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Abstract
Motivated bymail delivery scheduling problems arising in RoyalMail, we study a generalization of the fundamental makespan
scheduling P||Cmax problem which we call the bounded job start scheduling problem. Given a set of jobs, each specified
by an integer processing time p j , that have to be executed non-preemptively by a set of m parallel identical machines, the
objective is to compute a minimum makespan schedule subject to an upper bound g ≤ m on the number of jobs that may
simultaneously begin per unit of time. With perfect input knowledge, we show that Longest Processing Time First (LPT)
algorithm is tightly 2-approximate. After proving that the problem is strongly NP-hard even when g = 1, we elaborate on
improving the 2-approximation ratio for this case. We distinguish the classes of long and short instances satisfying p j ≥ m
and p j < m, respectively, for each job j . We show that LPT is 5/3-approximate for the former and optimal for the latter. Then,
we explore the idea of scheduling long jobs in parallel with short jobs to obtain tightly satisfied packing and bounded job
start constraints. For a broad family of instances excluding degenerate instances with many very long jobs, we derive a 1.985-
approximation ratio. For general instances, we require machine augmentation to obtain better than 2-approximate schedules.
In the presence of uncertain job processing times, we exploit machine augmentation and lexicographic optimization, which is
useful for P||Cmax under uncertainty, to propose a two-stage robust optimization approach for bounded job start scheduling
under uncertainty aiming in a low number of used machines. Given a collection of schedules of makespan≤ D, this approach
allows distinguishing which are the more robust. We substantiate both the heuristics and our recovery approach numerically
using Royal Mail data. We show that for the Royal Mail application, machine augmentation, i.e., short-term van rental, is
especially relevant.
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1 Introduction

Royal Mail provides mail collection and delivery services
for all UK addresses. With a small van fleet (as of January
2019) of 37,000 vehicles and 90,000 drivers delivering to 27
million locations in the UK, efficient resource allocation is
essential to guarantee the business viability. The backbone
of the Royal Mail distribution is a three-layer hierarchical
network with 6 regional distribution centers serving 38 mail
centers. Each mail center receives, processes, and distributes
mail for a large geographically defined area via 1250 deliv-
ery offices, each serving disjoint sets of neighboring post
codes. Mail is collected in mail centers, sorted by region,
and forwarded to an appropriate onward mail center, mak-
ing use of the regional distribution centers for cross-docking
purposes. From the onward mail center, it is transferred to
the final delivery office destination. This process has to be
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completed within 12–16h for first class post and 24–36h for
second class post depending on when the initial collection
takes place.

In a delivery office, post is sorted, divided into routes, and
delivered to addresses using a combination of small fleet vans
and walked trolleys. Allocating delivery itineraries to vans is
critical. Each delivery office has a van exit gate which gives
an upper bound the number of vehicles that can depart per
unit of time. Thus, we deal with scheduling a set J of jobs
(delivery itineraries), each associated with an integer pro-
cessing time p j , on m parallel identical machines (vehicles),
s.t. the makespan, i.e., the last job completion time, is mini-
mized. Parameter g imposes an upper bound on the number
of jobs that may simultaneously begin per unit of time. Each
job has to be executed non-preemptively, i.e., by a single
machine in a continuous time interval without interruptions.
We refer to this problem as the bounded job start scheduling
problem (BJSP).

Our contribution is twofold: First, we derive greedy
constant-factor approximation algorithms, i.e., simple heuris-
tics adoptable by Royal Mail practitioners, for effectively
solving BJSP instances with perfect knowledge. Second, we
propose a two-stage robust optimization approach, based
on Royal Mail practices, which evaluates the robustness of
BJSP schedules under uncertainty. Using real data, we com-
putationally validate the performance of both the heuristics
and two-stage robust optimization approach. Sect. 1.1 dis-
cusses the relationship between BJSP and the fundamental
makespan scheduling problem, a.k.a. P||Cmax. Section 1.2
presents relevant literature. Section 1.3 summarizes the
paper’s organization and our contributions.

1.1 Relation to P||Cmax

With perfect knowledge, BJSP is strongly related to P||Cmax

which is defined similarly, but drops the BJSP constraint
(Graham 1969). Broadly speaking, BJSP is harder as a
generalization of P||Cmax and the two problems become
equivalent when g = m. P||Cmax is strongly NP-hard
as a straightforward generation of the 3-Partition problem
(Garey and Johnson 1979). The well-known List Scheduling
(LS) and Longest Processing Time First (LPT) algorithms
achieve tight approximation ratios for P||Cmax equal to 2
and 4/3, respectively. Further, P||Cmax admits a polynomial-
time approximation scheme (PTAS).

Technically, good solutions for both BJSP and P||Cmax

must attain low imbalance maxi {T − Ti }, where T and Ti

are the makespan and completion time of machine i , respec-
tively. However, BJSP exhibits the additional difficulty of
managing and bounding idle machine time during the time
interval [0,mini {Ti }]. To this end, we develop an algorithm
that schedules long jobs in parallelwith short jobs and bounds
idle time with a concave relaxation. Figure 1 shows a job set

where theminimummakespan scheduleswith (TB ) andwith-
out (TM ) the bounded job start constraint differ by a factor
of 2.

Approximate P||Cmax solutions can be converted into
feasible solutions for BJSP. On the negative side, P||Cmax

optimal solutions are a factor Ω(m) from the BJSP opti-
mum, in the worst case. To see this, take an arbitrary P||Cmax

instance and construct a BJSP one with g = 1, by adding
a large number of unit jobs. The BJSP optimal schedule
requires time intervals during which m − 1 machines are
idle at each time, while the P||Cmax optimal schedule is
perfectly balanced and all machines are busy until the last
job completes. On the positive side, we may easily convert
any ρ-approximation algorithm for P||Cmax into a 2ρ-
approximation algorithm forBJSPusingnaïvebounds.Given
that P||Cmax admits a PTAS,we obtain an O(n1/ε · poly(n))-
time (2 + ε)-approximation algorithm for BJSP. Our main
goal is to obtain tighter approximation ratios.

1.2 Related work

Next, we present related work to design BJSP approximation
algorithms and robust optimization approaches, relevant to
Royal Mail delivery offices.
Approximation algorithmsBJSP relaxes the scheduling prob-
lem with forbidden sets, i.e., non-overlapping constraints,
where subsets of jobs cannot run in parallel (Schäffter 1997).
For the latter problem, better than 2-approximation algo-
rithms are ruled out, unlessP = NP (Schäffter 1997). Even
when there is a strict order between jobs in the same for-
bidden set, the scheduling with forbidden sets problem is
equivalent to the precedence-constrained scheduling prob-
lem P|prec|Cmax and cannot be approximated by a factor
lower than (2 − ε), assuming a variant of the unique games
conjecture (Svensson 2011). Also, BJSP relaxes the schedul-
ing with forbidden job start times problem, where no jobmay
begin at certain time points, which does not admit constant-
factor approximation algorithms (Billaut and Sourd 2009;
Gabay et al. 2016; Mnich and van Bevern 2018; Rapine and
Brauner 2013). Despite the commonalities with the afore-
mentioned literature, to the authors’ knowledge, there is a
lack of approximation algorithms for scheduling problems
with bounded job starts.
Robust Optimization Royal Mail delivery times may be
imprecise. Once a delivery has begun, it might finish ear-
lier or later than its anticipated completion time. Because of
uncertain job completion times, Royal Mail vans attempt-
ing pre-computed schedules may not be able to complete all
deliveries duringworkinghours. To this end, robust optimiza-
tion provides a useful framework for structuring uncertainty,
e.g. box uncertainty sets, and incorporating it in the decision-
making process (Ben-Tal et al. 2009; Bertsimas et al. 2011;
Goerigk and Schöbel 2016; Kouvelis and Yu 2013). Typi-
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(a) Optimal BJSP schedule of makespan TB = km.
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(b) Optimal P ||Cmax schedule, without the BJSP constraint, of makespan TM = k(m+1)/2.

Fig. 1 BJSP instance with m machines, k jobs of processing time i , for each i = 1, . . . , m, and g = 1. For an odd number k = o(m), TB � 2TM

cally, Royal Mail delivery schedules are computed in two
stages: (i) The first stage computes a feasible, efficient sched-
ule for an initial nominal problem instance before the day
begins, and (ii) the second stage recovers the initial schedule
by accounting for uncertainty during the day. This setting
is naturally captured by two-stage robust optimization with
recovery (Ben-Tal et al. 2004; Bertsimas and Caramanis
2010; Hanasusanto et al. 2015; Liebchen et al. 2009).

A common way of measuring solution robustness of a
givendiscrete optimizationproblem instance is by comparing
the final solution objective value after uncertainty realization
with the solution objective value that we could have achieved
if we had a crystal ball that accurately predicts the future.
From this perspective, we recently proposed a two-stage
robust scheduling approach for P||Cmax, based on lexico-
graphic optimization (Letsios et al. 2021). If processing times
are perturbed by a (1+ε) factor, the lexicographic optimiza-
tion approach yields schedules a factor (2 + O(ε)) far from
achievable optima with perfect knowledge. But this common
way of measuring solution robustness is less applicable for
our application because the makespan, i.e., the number of
working hours in the day, is fixed. So, in the Royal Mail con-
text, certain decisions can be irrevocable during the recovery
process. For Royal Mail delivery offices, job start times can
be irrevocable during the day, to reduce delivery delays and
overtimes. Further, resource augmentation (or constraint vio-
lation), e.g. backup machines, might be essential to ensure
the resulting solutions’ feasibility (Ben-Tal and Nemirovski
2000; Kalyanasundaram and Pruhs 2000). For this applica-
tion, we measure a solution’s robustness with the level of
resource augmentation, e.g. number of short-term rental vans,
required after uncertainty realization. Robust bounded job

start scheduling with resource augmentation is an intriguing
open question.

1.3 Paper organization and contributions

Section 2 formally defines BJSP, proves the problem’sNP-
hardness, and derives an O(log n) integrality gap for a natural
integer programming formulation. Section 3 investigates
Longest Processing Time First (LPT) algorithm and derives
a tight 2-approximation ratio. We thereafter explore improv-
ing this ratio for the special case g = 1. Section 2 shows
that BJSP is stronglyNP-hard even when g = 1. Several of
our arguments can be extended to arbitrary g, but focusing
on g = 1 avoids many floors, ceilings, and simplifies our
presentation. Furthermore, any Royal Mail instance can be
converted to g = 1 using small discretization.

Section 4 distinguishes long versus short instances. An
instance 〈m,J 〉 is long if p j ≥ m for each j ∈ J and
short if p j < m for all j ∈ J . This distinction comes from
the observation that idle time occurs mainly because of (i)
simultaneous job completions for long jobs and (ii) limited
allowable parallel job executions for short jobs. Section 4
proves that LPT is 5/3-approximate for long instances and
optimal for short instances. A key ingredient for establishing
the ratio in the case of long instances is a concave relaxation
for bounding idle machine time, before the last job start.
Section 4 also obtains an improved approximation ratio for
long instances, when the maximum job processing time is
relatively small, using the Shortest Processing Time First
(SPT) algorithm. For long instances, our analysis shows that
LPT and SPT achieve low idlemachine time after and before,
respectively, the last job begins. We leave determining the
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best trade-off between the two in order to obtain a better
approximation ratio as an open question.

Greedy scheduling, e.g. LPT and SPT, which sequences
long jobs first and short jobs next, or vice versa, cannot
achieve an approximation ratio better than 2. Section 5 pro-
poses Long–Short Mixing (LSM), which devotes a certain
number of machines to long jobs and uses all remaining
machines for short jobs. By executing the two job types in
parallel, LSM reduces the idle time before the last job begins
and achieves a 1.985-approximation ratio for a broad family
of instances. Carefully bounding idle time before the last
job start by accounting for the parallel execution of long jobs
with short job starts is the main technical difficulty behind
our analysis. For degenerate instances with many very long
jobs, we require constant-factor machine augmentation, i.e.,
f m machines where f > 1 is constant, to achieve a strictly
lower than 2-approximation ratio.

Because Royal Mail delivery scheduling is subject to
uncertainty, Sect. 6 exploits machine augmentation and
lexicographic optimization for P||Cmax under uncertainty
(Letsios et al. 2021; Skutella andVerschae 2016) to construct
a two-stage robust optimization approach for the BJSP under
uncertainty. We measure robustness based on the resource
augmentation required for the final solution feasibility. Our
approach distinguishes which among different solutions is
more robust. Section 7 substantiates our algorithms and
robust optimization approach empirically using Royal Mail
data. Section 8 concludes with a collection of intriguing
future directions.

2 Problem definition and preliminary results

An instance I = 〈m,J 〉 of theBounded Job Start Scheduling
Problem (BJSP) is specified by a set M = {1, . . . , m} of
parallel identical machines and a set J = {1, . . . , n} of jobs.
A machine may execute at most one job per unit of time.
Job j ∈ J is associated with an integer processing time
p j . Each job should be executed non-preemptively, i.e., in
a continuous time interval without interruptions, by a single
machine. BJSP parameter g imposes an upper bound on the
number of jobs that may begin per unit of time. The goal
is to assign each job j ∈ J to a machine and decide its
starting time so that this BJSP constraint is not violated and
the makespan, i.e., the time at which the last job completes,
is minimized. Consider a feasible schedule S with makespan
T . We denote the start time of job j by s j . Each job j must be
entirely executed during the interval [s j , C j ), where C j =
s j + p j is the completion time of j . So, T = max j∈J {C j }.
Job j isalive at time t if t ∈ [s j , C j ). LetAt = { j : [s j , C j )∩
[t − 1, t) 	= ∅, j ∈ J } and Bt = { j : s j ∈ [t − 1, t), j ∈ J }
be the set of alive and beginning jobs during time unit t ,

respectively. Schedule S is feasible only if |At | ≤ m and
|Bt | ≤ g, for all t .

BJSP is strongly NP-hard because it becomes equiva-
lent with P||Cmax in the special case where g = min{m, n}.
Theorem 1 shows that BJSP is stronglyNP-hard also when
g = 1.

Theorem 1 BJSP is strongly NP-hard in the special case
g = 1.

Proof We present an NP-hardness proof from 3-Partition.
Given a set A = {a1, . . . , a3m} and a parameter B ∈ Z

+
s.t. a j ∈ Z

+, B/4 ≤ a j ≤ B/2, for j ∈ {1, . . . , 3m},
and

∑3m
j=1 a j = m B, the 3-Partition problem asks whether

there exists a partition of A into m subsets S1, . . . ,Sm s.t.
∑

j∈Si
a j = B for each i ∈ {1, . . . , m}. Given an instance of

3-Partition, construct a BJSP instance I = 〈m,J 〉 with n =
3m jobs of processing time p j = n2a j , for j ∈ {1, . . . , 3m},
and BJSP parameter g = 1. W.l.o.g., n2 > 3n. We show that
A admits a 3-Partition iff there exists a feasible schedule S
of makespan T < n2B + n2 for I .

⇒: Suppose that A admits a 3-Partition S1, . . . ,Sm .
Because B/4 < a j < B/2, for j ∈ {1, . . . , 3m}, Si contains
exactly three elements, i.e., |Si | = 3, for each i ∈ {1, . . . , m}.
We fix some arbitrary order 1, . . . , 3m of all jobs and con-
struct a schedule S for I where all jobs in Si are executed by
machine i ∈ M. The job starting times are decided greed-
ily. In particular, let Ti be the last job completion time in
machine i just before assigning job j . If no job has been
assigned to i , then Ti = 0. We set s j equal to the earliest
time slot after Ti at which no job begins in any machine, i.e.,
min{t : |Bt | < 1, t > Ti }. Now, let Ti be the last completion
time in machine i , once the greedy procedure has been com-
pleted. Consider any job j ∈ Si and let j ′ ∈ Si be the last job
executed before j inmachine i . If no job is executed before j ,
then s j ≤ n. Otherwise, by construction, we have |Bt | = 1,
for every t ∈ [C j ′ + 1, s j − 1]. Hence, s j − C j ′ ≤ n − 1.
Since |Si | = 3 and |{t : |Bt | = 1, t ∈ D}| ≤ n, we conclude

Ti ≤ ∑
j∈Si

p j +3n = n2
(∑

j∈Si
a j

)
+3n = n2B +3n <

n2B + n2. So schedule S attains makespan T < n2B + n2.
⇐: Suppose that there exists a feasible schedule S of

makespan T < n2B + n2 for I . We argue that each machine
executes exactly three jobs. Suppose for contradiction that
machine i ∈ M executes a subset Si of jobs with |Si | ≥ 4.
Denote by Ti = max{C j : j ∈ Si } the last job completion

time in machine i . Then, Ti ≥ ∑
j∈Si

p j = n2
(∑

j∈Si
a j

)
.

Because a j ∈ Z
+ and a j > B/4, it must be the case that

∑
j∈Si

a j ≥ B + 1. Hence, Ti ≥ n2B + n2, which is a con-
tradiction on the fact that Ti ≤ T . Thus, schedule S defines a
partitioning of the jobs into m subsets S1, . . . ,Sm s.t. |Si | =
3, for each i ∈ M. We claim that

∑
j∈Si

ai = B. Otherwise,
there would be a machine i ∈ M with

∑
j∈Si

ai ≥ B + 1
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and we would obtain a contradiction using similar reasoning
to before. We conclude that A admits a 3-Partition. ��

Next, we investigate the integrality gap of a natural integer
programming formulation. To obtain this integer program,
we partition the time horizon into a set D = {1, . . . , τ }
of unit-length discrete time slots. Time slot t ∈ D corre-
sponds to time interval [t − 1, t). We may naïvely choose
τ = ∑

j∈J p j , but smaller τ values are possible using tighter
makespan upper bounds. For simplicity, this manuscript
assumes discrete time intervals [s, t] = {s, s + 1, . . . , t −
1, t}, i.e., of integer length. Interval [1, τ ] is the time horizon.
In integer programming Formulation (1), binary variables
decide a starting time for each job. Binary variable x j,s is
1 if job j ∈ J begins at time slot s ∈ D, and 0 other-
wise. Continuous variable T corresponds to the makespan.
If job j starts at s, then it is performed exactly during the
time slots s, s + 1, . . . , s + p j − 1. Hence, job j is alive at
time slot t iff it has begun at one among the time slots in
the set A j,t = {t − p j + 1, t − p j + 2, . . . , t}. To complete
before the time horizon ends, job j must begin at a time slot
in the set Fj = {1, 2, . . . , τ − p j + 1}. Finally, denote by
Js = { j : s ∈ F j , j ∈ J } the eligible subset of jobs at s,
i.e., the ones that may be feasibly begin at time slot s with-
out exceeding the time horizon. Formulation (1) models the
BJSP problem.

min
x j,s , T

T (1a)

T ≥ x j,s(s + p j ) j ∈ J , s ∈ D (1b)
∑

j∈J

∑

s∈A j,t

x j,s ≤ m t ∈ D (1c)

∑

s∈Fj

x j,s = 1 j ∈ J (1d)

∑

j∈Js

x j,s ≤ g s ∈ D (1e)

x j,s ∈ {0, 1} j ∈ J , s ∈ Fj (1f)

Expression (1a) minimizes makespan. Constraints (1b)
enforce that the makespan is equal to the last job comple-
tion time. Constraints (1c) ensure that at most m machines
are used at each time slot t . Constraints (1d) require that
each job j is scheduled. Constraints (1e) express the BJSP
constraint.

Theorem 2 shows that the fractional relaxation obtained
by replacing Eq. (1f) with the constraints 0 ≤ x j,s ≤ 1, for
j ∈ J and s ∈ Fj , has a non-constant integrality gap. Thus,
stronger linear programming (LP) relaxations are required
for obtaining constant-factor approximation algorithms with
LP rounding.

Theorem 2 The fractional relaxation of integer program-
ming Formulation (1) has integrality gap Ω(log n).

Proof Consider an instance with m machines, n = m jobs
of processing time p j = 1 for each j ∈ J , and BJSP
parameter g = m. For this instance, the LP solution sets
x j,s = 1/(s · ∑τ

t=1
1
t ) for each j, s. The LP fractional

solution is feasible as at each time, no more than m job
pieces are feasibly executed (and begin), while the cost is
max{sx j,s} = 1/

∑
t
1
t . On the contrary, the optimal integral

solution has makespan 1. ��

3 LPT algorithm

Longest Processing Time First algorithm (LPT) schedules
the jobs on a fixed number m of machines w.r.t. the order
p1 ≥ . . . ≥ pn . Recall that |At | and |Bt | is the number of
alive and beginning jobs, respectively, at time slot t ∈ D.
We say that time slot t ∈ D is available if |At | < m and
|Bt | < g. LPT schedules the jobs greedily w.r.t. their sorted
order. Each job j is scheduled in the earliest available time
slot, i.e., at s j = min{t : |At | < m, |Bt | < g, t ∈ D}.
Theorem 3 proves a tight approximation ratio of 2 for LPT.

Theorem 3 LPT is 2-approximate for minimizing makespan
and this ratio is tight.

Proof Denote by S and S∗ the LPT and a minimum
makespan schedule, respectively. Let � be the job completing
last in S, i.e., T = s� + p�. For each time slot t ≤ s�, either
|At | = m, or |At | < m. Since � is scheduled at the earliest
available time slot, for each t ≤ s� s.t. |At | < m, we have
|Bt | = g. Let λ be the total length of time s.t. |At | < m in S.
Because of the BJSP constraint, exactly g jobs begin per unit
of time, which implies that λ ≤ � �

g �. Therefore, schedule S
has makespan:

T = s�+p� ≤ 1

m

∑

j 	=�

p j+λ+p� ≤ 1

m

n∑

j=1

p j+
(⌈

�

g

⌉

+ p�

)

.

Denote by s∗
j the starting time of job j in S∗ and let

π1, . . . , πn the job indices ordered in non-decreasing sched-
ule S∗ starting times, i.e., s∗

π1
≤ . . . ≤ s∗

πn
. Because of

the BJSP constraint, s∗
π j

≥ � j/g�. In addition, there exists
j ′ ∈ [ j, n] s.t. pπ j ′ > p j . Thus, maxn

j ′= j {sπ∗
j ′ + pπ j ′ } ≥

� j/g� + p j , for j = 1, . . . , n. Hence, S∗ has makespan:

T ∗ ≥ max

⎧
⎨

⎩

1

m

n∑

j=1

p j ,
n

max
j=1

{⌈
j

g

⌉

+ p j

}
⎫
⎬

⎭
.

We conclude that T ≤ 2T ∗.
Figure 2 illustrates a tightness example of our analysis

for LPT. Consider an instance I = 〈m,J 〉 with m(m − 1)
long jobs of processing time p, where p = ω(m) and m =
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(a) LPT schedule of makespan T � 2mp.
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(b) Optimal schedule of makespan T ∗ = mp.

Fig. 2 BJSP instance with g = 1 for the tightness of the LPT 2-approximation ratio, with m machines, Θ(m2) jobs of processing time p and
Θ(mp) unit-length jobs such that p = ω(m) and m = ω(1)

ω(1), m(p − m) unit jobs, and BJSP parameter g = 1. LPT
schedules the long jobs into m − 1 groups, each one with
exactly m . All jobs of a group are executed in parallel for
their greatest part. In particular, the i-th job of the k-th groups
is executed bymachine i starting at time slot (k−1)p+i . All
unit jobs are executed sequentially by machine 1 starting at
(m − 1)p + 1. Observe that S is feasible and has makespan
T = (m − 1)p + m(p − m) = (2m − 1)p − m2. The
optimal solution S∗ schedules all jobs in m groups. The k-
th group contains (m − 1) long jobs and (p − m + 1) unit
jobs. Specifically, the i-th long job is executed by machine i
beginning at (k − 1)p + i , while all short jobs are executed
consecutively by machine m starting at (k − 1)p + m and
completing at kp. Schedule S∗ is feasible and has makespan
T ∗ = mp. Because m

p → 0 and 1
m → 0, i.e., both approach

zero, T → 2T ∗. ��

4 Long and short instances

This section assumes that g = 1, but several of the arguments
can be extended to arbitrary g. From an application view-
point, any Royal Mail instance can be converted to g = 1
using small discretization.

4.1 Longest processing time first

We consider two natural classes of BJSP instances for which
LPT achieves an approximation ratio better than 2. Instance
〈m,J 〉 is (i) long if p j ≥ m for each j ∈ J and (ii) short
if p j < m for every j ∈ J . This section proves that LPT
is 5/3-approximate for long instances and optimal for short
instances. Intuitively, LPT schedules for long instances con-

tain a significant amount of time without job starts, where
all machines execute long jobs in parallel. LPT schedules for
short instances have no time where all machines simultane-
ously execute jobs in parallel, because of the BJSP constraint
and the fact that all jobs are short. In this case, the number
of job starts is significant compared to the overall makespan.
Using these observations, we are able to obtain better than
2-approximate schedules for these two classes of instances.

Consider a feasible scheduleS and let r = max j∈J {s j } be
the last job start time. We say that S is a compact schedule
if it holds that either (i) |At | = m, or (ii) |Bt | = 1, for
each t ∈ [1, r ]. Lemma 1 shows the existence of an optimal
compact schedule and derives a lower bound on the optimal
makespan.

Lemma 1 For each instance I = 〈m,J 〉, there exists a fea-
sible compact schedule S∗ which is optimal. Let J L = { j :
p j ≥ m, j ∈ J }. If |J L | ≥ m, then S∗ has makespan

T ∗ ≥ 1
m

(
m(m−1)

2 + ∑n
j=1 p j

)
.

Proof For the first part, among the set of all optimal sched-
ules, pick the schedule S∗ lexicographically minimizing1 the
vector of job start times sorted in non-decreasing order. We
claim that S∗ is compact. Assume that this is not the case.
Then, there exists a time t ∈ [1, r) such that |At | < m and
|Bt | < 1. Consider the earliest such time t . Moreover, let
t ′ be the earliest time t ′ > t satisfying either |At | = m, or
|Bt | = 1.Clearly, there exists a job j ∈ J such that s j = t ′. If
we decrease the job j start time by one unit of time, we obtain

1 Let s∗
j1

< · · · < s∗
jn
be order of job start times in S∗. Moreover,

denote by s j1 < · · · < s jn the order of job starts in another arbitrarily
chosen optimal schedule S. If k ∈ [1, n] is the smallest index such that
s∗

jk
> s jk , then there exists k′ ∈ [1, k) such that s∗

j ′k
< s j ′k .
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(a) Non-compact schedule.
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(b) Compact schedule.

Fig. 3 Converting a non-compact schedule to a compact one, by shifting jobs back in increasing order of their starting times

a feasible compact schedule S ′ with makespan T ′ ≤ T ∗,
where T ∗ is the schedule S∗ makespan, and S ′ has a lexico-
graphically smaller vector of job start times than S∗ which
is a contradiction. Figure 3 illustrates how to convert a non-
compact schedule to a compact one.

The second part requires lower bounding the total idle
machine time Λ = ∑r

t=1(m −|At |) for each feasible sched-
ule S. By the BJSP constraint and the fact that |J L | ≥
m, |Bt | = 1 and, hence, m − |At | ≥ m − t , for each
t ∈ {1, . . . , m}. This is because all machines are idle before
the first time slot. So, the idle machine during time interval
[1, m] is lower bounded by Λ ≥ ∑m

t=1(m − t) = m(m−1)
2 .

A simple packing argument (including both idle and non-
idle machine time) implies that schedule S has makespan

T ≥ 1
m

(
m(m−1)

2 + ∑n
j=1 p j

)
. ��

Next, we analyze LPT in the case of long instances. Sim-
ilar to the Lemma 1 proof, we may show that LPT produces
a compact schedule S. We partition the interval [1, r ] into
a sequence P1, . . . , Pk , where k ≤ r , of maximal periods
satisfying the following invariant: for each q ∈ {1, . . . , k},
either (i) |At | < m for each t ∈ Pq or (ii) |At | = m for each
t ∈ Pq . That is, there is no pair of time slots s, t ∈ Pq such
that |As | < m and |At | = m. We call Pq a slack period if Pq

satisfies (i), otherwise, Pq is a full period. For a given period
Pq of length λq , denote by Λq = ∑

t∈Pq
(m − |At |) the idle

machine time. Note that Λq = 0, for each full period Pq .
Lemma 2 upper bounds the total idle machine time of slack
periods in the LPT schedule S, except the very last period
Pk . When Pk is slack, the length λk of Pk is upper bounded
by Lemma 3.

Lemma 2 Let k′ = k − 1. Consider a long instance I =
〈m,J 〉, with |J | ≥ m, and the LPT schedule S. It holds that
(i) λq ≤ m − 1 and (ii) Λq ≤ λq (λq−1)

2 for each slack period

Pq , where q ∈ {1, . . . , k′}. Furthermore, (iii)
∑k′

q=1 Λq ≤
nm
2 .

Proof For (i), let Pq = [s, t] be a slack time period in S and
assume for contradiction that λq ≥ m, i.e., t ≥ s + m − 1.
Given that p j ≥ m for each j ∈ J , we have { j : s j ∈
[s, s + m − 1], j ∈ J } ⊆ As+m−1. That is, all jobs starting

during [s, s + m − 1] are alive at time s + m − 1. Since Pq is
a slack period, |Au | < m holds for each u ∈ [s, s + m − 1].
Because S is compact, |Bu | = 1, i.e., exactly g = 1 jobs
begin, at each u ∈ [s, s+m−1]. This implies |As+m−1| ≥ m,
contradicting the fact that Pq is a maximal slack period.

For (ii), consider the partitioningAu = A−
u +A+

u for each
time slot u ∈ Pq = [s, t], where A−

u and A+
u is the set of

alive jobs at time u completing inside Pq and after Pq , i.e.,
C j ∈ [s, t] andC j > t , respectively. Sinceλq ≤ m−1, every
job j beginning during Pq , i.e., s j ∈ [s, t], must complete
after Pq , i.e., C j > t . We modify schedule S by removing
every job j completing inside Pq , i.e., C j ∈ Pq . Clearly, the
modified schedule S ′ has increased idle time Λ′

q during Pq ,
i.e., Λq ≤ Λ′

q . Further, no job j with s j ∈ Pq is removed.
Because |Bu | = 1 for each u ∈ Pq , we have |Au | = |Au+1|−
1 for u = s, . . . , t . Furthermore, |At+1| = m. So:

Λ′
q =

t∑

u=s

(m − |Au |) =
t∑

u=s

[m − (t − s + 1)] =
λq−1∑

u=1

u

= λq(λq − 1)

2
.

For (iii), consider slack period Pq , for q ∈ {1, . . . , k′}. By
(i), λq ≤ m − 1. Since at most g = 1 jobs begin at each

t ∈ Pq ,
∑k′

q=1 λq ≤ n − 1. By (ii), Concave Program (2)

upper bounds
∑k′

q=1 Λq .

max
λ∈{0,1}k′

k′
∑

q=1

λq(λq − 1)

2
(2a)

1 ≤ λq ≤ m q ∈ {1, . . . , k′} (2b)

k′
∑

q=1

λq ≤ n (2c)

Assume w.l.o.g. that n/m is integer. If k′ ≤ n/m, by setting
λq = m, for q ∈ {1, . . . , k′}, we obtain

∑k′
q=1 λq(λq −

1)/2 ≤ k′m(m − 1)/2 ≤ nm/2. If k′ > n/m, we argue that
the solution λq = m, for q ∈ {1, . . . , n/m}, and λq = 0,
otherwise, is optimal for Concave Program (2). In particular,
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for any solution λwith 0 < λq , λq ′ < m such that q 	= q ′, we
may construct amodified solutionwith higher objective value
by applying Jensen’s inequality f (λ)+ f (λ′) ≤ f (λ+λ′) for
anyλ, λ′ ∈ [0,∞),with respect to the single variable, convex
function f (λ) = λ(λ − 1)/2. If λq + λq ′ ≤ m, we may set
λ̃q = λq + λq ′ and λ̃q ′ = 0. Otherwise, m < λq + λq ′ ≤ 2m
and we set λ̃q = m and λ̃q ′ = λq + λq ′ − m. In both cases,
λq ′′ = λ̃q ′′ , for each q ′′ ∈ {1, . . . , k′} \ {q, q ′}. Clearly, λ̃

attains higher objective value than λ, for Concave Program
(2). ��
Lemma 3 Suppose that Pk is a slack period and let Jk be
the set of jobs beginning during Pk. Then, it holds that λk ≤
1
m

∑
j∈Jk

p j .

Proof Because Pk is a slack period, it must be the case that
|Bu | = 1, for each u ∈ Pk . Since we consider long instances,
p j ≥ m for each j ∈ J . Therefore, λk ≤ 1

m

∑
j∈Jk

p j . ��

Theorem 4 LPT achieves an approximation ratioρ ∈
[
3
2 ,

5
3

]

in the case of long instances.

Proof Denote the LPT and optimal schedules by S and S∗,
respectively. Let � ∈ J be a job completing last in S, i.e.,
T = s� + p�. Recall that LPT sorts jobs s.t. p1 ≥ . . . ≥ pn .
W.l.o.g. we assume that � = argmin j∈J {p j }. Indeed, we
may discard every job j > � and bound the algorithm’s
performancew.r.t. instance Ĩ = 〈m,J \{ j : j > �, j ∈ J }〉.
Let S̃ and S̃∗ be the LPT and an optimal schedule attaining
makespan T̃ and T̃ ∗, respectively, for instance Ĩ . Showing
that T̃ ≤ (5/3)T̃ ∗ is sufficient for our purposes because
T = T̃ and T̃ ∗ ≤ T ∗. We distinguish two cases based on
whether pn > T ∗/3, or pn ≤ T ∗/3.

Case 1 (pn > T ∗/3): We claim T ≤ (3/2)T ∗. Initially,
observe that n ≤ 2m. Otherwise, there would be a machine
i ∈ M executing at least |S∗

i | ≥ 3 jobs, say j, j ′, j ′′ ∈ J ,
in S∗. This machine would have last job completion time
T ∗

i ≥ p j + p j ′ + p j ′′ > T ∗, a contradiction. If n ≤ m,
LPT clearly has makespan T = T ∗. So, consider n > m.
Then, some machine executes at least two jobs in S∗, i.e.,
pn ≤ T ∗/2. To prove our claim, it suffices to show sn ≤ T ∗,
i.e., job n starts before or at T ∗. Let c = max1≤ j≤m{C j } be
the time when the last among the m biggest jobs completes.
If sn ≤ c, then sn ≤ max1≤ j≤m{ j + p j } ≤ T ∗. Otherwise,
let λ = sn − c. Because n ≤ 2m, it must be the case that
λ ≤ m. Furthermore, |At | < m and, thus, |Bt | = 1, for each
t ∈ [c +1, sn −1]. That is, exactly one job begins per unit of
time during [c + 1, sn]. Due to the LPT ordering, these are
exactly the jobs {n −λ, . . . , n}. Since λ ≤ m and p j ≥ m, at
leastm−h units of time of job n−h are executed from time sn

and onwards, for h ∈ {1, . . . , λ}. Thus, the total processing
loadwhich executed not earlier than sn isμ ≥ ∑λ

h=1(m−h).
On the other hand, at most m − h machines are idle at time
slot c + h, for h ∈ {1, . . . , λ}. So, the total idle machine time

during [m + 1, sn − 1] is Λ ≤ ∑λ−1
h=1(m − h). We conclude

that μ ≥ Λ which implies that sn ≤ m(m−1)
2 + 1

m

∑
j∈J p j .

By Lemma 1, our claim follows.
Case 2 (pn ≤ T ∗/3): In the following, Equalities (3a)

hold because job n completes last and by the definition
of alive jobs. Inequalities (3b)–(3d) use a simple pack-
ing argument with job processing times and machine idle
time taking into account: (3b) Lemma 3, (3c) Lemma 2
property

∑k′
q=1 Λq ≤ nm

2 , and (3d) the bound T ∗ ≥
max{ 1

m

∑
j∈J p j , n + pn, 3pn}.

T = sn + pn = 1

m

( sn∑

t=1

|At | +
sn∑

t=1

(m − |At |)
)

+ pn

(3a)

≤ 1

m

⎛

⎝
n∑

i=1

pi +
k′

∑

q=1

Λq

⎞

⎠ + pn (3b)

≤ 1

m

n∑

i=1

pi + n

2
+ pn (3c)

≤ 5

3
T ∗. (3d)

��

We complement Theorem 4 with a long instance I =
〈m,J 〉 where LPT is 3/2-approximate and leave closing the
gap between the two as an open question. Instance I is illus-
trated in Fig. 4 and contains m +1 jobs, where p j = 2m − j ,
for j ∈ {1, . . . , m}, and pm+1 = m. In the LPT schedule S,
job j is executed at time s j = j , for j ∈ {1, . . . , m}, and
sm+1 = 2m − 1. Hence, T = 3m − 1. But an optimal sched-
ule S∗ assigns job j to machine j +1 at time s j = j +1, for
j ∈ {1, . . . , m−1}. Moreover, jobsm andm+1 are assigned
to machine 1 beginning at times sm = 1 and sm+1 = m,
respectively. Clearly, S∗ has makespan T ∗ = 2m.

Theorem 5 completes this section with a simple argument
on the LPT performance for short instances.

Theorem 5 LPT is optimal for short instances.

Proof Let p1 ≥ . . . ≥ pn be the LPT job ordering and sup-
pose that job � completes last in LPT schedule S. We claim
that job � begins at time slot s� = ��/g� in S. Due to the
BJSP constraint, we have s� ≥ ��/g�. Assume that the last
inequality is strict. Then, |At | = m for some time slot t < s�.
So, there exists job j ∈ At with s j = t − m + 1. Since
p j ≤ m − 1, we get C j < t which contradicts j ∈ At .
Because T ∗ ≥ � j/g� + j for each j ∈ J , the theorem
follows. ��

123



Journal of Scheduling (2021) 24:237–258 245

M1

M2

Mm−1

Mm

2m − 1
2m − 2

m+ 1
m

m

(a) LPT schedule of makespan T = 3m − 1.
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(b) Optimal schedule of makespan T ∗ = 2m.

Fig. 4 BJSP long instance with a 3/2 lower bound of LPT

4.2 Shortest processing time first

This section investigates the performance of Long Job Short-
est Processing Time First Algorithm (LSPT). LSPT orders
the jobs as follows: (i) Each long job precedes every short
job, (ii) long jobs are sorted according to Shortest Process-
ing Time First (SPT), and (iii) short jobs are sorted as in
LPT. LSPT schedules jobs greedily, in the same vein as LPT,
with this new job ordering. For long instances, when the
largest processing time pmax is relatively small compared
to the average machine load, Theorem 6 shows that LSPT
achieves an approximation ratio better than the 5/3, i.e., the
approximation ratio Theorem 4 obtains for LPT. From a
worst-case analysis viewpoint, the main difference between
LSPT and LPT is that the former requires significantly lower
idle machine time until the last job start, but at the price of
much higher difference between the last job completion times
in different machines.

Theorem 6 LSPT is 2-approximate for minimizing makespan.
For long instances, LSPT is (1+min{1, 1/α})-approximate,
where α = ( 1

m

∑
j∈J p j )/pmax.

Proof Let S be the LSPT schedule and suppose that it attains
makespan T . Moreover, denote by � ∈ S the job completing
last, i.e., C� = T . Similar to the Lemma 1 proof, S is com-
pact. We distinguish two cases based on whether |J L | < m,
or |J L | ≥ m. In the former case, every job j ∈ J L satisfies
s j ≤ pmax. Using similar reasoning to Theorem 3 proof, we
get T ≤ pmax + n + pmin.

In latter case, let t ′ = min{t : |At | < m, t > m}. That
is, t ′ is the earliest time slot strictly after time t = m when
at least one machine is idle. We claim that s j < t ′ for each
j ∈ J L , i.e., every long job begins before t ′ and there is no
idle machine time during [m, t ′]. Assume for contradiction
that there is some job j ∈ J L such that s j > t ′. Since, there
is an idle machine at t ′ and long jobs remain to begin after
t ′, at least two jobs j ′, j ′′ ∈ J L complete simultaneously
at t ′ − 1, i.e., C j ′ = C j ′′ = t ′ − 1. Because of the BJSP
constraint |Bt | ≤ 1, itmust by the case that s j ′ 	= s j ′′ .W.l.o.g.
s j ′ < s j ′′ . By the SPT ordering, we also have that p j ′ ≤ p j ′′ .

Thus, we get the contradiction C j ′ < C j ′′ . Our claim implies

that t ′ ≤ m(m−1)
2 + 1

n

∑
j∈J p j .

Next, consider two subcases based on whether � ∈ J L ,
or � ∈ J S . If � ∈ J L , then T ≤ t ′ + pmax. Otherwise, if
� ∈ J S , then T ≤ t ′ + n + pmin. In both subcases,

T ≤ m(m − 1)

2
+ 1

n

n∑

j=1

p j + max {pmax, n + pmin} .

Obviously, the optimal solution satisfies:

T ∗ ≥ max

⎧
⎨

⎩

1

m

n∑

j=1

p j , pmax, n + pmin

⎫
⎬

⎭
.

In all cases, T ≤ 2T ∗. For long instances, i.e., the case � ∈
J L , LSPT is (1 + min{1, 1/α})-approximate. ��

5 Parallelizing long and short jobs

This section proposes the Long–Short Job Mixing Algo-
rithm (LSM) to compute 1.985-approximate schedules for
a broad family of instances, e.g. with at most �5m/6� jobs
of processing time (i) p j > (1 − ε)(

∑
j ′ p j ′), or (ii) p j >

(1− ε)(max j ′ { j ′ + p j ′ }) assuming non-increasing p j ’s, for
sufficiently small constant ε > 0. For degenerate instances
with more than �5m/6� jobs of processing time p j > T ∗/2,
where T ∗ is the optimal objective value, LSM requires con-
stant machine augmentation to achieve an approximation
ratio lower than 2. There can be at most m such jobs. In
the Royal Mail application, machine augmentation (Davis
and Burns 2011; Kalyanasundaram and Pruhs 2000; Phillips
et al. 2002) adds more delivery vans. For simplicity, we also
assume that m = ω(1), but the approximation ratio can be
adapted for smaller values of m. However, we require that
m ≥ 7.

LSM attempts to construct a feasible schedule where long
jobs are executed in parallel with short jobs, as depicted in
Fig. 5. LSM uses mL < m machines for executing long jobs.
The remaining mS = m − mL machines are reserved for
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Fig. 5 Structure of schedules produced by LSM. Long jobs are priori-
tized in the subset ML of the machines. The subset MS of remaining
machines execute only short jobs

short jobs. Carefully selecting mL allows to obtain a good
trade-off in terms of (i) delaying long jobs and (ii) achieving
many short job starts at time slots when many long jobs are
executed in parallel. Here, we set mL = �5m/6�. Before for-
mally presenting LSM, we modify the notions of long and
short jobs by setting J L = { j : p j ≥ mL , j ∈ J } and
J S = { j : p j < mL , j ∈ J }, respectively. Both J L and
J S are sorted in non-increasing processing time order. LSM
schedules jobs greedily by traversing time slots in increas-
ing order. Let AL

t be the set of alive long jobs at time slot
t ∈ D. For t = 1, . . . , τ , LSM proceeds as follows: (i) If
|AL

t | < mL , then the next long job begins at t , (ii) if |J L | = 0
or mL ≤ |A| < m, LSM schedules the next short job to start
at t , else (iii) LSM considers the next time slot. From a com-
plementary viewpoint, LSM partitions the machinesM into
ML = {i : i ≤ mL , i ∈ M} and MS = {i > mL , i ∈ M}.
LSM prioritizes long jobs onmachinesML and assigns only
short jobs to machines MS . A job may undergo processing
on machine i ∈ MS only if all machines in ML are busy.
Algorithm 1 pseudocode describes LSM.

Algorithm 1 Long-Short Mixing (LSM)

Sort J L = { j ∈ J : p j ≥ mL } in non-increasing order.
Sort J S = { j ∈ J : p j < mL } in non-increasing order.
for t = 1, . . . , τ do

if |At | < m then
if |AL

t | < mL and |J L | > 0 then
j ′ = argmax j∈J L {p j }
J L = J L \ { j ′}

else if |J S | > 0 then
j ′ = argmax j∈J S {p j }
J S = J S \ { j ′}

In either of the above cases, set s j ′ = t .

Theorem 7 shows that LSM achieves a better approxima-
tion ratio than LPT, i.e., strictly lower than 2, for a broad
family of instances.

Theorem 7 LSM is 1.985-approximate (i) for instances with
no more than �5m/6� jobs s.t. p j > (1−ε)max{ 1

m

∑
j ′ p j ′ ,

max j ′ { j ′ + p j ′ }} for sufficiently small ε > 0, and (ii) for
general instances using 1.2-machine augmentation.

Proof Let S be the LSM schedule and � = argmax{C j : j ∈
J } the job completing last. That is, S has makespan T = C�.
For notational convenience, given a subset P ⊆ D of time
slots, denote by λ(P) = |P| and μ(P) = ∑

t∈P |At | the
number of time slots and executed processing load, respec-
tively, during P . Furthermore, let nL = |J L | and nS = |J S|
be the number of long and short jobs, respectively.We distin-
guish two cases based on whether (i) � ∈ J S or (ii) � ∈ J L .
Case � ∈ J S We partition time slots {1, . . . , T } into five
subsets. Let r L = max j∈J L {s j } and r S = max j∈J S {s j } be
the maximum long and short job start time, respectively, in
S. Since � ∈ J S , it holds that r L < r S . For each time slot
t ∈ [1, r L ] in S, either |AL

t | = mL long jobs simultaneously
run at t , or not. In the latter case, it must be the case that
t = s j for some j ∈ J L . On the other hand, for each time
slot t ∈ [r L + 1, s�], either |At | = m, or t = s j for some
j ∈ J S . Finally, [s�, T (S)] is exactly the interval during
which job � is executed. Then, we may define:

– F L = {t : |AL
t | = mL},

– BL = {t : |AL
t | < mL , t = s j , j ∈ J L},

– F S = {t : t > r L , |At | = m}, and
– BS = {t : t > r L , |At | < m, t = s j , j ∈ J S}.

Clearly,

T ≤ λ(F L) + λ(BL) + λ(F S) + λ(BS) + p�. (4)

Next, we upper bound a linear combination of λ(F L), λ(BS),
and λ(F S) taking into account the fact that certain short jobs
begin during a subset B̂S ⊆ F L ∪ F S of time slots. By
definition, λ(BS) ≤ nS − λ(B̂S). We claim that λ(B̂S) ≥
(mS/mL)(λ(F L) + λ(F S)). For this, consider the time slots
F L ∪ F S as a continuous time period by disregarding inter-
mediate BL and BS time slots. Partition this F L ∪ F S time
period into subperiods of equal length mL . Note that no long
job begins during F L ∪ F S and the machines in MS may
only execute small jobs in S. Because of the greedy nature of
LSM and the fact that p j < mL for j ∈ J S , there are at least
mS short job starts in each subperiod. Hence, our claim is true
andwe obtain thatλ(BS) ≤ nS−(mS/mL)(λ(F L)+λ(F S)),
or equivalently:

mSλ(F L) + mSλ(F S) + mLλ(BS) ≤ mLnS . (5)

Subsequently, we upper bound a linear combination of
λ(F L), λ(BL), and λ(F S) using a simple packing argu-
ment. The part of the LSM schedule for long jobs is exactly
the LPT schedule for a long instance with nL jobs and
mL machines. If |AL

r L | < m, we make the convention that
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μ(BL) does not contain any load of jobs beginning in the
maximal slack period completed at time r L . Observe that
μ(F L) = mLλ(F L) and μ(F S) = mλ(F S). Additionally,
by Lemma 2, we get thatμ(BL) ≥ mLλ(BL)/2, except pos-
sibly the very last slack period. Then, μ(F L) + μ(BL) +
μ(F S) ≤ ∑

j∈J p j . Hence, we obtain:

mLλ(F L) + 1

2
mLλ(BL) + mλ(F S) ≤

∑

j∈J
p j . (6)

Summing Expressions (5) and (6),

(
mL + mS

)
λ(F L) + 1

2
mLλ(BL) +

(
m + mS

)
λ(F S)

+ mLλ(BS) ≤
∑

j∈J
p j + mLnS .

Becausem = mL +mS , if we divide bym, the last expression
gives:

λ(F L) + 1

2

(
mL

m

)

λ(BL) + λ(F S) +
(

mL

m

)

λ(BS)

≤ 1

m

∑

j∈J
p j +

(
mL

m

)

nS . (7)

We distinguish two subcases based on whether λ(F S) +
λ(F L) ≥ 5nS/6 or not. Obviously, λ(BL) ≤ nL . In the

former subcase, Inequality (5) gives λ(BS) ≤ (1 − 5mS

6mL )nS .
Using Inequality (7), Expression (4) becomes:

T ≤ 1

m

∑

j∈J
p j +

(

1 − mL

2m

)

nL

+
[(

mL

m

)

+
(

1 − mL

m

)(

1 − 5mS

6mL

)]

nS + p�.

For mL = �5m/6�, we have (i) 5/6 ≤ mL/m ≤ 5/6 + 1/m
and (ii) mS/mL ≥ 1/6−1/m

5/6+1/m . Given m = ω(1),

T ≤ 1

m

∑

j∈J
p j +

(

1 − 5

12

)

nL

+
[
5

6
+

(

1 − 5

6

)(

1 − 1

5

)]

nS + p�.

Note that an optimal solution S∗ has makespan:

T ∗ ≥ max

⎧
⎨

⎩

1

m

∑

j∈J
p j , nL + nS + p�

⎫
⎬

⎭
.

Because the instance ismixedwith long and short jobs andwe
consider the case � ∈ J S , we have p� ≥ T ∗/2. Therefore,

T ≤ (1 + 29
30 + ( 2930 )

1
2 )T

∗ ≤ 1.985T ∗. Now, consider the
opposite subcase where λ(F L) + λ(F S) ≤ 5nS/6. Given
λ(BL) ≤ nL and λ(BS) ≤ nS , expression (4) becomes T ≤
11
6 (nS + nL + p�) ≤ 1.835 · T ∗.
Case � ∈ J L Recall that AL

t and BL
t are the sets of long

jobs which are alive and begin, respectively, at time slot
t . Furthermore, r L = max{s j : j ∈ J L} is the last long
job starting time. Because LSM greedily uses mL machines
for long jobs, either |AL

t | = mL , or |BL
t | = 1, for each

t ∈ [1, r L ]. So, we may partition time slots {1, . . . , r L} into
F L = {t : |AL

t | = m} and BL = {t : |AL
t | < m, |BL

t | = 1}
and obtain:

T ≤ λ(F L) + λ(BL) + p�.

Because mL long jobs are executed at each time slot t ∈ F L ,

λ(F L) ≤ 1

mL

⎡

⎣
∑

j∈J L

p j − μ(BL)

⎤

⎦ .

Then, Lemma 2 implies that μ(BL) ≥ nLmL/2. Further-
more, λ(BL) ≤ nL . Therefore, by considering Lemma 3, we
obtain:

T ≤ m

mL

⎛

⎝ 1

m

∑

j∈J
p j

⎞

⎠ + 1

2
(nL + p�) + 1

2
p�.

In the case p� ≤ T ∗/2, since T ∗ ≥ nL + p�, we obtain
an approximation ratio of ( m

mL + 3
4 ) ≤ 1.95, when mL =

�5m/6�, given that m = ω(1).
Next, consider the case p� > T ∗/2. Let J V = { j : p j >

T ∗/2} be the set of very long jobs and nV = |J V |. Clearly,
nV ≤ m. By using resource augmentation, i.e., allowing
LSM to use m′ = �6m/5�machines, we guarantee that LSM
assigns at most one job j ∈ J V in each machine. The theo-
rem follows. ��
Remark If �5m/6� < |J V | ≤ m, LSM does not achieve
an approximation ratio better than 2, e.g. as illustrated by
an instance consisting of only J V jobs. Assigning two such
jobs on the same machine is pathological. Thus, better than
2-approximate schedules require assigning all jobs in J V to
different machines.

6 Dealing with uncertainty

This sectionproposes a two-stage robust optimization approach
for BJSP under uncertainty based on lexicographic optimiza-
tion. We recently proposed a variant of this approach for
two-stage robust P||Cmax (Letsios et al. 2021). Because job
start times are irrevocable in theRoyalMail context, we adapt
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the P||Cmax approach to BJSP, using resource augmentation.
That is, newmachines are added once the uncertainty is real-
ized. The robustness of a solution is measured by the level of
resource augmentation, i.e., number ofmachines required for
the final solution feasibility (instead of the actual makespan
objective value we adopt in Letsios et al. 2021 with a dif-
ferent recovery strategy). Section 6.1 formally describes our
uncertainty setting, including the uncertainty set structure
and investigated robustness measure. Section 6.2 presents
the proposed approach for solving two-stage robust BJSP
instances, i.e., the first and second stages. Given a collection
of schedules of makespan ≤ D, our approach determines
which are the more robust.

6.1 Uncertainty setting

Figure 6 illustrates the two-stage setting for solving BJSP
under uncertainty. The Figure 6 setting is most similar to
the Liebchen et al. (2009) recoverable robustness setting, but
also has connections to other two-stage optimization prob-
lems under uncertainty (Ben-Tal et al. 2004; Bertsimas and
Caramanis 2010; Hanasusanto et al. 2015). Stage 1 computes
a feasible, efficient schedule S for an initial nominal instance
I of the problem with a set J of jobs and vector of process-
ing times p. After stage 1, there is uncertainty realization and
a different, perturbed vector p̃ of processing times becomes
known. Stage 2 transformsS into a feasible, efficient solution
S̃ for the perturbed instance Ĩ with vector p̃ of processing
times, using machine augmentation. Designing and analyz-
ing a two-stage robust optimization method necessitates (i)
defining the uncertainty set structure and (ii) quantifying the
solution robustness.

Scheduling under uncertainty may involve different per-
turbation types. We study processing time variations, i.e.,
p j may be perturbed by f j > 0 to become p̃ j = f j p j . If
f j > 1, then job j is delayed. If f j < 1, job j completes
early. Instance I is modified by a perturbation factor F > 1
when 1/F ≤ f j ≤ F , for each j ∈ J . Uncertainty setUF (I )
contains every instance Ĩ that can be obtained by disturbing
I w.r.t. perturbation factor F .

Our two-stage robust optimization approach aims to
achieve a low number of machines once the recovery stage
2 is completed. Specifically, let S be an initial schedule, of
makespan ≤ D, for a nominal BJSP instance I and S̃ be a
recovered schedule, obtained from S after uncertainty real-
ization, for a perturbed instance Ĩ ∈ UF (I ). Denote by S̃∗
a feasible schedule for Ĩ with makespan ≤ D and mini-
mal number of machines. Schedule S is robust if the ratio
V (S̃)/V (S̃∗), where V (·) denotes the number of machines
in a given schedule for Ĩ , is as low as possible. By slightly
abusing standard robust optimization terminology, we refer
to this ratio as the price of robustness (Bertsimas and Sim

2004; Bertsimas et al. 2011; Goerigk and Schöbel 2016; Xu
and Mannor 2007).

6.2 Two-stage robust scheduling approach

This section proposes a two-stage robust optimization for
solvingBJSPunder uncertaintywith: (i) an exactmethodpro-
ducing initial solution S and (ii) a recovery strategy restoring
S after instance Ĩ is revealed.

6.2.1 Exact LexOpt scheduling with machine augmentation
(stage 1)

To compute robust first-stage schedules, we develop an inte-
ger programming formulation minimizing a characteristic
value, which is motivated by lexicographic optimization and
the fact thatmachine augmentation is required in the recovery
stage.

Recent work shows that two-stage robust P||Cmax sched-
ules can be obtained by lexicographically minimizing the
machine completion times T1 ≥ . . . ≥ Tm , i.e., lexmin
{T1, . . . , Tm}, where Ti corresponds to the i-th greatest
machine completion time (Letsios et al. 2021). That is, we
minimize T1 and, among all schedules minimizing T1, we
select a schedule minimizing T2, then T3 etc. Here, the
proposed two-stage robust optimization approach lexico-
graphically minimizes the job completion times C1 ≥ . . . ≥
Cn , i.e., lexmin{C1, . . . , Cn}, where C j refers to the j-th
greatest completion time. By considering all jobs instead of
only the ones completing last in each machine, we enforce
robustness at the price of extra computational effort. In par-
ticular, we are faced with a multi-objective optimization
problem, where the number of objectives is n > m. Based on
standard weighting lexicographic optimization methods, this
problem can be reformulated as the mono-objective problem
min{∑n

j=1 BC j }, where B > 1 is a sufficiently large scalar
(Sherali 1982). We empirically select B = 2.

To achieve low resource augmentation at the stage 2 sched-
ule S̃, we incorporate the number V of machines in the
characteristic value for obtaining the stage 1 schedule S.
Because the job starts are not modified in stage 2, if a min-
imal of machines is used in S, many new simultaneous job
executions may occur in the stage 2 schedule S̃ after uncer-
tainty realization, due to job delays. On the other hand, if
a large number of machines are used in S, a small number
of new job overlaps will occur in the stage 2 schedule S̃ ,
but the number of machines in the final schedule is already
high. An empirically chosen parameter θ > 0 specifies the
contribution of V in the characteristic value.

Denote by V (S) be the number of machines in S. In addi-
tion, associate the weight w j (S) = 2C j (S) with each job
j ∈ J , where C j (S) is the job j completion time, and let
W (S) = ∑

j∈J w j (S) be the sum of job weights in S. The
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time
Planning Phase

Stage 1

Uncertainty Realization

Disturbances

Recovery Phase
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(a) Two-Stage Model

Input I

Efficient schedule S for input I

Perturbed input Ĩ

Recovery
algorithm

Efficient schedule S̃
for input Ĩ

(b) Rescheduling

Fig. 6 Uncertainty setting. Figures obtained from Letsios et al. (2021)

characteristic value F(S) of schedule S is the weighted sum:

F(S) � V (S) + θ · W (S),

where θ > 0 is a parameter specifying the relevant impor-
tance between V (S) and W (S). Section 7 selects the θ

value empirically. A schedule ofminimal characteristic value
can be computed with integer programming formulation (8).
Variable v corresponds to the number of machines, and
parameter w j,t = 2t is the weight of job j if it completes at
time slot t .

min
x j,s , v,w

v + θ

⎛

⎝
∑

j∈J

∑

s∈F j

x j,sw j,s+p j

⎞

⎠ (8a)

v ≥ x j,s j ∈ J , s ∈ D (8b)

x j,s(s + p j ) ≤ D j ∈ J , s ∈ D (8c)
∑

j∈J

∑

s∈A j,t

x j,s ≤ v t ∈ D (8d)

∑

s∈Fj

x j,s = 1 j ∈ J (8e)

∑

j∈Js

x j,s ≤ g s ∈ D (8f)

x j,s ∈ {0, 1} j ∈ J , s ∈ Fj (8g)

Expression (8a) minimizes the characteristic value. Con-
straints (8b) limit the active machines to the total number of
machines. Constraints (8c) force all jobs to complete before
the makespan D. Constraints (8d) ensure that at most v

machines are used at each time slot t . Constraints (8e) require
that each job j is scheduled.Constraints (8f) express theBJSP
constraint.

Large exponents provoke numerical issues when solving
Integer Program (8). To circumvent this issue, we reduce
the number of objectives in the underlying lexicographic
optimization problem by rounding job completion times. In
particular, we divide the time horizon into a set of � time
periods. A job j completing at time period q = 1, . . . , �
has weightw j = 2q . By minimizing

∑
j∈J w j , we compute

near-lexicographically optimal schedules.

6.2.2 Rescheduling strategy (stage 2)

A rescheduling strategy transforms an initial schedule S for
the nominal problem instance I into a final schedule S̃ for the
perturbed instance Ĩ . To satisfy the requirement that schedule
S̃ should stay close toS, we distinguish between binding and
free optimization decisions similarly to Letsios et al. (2021).
Let x j,s and yi, j be binary variables specifying whether job
j ∈ J begins at time slot t ∈ D and is executed by machine
i ∈ M, respectively. Based on RoyalMail practices, we con-
sider rescheduling with restricted job start times and flexible
job-to-machine assignments.Definition 1 formalizes this fact
with binding and free optimization decisions.

Definition 1 Let S be the initial schedule in BJSP under
uncertainty.

– Binding decisions {x j,t : j ∈ J , t ∈ F j } are variable
evaluations determined from S in the rescheduling pro-
cess.

– Free decisions {yi, j : i ∈ M, j ∈ J } are variable eval-
uations not determined from S but needed to recover
feasibility.

Enforcing binding decisions ensures a limited number of
initially planned solution modifications. Note that the first-
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(a) DO-A (b) DO-B

(c) DO-C

Fig. 7 Line chart comparing the cardinality of long and short jobs. Given a number m machines, (i) the solid line plots the average cardinality and
(ii) the shaded area shows the difference between the maximum and minimum cardinality, with respect to all job sets (days)

stage decisions remain critical in this context. The proposed
recovery strategy sets x j,s(S) = x j,s(S̃). On the other hand,
job-to-machine assignments are decided in an onlinemanner.
For t = 1, . . . , τ , the jobs { j : x j,t (S) = 1} are assigned to
the lowest-indexed available machines. A machine is avail-
able at t if it executes no jobs. This assignment derives the
yi, j (S̃) values.

7 Numerical results

This section computationally evaluates the proposed heuris-
tics and robust optimization approach for BJSP with perfect

knowledge and under uncertainty, respectively, using Royal
Mail data. Section 7.1 discusses the derivation of Royal Mail
BJSP instances and historical schedules. Section 7.2 presents
information about the number and load of long and short
jobs in these instances. Section 7.3 compares the proposed
LPT, LSPT and LSM heuristics. Section 7.4 evaluates the
historical schedules sensitivity with respect to the number of
machines, i.e., Royal Mail vans. Finally, Section 7.5 presents
a numerical assessment of the two-stage robust optimization
approach. We run all computations on a 2.5 GHz Intel Core
i7 processor with an 8GB RAM memory running macOS
Mojave 10.14.6. Our implementations use Python 3.6.8,
Pyomo 5.6.1, and solve the integer programming instances
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(a) DO-A (b) DO-B

(c) DO-C

Fig. 8 Line chart comparing the processing time load 1
m

∑
j p j of long and short jobs. Given a number m machines, (i) the solid line plots the

average load and (ii) the shaded area shows the difference between the maximum and minimum load, with respect to all job sets (days)

with CPLEX 12.8. A recent MEng thesis considers several
of these contexts in greater detail (Suraj 2019).

7.1 Generation of benchmark instances and
historical schedules

We use historical data from three Royal Mail delivery offices
which we refer to as (i) DO-A, (ii) DO-B, and (iii) DO-C.
Part of the data are encrypted for confidentiality protection.
We consider a continuous time period of 78, 111, and 111
working days for DO-A, DO-B, and DO-C, respectively. A
BJSP instance is the set of all jobs performed by a single
delivery office during one date. So,we examine 300 instances
in total.A job corresponds to a delivery in a set of neighboring
postal codes. The data are a list of jobs, each specified by a
(i) unique identifier, (i) delivery office, (iii) date, (iv) vehicle
plate number, (v) begin time, and (v) completion time.Below,

we give more details for generating the benchmark instances
and the actual schedules realized by Royal Mail.

A BJSP instance is defined by a (i) time horizon, (ii)
time discretization, (iii) number of available vehicles, (iv)
set of jobs, and (v) BJSP parameter. A simple data inspec-
tion shows that among all jobs, 92% run during [06:00,19:00]
in DO-A, 91% are executed during [05:00, 19:30] in DO-B,
and 93% are implemented during [05:30, 19:30] in DO-C. A
scatter plot illustration clearly demonstrates that these bound-
aries specify the time horizon for each delivery office after
dropping outliers (Letsios et al. 2020). The time horizon
boundaries might be violated by both the historical sched-
ules and our two-stage robust optimization method. We use a
time discretization of δ = 15 min. The number of available
vehicles is the number of distinct plate numbers used by each
delivery office.We set the processing time of job j ∈ J equal
to p j = �(C j − s j )/δ�, where s j and C j is start and comple-
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(a) DO-A (b) DO-B

(c) DO-C

Fig. 9 Line chart comparing the performance of the heuristics. For a given number m of machines, (i) solid lines plot the worst-case performance
ratios and (ii) dotted lines plot the average performance ratios of the heuristics with respect to all jobs sets (days)

tion time of j in the corresponding historical schedule. The
minimal processing time is 30min, but a job may last for a
number of hours. A scatter plot illustration shows that the
distribution of processing times follows a similar pattern on
a weekly basis (Chassein et al. 2019; Letsios et al. 2020).
This observation supports using robust optimization to deal
with the Royal Mail BJSP instances under uncertainty. BJSP
parameter g is set equal to the maximum number of jobs
beginning in a time interval δ units of time after ignoring few
outliers.

The RoyalMail data include a historical schedule for each
BJSP instance. Such a schedule is associated with (i) job
start times, (ii) makespan, and (iii) number of usedmachines.
Begin times are rounded down to the closest multiple of δ for
time discretization. After rounding, the makespan is the time
at which the last job completes. The number of vehicles is
themaximal number of jobs running simultaneously.Wenote
that solutions in this form do not explicitly specify job-to-

machine assignments. However, once the job start times are
known, feasible assignments can be computed with simple
interval scheduling algorithms (Kolen et al. 2007).

7.2 Long and short jobs

This section presents information about the number and pro-
cessing load of long and short jobs in the instances of each
delivery office. Since the long–short job separation depends
on the number m of machines, we examine a range of m val-
ues. A job set, i.e., the jobs executed by a delivery office in
one day, is solved for everym ∈ [5, 50]. Let K be the number
of examined days for a delivery office, e.g. DO-A. Moreover,
denote by N the number of all completed jobs during these K
days and by (P1, . . . , PN ) the corresponding vector of pro-
cessing times. Then, N L(m) = |{ j : Pj ≥ m, 1 ≤ j ≤ N }|
and N S(m) = |{ j : Pj < m, 1 ≤ j ≤ N }| are the total
number of long and short jobs, respectively, during all days,
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(a) DO-A (b) DO-B

(c) DO-C

Fig. 10 Trade-off between the makespan and number of machines. Given a number m machines, (i) the solid line plots the average makespan and
(ii) the shaded area shows the difference between the maximum and minimum makespan, with respect to all job sets (days)

assumingm machines. In addition,ΛL (m) = 1
m

∑
j :Pj ≥m Pj

and ΛS(m) = 1
m

∑
j :Pj <m Pj is the mean load of long and

short jobs, respectively, with m machines.

Figure 7 plots the averaged number N L (m)
K and N S(m)

K of
long and short jobs per day,with respect tom. Similarly, Fig. 8

illustrates the averaged mean loads ΛL (m)
K and ΛS(m)

K per day,

with respect to m. Clearly, when m increases, N L (m)
K and

P L (m)
K decrease, while N S(m)

K and P S(m)
K increase. Section 3

implies that the most difficult instances for LPT arise when

the averaged mean load ΛL (m)
K of long jobs per day tends to

become equal to the averaged number N S(m)
K of short jobs

per day. Figures 7 and 8 show that this pathological situation
occurs when m belongs to [18, 25], [20, 27] and [23, 30] for
DO-A, DO-B and DO-C, respectively.

7.3 Evaluation of heuristics

This section compares the performance of the LPT (Sect. 3),
LSPT (Sect. 4) and LSM (Section 5) heuristics for BJSP. For
each job set J (i.e., collection of jobs executed by a delivery
office in one day) and number m ∈ [5, 50] of machines, we
create a BJSP instance with g = 1. We solve every instance
I = (m,J ) using LPT, LSPT and LSM. Let T (A, I ) be
the makespan of the schedule produced by heuristic A for
instance I . Then, the performance ratio of heuristic A for
I is T (A, I )/T ∗(I ), where T ∗(I ) is the best heuristically
computed makespan for I .

Figure 9 plots the worst-case and average performance
ratio of each heuristic, for each m value. For small m values,
the number nS of short jobs is low compared to themean load
1
m

∑
j∈J L p j of long jobs and LPT produces good heuris-

tic schedules, noticeably better than LSPT. As m increases,
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(a) DO-A (b) DO-B

(c) DO-C

Fig. 11 Line chart comparing the number of used machines in historical and nominal optimal schedules

the idle period before the last job begins becomes progres-
sively more significant and LSPT tends to compute better
schedules than LPT (recall that LSPT and LPT achieve low
idle machine before and after, respectively, the last job start).
Interestingly, LSPT produces the best heuristic schedules in
the pathological LPT case where nS tends to become equal
to 1

m

∑
j∈J L p j . Finally, LSM consistently produces bet-

ter schedules than LPT. Therefore, scheduling short jobs in
parallel with long jobs early in a schedule is useful for achiev-
ing low makespan. Our findings indicate that a LSM variant
where long jobs are executed according to SPT, in parallel
with short jobs, might be a possible alternative for obtaining
better BJSP approximation algorithms.

For completeness, Figure 10 plots the trade-off between
the best heuristically computed makespan T with respect
to the number m of machines. Clearly, as m increases, T
decreases. This finding supports using machine augmen-

tation for better makespan schedules in the presence of
uncertainty.

7.4 Evaluation of historical schedules

This section evaluates the Royal Mail historical schedules
(i) efficiency in number of used machines and (ii) sensitiv-
ity with respect to processing time and (iii) BJSP parameter
variations.

For part (i), we solve each BJSP instance by feeding the
corresponding MILP (8) model to CPLEX. In these MILP
(8) models, we set θ = 0 to minimize the number of used
machines. Figure 11 compares the number ofmachines in the
Royal Mail historical schedules and the CPLEX solutions.
We observe that nominal optimal solutions save at least 10,
25, and 10 vehicles per day compared to historical schedules
for DO-A, DO-B, and DO-C, respectively. This finding is a
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(a) DO-A (b) DO-B

(c) DO-C

Fig. 12 Line chart comparing the number of used machines between the original instances and instances where the job processing times have been
halved

strong indication that more efficient fleet management might
be possible in Royal Mail delivery offices.

For part (ii), we create a set of perturbed instances. In par-
ticular, for each original instance I , we create one perturbed
instance Ĩ where the processing time of each job j ∈ J is
decreased by a factor f j = 0.5. We reduce the processing
times to guarantee feasibility. For both instances I and Ĩ , we
employ CPLEX to solve the correspondingMILP (8) formu-
lations with θ = 0. Figure 12 compares the number of used
machines obtained for the original and perturbed instances.
Not surprisingly, doubling itinerary durations results in a
proportional increase on the number of used vehicles in the
nominal optimal solution. But, Fig. 12 exhibits an important
consequence of uncertainty in Royal Mail fleet manage-
ment. Disturbances amplify the difference in number of used
machines between different days for one delivery office. This
situation leads to inefficient machine utilization.

For part (iii), we investigate the effect of modifying the
BJSP parameter for each delivery office. Figure 13 depicts
the obtained results. Adding BJSP constraints, especially in
theDO-B case,may significantly increase the number of used
machines. This outcome motivates further investigations on
scheduling with BJSP constraints.

7.5 Robustness assessment

Next, we evaluate the two-stage robust optimization method
in Sect. 6.2. Specifically, we show that low characteristic
value results in more robust BJSP schedules. We adopt the
experimental setup in Letsios et al. (2021). The Royal Mail
instances are considered as the nominal ones before any
disturbances occur. The true instances after uncertainty real-
ization are derived by choosing a new processing time p̃ j

for job each j ∈ J uniformly at random from the interval
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(a) DO-A (b) DO-B

(c) DO-C

Fig. 13 Line chart comparing the number of vehicles between instances with different BJSP parameters

[p j − 50%p j , p j + 50%p j ], where p j is the nominal pro-
cessing time.

For each nominal instance I , we generate a collection
C(I ) of feasible, diverse (i.e., with different characteris-
tic values) first-stage schedules, using the CPLEX solution
pool feature. Let F∗(I ) = min{F(S) : S ∈ C(I )} be
the minimum characteristic value among all schedules in
C(I ). Next, denote by Ĩ and S̃ the perturbed instance and
recovered schedule from S, after uncertainty realization.
Moreover, let V ∗( Ĩ ) = min{V (S̃) : S ∈ C(I )} be the
minimum number of machines achievable for Ĩ with per-
fect knowledge. For each initial schedule S ∈ C(I ) and
recovered schedule S̃ , we set a normalized characteristic
value F N (S) = F(S)/F∗(I ) and normalized number of
used machines V N (S̃) = V (S̃)/V ∗( Ĩ ). Figure 14 cor-
relates F N (·) to V N (·), by plotting every computed pair
(F N (S), V N (S̃)), for every nominal instance and initial

solution. We observe that the smaller the initial character-
istic value is, the better the final solution we get in terms of
number of machines.

8 Conclusion

This manuscript initiates study of the bounded job start
scheduling problem (BJSP), e.g. as arising in Royal Mail
deliveries. This project is part of our larger aims toward
approximation algorithms for process systems engineering
(Letsios et al. 2019). The main contributions are (i) better
than 2-approximation algorithms for various cases of the
problem and (ii) a two-stage robust optimization approach
for BJSP under uncertainty based on machine augmenta-
tion and lexicographic optimization, whose performance is
substantiated empirically. We conclude with a collection of
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(a) DO-A (b) DO-B

(c) DO-C

Fig. 14 Scatter plots comparing the initial solution weighted value with the final solution number of vehicles

future directions. Because BJSP relaxes scheduling prob-
lems with non-overlapping constraints for which better than
2-approximation algorithms are impossible under widely
adopted conjectures, the existence of an algorithm with an
approximation ratio strictly better than 2 which does not use
resource augmentation is an intriguing open question. A pos-
itive answer combining LSMalgorithmwith a new algorithm
specialized to instances withmany very long jobs is possible.
Moreover, analyzing the price of robustness of the proposed
two-stage robust optimization approach may provide new
insights for effectively solving BJSP under uncertainty. Our
findings demonstrate a strong potential for more efficient
Royal Mail resource allocation by using vehicle sharing
between different delivery offices. The BJSP scheduling
problem where multiple delivery offices are integrated in a
unified setting and vehicle exchanges are performed on a

daily basis consists a promising direction for fruitful investi-
gations. In this context, recent work on car pooling might be
useful. Finally, bounded job start constraints are broadly rele-
vant to vehicle routing problems (Fisher et al. 1997;Gounaris
et al. 2016). However, we are not aware of any work in this
direction.
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