussion can be summed up in the following theo-
rem.

Theorem 15 Algorithm 1 determines an optimal solution for
problem 1|resch-LIFO|∑Uj in O(n5) time.

123

674 Journal of Scheduling (2021) 24:663–680

Fig. 2 Illustration of computing
the multi-set S(1, 4, 2, 1) in the
given example where processing
times are indicated within the
rectangles representing the jobs,
due dates are in square brackets
and lateness values are in
parentheses

0

25

1 [45]

(−20)
25

10

2 [15]

(20)
35

5

3 [10]

(30)
40

10

4 [30]

(20)
50

0

10

2 [15]

(−5)
10

25

1 [45]

(−10)
35

35

5

3 [10]

(30)
40

10

4 [30]

(20)
50

35

10

4 [30]

(15)
45

5

3 [10]

(40)
50

move
1 → 2

s(2, 2, 0, 0)− p1 C2(σ0)− d1

⋃1
u=0{s(3, 4, u, 1)}

= {30, 15}

Algorithm 1 Dynamic Program for minimizing the number
of late jobs
1: procedure Initialization (for � = 0)
2: for i = 1, . . . , n do
3: for j = i, . . . , n do
4: for m = 0, . . . , j − i do
5: s(i, j,m, 0) ← (m+1)-largest value of a listwith values

Li (σ0), . . . , L j (σ0)

6: procedure Recursion (for � ≥ 1)
7: for � = 1, . . . , S do
8: for j = 1, . . . , n do
9: for i = j, . . . , 1 do
10: for k = i, . . . , j do � Loop 1
11: Let Sk be an empty list
12: for u = 0, . . . , k−i−1 do Append s(i+1, k, u, �−

1) − pi to the list Sk

13: for u = 0, . . . , j−k−1 do Append s(k+1, j, u, �)

to the list Sk

14: Append Ck(σ0) − di to the list Sk

15: for m = 0, . . . , j − i do � Loop 2
16: Let S be a list with the (m + 1)-largest values of

Si , . . . ,S j
17: s(i, j,m, �) ← min(S)

18: f (3)(σ ∗) ← min{m : s(1, n,m, S) ≤ 0}

5.2 Extension to theÄ-constrained problem

To deal with the problem where not all jobs are movable, we
need to reconsider Expressions (11) and (13) since the multi-
sets S(i, j, k, �) have no meaning anymore for i ∈ J \�. In
particular, Recursion (13) can be rewritten as follows:

s(i, j,m, �)

=
{
max[m+1]

(⋃ j−i−1
u=0 {s(i + 1, j, u, �)} ∪ {Ci (σ0) − di }

)
, if i ∈ J \ �,

as in Expression (13), if i ∈ �,

for all i, j ∈ J , i ≤ j , m = 0, . . . , j − i , and � = 1, . . . , S.
Since job i cannot bemoved, its lateness value isCi (σ0)−di ,
whereas the necessary reductions of the starting times for the
subsequence σ0(i +1, j) are the already computed values of
the states s(i + 1, j, u, �), u = 0, . . . , j − i − 1.

6 Minimization of the weighted number of
late jobs

Here, we deal with a generalization of the problem intro-
duced in the previous Sect. 5, and consider different job
priorities. We therefore introduce a cost, associated to each
job, which is paid if that job is late. This type of objective
is studied in a number of papers (see, e.g., Baptiste 1999;
Blazewicz et al. 2005). We first prove that the resulting prob-
lem, namely 1|resch-LIFO|∑w jU j , is NP-hard and then
present a pseudo-polynomial exact solution algorithm based
on dynamic programming.

Theorem 16 Problem 1|resch-LIFO|∑ w jU j is binary NP-
hard.

Proof We consider the following decision problemD: Given
an instance Ī of 1|resch-LIFO|∑w jU j and an integer Q, is
there a feasible solution σ of Ī such that

∑
j w jU j (σ) ≤ Q?

We prove that D is NP-complete, thus proving the hardness
of 1|resch-LIFO|∑w jU j .

The reduction is from Equal- Cardinality Partition:
Given a set of 2n positive integers {a1, a2, . . . , a2n}, is there a
subset A′ of the index set A = {1, . . . , 2n} with ∑

i∈A′ ai =∑
i∈A\A′ ai and |A′| = n? Given an instance I of Equal-

Cardinality Partition, we can build an instance Ĩ of D
as follows. There are 2n jobs, and for each job i = 1, . . . , 2n

123

Journal of Scheduling (2021) 24:663–680 675

we set wi = pi = ai and di = 1
2

∑2n
k=1 ak . Moreover, the

stack capacity is S = n and Q = 1
2

∑2n
i=1 ai .

It is easy to observe that Ĩ is a YES-instance of D, i.e.,
there is a schedule σ such that

∑
j w jU j (σ) ≤ Q, if and only

if I is a YES-instance of Equal- Cardinality Partition.
Note that if such a schedule σ exists, then it can be obtained
by moving at most n jobs (the late ones) to the right end of
the schedule. ��

6.1 Dynamic programming

In this section, we show that a pseudo-polynomial algorithm
exists for 1|resch-LIFO|∑w jU j , hence complementing the
result given in Theorem 16.

First of all, let us recall that all data (i.e., processing times,
weights and due dates) are positive integer values. Unlike
the dynamic program for the unweighted case, where for the
optimal �-rearrangement of each subsequence the minimum
reduction of the starting times for different number of late
jobs is recorded,we now store theminimumweighted number
of late jobs for different reductions of the starting time.

Definition 17 For each i, j ∈ J with i ≤ j , t =
0, . . . , P(1, i − 1), and � = 0, . . . , S, let r(i, j, t, �) be the
minimum weighted number of late jobs that can be achieved
by rearranging the subsequence σ0(i, j) with moves up to
level �, after decreasing the starting time of the subsequence
by t.

As an initialization, we have:

r(i, j, t, 0) =
∑

k∈σ0(i, j): Lk (σ0)>t

wk

∀ i, j ∈ J , i ≤ j, ∀ t = 0, . . . , P(1, i − 1). (14)

Similar to the algorithm for the unweighted case, in the recur-
sion, the value of state r(i, j, t, �) is obtained by taking the
minimum weighted number of late jobs over all possible
moves (i, k, �′) for k = i, . . . , j at some level �′ ≤ �. The
effect of such a move is given by the sum of (at most) three
terms expressing the weighted number of late jobs of the
optimal (� − 1)-rearrangement of subsequence σ0(i + 1, k)
with a starting time decreased by pi , the weighted number
of late jobs of the optimal �-rearrangement of subsequence
σ0(k+1, j) and theweighted number of late jobs contributed
by the moved job i which is given by

r(i, k, t) =
{

wi , if t < Ck (σ0) − di ,
0, otherwise.

Therefore, the value for the new state can be computed with
the following recursion:

r(i, j, t, �) =
{
r(i, i, t), if i = j,
mink∈σ0(i, j){R(i, k, j, t, �)}, if i < j,

(15)

for all i, j ∈ J , i ≤ j , for all t = 0, . . . , P(1, i − 1) and for
all � = 1, . . . , S where

R(i, k, j, t, �)

=
⎧⎨
⎩
r(i + 1, j, t, �) + r(i, i, t), if k = i,
r(i + 1, k, t + pi , � − 1) + r(k + 1, j, t, �) + r(i, k, t), if i < k < j,
r(i + 1, j, t + pi , � − 1) + r(i, j, t), if k = j .

The optimal solution value, f (4)(σ ∗)= ∑
j∈J w jU j (σ

∗),
is found by computing r(1, n, 0, S).

6.1.1 Algorithmic realization of the dynamic program

Thepseudocode inAlgorithm2 straightforwardly follows the
approach described in the previous section. The recursion
requires, analogous to Algorithm 1, the generation of the
states from level � = 0 up to S. Additionally, for each level
�, the subsequences σ0(i, j) are also examined in two loops
where index j runs from 1 up to n in an outer loop, while in
an inner loop index i runs from j down to 1 to ensure that
certain states are already computed.

Algorithm2Dynamic Program forminimizing theweighted
number of late jobs
1: procedure Initialization (for � = 0)
2: for i = 1, . . . , n do
3: for j = i, . . . , n do
4: for t = 0, . . . , P(1, i − 1) do
5: r(i, j, t, 0) ← 0
6: for k = i, . . . , j with Lk(σ0) > t do
7: r(i, j, t, 0) ← r(i, j, t, 0) + wk

8: procedure Recursion (for � ≥ 1)
9: for � = 1, . . . , S do
10: for j = 1, . . . , n do
11: for i = j, . . . , 1 do
12: for t = 0, . . . , P(1, i − 1) do
13: rmin ← ∞
14: for k = i, . . . , j do
15: if t < Ck(σ0) − di then r ← wi
16: else r ← 0
17: if i = j then rk ← r
18: else if k = i then rk ← r(i + 1, j, t, �) + r
19: else if k = j then rk ← r(i + 1, j, t + pi , � −

1) + r
20: else rk ← r(i + 1, k, t + pi , � − 1) + r(k +

1, j, t, �) + r

21: rmin ← min{rmin, rk}
22: r(i, j, t, �) ← rmin

23: f (4)(σ ∗) ← r(1, n, 0, S)

123

676 Journal of Scheduling (2021) 24:663–680

It is easy to see that the proposed algorithm has a
pseudo-polynomial running time of O(n3S P) where P =
P(1, n) = ∑

j∈J p j is the sum of the processing times of all
jobs.

Of course,Algorithm2can alsobeused for theunweighted
case (with w j = 1 for all j ∈ J). Clearly, we then still have
a pseudo-polynomial running time instead of the strongly
polynomial running time stated in Theorem 15.

6.2 Extension to theÄ-constrained problem

To solve the �-constrained problem, we can still use Equa-
tions (14) as an initialization but we need to adapt Recur-
sion (15) as follows:

r(i, j, t, �) =
{
r(i + 1, j, t, �) + r(i, i, t), if i ∈ J \ �, i < j,
as in Expression (15), otherwise,

for all i, j ∈ J , i ≤ j , for all t = 0, . . . , P(1, i−1) and for all
� = 1, . . . , S. If job i is not movable, its total weighted num-
ber of late jobs, depending on t , is r(i, i, t) and the weighted
number of late jobs for the subsequence σ0(i+1, j) is simply
the already computed value r(i + 1, j, t, �).

6.3 Alternative dynamic program

An alternative solution approach for 1|resch-LIFO|∑w jU j

can be derived by generalizing Algorithm 1 to the weighted
setting. In this case,wedefine s̃(i, j,m, �) as a generalization
of s(i, j,m, �) where m now denotes the weighted number
of late jobs. Consequently, variable m can take every weight
value of the objective function, and therefore can be upper-
bounded by the value W = W (1, n) = ∑

j∈J w j .

Definition 18 For each i, j ∈ J with i ≤ j , m =
0, . . . ,W (i, j) and � = 0, . . . , S, let s̃(i, j,m, �) be the
minimum decrease of the starting time of the subsequence
σ0(i, j) that ensures a value of at most m for the weighted
number of late jobs when the subsequence can be rearranged
with moves up to level �.

The generalization of Eqs. (11) to (13) is as follows: the
initialization for all i, j ∈ J , i ≤ j , and for all m =
0, . . . ,W (i, j) − 1 is given by

s̃(i, j,m, 0) = argmint∈T

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈σ0(i, j):
Lk (σ0)>t

wk

⎫⎪⎪⎬
⎪⎪⎭

where T = {t ∈ {Li (σ0), . . . , L j (σ0)} : ∑
k∈σ0(i, j): Lk (σ0)>t

wk ≤ m}.

The recursive extension rule for all i, j ∈ J , i ≤ j , m =
0, . . . ,W (i, j) − 1 and � = 1, . . . , S is

s̃(i, j,m, �) = min
k∈σ0(i, j)

{
max[m+1](S̃(i, j, k, �))

}
(16)

with the modified multi-set

S̃(i, j, k, �)

=
W (i+1,k)−1⋃

u=0

{̃s(i + 1, k, u, � − 1) − pi }

∪
W (k+1, j)−1⋃

u=0

{̃s(k + 1, j, u, �)}

∪
wi−1⋃
u=0

{Ck(σ0) − di }.

Obviously, this generalization of the algorithm sketched in
Sect. 5.1 results in a worst-case computational complexity of
O(n3S W) which can be bounded by O(n4W).

Summing up the above argumentation and those of
Sect. 6.3, we obtain the following theorem.

Theorem 19 Problem 1|resch-LIFO|∑w jU j is pseudo-
polynomial solvable within O(n4B) running time where

B = min
{∑

j∈J p j ,
∑

j∈J w j

}
.

7 Empirical analysis of the stack size effect

In this section, we illustrate the effect of rescheduling and in
particular the influence of the stack size for the three poly-
nomial time algorithms presented in Sects. 3 to 5. We do not
report running times. We only observe that the dynamic pro-
gramming algorithms show quite small deviations in running
times for instances of the same size.

As a test bed, we follow the data generation scheme
by Potts and Van Wassenhove (1988). We choose pro-
cessing times and weights independent and identically,
uniformly distributed with p j ∼ U (1, 100) and w j ∼
U (1, 100). For two parameters d� and du we choose d j ∼
U (P(1, n) d�, P(1, n) du). We consider four choices for d�,
namely d� ∈ {0.2, 0.4, 0.6, 0.8}, and all possibilities for
du ∈ {0.2, 0.4, 0.6, 0.8, 1.0} with d� ≤ du , which yields 14
pairs of parameter values. For the number of jobs, we take
n = 50 and n = 100. For each of the 28 resulting classes
of instances, 20 instances were randomly generated, i.e., 560
instances in total.

The goal of our analysis is twofold: We want to analyze
the potential improvement of the objective function obtained
through rescheduling and we want to illustrate the utilization
of the stack. Naturally, both aspects strongly depend on the

123

Journal of Scheduling (2021) 24:663–680 677

(a) relative gap (b) number of moves

(c) maximum stack utilization (d) average stack utilization

Fig. 3 Effect of increasing stack size S for 1|resch-LIFO| ∑ w jC j

stack size. Therefore, all our evaluations are performed for
increasing stack sizes, starting from S = 1 up to S = 25.
Note that for practical applications in a production setting,
the LIFO stack can be expected to be of moderate size with
S ≤ 10, but for the empirical analysis we consider also larger
values of S. It is also clear that S does not depend on the
number of jobs.

The results of our tests are given in Figs. 3, 4 and 5. All
values are taken as averages over the 280 instances for n = 50
and n = 100, respectively.

The two graphs in the upper row of each figure describe
the effect of rescheduling on the solution. In Figs. 3a, 4a
and 5a, we give the gap between the solution obtained
from rescheduling under LIFO constraints with a certain
stack size (given on the x-axis) and the optimal sched-
ule (obtained by completely reordering the given jobs). For
1|resch-LIFO|∑ w jC j , the gap in Fig. 3a is the difference
relative to the total weighted completion time of an optimal
schedule expressed in percent. For 1|resch-LIFO|Lmax, it is
not obvious how to scale the difference to the optimal sched-
ule since the latter could have a positive, zero or negative
maximum lateness. Thus, we take the difference between

lateness after rescheduling and lateness of an optimal sched-
ule and divide it by Cmax = P(1, n), see Fig. 4a. Finally,
for 1|resch-LIFO|∑Uj the difference of the number of late
jobs is given as an absolute value in Fig. 5a (note that the
optimal value might be zero). It can be seen that there is a
certain limit on the effect reachable by rescheduling, e.g.,
for total weighted completion time the gap hardly gets below
20%. This is possibly due to the LIFO constraint.

In Figs. 3b, 4b and 5b, we give the number of moves,
i.e., the total number of jobs inserted into the stack during
the rescheduling process. As can be expected, a larger stack
size permits much more improvement of the solution and
reschedules a larger proportion of the jobs. But from a certain
stack size, the objective improves only marginally and thus
also the number of moves ceases to grow.

The two graphs in the lower rowof each figure describe the
stack utilization. In Figs. 3c, 4c and 5c, the maximum stack
utilization is given, i.e., the largest number of jobs contained
in the stack at any time during the rescheduling process. It
turns out that for the total weighted completion time the stack
size is almost always fully exploited at some point of the
execution. This is not the case when minimizing maximum

123

678 Journal of Scheduling (2021) 24:663–680

(a) gap relative to Cmax (b) number of moves

(c) maximum stack utilization (d) average stack utilization

Fig. 4 Effect of increasing stack size S for 1|resch-LIFO|Lmax

lateness, especially for the smaller instances with n = 50,
where a close to optimal solution is reached with a moderate
stack size, but further improvements are reachable only for
a few instances as the stack size increases. If the number
of late jobs is minimized, the stack size can be mostly fully
exploited for the larger instances with n = 100, while for
n = 50 an almost optimal solution is reachable even with
S ≈ 15 (as can be seen from Fig. 5a), and thus, the stack is
not fully utilized (see Fig. 5c).

Finally, Figs. 3d, 4d and 5d show the average stack utiliza-
tion. This means that we track the number of jobs contained
in the stack in each of the n−1 steps of the rescheduling pro-
cess and take their average. Clearly, this includes a certain
phasing-in and phasing-out effect since the empty stack only
starts accepting jobs at the beginning and has to be empty
again until the end of the sequence. The concave shape of
the corresponding figures is due to this effect which is nat-
urally much stronger for n = 50 than for n = 100. It turns
out that for maximum lateness the average stack utilization
is considerably smaller than for total weighted completion
time (compare Figs. 3d and 4d) with number of late jobs as a
close follower. We believe that this is due to the fact that for

total weighted completion time the optimal solution is unique
(for distinct input values) while for the other two objectives
there usually exist various different sequences with the same
solution value. Once an optimal or very good solution value
is reached, further rearrangements of the sequence are not
beneficial any more.

8 Conclusions

In this paper, motivated by questions arising in manufactur-
ing applications, we study the problem of rearranging a given
sequence of jobs on a singlemachine in order tominimize one
of four different objectives. We rely on the standard schedul-
ing parameters of a job, namely processing time, weight
(importance) and due date. From a practical point of view,
also operating costs arising from the rearrangement steps, in
particular energy consumption, could be taken explicitly into
account.

The new sequence can be obtained respecting certain tech-
nological constraints: In particular, our jobs are associated to
physical parts, sequenced on a conveyor that feeds a pro-

123

Journal of Scheduling (2021) 24:663–680 679

(a) absolute gap (b) number of moves

(c) maximum stack utilization (d) average stack utilization

Fig. 5 Effect of increasing stack size S for 1|resch-LIFO| ∑Uj

cessing resource, which can be picked up by a robot. A job
taken from the conveyor by the robot is first put into a buffer
and then placed again on the conveyor in a later position of
the original sequence. The buffer is managed as a stack with
limited capacity so the last job entering the buffer is the first
taken by the robot to be put down again on the conveyor. Due
to this LIFO mechanism, only a certain set of sequences can
be reached starting from the initial one and this set constitutes
all the feasible solutions of our problems.

Our contribution is focused on settling the computational
complexity and providing exact solution algorithms. In par-
ticular, we are able to provide strongly polynomial (dynamic
programming) solution algorithms for the minimization of
(i) total weighted completion time of the jobs, (i i)maximum
of regular functions of the completion times, in particular
maximum lateness, of the jobs, and (i i i) number of late jobs.
We also prove that (iv) if we want to minimize the weighted
number of late jobs, then the problem becomes (weakly) NP-
hard. For the latter problem, we present a pseudo-polynomial
solution algorithm (again based on a dynamic program).

Future research should consider an empirical study con-
cerning both the characterization of optimal solutions, that

may be obtained starting from different input sequences, and
the performance of exact solution algorithms in terms of
numerical efficiency, with possible comparisons with alter-
native enumeration schemes.

In more general terms, it would clearly be interesting to
consider other regimes for buffer management. From a prac-
tical point of view, themost relevant settingwould be a queue
environment implied by a FIFO mechanism. Of course, also
a random access buffer where any job can be taken from the
buffer, may be well justified, although technically more com-
plicated. These two aspects will be subject of future research.
Moreover, it would also be interesting to consider alternative
performance figures. We dealt with the four most common,
standard objectives functions, but in the future also other
choices might be relevant, in particular in the context of a
real-world application (Li et al. 2021).

Funding Open access funding provided byUniversità degli Studi Roma
Trewithin theCRUI-CAREAgreement. This studywas partially funded
by MIUR PRIN Project AHeAD (Efficient Algorithms for HArnessing
Networked Data), by the University of Graz under the Field of Excel-
lence “COLIBRI” and by the Regione Lombardia, grant agreement n.
E97F17000000009, Project AD-COM.

123

680 Journal of Scheduling (2021) 24:663–680

Data availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Agnetis, A., Detti, P., Meloni, C., & Pacciarelli, D. (2001). Coordina-
tion between two stages of a supply chain. Annals of Operations
Research, 107(1), 15–32.

Agnetis, A., Hall, N. G., & Pacciarelli, D. (2006). Supply chain
scheduling: Sequence coordination. Discrete Applied Mathemat-
ics, 154(15), 2044–2063.

Agnetis, A., Chen, B., Nicosia, G., & Pacifici, A. (2019). Price of fair-
ness in two-agent single-machine scheduling problems. European
Journal of Operational Research, 276(1), 79–87.

van den Akker, M., Hoogeveen, H., & Stoef, J. (2018). Combining
two-stage stochastic programming and recoverable robustness to
minimize the number of late jobs in the case of uncertain processing
times. Journal of Scheduling, 21(6), 607–617.

Alfieri,A.,Nicosia,G., Pacifici,A.,&Pferschy,U. (2018a).Constrained
job rearrangements on a single machine. AIRO Springer seriesIn
P. Daniele & L. Scrimali (Eds.), New trends in emerging complex
real life problems (Vol. 1, pp. 33–41). Berlin: Springer.

Alfieri, A., Nicosia, G., Pacifici, A., & Pferschy, U. (2018b). Sin-
gle machine scheduling with bounded job rearrangements. In
Proceedings of 16th Cologne-Twente workshop on graphs and
combinatorial optimization (pp. 124–127).

Ballestín, F., Pérez, A., & Quintanilla, S. (2019). Scheduling and
rescheduling elective patients in operating rooms to minimise the
percentage of tardy patients. Journal of Scheduling, 22(1), 107–
118.

Baptiste, P. (1999). Polynomial time algorithms for minimizing the
weighted number of late jobs on a single machine with equal pro-
cessing times. Journal of Scheduling, 2(6), 245–252.

Blazewicz, J., Pesch, E., Sterna, M., & Werner, F. (2005). The two-
machine flow-shop problem with weighted late work criterion and
common due date. European Journal of Operational Research,
165(2), 408–415.

Daniels, R. L., & Kouvelis, P. (1995). Robust scheduling to hedge
against processing time uncertainty in single-stage production.
Management Science, 42(2), 363–737.

Detti, P., Nicosia, G., Pacifici, A., Manrique, Zabalo, & de Lara, G.
(2019). Robust single machine scheduling with a flexible mainte-
nance activity. Computers & Operations Research, 107, 19–31.

Hall, N. G., & Potts, C. N. (2010). Rescheduling for job unavailability.
Operations Research, 58(3), 746–755.

Hall, N. G., Liu, Z., & Potts, C. N. (2007). Rescheduling for multiple
new orders. INFORMS Journal on Computing, 19(4), 633–645.

Ivanov, D., & Sokolov, B. (2015). Coordination of the supply chain
scheduleswith re-scheduling considerations. IFAC-PapersOnLine,
48(3), 1509–1514.

Leung, J. Y. T., Pinedo, M., & Wan, G. (2010). Competitive two-agent
scheduling and its applications.Operations Research, 58(2), 458–
469.

Li, X., Ventura, J. A., & Bunn, K. A. (2021). A joint order acceptance
and scheduling problemwith earliness and tardiness penalties con-
sidering overtime. Journal of Scheduling, 24, 49–68.

Liebchen C, Lübbecke M, Möhring R, Stiller S (2009) The Concept
of recoverable robustness, linear programming recovery, and rail-
way applications. In Robust and online large-scale optimization:
Models and techniques for transportation systems (vol. 5868, pp.
1–27). Springer.

Nicosia, G., Pacifici, A., Pferschy, U., Polimeno, E., & Righini, G.
(2019). Optimally rescheduling jobs under LIFO constraints. In
Proceedings of the 17th Cologne-Twente workshop on graphs and
combinatorial optimization (pp. 107–110).

Niu, S., Song, S., Ding, J. Y., Zhang, Y., & Chiong, R. (2019). Distribu-
tionally robust single machine scheduling with the total tardiness
criterion. Computers & Operations Research, 101, 13–28.

Nouiri, M., Bekrar, A., Jemai, A., Ammari, A. C., & Niar, S. (2018).
A new rescheduling heuristic for flexible job shop problem with
machine disruption. Studies in Computational Intelligence, 762,
461–476.

Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in
manufacturing systems. Journal of Scheduling, 12(4), 417–431.

Perez-Gonzalez, P., & Framinan, J. M. (2014). A common frame-
work and taxonomy for multicriteria scheduling problems with
interfering and competing jobs: Multi-agent scheduling problems.
European Journal of Operational Research, 235(1), 1–16.

Potts, C. N., & VanWassenhove, L. N. (1988). Algorithms for schedul-
ing a singlemachine tominimize theweighted number of late jobs.
Management Science, 34(7), 843–858.

Vieira,G.E.,Herrmann, J.W.,&Lin, E. (2003).Reschedulingmanufac-
turing systems: A framework of strategies, policies, and methods.
Journal of Scheduling, 6(1), 39–62.

Wu, S. D., Storer, R. H., &Chang, P. C. (1993). Onemachine reschedul-
ing heuristics with efficiency and stability as criteria. Computers
& Operations Research, 20(1), 1–14.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Optimally rescheduling jobs with a Last-In-First-Out buffer
	Abstract
	1 Introduction
	2 Problem statement
	3 Total weighted completion time
	3.1 Extension to the Ω-constrained problem

	4 Maximum of regular functions minimization
	4.1 Minimization of maximum lateness
	4.2 Extension to maximum of regular functions objective
	4.3 Extension to the Ω-constrained problem

	5 Minimization of the number of late jobs
	5.1 Dynamic programming
	5.1.1 Algorithmic realization of the dynamic program

	5.2 Extension to the Ω-constrained problem

	6 Minimization of the weighted number of late jobs
	6.1 Dynamic programming
	6.1.1 Algorithmic realization of the dynamic program

	6.2 Extension to the Ω-constrained problem
	6.3 Alternative dynamic program

	7 Empirical analysis of the stack size effect
	8 Conclusions
	References

