
Journal of Scheduling (2021) 24:489–505
https://doi.org/10.1007/s10951-020-00649-4

An approach to reduce energy consumption and performance losses
on heterogeneous servers using power capping

Tomasz Ciesielczyk2 · Alberto Cabrera1 · Ariel Oleksiak2 ·Wojciech Piątek2 · Grzegorz Waligóra3 ·
Francisco Almeida1 · Vicente Blanco1

Published online: 20 May 2020
© The Author(s) 2020

Abstract
Rapid growth of demand for remote computational power, along with high energy costs and infrastructure limits, has led to
treating power usage as a primary constraint in data centers. Especially, recent challenges related to development of exascale
systems or autonomous edge systems require tools that will limit power usage and energy consumption. This paper presents
a power capping method that allows operators to quickly adjust the power usage to external conditions and, at the same time,
to reduce energy consumption and negative impact on performance of applications. We propose an optimization model and
both heuristic and exact methods to solve this problem. We present an evaluation of power capping approaches supported by
results of application benchmarks and experiments performed on new heterogeneous servers.

Keywords Power capping · Energy-aware computing · Energy efficiency

1 Introduction

Recent rapid growth of demand for remote computational
power, storage, and network bandwidth has led to fast

B Ariel Oleksiak
ariel@man.poznan.pl

Tomasz Ciesielczyk
tomaszc@man.poznan.pl

Alberto Cabrera
Alberto.Cabrera@ull.es

Wojciech Piątek
piatek@man.poznan.pl

Grzegorz Waligóra
grzegorz.waligora@cs.put.poznan.pl

Francisco Almeida
falmeida@ull.es

Vicente Blanco
Vicente.Blanco@ull.es

1 HPC Group. Escuela Superior de Ingeniería y Tecnología,
Universidad de La Laguna, 38270 San Cristóbal de La
Laguna, Tenerife, Spain

2 Poznan Supercomputing and Networking Center, Institute of
Bioorganic Chemistry PAS, ul. Jana Pawła II 10, 61-139
Poznań, Poland

3 Institute of Computing Science, Poznan University of
Technology, Piotrowo 2, 60-965 Poznań, Poland

development of data centers and, consequently, significant
increases in energy consumption by these systems. A large
portion of global IT energy consumption is used by data
centers, reaching around 1.5–3% of energy, depending on
regions.

The need for highly efficient and low power usage is
essential for emerging systems such as high-performance
computing (HPC) exascale systems and edge computing.
The former requires an extremely large power supply that
makes building such systems unfeasible or very expensive.
Edge computing requires low power and dynamic manage-
ment of systems, as they may have limited power availability
and a need for fast autonomous reaction in case of changing
conditions in remote locations. In all these cases, the power
availability depends on the installation’s electrical infrastruc-
ture and cooling system.

To address these requirements, new server architectures
have emerged that allow achieving higher densities of
servers, lower energy and cost overhead, and better adap-
tation to specific applications. One of the approaches for
providing such a solution is the microserver platform sup-
plied by the M2DC project Oleksiak et al. (2017). M2DC
systems integrate heterogeneous hardware such as x86CPUs,
AMR64 CPUs, GPUs, and field-programmable gate array
(FPGA) chips as small form factor microservers. An M2DC
system can host up to 27 high performance or 144 low

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-020-00649-4&domain=pdf
http://orcid.org/0000-0001-6724-4171

490 Journal of Scheduling (2021) 24:489–505

power nodes. On top of this hardware platform, there is
a middleware layer responsible for integration and access
by management systems and applications. Specific config-
urations of the platform with preinstalled software libraries
and tools, or appliances, are prepared for given classes of
applications such as image processing, IoT data analytics,
cloud computing or HPC. The platform can reduce facil-
ity costs even up to almost 70% due to lower space costs,
lower redundancy of components, and less air volume to cool
down. To enable accurate control of such a high density,
complex, and reconfigurable platform, the heterogeneous
microserver system comes alongwith intelligent powerman-
agement techniques. These methods deal with heterogeneity
and workload specifics during power capping, and model
their impact on costs across the whole data center. A prelim-
inary analysis and approach to power capping and reducing
energy costs in data centers by the use of theM2DC platform
was presented in Oleksiak et al. (2018).

To enable appropriate management of such a platform,
the power capping method must meet key requirements such
as supporting heterogeneous nodes, automated adaptation of
models in the case of changes in the microserver platform
configuration, fast reaction to changing conditions, while
taking into account application profiles (and impact of power
changes on application performance), and priorities of nodes.
In this paper, we propose a power capping method meeting
these challenges. Using this approach, a trade-off between
lower performance of power capped hardware, changes in
efficiency of applications, and node priorities is found. The
presented approach to server architecture and management
concentrates on meeting the challenges of the high-density
M2DC microserver platform and its specific appliances, but
can also help with adaptation to specific conditions and
autonomousmanagement for othermore typical server archi-
tectures and in the emerging case of edge systems.

This work is structured as follows. Related works in
the field of power capping methods and energy efficiency
are described in Sect. 2. The considered problem of power
distribution in a heterogeneous microserver appliance is for-
mulated in Sect. 3. Section 4 describes the overall proposed
power capping method, including applied algorithms and
basic power capping algorithms used as a reference in the
evaluation. Section 5 presents the methodology for building
server power usage models and applying power capping for
target hardware and applications. Benchmarks used for tun-
ing the models and the impact of power capping on energy
efficiency and performance of applications are studied. Sec-
tion 6 presents the evaluation of the proposed power capping
method. Based on computational experiments, we demon-
strate the trade-off between performance and efficiencywhen
our methodology is applied. Finally, Sect. 7 contains conclu-
sions.

2 Related work

As limiting power usage and total energy consumption are
essential for development of large systems, many approaches
for improving efficiency have been proposed. For instance,
HEROS Guzek et al. (2015) introduces a load balanc-
ing algorithm for energy-efficient resource allocation in
heterogeneous systems. PVA Takouna et al. (2013), peer
VMs aggregation, proposes to enable dynamic discovery
of communication patterns and reschedule VMs based on
the acquired knowledge with virtual machine migrations.
Several heuristic approaches (based on evolutionary com-
putation) for resource management in cloud computing have
been explored in Guzek et al. (2015). As an example, it
is worth mentioning a work presented by Jeyarani et al.
(2012). The authors adopt self-adaptive particle swarm opti-
mization to address the VM placement problem. They start
with finding the proper solution from the performance point
of view (choosing candidates that satisfy the performance
constraints) and then select the one with the lowest energy
consumption. Energy-aware allocation heuristics have also
been proposed for a complete data center Beloglazov et al.
(2012). Energy-aware dynamic load balancing was proposed
in Cabrera et al. (2017), and job power consumption in HPC
in Borghesi et al. (2016).

Limiting required power for computations is an important
specific problem caused by constraints on available power in
a given computing system. Many approaches to power cap-
ping have been studied up to now. In Liu et al. (2016), the
authors present an optimization approach for power capping
called FastCap. The proposed solution benefits from both
CPU and memory DVFS (Dynamic Voltage and Frequency
Scaling) capabilities. The idea of FastCap is to maximize the
system performance within the given power budget together
with a fair allocation of computational power to running
applications. The algorithm considers the total time of one
memory access for the particular core as a performance met-
ric. It also utilizes power models of processors and memory
in order to find optimal settings. Finally, frequency selec-
tion is based on the collected performance counters. Another
approach—ALPACA, described in Krzywda et al. (2018),
optimizes power settings of the system from the application
point of view. Themain goal is to minimize quality of service
(QoS) violations and electricity costs while fulfilling power
budget constraints for servers. ALPACA allows specifying
performance metrics, thresholds, performance degradation,
and cost models for each application and takes these char-
acteristics into account while calculating QoS degradation.
Then, it harnesses RAPL (Running Average Power Limit)
and a “cgroups” (control groups) mechanism to control the
application power draw. In order to useALPACA, prior appli-
cation benchmarking is required that collects measurements
from real hardware and creates corresponding powermodels.

123

Journal of Scheduling (2021) 24:489–505 491

An extension to power capping techniques based on fre-
quency scaling is presented inBhattacharya et al. (2012). The
authors propose supporting existing solutions for power cap-
ping with an admission control mechanism. They claim that
this combined approach can address the fast reaction require-
ments engendered by rapid power peaks in data centers. The
idea behind admission control is to reduce power demand by
reducing the amount of performedwork, and thus the amount
of used computational resources. The presented solution can-
not be applied as a standalone power cappingmechanism, but
can improve the effectiveness and performance of existing
ones. It is suggested to implement admission control on the
application or the load balancer level. In Krzywaniak et al.
(2018), the authors discuss the trade-offs between perfor-
mance and energy consumption while using power capping.
They evaluate the behavior of four hardware architectures
and three applications running on them. The authors mea-
sure power consumption for various power settings (enforced
usingRAPL) and their corresponding execution times. Based
on that, they identify the most efficient power limit settings
that result in the highest energy savings. The presented work
could be a good starting point for proposing a power capping
approach that takes into account application profiles while
reducing the power for particular servers.

Multiple papers also present how existing tools and
libraries can be applied to power capping techniques. The use
of the Intel RAPL library for powermanagement is described
in Rountree et al. (2013), for analyzing energy/performance
trade-offs with power capping for parallel applications on
modernmulti- andmany-core processors inKrzywaniak et al.
(2018), or used with Intel Power Governor in Tiwari et al.
(2015).

Some papers have studied power capping applied to spe-
cific applications, for example Fukazawa et al. (2014). An
interesting analysis of the impact, in terms of performance
and energy usage, that power caps have on a system running
scientific applications is described inHaidar et al. (2019). The
authors explore how different power caps affect the perfor-
mance of numerical algorithms with different computational
profiles in order to characterize the types of algorithms that
benefit most from power management schemes.

A comparison of hardware, software, and hybrid tech-
niques is summarized in Zhang and Hoffmann (2016).

The intelligent power capping method proposed in this
paper follows experiences from the presented state of the art
and adds a contribution that is an integration of an approach
to operating a system subject to power usage constraints
(caps) with energy saving features. The method combines
a greedy heuristic that quickly adapts to the power thresh-
olds with an energy optimization algorithm. The method
uses dynamic priorities and appropriate models to minimize
potential performance losses and reliability issues, supports
heterogeneous nodes, and adapts power capping decisions to

characteristics of applications in order to optimize their effi-
ciency. An example of how limits of the power usage may
help to reduce energy costs of cooling and infrastructure for
data center using the capacity management was presented in
Da Costa et al. (2015). A preliminary study and a proposal
of the power capping method for the M2DC heterogeneous
microserver platform is described in Oleksiak et al. (2018);
the platform to which we apply the power capping method
is presented in Oleksiak et al. (2017).

3 Problem formulation

Let us denote a set of nodes in a heterogeneous microserver
appliance as N , and a single node as ni , where:

ni ∈ N , i = 0, 1, . . . , |N | − 1. (1)

A node’s significance in the appliance can be determined by a
priority ri , which is assigned to each node ni ∈ N . The main
aim of using the priorities is to enable user to maintain criti-
cal services under high performance settings.Unless required
by the power limit imposed by the user, the highest possible
priority (ri = 1) assignable to a node results in no power cap-
ping actions applied to the node. Power actions are applied
to a node with the highest priority only if available power
actions for other nodes with lower priorities (ri < 1) are
not sufficient for the defined power limit. The lowest priority
(ri = 0) designates a set of nodes for which power usage is
limited before other nodes in the power reduction process.
Definition of a node’s priority is given by Formula (2):

⎧
⎪⎨

⎪⎩

ri = 1 the highest priori t y

ri ∈ (0, 1) standard priori t y

ri = 0 the lowest priori t y

(2)

Each node ni in the heterogeneous appliance has its own
predefined set of available power settings, and exactly one
of those power settings is applied to a given node. Exem-
plary power setting policies are: DVFS, RAPL (Intel’s power
settings providing additional power management) or GPU
settings (e.g., Nvidia-smi tool). The set of available power
settings is limited (e.g., not all frequencies are available) in
order to reduce the problem complexity. The set of all avail-
able power settings of all nodes ni , i = 0, 1, . . . , |N |−1, is
denoted by P , and the set of available power settings avail-
able for node ni is denoted by Ci , where:

P = {C0 ∪ C1 ∪ . . . ∪ C|N |−1}. (3)

The nodes in a heterogeneous platform differ in terms of
energy consumption and architecture; therefore, the number
of available power settings may vary for particular nodes. A

123

492 Journal of Scheduling (2021) 24:489–505

single power setting j applied to node ni is denoted by ci j ,
i.e.,

ci j ∈ Ci , j = 0, 1, . . . , yi , (4)

where yi = |Ci | − 1 is the node’s default power setting cor-
responding to its state without power limit and, at the same
time, with the highest performance. Thus, the default power
setting applied to the node ni is ciyi . On the other hand,
the power setting which determines the node’s maximum
power savings and also its lowest performance is denoted as
ci0. Each power setting ci j has a corresponding performance
value determined by performed benchmark computations.
A node’s measured computational performance is assumed,
in general, to be inversely proportional to the time needed
to complete a predefined, repetitive benchmark computa-
tion. The time necessary to finish a predefined benchmark
by node ni with power setting ci j is defined as timei j and,
consequently, the node’s performance perfi j with this power
setting is defined as:

perf i j = 1

timei j
. (5)

The normalized performance value of node ni for power set-
ting ci j is denoted as ωi j , such that ωi j ∈ (0, 1〉, which is
a ratio between the relevant performance and the maximum
performance of the node with the default power setting ciyi :

ωi j = perf i j
perf iyi

= timeiyi
timei j

, (6)

where timeiyi is, of course, theminimum time needed by node
ni to complete the benchmark computation, corresponding
to its highest performance per fiyi . The current utilization
ratio of node ni with the power setting ci j is denoted by ui j ,
where:

ui j ∈ 〈0%, 100%〉 . (7)

The utilization value is used to estimate the power usage of
a node. According to the power usage data analyzed at the
Google data center Fan et al. (2007), power consumption
increases linearly with CPU utilization. Therefore, in this
research it is assumed that power usage is linearly propor-
tional to utilization. The power usage for node ni with power
setting ci j is denoted by pi j , and defined by the following
formula:

pi j = (pmaxi j − pidlei j)ui j + pidlei j , (8)

in which pmaxi j and pidlei j are the maximum power usage
(i.e., power usagewith 100%utilization) and the power usage

within the idle state (i.e., with utilization equal to 0%) for
node ni with power setting ci j , respectively. Nodes which are
shut down (their power usage is equal to 0) are not taken into
consideration in the power optimization process; therefore,
the power usage of each node is assumed to be positive:

∀
ni∈N

∀
ci j∈Ci

pi j > 0. (9)

The utilization value of node ni with power setting ci j can
be estimated in two ways (Eqs. (10) and (11)):

1. When a node’s active timeactivei j (the timewhennode’s
CPU is not in the idle state) and idle time idlei j (the time
when node’s CPU is in the idle state) are known:

ui j =
∑

activei j
∑

activei j + ∑
idlei j

∗ 100%. (10)

2. When a node’s current power usage is known (see
Eq. (8)):

ui j = pi j − pidlei j
pmaxi j − pidlei j

. (11)

It is assumed that the change of current power setting applied
to node ni has some influence on its utilization. The pre-
dicted utilization of a node is required later to estimate power
usage after a power setting change. For the purpose of this
research, we describe three basic properties related to the
utilization change estimation during a power setting change
on node ni from a power setting ci j to power setting cik
(ci j → cik, j 	= k). These properties do not take into con-
sideration the application execution state (e.g., an application
mayfinish computations and start a data synchronization pro-
cess which is much less power consuming):

1. Property related to performance decrease:

ωik < ωi j

uik > ui j → uik ∈ (
ui j , 100

〉
. (12)

This property claims that the utilization of a node grows
with a performance decrease.

2. Property related to performance increase:

ωik > ωi j

uik < ui j → uik ∈ 〈
0, ui j

)
. (13)

This property maintains that when the performance of a
node increases, its utilization goes down.

3. Property related to equal performance:

ωik = ωi j

123

Journal of Scheduling (2021) 24:489–505 493

Fig. 1 Power settings activity and idle time comparison

uik = ui j . (14)

In the case, when the performance of a node does not
change, its utilization remains the same.

Exemplary active times and idle state times for node ni for
two different power settings are presented in Fig. 1. The
ratio between the active time for power setting ci j and the
active time for power setting cik is assumed to be linearly
and inversely proportional to the corresponding performance
(Eq. (15)):

activeik
activei j

= ωi j

ωik
. (15)

In order to simplify the power distribution model and to
enable us to easily predict and estimate the utilization after
changing the current power setting, it is assumed that the
idle time for computations performed on node ni is equal
for all power settings (Eq. (16)). This assumption is based
on a presumption that operations executed during the idle
state (e.g., operations such as memory synchronization, data
download, await for client request, etc.) are independent of
power setting changes.

∀
ni∈N

∀
ci j∈Ci

idlei j = idlei . (16)

The performance ratio of node ni when changing from
power setting ci j to power setting cik (ci j → cik, j 	= k) is
defined as:

τ = ωik

ωi j
. (17)

Taking into account Eq. (15), we can also write:

τ = activei j
activeik

. (18)

Let us now analyze the impact of a power setting change
from ci j to cik , where j 	= k on the utilization of node ni .
Let us start with writing Eq. (10) for power settings ci j and
cik :

ui j =
∑

activei j
∑

activei j + ∑
idlei j

∗ 100% (19)

uik =
∑

activeik
∑

activeik + ∑
idleik

∗ 100%. (20)

Then denote:

a j =
∑

activei j (21)

ak =
∑

activeik (22)

b =
∑

idlei j =
∑

idleik = idlei , (23)

and by substitution of (21) and (23) in (19), as well as (22)
and (23) in (20) we obtain:

ui j = a j

a j + b
∗ 100% (24)

uik = ak
ak + b

∗ 100%. (25)

Deriving b from Eq. (24), we get:

b = a j ∗ 100%

ui j
− a j . (26)

Next, by using (18) in Eq. (22) we can write:

ak =
∑ activei j

τ
= a j

τ
. (27)

Finally, by substituting (26) and (27) into (25) we obtain:

uik = 1

1 + τ(100%ui j
− 1)

∗ 100%. (28)

Equation (28) relates the current utilization of node ni to its
previous utilization when changing from power setting ci j
to power setting cik . An example of the utilization estima-
tion according to Eq. (28) is presented in Formula (29). The
calculations for this example are related to active and idle

123

494 Journal of Scheduling (2021) 24:489–505

times of a node for two different power settings (ci j → cik ,
ωik = 1

2ωi j), presented in Fig. 1 (ui j = 50%).

τ = ωik

ωi j
= 0.5ωi j

ωi j
= 0.5

uik = 1

1 + 0.5(100%50% − 1)
∗ 100% ≈ 66.67%. (29)

In order to determine whether the power setting ci j is applied
to node ni , a binary variable si j is used, defined as:

{
si j = 1 i f ci j is applied to ni
si j = 0 otherwise.

For each node ni there can be only one power setting applied
to it at a time (Eq. (30)):

yi∑

j=0

si j = 1, i = 0, 1, . . . , |N | − 1. (30)

The value which determines the efficiency (in terms of power
usage and energy savings) of an applied power setting is the
efficiency value. The efficiency for power setting ci j applied
to node ni is denoted as e f fi j , and it is inversely proportional
to energy (the product of power and time) used to execute the
predefined benchmark computation:

e f fi j = 1

energyi j
= 1

pi j timei j
. (31)

The normalized value of the efficiency ratio for power setting
ci j is denoted as �e f fi j , and the formula of this ratio is
defined by Eq. (32):

�e f fi j = e f fi j
e f f iiyi

. (32)

Taking into account Eqs. (31) and (6), we can also write:

�e f fi j = piyi ωi j

pi j
. (33)

Moreover, considering Formulas (6) and (9), it is easy to
see that:

�e f fi j > 0. (34)

In order to evaluate the power setting configuration in terms
of emission of carbon dioxide and reducing the costs of
running an appliance, it is necessary to estimate the power
savings for each configuration change. Let us assume that
the initial time to finish jobs commissioned to each node is
timei j , and that each node after finishing all commissioned

jobs is turned off (its power usage after completing the jobs is
equal to 0). Under these assumptions, the power savings ratio
for each node is a difference between energy used by node
ni with applied power setting ci j (energyi j) and energy after
applying a new power setting cik (energyik). Let us define
the power savings on node ni as savingsi :

savingsi = energyi j − energyik . (35)

Taking into account Eqs. (31) and (6), it is possible to obtain
the following savings formula for node ni :

savingsi = t(pi j − pik ∗ ωi j

ωik
), (36)

where t is a fixed time or the time between power setting
changes. The total power savings of a current configuration
of nodes can be designated by Eq. (37):

savings =
|N |−1∑

i=0

savingsi . (37)

The evaluation score of the state of node ni with power setting
ci j is denoted by evali j . The higher the evaluation value,
the more profitable the state of the node. The impact of the
provided node’s priority ri is defined as ρi :

ρi = ri
1 − ri

. (38)

The ri parameter determines the end user’s computation sig-
nificance. The higher ri , the more crucial is the node for the
user. The trade-off between performance and efficiency pro-
vided by the appliance’s administrator is defined as α, where
α ∈ 〈0, 1〉. The greater the value of the α parameter, the
higher the impact its performance has on the state’s evalua-
tion. On the other hand, the smaller the value of α, the higher
the impact of its efficiency. The way of calculating the state
evaluation is given by Formula (39):

{
evali j =piyi ∗ ρi (ωi j)

α(�e f fi j)1−α r ∈ (0, 1)

evali j =piyi ∗ (ωi j)
α(�e f fi j)1−α r = 0 ∨ 1.

(39)

The overall evaluation of the appliance’s state is defined by
Formula (40):

|N |−1∑

i=0

yi∑

j=0

evali j si j . (40)

Let us stress that the overall evaluation does not take into
account the previous power settings configuration; it is based
only on the currently applied power settings and the future
workload state. The new power settings configuration refers

123

Journal of Scheduling (2021) 24:489–505 495

to the current system state. If the workload changes, the eval-
uation may also change and the new best power settings
allocation may be different. Taking the above into account,
we can formulate the following mathematical programming
problem for solving the defined power capping problem:
maximize

|N |−1∑

i=0

yi∑

j=0

evali j si j (41)

subject to

|N |−1∑

i=0

yi∑

j=0

pi j si j ≤ power_limit . (42)

The formulated problem is, obviously, nonlinear, and tak-
ing into account the binary character of variables si j , we
obtain a binary nonlinear programming (BNLP) problem.
In this problem formulation, the overall evaluation function
(41) is maximized subject to constraint (42), assuring that
the imposed power limit is not exceeded.

4 Power management procedure

4.1 Powermanagement background

The introduced power distribution model is utilized within
two power management procedures, namely the power cap-
ping procedure (PCM) and the energy saving procedure
(ESM). The main difference between them is that PCM’s
main aim is keeping the total power usage below the defined
power limit provided by the appliance’s administrator or
other systems—PCM is triggered only if the defined power
limit is exceeded. Furthermore, if current power usage does
not satisfy the constraint defined in Formula (43), the PCM
performs intrusive actions. The available intrusive actions
consist of actions that may heavily influence the current
workload, i.e., may result not only in the job’s delay (perfor-
mance reduction) but also in computation progress loss, the
job’s rejection, service unavailability, etc. Exemplary intru-
sive actions are suspend and shutdown.

|N |−1∑

i=0

pi0 ≤ power_limit . (43)

On the other hand, the ESM also takes into consideration
the provided power limit, but its operation is based only on
non-intrusive power actions—performance reduction should
be the only negative consequence. The ESM’s main aim is to
optimize current workload in terms of energy efficiency and
performance—the trade-off between the two is defined by the

Fig. 2 Power management concept

α parameter (39) set by the administrator. Unlike the PCM,
which should provide a new power configuration as soon as
possible due to the importance of the power limit, the ESM
can utilize exact and time-consuming methods. The ESM
is triggered periodically after a defined timeout or directly
on the user’s demand. The general power management idea
is presented in Fig. 2. Power models provided as input to
power management procedures are used in the power usage
and performance estimation for each power setting ci j . The
detailed PCM and ESM approaches are presented below as
Algorithms 1 and 2, respectively. The architecture and imple-
mentation of PCM and ESM were introduced formerly in
the Resource and Thermal Management Module developed
within the M2DC project Oleksiak et al. (2017).

4.2 Power distribution algorithms

We propose two algorithms in our method, namely the
greedy algorithm (Algorithm 5) and the exact optimization
algorithm using a MILP solver (Algorithm 6). The imple-
mentation of the MILP solver has been delivered by the
ojAlgo http://ojalgo.org/ library. However, since the PCM
should react to the load and power usage change as soon
as possible, the algorithm using the MILP solver is not rec-
ommended for this purpose—the expected execution time of
the optimization procedure for 2000 states (200 servers with
10 power states) is approximately 30s. Therefore, we use the
greedy heuristic for PCMand themore time-consuming opti-
mization for ESM. The description of variables and functions
used in the algorithms is presented in Table 1.

123

http://ojalgo.org/

496 Journal of Scheduling (2021) 24:489–505

Algorithm 1 Power capping procedure
power_capping_procedure:
input: Nactive_nodes , Nunused_nodes , power_limit , current_power
output: set of power actions
suspend_savings := max_suspend_savings(Nunused_nodes)
power_budget := power_limit − current_power
if suspend_savings + power_budget > 0 then
return suspend_actions(Nunused_nodes ,power_budget)

max_savings := estimate_power_savings(
⋃

ni∈Nactive_nodes

ci0)

if max_savings + suspend_savings + power_budget > 0 then
return suspend_actions(Nunused_nodes) ∪

power_distribution_algorithm(Nactive_nodes , power_budget −
suspend_savings)
while max_savings + power_budget + suspend_savings < 0

and Nactive_nodes 	= ∅ do
node := least_important(Nactive_nodes)
Nactive_nodes := Nactive_nodes\node
Nunused_nodes := Nunused_nodes ∪ node
suspend_savings := max_suspend_savings(Nunused_nodes)
max_savings := estimate_power_savings(

⋃

ni∈Nactive_nodes

ci0)

return suspend_actions(Nunused_nodes) ∪
power_distribution_algorithm(Nactive_nodes , power_budget +
suspend_savings)

In order to evaluate results of the proposedmethod,wealso
define two simple power capping algorithms as references
for comparison. These reference algorithms are denoted as
random (Algorithm 3) and simple (Algorithm 4).

Algorithm 2 Energy efficiency procedure
energy_efficiency_procedure:
input: Nactive_nodes ,Nunused_nodes , power_limit , current_power
output: set of power actions
suspend_savings := max_suspend_savings(Nunused_nodes)
power_budget := power_limit − current_power
if suspend_savings + power_budget > 0 then
return suspend_actions(Nunused_nodes ,

power_budget)∪power_distribution_algorithm(Nactive_nodes ,
power_budget + suspend_savings)

5 Impact of power capping on performance
and efficiency

In this section, we use different hardware configurations in
order to illustrate a methodology to determine the perfor-
mance and the energy efficiency for a given application.
We center our work around the usage of the power capping
technologies, such as those provided by Intel and Nvidia
drivers. While DVFS has been a frequently used technique
for improving energy efficiency and reducing power con-
sumption at lower levels, the latest technologies allow us
to specify a power budget in watts, greatly improving the
usability and reflecting the need for a power budget.

Intel, in the architectures used in this work, allows us to
set various power budgets in their processors. These limits
can be applied to the cores, the uncore, the dram, to each
package, and, depending on the architecture, to the whole
processor. Nvidia, on the other hand, allows us to set a power

Table 1 Definitions of variables and functions

Variable/function name Description

Power_limit Maximum power usage level defined by the user.

Current_power Current power usage of all appliance components (current total power usage).

Set of power actions The power actions set determines actions to be applied to nodes after the optimization process.
This set consists of power actions which may influence the node’s performance (power settings),
suspend it or shut it down.

Max_suspend_savings Function which estimates power savings for given set of nodes.

Suspend_actions Function which returns the minimum required set of suspend actions for a given set of nodes and
power budget. The minimum suspend actions set is determined by the power budget which
should be a non-=negative value.

Estimate_power_savings Function which estimates power savings achieved by applying provided power settings set.

Nactive_nodes Set of nodes which are executing committed jobs. (Nactive_nodes ∪ Nunused_nodes = N)

Nunused_nodes Set of nodes in idle state without any committed jobs.

Order_power_settings Function which orders nodes’ available power settings by evaluation value (evali j).

Power_change Function which calculates power usage change after applying a provided Power setting argument.

Least_important Function which designates the least important node within the provided set of nodes. The node’s
importance is determined by the node’s priority ri and its current utilization (the lower utilization
the lower importance).

Find_best_power_allocation Function responsible for optimizing power settings allocation of the provided set of available
power settings related to nodes. This function utilizes the ojAlgo expression based model with
MILP http://ojalgo.org/.

Power_distribution_algorithm Function which determines power settings for the current system state and power budget.

123

http://ojalgo.org/

Journal of Scheduling (2021) 24:489–505 497

Algorithm 3 Random power distribution algorithm
random_power_distribution:
input: Nactive_nodes , power_budget
output: C

′′ →set of power actions
C

′′ := ∅
savings := estimate_power_savings(

⋃

ni∈Nactive_nodes

ci0)

power_budget := power_budget + savings
C ′ := ⋃

ni∈Nactive_nodes ,ci j∈Ci

ci j

shuffle(C ′)
N ′ := Nactive_nodes
for each ci j in C ′ do
if ni ∩ N

′ 	= ∅ and power_change(ci j) < power_budget then
C

′′ := C
′′ ∪ ci j

power_budget := power_budget− power_change(ci j)
N ′ := N ′\ni

C
′′ := C

′′ ∪ ⋃

ni∈Nactive_nodes\N ′
ci0

return C
′′

Algorithm 4 Simple power distribution algorithm
simple_power_distribution:
input: Nactive_nodes , power_budget
output: C

′′ →set of power actions
i := 0

N ′ := Nactive_nodes
while i <

∣
∣N ′∣∣ and power_budget < 0 do

j = yi
while j ≥ 0 and power_budget − power_change(ci j) < 0 do

j := j − 1
power_budget := power_budget − power_change(ci j)
C

′′ := C
′′ ∪ ci j

i := i + 1
return C

′′

Algorithm 5 Greedy power distribution algorithm
greedy_power_distribution:
input: Nactive_nodes , power_budget
output: C

′′ →set of power actions
C

′′ := ∅
savings := estimate_power_savings(

⋃

ni∈Nactive_nodes

ci0)

power_budget := power_budget + savings
C ′ := ⋃

ni∈Nactive_nodes ,ci j∈Ci

ci j

N ′ := Nactive_nodes
order_power_settings(C ′)
for each ci j in C ′ do
if ni ∩ N

′ 	= ∅ and power_change(ci j) < power_budget
then

C
′′ := C

′′ ∪ ci j
power_budget := power_budget− power_change(ci j)
N ′ := N ′\ni

C
′′ := C

′′ ∪ ⋃

ni∈Nactive_nodes\N ′
ci0

return C
′′

Algorithm 6MILP power distribution algorithm
milp_power_distribution:
input: Nactive_nodes , power_budget
output: set of power actions
C ′ := ⋃

ni∈Nactive_nodes ,si j∈Ci

ci j

return find_best_power_allocation(C ′, power_budget)

limit through their drivers to theirGPUs.However, theNvidia
cards have restraints on the minimum power limit allowed,
although this aspect has improved for the Nvidia Volta cards.
Tables 2 and 3 illustrate the minimum and maximum power
consumptions for various CPUs and GPUs.

To apply the power saving methodology, we designed a
benchmarking process to determine the behavior of our tar-
get architectures.Using this scheme,we determine the effects
of applying power budgets to our heterogeneous system by
executing small and simple instances of software. This limits
our power saving to the software and hardware combinations
that have already been studied. However, experimentation is
relatively simple, allowing us to extend the software pool or
the available hardware without complex efforts. Benchmark-
ing is performed once, as it provides good enough results to
extract the general power behavior of the application. While
the obtained data contain variability, we have to take into
account the trade-off between resources spent during the
benchmark and the resources gained for our target appli-
cation and architecture. Hence, critical software will require
more executions if more precise data are required.

Algorithm 7 defines the few steps required to determine
the behavior of executing a software stack on a given hard-
ware platform. Once we have determined the minimum and
maximum power required by a system, a series of small tests
are executed to measure the performance of the application
in measure_execution for a set of different power configura-
tions. The specific set can be defined by the server provider or
administrator; however, they are always limited to the hard-
ware constraints.Once all power configurations aremeasured
in every case for the software stack and the target hardware,
this datum D has to be treated to obtain the possible C con-
figurations that compose P .

5.1 Benchmark procedure

An example of this benchmark procedure, using the serial
version of theNASParallel Benchmarks (NPB) https://www.
nas.nasa.gov/ as the software stack, was performed over
a simple Intel architecture. The chosen architecture is an
i5-6200U CPU, a sixth-generation processor with the Intel
PowerCap capabilities. Power capping, performed through
the RAPL interface, allows us to control different power-
related settings in the CPUs, such as the maximum power

123

https://www.nas.nasa.gov/
https://www.nas.nasa.gov/

498 Journal of Scheduling (2021) 24:489–505

Table 2 Intel CPU power
constraints

CPU name # Cores Base frequency (GHz) TDP (W)

i5-6200U 2 2.30 15

Intel Xeon E3-1505M 4 2.80 45

Intel Xeon D-1548 8 2.00 45

Intel Xeon D-1577 16 1.30 45

Table 3 Nvidia GPU power constraints

GPU name Min. power(W) TDP(W)

Tesla P40 125 250

Volta V100 100 250

allowed during a time window, and the zone of the chip it is
applied to, which allows us to set power limits to the cores or
the DRAM separately. We used a simple approach where we
limited the power consumption of the whole chip, using the
PACKAGE zone. Energy measurements were gathered using
EMLCabrera et al. (2014) utilizing the same RAPL interface
for the CPU only. This methodology can be also applied with
more complete measurements for the server as a whole.

Algorithm 7 Benchmark process
input: H → Hardware specifications, S → Software stack
output: P → set of power settings

D ← ∅ � Hardware Power Behavior
for all h ∈ H do

pmin, pmax = Determine_min_max_power(h)

Pexp ← experimental_interval(pmin, pmax) � Experimental
Power Budgets

for p ∈ Pexp do
for all s ∈ S do

t, e ← measure_execution(h, s, p)
D ← D

⋃{[s, h, p, t, e]}
P ← get_power_settings(D)

return P

Figures 3 and 4 depict, as a heatmap, the behavior of the
different benchmarks for performance and energy efficiency,
respectively. The X axis represents each of the executed ker-
nels from the NPB, while the Y axis represents the maximum
power allowed to the CPU. The hardware allows us to limit
the power below 3W and over 8W, but these ranges were
discarded due to two reasons. Values over 8W did not make
any sense, as the single-core execution was no longer limited
by the power budget, but by the hardware itself. Limiting to
3W already illustrated decrements in both performance and
efficiency, thus lowering the limit would not improve them.
Each column of the heatmap is normalized, with 1.00 being
the highest value for the benchmark. In bothfigures, dark blue
represents the best configurations, while red represents bad

configurations. Figure 3 illustrates the time required to reach
the solution for each kernel. The most performant solution
is to remove the power budget, independently of the prob-
lem. Figure 4 represents the number of operations performed
for every watt spent in the execution, in mega-operations per
watt (Mops/W). In this case, we observe two different trends,
for every kernel excepting the Data Cube kernel, labeled as
DC. This is caused by the DC having a high number of I/O
operations that access secondary memory. These heatmaps
allow us to extract different power configurations depending
on the maximum allowed power budget, from best efficiency
(4.5W) to best performance (8W) in every case. However,
forDC the different power configurations would be from 4.0
to 8W.

5.2 Benchmarks of continuous applications and GPU
accelerators

Ourmethodology requires slightmodifications formeasuring
server side applications, such as web services. In the NPB,
applications had a finite life cycle and data were obtained
measuring at the beginning and at the end of the target soft-
ware. In this case, the objective of server applications is to be
ready to perform work on user requests, and they have to be
ready to perform an undetermined amount of work. Despite
these differences, the only modification for Algorithm 7 is
in measure_execution, where measurements are taken for a
fixed amount of time in a fully loaded environment.Our target
application runs as an Anaconda server that gathers images
from a large provided database and, using Tensorflow, trains
an image classifier. Energy measurements are gathered using
EML, again. However, this time they connect to an external
sensor that returns an average power consumption for the
whole microserver.

In this case, we limited the power consumption of both
the CPU and the GPU to analyze the behavior of the system
under different power budgets for its different components.
These limits must be specified by the expert who is applying
the benchmarking procedure. The CPU power limits can be
set, similarly to the NPB case, by finding a lower limit where
efficiency is lost, then increasing the power limit until max-
imum performance is obtained. The GPU version is slightly
different, as theminimum power limit is highly dependent on
the GPU model. Hence, the experimentation has to be set in

123

Journal of Scheduling (2021) 24:489–505 499

Fig. 3 Serial NPB Benchmarks
performance while applying a
power cap

between the minimum and maximum power limits allowed
by the Nvidia driver. In a Linux environment, these limits are
found and set through the nvidia-smi command. The maxi-
mum power limit is also affected by the performance of the
GPU application. If the application is badly optimized, the
target GPU consumes less power than the minimum power
limit, and any applied power capping policy has no effect.

Figure 5 presents on two curves the performance and the
efficiency of the systems. This metric is the equivalent of the
mega-operations per watt utilized in the NPB. The X axis
represents the maximum power allowed for the CPU, the left
axis the number of operations per watt, represented using
blue o, and the right axis the performance of the application
in images per second, represented using orange +.

The efficiency range in these cases is:

1. Xeon D-1548, from best efficiency at 26W to best per-
formance at 40W.

2. Xeon D-1577, from best efficiency at 22W to best per-
formance at 38W.

3. Xeon E3-1505M, from best efficiency at 20W to best
performance at 44W.

Finally, Fig. 6 shows the results of the experiment with
power limitations used also for GPUs, in the same way as
presented in the CPU case. In these cases, the same Xeon
E3-1505M processor was tested. These charts present more
information, as the power capping was performed for both
the GPU and the CPU. The X axis represents the maxi-
mum power allowed for the GPU, while the CPU power is
represented through different colors. Efficiency is differenti-
ated from performance using different markers:+ represents
performance, while o represents efficiency. The left axis, in
combination with the+markers, depicts the number of oper-
ations perwatt, and the same is presented for the performance
of the application using the right axis and the o markers, in
images per second. For both metrics, different colors repre-
sent different power caps for the CPU.

Figure 6a, b presents the case where CPU power cap-
ping does not affect performance for the Nvidia P40 and the
Nvidia V100, respectively. These GPUs offer a broad power
capping range, and limits for efficiency and performance can
be obtained similarly to how we determined ranges of effi-
ciency for the NPB.

123

500 Journal of Scheduling (2021) 24:489–505

Fig. 4 Serial NPB Benchmarks
efficiency while applying a
power cap

For these two cases, the information that can be extracted
from the data is:

1. The Nvidia P40 has the best efficiency at 125W, and the
best performance starts at 175W.

2. The Nvidia V100 has the best efficiency at 115W, and
the best performance starts at 165W.

It is important to remark that these two cases could be
studied more carefully, as the CPU will affect performance
and efficiency if the power cap is applied more aggres-
sively.

6 Power capping evaluation

In this section, we present a single run experiment conducted
on the real infrastructure to evaluate our power capping
methodology. We start with providing a description of hard-
ware characteristics used in our studies, and the applications
thatwere run on the system. Then,we provide a configuration
and corresponding parameters of the performed experiments.

Finally, the results of the evaluation are presented and dis-
cussed.

6.1 Resource characteristics

We tested our power capping approach on 11 server nodes.
Their types and power-related characteristics are presented
in Table 4.

The overall power drawn by the fully loaded testbed
is 1160W, and the power draw in the idle state is 550W.
The maximum number of power settings is 11, and thus, the
number of variables for the MILP is 121 (11 nodes). If the
node had less than 11 available power setting, then the addi-
tional power settings had 0 efficiency and the power usage
was set to a large value (much greater then the overall power
limit) so the solver would not choose such state. There were
12 constraints—11 related to the power setting on each node
(each node can have only one power setting) and one related
to the overall power limit (power cap).

123

Journal of Scheduling (2021) 24:489–505 501

Fig. 5 Image classification benchmark CPU results

Table 4 Testbed configuration

Type of node Total number of nodes Number of cores / Number of threads Max frequency (GHz) TDP (for CPU)

Xeon E5-2640 4 16/32 3 95 W

Xeon D-1548 2 8/16 2.6 45 W

Xeon D-1577 3 16/32 2.1 45 W

i5 4400E 2 2/4 3.3 37 W

123

502 Journal of Scheduling (2021) 24:489–505

Fig. 6 Image classification benchmark GPU results

6.2 Applications

In order to evaluate the power capping efficiency for var-
ious types of applications, we used the NPB benchmarks.
Table 5 presents the characteristics of a subset of bench-
marks applied during our experiments. Benchmark Id is
composed of the benchmark specifications and benchmark
class identifiers as specified in https://www.nas.nasa.gov/.
T ime represents the amount of time necessary to finish the
job on the Xeon E5-2640 node with maximum performance
(no power restrictions).

The workload used for experiments consisted of the set
of benchmarks submitted to the SLURM queuing system at
the same time. As the number of jobs was greater than the
available resources, they were scheduled in a queue on a
first-come, first-served basis.

6.3 Experiments

In order to show the capabilities of our approach, we con-
ducted experiments corresponding to the four algorithms
presented in Sect. 4 and the case without power capping.
During each experiment, we executed the aforementioned
set of applications on the testbed and applied the appropriate
power capping strategy with the power limit set to 750W.
Taking into account the minimum (550 W when idle) and
maximum (1160W for the fully loaded system) power usage
of the system, choosing 750Was a power limit seemed to be a
reasonable trade-off that represented realistic power capping

Table 5 NPB benchmarks characteristics

Benchmark Id Time Number of benchmark jobs

dc.B 400 5

sp.C 180 20

sp.B 60 20

cg.C 60 10

ua.B 30 10

mg.B 2 20

thresholds for the evaluated system. Table 6 summarizes the
considered test cases. Theα parameterwas equal to 1.0 (max-
imum performance). The priority of each node was equal,
and therefore, the priority could be skipped in the evaluation
process.

6.4 Results

Power usage results obtained from experiments A, B, C,
D, and E are presented in Table 7, and job time-related
statistics for the corresponding experiments are presented
in Table 8. The evaluation of the results which compares all
four algorithms (experiments B-E) to the approach without
any power budget distribution (experiment A) is presented in
Table 9. Energy consumed is the energy consumedbynodes
between the start of the experiment and the completion of
the last job executed on any node. Total energy consumed
is the energy consumed by nodes between the start of the

123

https://www.nas.nasa.gov/

Journal of Scheduling (2021) 24:489–505 503

Table 6 Evaluated power capping strategies

Experiment Id Power capping method Comments

A No power distribution algorithm Reference approach

B Random power distribution algorithm Reference approach

C Simple power distribution algorithm Reference approach

D Greedy power distribution algorithm Proposed heuristic used in power management procedures

E MILP power distribution algorithm Proposed exact approach used in power management procedures

Table 7 Experiment energy
consumption

Experiment Id Energy consumed (Wh) Total energy consumed (Wh)

A 283 346

B 280 325

C 314 380

D 271 304

E 234 315

Table 8 Experiment time
statistics

Experiment Id Job average execution time (s) Mean flow time (s) Makespan (s)

A 141 496 1464

B 201 769 1839

C 203 744 2079

D 172 640 1639

E 151 525 1714

experiment and the completion of the last job executed in the
queue. Average per f ormance and Average e f f iciency
refer to defined performance definition (Eq. 17) and effi-
ciency ratio (Eq. 32). Figure 7 illustrates the total power
usage within the experiments. One should see that test cases
D and E significantly outperform other experiments (A, B,
C) on the energy-based criteria (both energy consumed and
total energy consumed). Using the proposed heuristic-based
approaches for power capping allows reducing the power
usage of the system.

As expected, using the power capping mechanism (exper-
iments B, C, D, E) leads to an increase in time-based criteria.
Reducing the processor efficiency causes an increase in job
execution times, flow times, and makespan. However, again
the heuristic-based solutions (D and E) get the better of the
random (B) and simple (C) approaches.

Average performance and average efficiencymetrics sum-
marize the considerations above. One should note that
applying heuristic power capping allows significant energy
improvements with considerably low performance losses.
Corresponding flow time increase is also acceptable (espe-
cially for scenario E)

7 Conclusions

This paper presents a new power capping method for het-
erogeneous servers. The method takes into account models
of specific nodes (along with their priorities) and profiles
of applications run in the system. We show that, using this
information, application performance losses can be reduced
and the energy efficiency improved. We achieved up to 17%

Table 9 Experiment results
evaluation

Experiment Id Average performance Average efficiency Mean flow time change (%)

A 1.00 1.00 0

B 0.70 1.01 55

C 0.70 0.90 50

D 0.82 1.04 29

E 0.94 1.20 6

123

504 Journal of Scheduling (2021) 24:489–505

Fig. 7 Power usage within
experiments

reduction of energy consumed compared to the solutionwith-
out power capping or using the random approach, and 25%
compared with the simple approach. Importantly, the energy
consumed was also lower than in the case when no power
capping was applied. The performance losses (mean job
flow time) were reduced by 42–47% in the case of greedy
heuristics and 88–89% in the case of the exact optimization
method, compared to the random and simple approaches. It
is worth noting that these results were obtained for a set of
jobs with ready time equal to zero. In the case of workloads
with higher idle times and lower utilization, the impact of
power capping on deterioration of mean flow time should be
even lower. That makes power capping not only a way to
avoid exceeding certain power constraints caused by short-
age of cooling capacity or limits of electrical infrastructure;
power capping becomes a powerful tool for improvement
of energy efficiency of heterogeneous and dynamic systems.
Heterogeneity is supported by applying power capping to
a variety of x86 CPUs and to hardware accelerators such as
GPUs. Tomake this solution practical, we combined a greedy
heuristic, allowing us to quickly react to changes in power
usage or power caps, with an optimization procedure find-
ing exact solutions. The latter was run in the background,
improving power settings of servers once the power cap was
not exceeded. In our case, optimization for a single chassis
with multiple nodes was feasible (execution of the optimiza-
tion procedure for 200 servers with 10 power states per each
server took approximately 30s). Application to a bigger clus-
ter requires adoption of heuristic approaches. Future work
will include tests with other applications and real workloads
(with lower utilization), experiments with larger clusters and
support for other heterogeneous resources, such as FPGA
boards or other x86 CPUs.

Acknowledgements The results presented in this paper are partially
funded from European Union’s Horizon 2020 research and innova-

tion program under Grant agreement No. 688201 (M2DC). This work
has been supported by the Spanish Ministry of Science, Innovation
and Universities through the TIN2016-78919-R project, the Govern-
ment of the Canary Islands, with the project ProID2017010130 and the
Grant TESIS2017010134, which is cofinanced by theMinistry of Econ-
omy, Industry, Commerce and Knowledge of Canary Islands and the
European Social Funds (ESF), operative program integrated of Canary
Islands 2014–2020 Strategy Aim 3, Priority Topic 74(85%), the Span-
ish network CAPAP-H, and the European COSTAction CHIPSET. The
research has also been supported by the Polish National Science Centre
under Project No. 2013/11/B/ST6/00970.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware
resource allocation heuristics for efficient management of data
centers for cloud computing. Future Generation Computer Sys-
tems, 28(5), 755–768. https://doi.org/10.1016/j.future.2011.04.
017. Special Section: Energy efficiency in large-scale distributed
systems.

Bhattacharya, A.A., Culler, D., Kansal, A., Govindan, S., & Sankar, S.
(2012) The need for speed and stability in data center power cap-
ping. In 2012International green computing conference (IGCC)
(pp. 1–10). https://doi.org/10.1109/IGCC.2012.6322253

Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., & Benini,
L.(2016). Predictive modeling for job power consumption in hpc
systems.In Kunkel, J. M., Balaji, P., & Dongarra, J. (Eds.) High

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1109/IGCC.2012.6322253

Journal of Scheduling (2021) 24:489–505 505

performance computing (pp. 181–199). Cham: Springer Interna-
tional Publishing.

Cabrera, A., Acosta, A., Almeida, F., & Blanco, V.(2017) Energy
efficient dynamic load balancing over multigpu heterogeneous
systems. In Parallel processing and applied mathematics-12th
international conference, PPAM 2017, Lublin, Poland, Septem-
ber 10–13, 2017, Revised Selected Papers, Part II (pp. 123–132).
https://doi.org/10.1007/978-3-319-78054-2_12

Cabrera, A., Almeida, F., Arteaga, J., & Blanco, V. (2014). Measuring
energy consumption using EML (energy measurement library).
Computer Science-Research and Development, 30(2), 135–143.
https://doi.org/10.1007/s00450-014-0269-5.

Da Costa, G., Oleksiak, A., Piatek, W., Salom, J., & Sisó, L.(2015)
Minimization of costs and energy consumption in a data center by
a workload-based capacity management. In Klingert, S., Chinnici,
M., & ReyPorto M. (eds.) Energy efficient data centers (pp. 102–
119). Cham: Springer International Publishing.

Fan, X., Weber, W. D., & Barroso, L. A. (2007). Power provisioning for
a warehouse-sized computer. SIGARCH Computer Architecture
News, 35(2), 13–23. https://doi.org/10.1145/1273440.1250665.

Fukazawa, K., Ueda, M., Aoyagi, M., Tsuhata, T., Yoshida, K.,Uehara,
A., Kuze,M., Inadomi, Y., & Inoue, K. (2014) Power consumption
evaluation of an mhd simulation with cpu power capping. In 2014
14th IEEE/ACM international symposium on cluster, cloud and
grid computing (pp. 612–617). https://doi.org/10.1109/CCGrid.
2014.47

Guzek, M., Bouvry, P., & Talbi, E. G. (2015). A survey of evolutionary
computation for resourcemanagement of processing in cloud com-
puting. IEEEComputational IntelligenceMagazine, 10(2), 53–67.

Guzek, M., Kliazovich, D., & Bouvry, P. (2015) HEROS: energy-
efficient load balancing for heterogeneous data centers. In Pu, C.,
Mohindra A., (eds.) 8th IEEE International conference on cloud
computing, CLOUD 2015, NewYork City, NY, USA, June 27-July
2, 2015 (pp. 742–749). IEEE. https://doi.org/10.1109/CLOUD.
2015.103

Haidar, A., Jagode, H., Vaccaro, P., YarKhan, A., Tomov, S., &
Dongarra, J. (2019). Investigating power capping toward energy-
efficient scientific applications. Concurrency and Computation:
Practice and Experience, 31(6), e4485. https://doi.org/10.1002/
cpe.4485.

Jeyarani, R., Nagaveni, N., & Ram, R. V. (2012). Design and imple-
mentation of adaptive power-aware virtual machine provisioner
(apa-vmp) using swarm intelligence.FutureGenerationComputer
Systems, 28(5), 811–821.

Krzywaniak, A., Proficz, J., & Czarnul, P. (2018a) Analyzing
energy/performance trade-offs with power capping for parallel
applications on modern multi and many core processors. In 2018
Federated conference on computer science and information sys-
tems (FedCSIS). (pp. 339–346)

Krzywaniak, A., Proficz, J., & Czarnul, P. (2018b) Analyzing
energy/performance trade-offs with power capping for parallel
applications on modern multi and many core processors. In Pro-
ceedings of the 2018 federated conference on computer science
and information systems (pp. 339–346). https://doi.org/10.15439/
2018f177. https://doi.org/10.15439/2018f177

Krzywda, J., Ali-Eldin, A., Wadbro, E., Östberg, P., & Elmroth,
E. (2018) Alpaca: Application performance aware server power
capping. In 2018 IEEE International conference on autonomic
computing (ICAC) (pp. 41–50). https://doi.org/10.1109/ICAC.
2018.00014

Liu,Y., Cox,G.,Deng,Q.,Draper, S.C.,&Bianchini, R. (2016) Fastcap:
An efficient and fair algorithm for power capping in many-core
systems. In 2016 IEEE International symposium on performance
analysis of systems and software (ISPASS) (pp. 57–68). https://
doi.org/10.1109/ISPASS.2016.7482074

NASA: Nas Parallel Benchmarks. (2019). https://www.nas.nasa.gov/
publications/npb.html. Accessed April 2019.

oj! Algorithms.http://ojalgo.org/
Oleksiak, A., Ciesielczyk, T., Kierzynka, M., & Piatek, W. (2018)

Minimising energy costs of data centers using high dense het-
erogeneous systems and intelligent resource management. In
Proceedings of the ninth international conference on future energy
systems, e-Energy ’18. (pp. 499–505). ACM, New York, NY,
USA. https://doi.org/10.1145/3208903.3213777. https://doi.org/
10.1145/3208903.3213777

Oleksiak,A.,Kierzynka,M., Piatek,W.,Agosta,G.,Barenghi,A.,Bran-
dolese, C., Fornaciari, W., Pelosi, G., Cecowski, M., Plestenjak,
R., inkelj, J., Porrmann, M., Hagemeyer, J., Griessl, R., Lach-
mair, J., Peykanu, M., Tigges, ., Berge, M.v.d., Christmann, W.,
Krupop, S., Carbon, A., Cudennec, L., Goubier, T., Philippe, J.M.,
Rosinger, S., Schlitt, D., Pieper, C., Adeniyi-Jones, C., Setoain,
J., Ceva, L., & Janssen, U. (2017) M2dc modular microserver
datacentre with heterogeneous hardware. microprocessors and
microsystems 52(C), 117–130. https://doi.org/10.1016/j.micpro.
2017.05.019. https://doi.org/10.1016/j.micpro.2017.05.019

Rountree, B., Ahn, D., De Supinski, B., Lowenthal, D., & Schulz,
M. (2013) Beyond dvfs: A first look at performance under a
hardware-enforced power bound. InProceedings of the 2012 IEEE
26th international parallel and distributed processing sympo-
sium workshops IPDPSW 2012. (pp. 947–953). https://doi.org/
10.1109/IPDPSW.2012.116

Takouna, I., Rojas-Cessa, R., Sachs, K., & Meinel, C. (2013)
Communication-aware and energy-efficient scheduling for parallel
applications in virtualized data centers. In IEEE/ACM 6th Inter-
national conference on utility and cloud computing, UCC 2013,
Dresden, Germany, December 9–12, 2013 (pp. 251–255). IEEE.
https://doi.org/10.1109/UCC.2013.50

Tiwari, A., Schulz, M., Carrington, L. (2015) Predicting optimal power
allocation for cpu and dram domains. In 2015 IEEE International
parallel and distributed processing symposium workshop. (pp.
951–959). https://doi.org/10.1109/IPDPSW.2015.146

Zhang, H., & Hoffmann, H. (2016). Maximizing performance under
a power cap: A comparison of hardware, software, and hybrid
techniques. SIGARCH Computer Architecture News, 44(2), 545–
559. https://doi.org/10.1145/2980024.2872375.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-78054-2_12
https://doi.org/10.1007/s00450-014-0269-5
https://doi.org/10.1145/1273440.1250665
https://doi.org/10.1109/CCGrid.2014.47
https://doi.org/10.1109/CCGrid.2014.47
https://doi.org/10.1109/CLOUD.2015.103
https://doi.org/10.1109/CLOUD.2015.103
https://doi.org/10.1002/cpe.4485
https://doi.org/10.1002/cpe.4485
https://doi.org/10.15439/2018f177
https://doi.org/10.15439/2018f177
https://doi.org/10.15439/2018f177
https://doi.org/10.1109/ICAC.2018.00014
https://doi.org/10.1109/ICAC.2018.00014
https://doi.org/10.1109/ISPASS.2016.7482074
https://doi.org/10.1109/ISPASS.2016.7482074
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
http://ojalgo.org/
https://doi.org/10.1145/3208903.3213777
https://doi.org/10.1145/3208903.3213777
https://doi.org/10.1145/3208903.3213777
https://doi.org/10.1016/j.micpro.2017.05.019
https://doi.org/10.1016/j.micpro.2017.05.019
https://doi.org/10.1016/j.micpro.2017.05.019
https://doi.org/10.1109/IPDPSW.2012.116
https://doi.org/10.1109/IPDPSW.2012.116
https://doi.org/10.1109/UCC.2013.50
https://doi.org/10.1109/IPDPSW.2015.146
https://doi.org/10.1145/2980024.2872375

	An approach to reduce energy consumption and performance losses on heterogeneous servers using power capping
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Power management procedure
	4.1 Power management background
	4.2 Power distribution algorithms

	5 Impact of power capping on performance and efficiency
	5.1 Benchmark procedure
	5.2 Benchmarks of continuous applications and GPU accelerators

	6 Power capping evaluation
	6.1 Resource characteristics
	6.2 Applications
	6.3 Experiments
	6.4 Results

	7 Conclusions
	Acknowledgements
	References

