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Abstract
We consider a variant of the NP-hard problem of assigning jobs to machines to minimize the completion time of the last job.
Usually, precedence constraints are given by a partial order on the set of jobs, and each job requires all its predecessors to be
completed before it can start. In this paper, we consider a different type of precedence relation that has not been discussed
as extensively and is called OR-precedence. In order for a job to start, we require that at least one of its predecessors is
completed—in contrast to all its predecessors. Additionally, we assume that each job has a release date before which it must
not start. We prove that a simple List Scheduling algorithm due to Graham (Bell Syst Tech J 45(9):1563–1581, 1966) has an
approximation guarantee of 2 and show that obtaining an approximation factor of 4/3 − ε is NP-hard. Further, we present a
polynomial-time algorithm that solves the problem to optimality if preemptions are allowed. The latter result is in contrast
to classical precedence constraints where the preemptive variant is already NP-hard. Our algorithm generalizes previous
results for unit processing time jobs subject to OR-precedence constraints, but without release dates. The running time of
our algorithm is O(n2) for arbitrary processing times and it can be reduced to O(n) for unit processing times, where n is
the number of jobs. The performance guarantees presented here match the best-known ones for special cases where classical
precedence constraints and OR-precedence constraints coincide.

Keywords Scheduling · Precedence constraints · Approximation algorithm · Makespan

1 Introduction

In this paper,we consider the problemof scheduling jobswith
OR-precedence constraints on parallel identical machines to
minimize the time necessary to complete all jobs. Let [n] :=
{1, . . . , n}be the set of jobs andm be the number ofmachines.
Each job j ∈ [n] is associated with a nonnegative integer
processing time p j ∈ N0 and a nonnegative integer release
date r j ∈ N0. The precedence constraints are given by a
directed graph G = ([n], E). The set of predecessors of a
job j ∈ [n] isP( j) = {i ∈ [n] | (i, j) ∈ E}.

A schedule is an assignment of the jobs in [n] to the
machines such that each job j is processed by a machine
for p j units of time and each machine processes only one
job at a time. Depending on the problem definition, jobs are
allowed to be preempted at integer points in time (preemptive
scheduling) or not at all (non-preemptive scheduling). The
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start time and completion time of job j ∈ [n] are denoted by
S j andC j , respectively. Note thatC j ≥ S j + p j and equality
holds if job j ∈ [n] is not preempted.

A schedule is called feasible if S j ≥ min{Ci | i ∈ P( j)}
and S j ≥ r j for all jobs j ∈ [n]. A job without predeces-
sors may start at any point in time t ≥ r j . In other words,
every job with predecessors requires that at least one of its
predecessors is completed before it can start, and no job may
start before it gets released. A job j is called available at
time t ≥ 0 if t ≥ r j and, unless P( j) = ∅, there is
i ∈ P( j) with Ci ≤ t . Our goal is to determine a feasi-
ble schedule that minimizes the makespan, which is defined
as Cmax := max j∈[n] C j . In an extension of the notation
in Johannes (2005) and the three-field notation of Graham
et al. (1979), the preemptive and non-preemptive variant of
this problem are denoted by P | r j , or -prec, pmtn |Cmax

and P | r j , or -prec |Cmax, respectively.
Note that any job with zero processing time may be disre-

garded, so we assume, w.l.o.g., from now on that p j > 0 for
all jobs j ∈ [n]. As discussed below, the non-preemptive
problem is NP-hard, which is why we are interested in
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approximation algorithms. Let Π be a minimization prob-
lem, and α ≥ 1. Recall that an α-approximation algorithm
for Π is a polynomial-time algorithm that returns a feasible
solution with objective value at most α times the optimal
objective value.

1.1 Non-preemptive scheduling

Garey and Johnson (1978) proved that the non-preemptive
variant is already strongly NP-hard in the absence of prece-
dence constraints and release dates. It remains NP-hard, even
if the number of machines is fixed to m = 2 (Lenstra et al.
1977). In his seminal paper, Graham (1966) showed that a
simple algorithm called List Scheduling achieves an approx-
imation guarantee of 2:

Consider the jobs in arbitrary order. Whenever a
machine is idle, execute the next available job in the
order on this machine. If there is no available job, then
wait until a job completes.

If the jobs are sorted in order of non-increasing processing
times, then List Scheduling is a 4

3 -approximation (Graham
1969). Hochbaum and Shmoys (1988) presented a (1 + ε)-
approximation for P | |Cmax,whichwas improved in running
time to the currently best-known by Jansen (2010). Mnich
and Wiese (2015) showed that P | |Cmax is fixed param-
eter tractable with parameter max j∈[n] p j . For non-trivial
release dates, List Scheduling with an arbitrary job order is
a 2-approximation algorithm (Hall and Shmoys 1989), and
it is 3

2 -approximate if the jobs are sorted in order of non-
increasing processing times (Chen and Vestjens 1997). Hall
and Shmoys (1989) provided a (1 + ε)-approximation for
P | r j |Cmax.

In contrast to the OR-precedence constraints that are
considered in this paper, the standard precedence con-
straints, where each job requires that all its predecessors are
completed, will be calledAND-precedence constraints. Min-
imizing the makespan with AND-precedence constraints is
strongly NP-hard, even if the number of machines is fixed
to m = 2 and the precedence graph consists of disjoint
paths (Du et al. 1991). List Scheduling is still 2-approximate
in the presence of AND-precedence constraints if the order
of the jobs is consistent with the precedence constraints (Gra-
ham 1966, 1969). The approximation factor can also be
preserved for non-trivial release dates (Hall and Shmoys
1989). Assuming a variant of the Unique Games Conjec-
ture (Khot 2002) together with a result of Bansal and Khot
(2009), Svensson (2010) proved that this is essentially best
possible.

If the precedence constraints are of AND/OR-structure1

and the precedence graph is acyclic, then the problem
without release dates still admits a 2-approximation algo-
rithm (Gillies and Liu 1995). Erlebach et al. (2003) showed
that the assumption on the precedence graph is not neces-
sary. Both results first transform the instance to an AND-
precedence constrained instance by fixing a predecessor of
the OR-precedence constraints. Then, they solve the result-
ing instance with AND-precedence constraints using List
Scheduling.

1.2 Preemptive scheduling

If preemptions are allowed, the algorithm of McNaughton
(1959) computes an optimal schedule in the absence of
release dates and precedence constraints. Ullman (1975)
showed that the problem with AND-precedence constraints
is NP-hard, even if all jobs have unit processing time. Lenstra
and Rinnooy Kan (1978) proved that the problem of mini-
mizing the makespan with AND-precedence constraints and
unit processing time jobs cannot be approximated better than
4/3, unless P = NP. Note that if p j = 1 for all jobs j , then
there is no benefit in preemption. This implies that the hard-
ness results of the unit processing time jobs carry over to the
preemptive case. However, the preemptive variant becomes
solvable in polynomial time for certain restricted precedence
graphs. Precedence graphs that consist of outtrees are of
special interest to us, since then AND- and OR-precedence
constraints coincide.

A number of polynomial-time algorithms were proposed
for AND-precedence constraints in form of an outtree.
Hu (1961) proposed the first such algorithm for unit pro-
cessing time jobs, and Brucker et al. (1977) presented an
algorithm that can also deal with non-trivial release dates,
which was improved in running time by Monma (1982).
Muntz and Coffman (1970) gave a polynomial-time algo-
rithm for the preemptive variant. The algorithm of Gonzalez
and Johnson (1980) has an asymptotically better running
time and uses fewer preemptions than the one in Muntz
and Coffman (1970). Finally, Lawler (1982) proposed a
polynomial-time algorithm for the preemptive variant that
can deal with non-trivial release dates, if the precedence
graph consists of outtrees. For general OR-precedence con-
straints and unit processing time jobs, Johannes (2005)
presented a polynomial-time algorithm that is similar to Hu’s
algorithm (Hu 1961).

1 That is, the set of jobs can be partitioned into those jobs that require
all of their predecessors to be completed before they can start (“AND-
jobs”) and those jobs that require at least one of their predecessors to
be completed (“OR-jobs”).
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1.3 Main results

Our first result shows that the makespan of every feasible
schedule without unnecessary idle time on the machines is at
most twice the optimal makespan, even if non-trivial release
dates are involved.

Theorem 1 List Scheduling is a
(
2 − 1

m

)
-approximation for

P | r j , or-prec |Cmax.

The proof of Theorem 1 is contained in Sect. 3. Using a
reduction from thewell-knownVertex Coverproblem,we
provide a lower bound on the approximability of scheduling
withOR-precedence constraints. This lower bound coincides
with the corresponding lower bound for AND-precedence
constraints presented in Lenstra and Rinnooy Kan (1978).

Theorem 2 It is NP-hard to approximate P | or-prec |Cmax

within a factor 4
3 − ε for any ε > 0.

For P | r j , or -prec, pmtn |Cmax, we improve on the
result of Johannes (2005) by analyzing the structure of an
optimal solution. The key ingredient is the concept of mini-
mal chains that we introduce in Sect. 2. Informally the length
of the minimal chain of job j ∈ [n] is the minimal amount of
time that we need to complete j . The minimal chain of j is
the set of jobs that have to be processed in order to complete
j in that time. We show that there is an optimal preemptive
schedule where each job is preceded by its minimal chain.
We then exploit this structure to transform the instance into
an equivalent AND-precedence constrained instance, where
we can apply the algorithm of Lawler (1982). Thereby, we
obtain our third result. The proof is contained in Sect. 4.

Theorem 3 P | r j , or-prec, pmtn |Cmax can be solved to
optimality in time O(n2).

Since there is no need to preempt if p j = 1 for all j ∈ [n]
and we can use the algorithm of Monma (1982) instead
ofLawler (1982),we immediately obtain the following corol-
lary. This generalizes the aforementioned result of Johannes
(2005) by also incorporating release dates.

Corollary 1 P | r j , or-prec, p j = 1 |Cmax can be solved to
optimality in time O(n).

We would like to remark that Corollary 1 without release
dates was already proved by Johannes (2005). However, the
size of the preemptive instance is not polynomial in the
input parameters of the initial instance. Thus, the analysis
in Johannes (2005) cannot be extended to the preemptive
case.

2 Preliminaries andminimal chains

In order to simplify some arguments, we introduce a dummy
job s with ps = rs = 0 that precedes all jobs. That is, we

assume that the set of jobs is N = [n] ∪ {s} and introduce
an arc (s, j) for all j ∈ [n] with P( j) = ∅ in the prece-
dence graph G. A set S ⊆ N is called a feasible starting set
if all jobs in S are reachable from s in the induced prece-
dence subgraph G[S ∪ {s}]. The set of feasible starting sets
is denoted by S . Note that there is a feasible schedule if
and only if N ∈ S , i.e., the complete set of jobs is a feasi-
ble starting set. In particular, we can decide in linear time,
e.g., via breadth-first-search, whether there exists a feasible
schedule. Henceforth, we will assume that the instances we
consider admit a feasible schedule.

Note that P | or -prec |Cmax is a generalization of
P | |Cmax, which is already strongly NP-hard (Garey and
Johnson 1978). If G is an outtree rooted at s, then OR-
and AND-precedence constraints are equivalent. The NP-
hardness result of Du et al. (1991) implies that the problem
remains strongly NP-hard, even if the number of machines
is fixed.

Observation 4 Pm | or-prec |Cmax is strongly NP-hard for
all m ≥ 2.

In order to analyze the performance of our algorithms, we
use the concept of what we call minimal chains. Informally,
a minimal chain of a job k is a set of jobs that need to be
scheduled so that k can complete as early as possible. To
define minimal chains properly, we use the notion of an ear-
liest start schedule, see, e.g., (Erlebach et al. 2003; Möhring
et al. 2004; Johannes 2005). Although these schedules are
well-defined for general AND/OR-precedence constraints,
we only need and define them in the OR-context.

The earliest start schedule is defined as a schedule on
an infinite number of machines such that a job j without
predecessors starts at time r j and a job j with P( j) �= ∅
starts at time max{r j ,min{Ci | i ∈ P( j)}}. Clearly, an ear-
liest start schedule respects the OR-precedence constraints
of the instance, since every job is preceded by at least
one of its predecessors. Also, the completion time of a job
in any feasible schedule on m machines is bounded from
below by its completion time in the earliest start sched-
ule. That is, if C j denotes the completion time of job j in
the earliest start schedule, the optimum makespan satisfies
C∗
max ≥ max{C j | j ∈ N }. Note that an earliest start sched-

ule is not necessarily unique, but the start and completion
times of all jobs are fixed. Earliest start schedules can be con-
structed in polynomial time by iteratively scheduling every
job as early as possible (Erlebach et al. 2003).

Let k ∈ N and let C j be the completion time of j ∈ N in
the earliest start schedule. A set L ⊆ N is called a minimal
chain of k if L ∈ S is an inclusion-minimal feasible starting
set such that k ∈ L andmax j∈L C j = Ck . The set of minimal
chains of k is denoted by MC (k), and the length of the
minimal chain of k is mc(k) := Ck .
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Fig. 1 An instance on nine jobs with processing times p j1 = p j6 =
pk = 1, p j2 = p j3 = p j5 = p j7 = 2, p j4 = 3, p j8 = 4 and
release dates r j1 = 2, r j2 = 1, r j6 = 4, r j = 0 for all other jobs j
(top) and an earliest start schedule (bottom). The set of minimal chains
of k is MC (k) = {{ j2, j6, j7, k}, { j3, j5, j6, j7, k}} with mc(k) = 8.
The chain { j2, j6, j7, k} is dominated by j6, and { j3, j5, j6, j7, k} is
dominated by jobs j3 and j6. The paths in G that correspond to the
minimal chains in MC (k) are depicted dashed and thick, respectively.
Dashed thick arcs correspond to both minimal chains. Jobs in minimal
chains are highlighted in gray

We can construct a minimal chain of k by iteratively trac-
ing back predecessors that delay job k in the earliest start
schedule. That is, starting at k, we mark one of its predeces-
sors j with C j = Sk , and then proceed with j in the same
manner, i.e., we mark a predecessor i of j with Ci = S j , and
so on, until we reach a job i ′ that starts at its release date.
If i ′ has no predecessors, we are done. If P(i ′) �= ∅, we
mark a predecessor j ′ of i ′ with C j ′ ≤ Si ′ and continue
with j ′ as described above. The marked jobs now corre-
spond to a minimal chain of k. That is, a minimal chain
L = { j1, . . . , j�} ∈ MC (k) is a path in G withP( j1) = ∅,
jq ∈ P( jq+1) for all q ∈ [� − 1] and j� = k such that
S j1 = r j1 and S jq = max{r jq ,C jq−1} for all 2 ≤ q ≤ �.
We call jq the predecessor of jq+1 in L for q ∈ [� − 1] and
denote this by PL( jq+1) := { jq}. A job jh ∈ L is said to
dominate the minimal chain L if mc(k) = r jh + ∑�

q=h p jq .
Figure 1 illustrates an example.

In the following, we denote the completion times in an
optimal schedule by C∗

j (for j ∈ [n]) and its makespan
by C∗

max. Also, we sometimes denote an optimal sched-
ule by C∗ and the schedule with completion times C j (for
j ∈ [n]) by C . There are two trivial lower bounds on the
optimal makespan. First, any feasible schedule cannot do
better than splitting the total processing load equally among
all machines, so C∗

max ≥ 1
m

∑
j∈N p j . Second, every job

requires at least one of its predecessors to be completed

before it can start. If we start with an empty schedule, the
earliest completion time of job j is by definition equal to the
length of its minimal chain. Thus, C∗

max ≥ max j∈N mc( j).

3 Approximability and hardness for the
non-preemptive setting

Erlebach et al. (2003) presented a 2-approximation algorithm
for minimizing the makespan with AND/OR-precedence
constraints. The algorithm transforms the instance to an
AND-instance by fixing an OR-predecessor for each job,
and then applies List Scheduling. We show that also without
transforming the instance, List Scheduling is 2-approximate
for OR-precedence constraints, even with non-trivial release
dates. The proof idea is similar to Hall and Shmoys (1989).
Since we consider OR-precedence constraints, we need the
notion of minimal chains to bound the amount of idle time
on the machines. The following lemma proves Theorem 1.

Lemma 1 List Scheduling is a
(
2 − 1

m

)
-approximation for

P | r j , or-prec |Cmax.

Proof Consider the schedule returned by List Scheduling,
and let S j and C j be the start and completion time of
job j ∈ [n]. Let k ∈ [n] be a job that completes last, i.e.,
Ck = Cmax. Let I ⊆ [0, Sk] be the union of all time intervals
where some machine is idle. If I = ∅, then all machines are
busy before time Sk with jobs in N \ {k}. Hence,

Cmax = Sk + pk ≤ 1

m

∑

j �=k

p j + pk

= 1

m

∑

j∈N
p j +

(
1 − 1

m

)
pk ≤

(
2 − 1

m

)
C∗
max.

So suppose there is idle time, and let I be the union of all
intervals in which some machine is idle. Let S ⊆ N be a set
of jobs such that S is a path in the precedence graph from the
source s to k. At every point in time t ∈ I , a job in S is either
not yet released, or is currently running on some machine.
Otherwise, there is an unscheduled available job in S that
can be processed at time t . Let L ′ ∈ MC (k) be a minimal
chain of k and enumerate the jobs L ′ = { j1, . . . , j�} such that
j� = k, P( j1) = ∅, and jq ∈ P( jq+1) for all q ∈ [� − 1].
Recall that L ′ is a path in G, so, at every idle point in time,
some job of L ′ is either being processed or not yet released.
That is, the total idle time is |I | ≤ mc(k), but we can even
get an even stronger bound.

Let h ∈ [�] be maximal such that jh dominates the
minimal chain L ′, i.e., mc(k) = r jh + ∑�

q=h p jq . Let
L := { jh, . . . , j�}, and consider the points in time IL :=
[0; r jh ] ∪ ⋃

j∈L [S j ;C j ] when jh is not yet released or some
job in L is being processed. Note that |IL | ≤ r jh +∑

j∈L p j .
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W.l.o.g., we can assume that at least one machine is run-
ning during [0; r jh ]. Otherwise, if all machines were idle at
some point t ∈ [0; r jh ], then all jobs j with r j ≤ t are
already completed at time t . Thus, also in the optimum solu-
tion, no machine is running at time t , so we can disregard
these time slots where no machine is running at all. That
is, during IB := [0;Cmax] \ IL , all machines are busy with
jobs in N \ L and the total processing load of jobs that are
running in IB is less or equal than

∑
j /∈L p j − r jh . Hence,

|IB | ≤ 1
m (

∑
j /∈L p j − r jh ) and we obtain

Cmax = |IB | + |IL | ≤ 1

m

⎛

⎝
∑

j /∈L
p j − r jh

⎞

⎠ + r jh +
�∑

q=h

p jq

= 1

m

∑

j∈N
p j +

(
1 − 1

m

)
mc(k) ≤

(
2 − 1

m

)
C∗
max.

This proves the claim. ��
Corollary 2 List Scheduling solves 1 | r j , or-prec |Cmax to
optimality.

In the remainder of this section, we provide an inapprox-
imability result for P | or -prec |Cmax, assuming P �= NP,
and prove Theorem 2. Recall the definition of the NP-
complete Vertex Cover problem (Karp 1972): Let G =
(V ,E ) be an undirected graph. A vertex cover is a subset
W ⊆ V such that every edge in E is incidence to a vertex
in W . The Vertex Cover problem asks whether, for given
K ∈ N, there is a vertex cover of size at most K .

To prove Theorem 2, we first describe a reduction from
Vertex Cover to P | or -prec |Cmax. Then, we show that
the instance of Vertex Cover is a YES-instance if and
only if the corresponding instance of OR-scheduling has an
optimum makespan of 3 (Lemma 2). Hence, if we had an α-
approximation algorithm for P | or -prec |Cmax with α < 4

3 ,
we could use this algorithm to obtain a feasible schedule
with makespan strictly less than 4. Since all input data in the
instance are integers, the makespan of any feasible schedule
is also integer. So, a feasible solution with makespan strictly
less than 4 actually has makespan ≤ 3, i.e., the solution is
optimal. Thus, we could use the α-approximation algorithm
to find an optimum solution and decide whether the initial
Vertex Cover instance is a YES-instance, implying P =
NP.

We assume 1 ≤ K ≤ |V | − 1, as otherwise Vertex
Cover is trivial. If G is not connected, we can restrict the
problem to finding a minimum vertex cover in each of the
connected components. So, w.l.o.g., we can assume that
|V | ≤ |E |, which is true if G is connected and contains
a cycle. In fact, the only connected undirected graphs with
|V | > |E | are trees, for whichVertex Cover can be solved
in polynomial time using a simple greedy algorithm.

Wenowdescribe the construction of the instance of P | or -
prec |Cmax. The number of machines ism = |E |+|V |−K ,
and the set of jobs consists of four different sets, JK ∪ JV ∪
JE ∪X . We refer to Fig. 2 for an instance of Vertex Cover
and the corresponding OR-scheduling instance.

In JK , we introduce K jobs of unit processing time. The
sets JV and JE contain a job jv and j{v,u} for every vertex
v ∈ V and every edge {v, u} ∈ E , respectively. The process-
ing times of all jobs jv ∈ JV and j{v,u} ∈ JE are equal to 1.
We set the predecessor of an edge-job in JE to be the jobs cor-
responding to its incident vertices, i.e.,P( j{v,u}) = { jv, ju}
for all {v, u} ∈ E . Moreover, we assign OR-precedence con-
straints in JK × JV in the form of an outforest such that each
job in JV is successor of exactly one job in JK . This can
be done since |JK | = K ≤ |V | = |JV |. It is not important
which job in JK is the predecessor of which job in JV . We
only need these precedence constraints to ensure that no job
in JV can start at time 0 and all jobs in JV are available as
soon as all jobs in JK are completed. The remaining jobs in
X are dummy jobs to enforce a certain structure of any opti-
mal schedule. The set X contains m − K jobs of processing
time equal to 2, and these jobs do not have any predecessors
or successors. The next lemma together with the previous
discussion completes the proof of Theorem 2.

Lemma 2 Let G = (V ,E ) be an undirected graph and K ∈
[|V | − 1]. Vertex Cover is a YES-instance iff the corre-
sponding instance of P | or-prec |Cmax has makespan ≤ 3.

Proof SupposeVertex Cover is a YES-instance. LetW ⊆
V be a vertex cover of size |W | ≤ K , and let JW ⊆ JV be
the jobs corresponding to W . We can schedule the jobs in a
similar structure as in Fig. 2 (right). That is, schedule all jobs
in X and JK in the intervals [0; 2] and [0; 1], respectively.
So all jobs in JV are available at time 1. In [1; 2], there are
exactly m − |X | = K slots left in which we can schedule
the jobs in JW and some other jobs of JV \ JW if |W | < K .
Hence, at time 2, all jobs in JE are available and can be
scheduled in [2; 3]. Finally, we schedule the remaining jobs
in JV on the remaining m − |E | = |V | − K machines in the
interval [2; 3].

Now suppose that the instance of P | or -prec |Cmax has
makespan ≤ 3. Recall that m = |E | + |V | − K and note that
the total processing load of all jobs is

∑

j∈N
p j = |JK | + |JV | + |JE | + 2 |X |

= K + |V | + |E | + 2 (m − K ) = 3m. (1)

So any feasible schedule with makespan ≤ 3 has
makespan equal to 3, and there is no idle time within the
interval [0; 3]. Consider an optimal schedule of makespan
equal to 3. Note that, due to the precedence constraints, no
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Fig. 2 The precedence graph of
the instance of
P | or -prec |Cmax in the
reduction from Vertex Cover
for G =
({v1, v2, v3, v4}, {{v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}})
and K = 2 (left) and a feasible
schedule with makespan ≤ 3
(right). To highlight the
structure of the schedule, jobs in
JK , JE and X are depicted in
different shades of gray

job in JV can start before time 1, and no job in JE can start
before time 2. Thus, all jobs in JE have to be scheduled in
the interval [2; 3]. Also, the jobs of JV that are scheduled
in [1; 2] correspond to a vertex cover, since otherwise not
all jobs in JE would be available at time 2. It remains to
be shown that the set of jobs of JV scheduled in [1; 2] has
cardinality at most K .

The total processing load of all jobs is equal to 3m, see (1).
So there cannot be idle time within [0; 3], i.e., m jobs start
at time 0. The only jobs that can start at time 0 are those in
JK ∪X (all other jobs have predecessors). Since |JK |+|X | =
K + m − K = m, we know that the jobs in JK and X
are scheduled in [0; 1] and [0; 2], respectively. This leaves
exactlym−|X | = K slots in [1; 2] in which only jobs of JV
are scheduled. ��

Technically, it would suffice to let JK be a singleton that
precedes all jobs in JV . However, choosing |JK | = K , and,
thus, the total processing load to be equal to 3m makes the
argument slightly easier. Note that the processing times in the
OR-scheduling instance in the reduction are in {1, 2} only.
This is indeed necessary, i.e., we cannot get a reduction for
unit processing times. Also, the proof does not work if we
allow preemption. In this case, we could preempt a job in X
at time 1, and process more than K jobs in the interval [1; 2].
In fact, as we see in the next section, we can solve the variants
with unit processing times or preemption in polynomial time.

4 A polynomial-time algorithm for the
preemptive case

In this section, we consider P | r j , or -prec, pmtn |Cmax

and prove Theorem 3. Recall that all processing times
and release dates of jobs in [n] are positive and nonneg-
ative integers, respectively. So preemptive scheduling and
non-preemptive scheduling of unit processing time jobs are
equivalent, since there is no need to preempt, which proves
Corollary 1.

In contrast to the non-preemptive instance, an optimal
preemptive schedule will never have idle time if there are

available jobs. Without preemption, it could make sense to
wait for some job j to finish, i.e., have idle time, although
there is an available job k. The reason might be that we want
to process a successor i of j right away. However, if we allow
preemption, then we could just schedule a fraction of k, and
once j completes, we preempt k and process i .

We first derive some necessary notions, and then present
a polynomial-time algorithm that computes an optimal pre-
emptive schedule. Fix L j ∈ MC ( j) for all j ∈ N . The
collection of minimal chains {L j | j ∈ N } is called closed
if i ∈ L j implies Li ⊆ L j for all j ∈ N . Note that we
can always choose Li ⊆ L j for all i ∈ L j , since (infor-
mally) subpaths of shortest paths are shortest paths. Hence,
if we compute minimal chains L1, . . . , Ln using the proce-
dure described in Sect. 2, we may assume that {L1, . . . , Ln}
is closed. We say an arc (i, j) ∈ E is in line with the mini-
mal chain L j if i ∈ L j . Recall that all processing times are
strictly positive and L j ∈ MC ( j). So if (i, j) ∈ E is in line
with L j , then i ∈ P( j).

Our algorithm, which we refer to as AlgoPmtn, works
as follows and is summarized in Algorithm 1. First, com-
pute a closed collection of minimal chains {L j | j ∈ N }.
Then, transform the instance to an instance with AND-
precedence constraints by deleting all arcs that are not in
line with L1, . . . , Ln and denote the resulting graph by G ′.
Note that G ′ is an outtree. Now, apply a polynomial-time
algorithm for the resulting AND-instance to compute an
optimal preemptive schedule. (Recall that we can compute
optimal preemptive schedules for these special cases in poly-
nomial time, see, e.g., Hu 1961; Muntz and Coffman 1970;
Brucker et al. 1977; Gonzalez and Johnson 1980; Monma
1982; Lawler 1982. We use the algorithm of Lawler (1982),
but instead, depending on the setting, we could also use any
of the other algorithms.)

We prove that AlgoPmtn works correctly by analyzing
the structure of an optimal preemptive schedule. More pre-
cisely, we show that for any closed collection of minimal
chains, there is an optimal preemptive schedule that is feasi-
ble for the transformed graphG ′. Before we are able to prove
Theorem 3, we need some additional notation.
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Input: Instance of P | r j , pmtn, or -prec |Cmax
Output: A feasible schedule for P | r j , pmtn, or -prec |Cmax

1 Construct an earliest start schedule;
2 Compute a closed collection {L j | j ∈ N } with L j ∈ MC ( j) for
all j ∈ N ;

3 E ′ ← ∅;
4 for j ∈ N do
5 Enumerate the jobs in L j = { j1, . . . , j�} so that

jq ∈ PL j ( jq+1) for all q ∈ [� − 1];
6 E ′ ← E ′ ∪ {( j1, j2), ( j2, j3), . . . , ( j�−1, j�)};
7 end
8 Set G ′ = (N , E ′);
9 Apply Lawler’s algorithm (Lawler 1982) for
P | r j , pmtn, prec = outtree |Cmax on G ′;

10 return schedule returned by Lawler’s algorithm (Lawler 1982);

Algorithm 1: AlgoPmtn for P | r j , pmtn, or -
prec |Cmax.

If jobs are allowed to preempt, we need to “keep track” of
how much of the minimal chain of a job is already processed
at every point in time. To formalize this, we split every job
j ∈ [n] into p j jobs j1, . . . , jp j of unit processing time. The
predecessors of these jobs are P( j1) = {i pi | (i, j) ∈ E}
and P( ju) = { ju−1} for all 2 ≤ u ≤ p j . The release dates
are r ju = r j for all j ∈ N and u ∈ [p j ]. As before, we
add a dummy job s with ps = rs = 0 and P( j1) = {s}
if P( j) = ∅ for j ∈ [n]. We refer to this instance as the
preemptive instance and denote the set of jobs by N (p).

Note that N (p) = N if all jobs have unit processing time.
We informally extend definition ofmc(k) to fractions of jobs
via the original definition on the preemptive instance. Note
that (the lengths of) all minimal chains coincidewith the non-
preemptive instance. In particular, all lower bounds on the
makespan are still valid, and i ∈ L j implies i1, . . . , i pi ∈ L ju
for all u ∈ [p j ]. Since minimal chains in the non-preemptive
and preemptive instance coincide, {L j | j ∈ N (p)} is closed
iff {L j | j ∈ N } is closed. Two distinct jobs i, j ∈ N (p) are
called inverted w.r.t. the closed collection of minimal chains
{Lk | k ∈ N (p)} in the schedule C if i ∈ L j and Ci ≥ C j .
Let IC be the number of inversions in the schedule C .

Lemma 3 describes a procedure that swaps two jobs
i, k ∈ N (p) that are scheduled consecutively. We apply
this procedure to show that there always exists an optimal
solution without inversions (see Lemma 4). For the notation
of Lemma 3, we forget about release dates, i.e., consider
schedules for P | or -prec, pmtn |Cmax. We describe how
to incorporate release dates in the proof of Lemma 4, which
is the key lemma for the correctness of AlgoPmtn.

Lemma 3 Let {L j | j ∈ N (p)} be a closed collection of mini-
mal chains and C∗ be a feasible preemptive schedule. Let i ∈
N (p) with C∗

i ≥ 2, and let Si = { j ∈ N (p) |C∗
j = C∗

i − 1}
be the jobs scheduled directly before i . Assume that |Si | = m

Fig. 3 Relevant time slots [t −1; t +1] in the initial schedule (left) and
final schedule (right), respectively. The arcs indicate that the respective
job in S′ is the predecessor of the corresponding job in J ′. In this
example, J = ∅, so Ji = J ′

and C∗
j ≤ C∗

i − 2 for j ∈ PLi (i).
2 Then, there is k ∈ Si

such that swapping i and k, i.e., setting C ′
i = C∗

i − 1 = C∗
k ,

C ′
k = C∗

k + 1 = C∗
i and C ′

j = C∗
j for all j ∈ N (p) \ {i, k},

yields a feasible schedule with C ′
max = C∗

max and IC ′ ≤ IC∗ .

Proof To shorten notation, set t := C∗
i − 1. Note that the

makespan does not change if we swap two unit processing
time jobs. Let Ji = { j ∈ N (p) \ {i} | C∗

j = t + 1} be the
jobs running in parallel to i on the other machines. Note
that |Ji | ≤ m − 1, and recall that there are |Si | = m jobs
that are being processed directly before i . For j ∈ N (p),
let A ∗

j := { j ′ ∈ N (p) |C∗
j ′ < C∗

j } be the set of jobs that
complete before j starts.

Let J ′ = { j ∈ Ji |PL j ( j)∩ Si �= ∅}∪ { j ∈ Ji | |P( j)∩
A ∗

j | = 1 and P( j) ∩ A ∗
j ⊆ Si } be the set of jobs that are

scheduled parallel to i and that are processed directly after
their predecessor in theminimal chain or the only predecessor
preceding them in the schedule. Let S′ ⊆ Si be the set of these
predecessors of jobs in J ′. We do not want to swap i with
a job in S′ since this would cause an inversion or yield an
infeasible schedule. Note that

∣∣S′∣∣ ≤ ∣∣J ′∣∣, and set S = Si \S′
and J = Ji \ J ′. Then, |S| = m − ∣

∣S′∣∣ ≥ m − ∣
∣J ′∣∣ ≥

|Ji | + 1− ∣∣J ′∣∣ = |J | + 1 ≥ 1, so S �= ∅. Figure 3 illustrates
the sets and the corresponding schedules before and after the
swap. It is clear that any k ∈ S satisfies the claim. ��

Lemma 4 Let {L j | j ∈ N (p)} be a closed collection of min-
imal chains L j ∈ MC ( j) for all j ∈ N (p). There exists an
optimal preemptive schedule C∗ such that C∗

i < C∗
j for all

j ∈ N (p) and i ∈ L j \ { j}.

Proof Recall that all processing times of jobs in N (p) are
equal to 1. Consider an optimal schedule with completion

2 So moving i to [C∗
i − 2;C∗

i − 1] does not violate its precedence
constraints or cause an inversion.
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times C∗
j for all j ∈ N (p) such that the number of inver-

sions IC∗ is minimal among all optimal solutions. Suppose
by contradiction that IC∗ ≥ 1. We show how to construct a
schedule with C ′

max = C∗
max and IC ′ < IC∗ using Lemma 3.

Since the schedule is optimal, we can assume that the
dummy job s starts at time 0. Let j ∈ N (p) and i ∈
PL j ( j) such that (i, j) is an inverted pair, i.e., C∗

i ≥
C∗

j ≥ mc( j) ≥ mc(i) + 1. We reindex the jobs in L j =
{ j0, j1, . . . , j�, j�+1} ∈ MC ( j) such that s = j0, i = j�,
j = j�+1 and jq−1 ∈ PL j ( jq) for all q ∈ [� + 1]. Note
that mc( jq−1) + 1 ≤ mc( jq) ≤ C∗

jq
for all q ∈ [� + 1] and

mc( j0) = mc(s) = 0.
Using Lemma 3, wemove the jobs j1, . . . , j� successively

(in this order) to the front such that they complete at times
mc( j1), . . . ,mc( j�), respectively. For all k ∈ N (p) with non-
trivial release date, it holds

C∗
k ≥ mc(k) ≥ rk + pk = rk + 1. (2)

So we can swap those jobs k ∈ { j1, . . . , j�} that do not
complete at time mc(k) to the front without violating the
respective release dates. Thereby, we obtain a schedule that
satisfies

0 = C ′
j0 < mc( j1) = C ′

j1 < mc( j2) = C ′
j2 < · · · <

< · · · < mc( j�) = C ′
j� < C ′

j . (3)

Since we first move job j1 to the front, then j2, and so on,
we ensure that, when we apply Lemma 3 for i = jq (in the
notation of Lemma 3), then its predecessor jq−1 completes at
time mc( jq−1) < mc( jq). So the assumptions of Lemma 3
are satisfied. The procedure of Lemma 3 does not violate any
release dates, since k ∈ S (in the notation of Lemma 3) is
scheduled later and it is feasible to schedule jq earlier due
to (2) for all q ∈ [�].

Figure 4 illustrates the current completion times and the
time slots in which we move the jobs in the minimal chain
L j . Note that it is not necessary to move the job j = j�+1.
However, by applying Lemma 3, it might happen that k = j
(in the notation of Lemma 3) is chosen, i.e., j is “passively
moved”. Similarly, a job jh might be “passivelymoved”when
we swap jq with q < h to the front. This is not a problem,
since we deal with jh in a later iteration.

Multiple application of Lemma 3 ensures that the result-
ing schedule is feasible and has no more inversions than the
initial schedule. Further, Lemma 3 implies C ′

max = C∗
max,

and IC ′ < IC∗ because i and j are not inverted anymore,
see (3). This contradicts to the choice of the initial schedule
being an optimal solution with fewest inversions. So there
exists an optimal solution without inversions, which proves
the claim. ��

Fig. 4 Illustration of the procedure to move jobs in L j \ { j} =
{ j1, j2, j3, j4} to the front. Blank squares are jobs not in L j . Arrows
indicate into which time slot we want to move the respective jobs. The
jobs are moved “lowest index first” rather than all at once. Note that
mc( j3) > mc( j2) + 1 because r j3 = 3

The following lemma shows correctness of AlgoPmtn
and proves Theorem 3.

Lemma 5 AlgoPmtn solves P | r j , or-prec, pmtn |Cmax

to optimality in polynomial time. The running time of
AlgoPmtn is O(n2) for arbitrary processing times and
O(n) for unit processing times.

Proof First, observe that the graph G ′ constructed by
AlgoPmtn is a subgraph of the initial precedence graph
G. Since the schedule returned by the algorithm is feasible
for the AND-instance on G ′ (this follows from correctness
of Lawler’s algorithm Lawler 1982), it certainly is feasi-
ble for the OR-instance on G. Construction of the earliest
start schedule and Lawler’s algorithm run in polynomial
time (Erlebach et al. 2003; Lawler 1982). Also, we can com-
pute the closed collection of minimal chains and construct
G ′ in polynomial time. So, AlgoPmtn runs in polynomial
time and returns a feasible schedule.

As for optimality of the schedule returned byAlgoPmtn,
let {L j | j ∈ N } be the closed collection of minimal chains
that is computed in the second step, and let G ′ be the corre-
sponding subgraph of G. Since {L j | j ∈ N } is closed, G ′ is
an outforest. Thus, OR- and AND-precedence constraints on
G ′ are equivalent.

Consider the schedule returned by AlgoPmtn, i.e., by
Lawler’s algorithm (Lawler 1982) on G ′, and let Cmax be its
makespan. Since the schedule is feasible for the OR-instance
with precedence graph G ′, it is also feasible for the initial
precedence graph G. By Lemma 4, there exists an optimal
solutionwithmakespanC∗

max for the instance onG that is also
feasible for the instance on G ′. Since the schedule returned
by AlgoPmtn is optimal for the instance on G ′, it holds
Cmax ≤ C∗

max. This proves the claim.
As for the running time, note that we can construct an

earliest start schedule in time O(n), sincewe have to consider
each job exactly once. The same is true for constructing the
closed collection ofminimal chains and the graphG ′. Finally,
we apply Lawler’s algorithm, which has a running time of
O(n2) (Lawler 1982). Therefore, we obtain a total running
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time of O(n2) for arbitrary processing times. In case of unit
processing times, can apply the algorithm of Monma (1982),
which runs in time O(n), instead of the algorithm of Lawler
(1982). Hence, the running time of AlgoPmtn reduces to
O(n) if p j = 1 for all j ∈ [n]. ��

5 Concluding remarks

In this paper, we discuss the problem of minimizing the
makespanonparallel identicalmachineswithOR-precedence
constraints.We introduce the concept of minimal chains, and
use it to prove that List Scheduling (Graham 1966) achieves
an approximation guarantee of 2. Further, we prove that it
is NP-hard to obtain an approximation factor strictly better
than 4/3 via a reduction from Vertex Cover. Using mini-
mal chains, we show that there exists an optimal preemptive
schedule of a certain structure and exploit this structure to
obtain a polynomial-time algorithm for the preemptive vari-
ant. The running time of our algorithm is O(n2) for arbitrary
processing times and O(n) for unit processing times.

The results presented here match the complexity and
best-known approximation guarantees of makespan mini-
mization if the precedence graph is an outtree, which is a
special case where AND- and OR-precedence constraints
coincide. Clearly, any improvement on OR-precedence con-
straints directly transfers to AND-precedence constraints on
outtrees. On the other hand, due to the close connection with
minimal chains, any progress on the approximation factor
of AND-precedence constraints on outtrees might also be
applicable to OR-precedence constraints.

Note that NP-hardness of obtaining a 4/3− ε approxima-
tion coincides with the result of Lenstra and Rinnooy Kan
(1978) for the corresponding problemwithAND-precedence
constraints. For the latter problem, there is a conditional
lower bound of 2 on the approximation factor under a vari-
ant of the Unique Games Conjecture (Khot 2002; Bansal and
Khot 2009; Svensson 2010). It would be interesting to obtain
a similar (conditional) lower bound for OR-precedence con-
straints.
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