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Abstract
We study a single-machine lot-sizing problem, where n types of products need to be scheduled on the machine. Each product
is associated with a constant demand rate, maximum production rate and inventory costs per time unit. Every time when the
machine switches production between products, sequencing costs are incurred. These sequencing costs depend both on the
product the machine just produced and on the product the machine is about to produce. The goal is to find a cyclic schedule
minimizing total average costs, subject to the condition that all demands are satisfied. We establish the complexity of the
problem, and we prove a number of structural properties largely characterizing optimal solutions. Moreover, we present two
algorithms approximating the optimal schedules by augmenting the problem input. Due to the high-multiplicity setting, even
trivial cases of the corresponding conventional counterparts become highly non-trivial with respect to the output sizes and
computational complexity, even without sequencing costs. In particular, the length of an optimal solution can be exponential
in the input size of the problem. Nevertheless, our approximation algorithms produce schedules of a polynomial length and
with a good quality compared to the optimal schedules of exponential length.

Keywords Lot-sizing problem · Sequencing costs · High multiplicity · Approximation algorithm

1 Introduction

In the current competitive economy, companies need to
be aware of multiple objectives such as decreasing costs
and enhancing customer service. Among the core activities
of many companies and supply chains are mechanisms to
match supply with demand, to prevent stock-outs and to cut
back unnecessary overhead costs. Production companies are
required to conduct extensive research into cost reduction to
remain competitive within the market. Consequently, a lot
of interest has been shown in problems within the area of
operations management.

This paper is motivated by a real-life problem: A multi-
national textile company posed the problem of optimizing
the production schedule of their lycra production operations.
The company employed a single machine to produce syn-
thetic fibers of a few different types of thickness, subject
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to (extremely large) fixed daily output rates. In the setting
we have dealt with, there were three to five types of lycra
thickness. Every switch from one thickness type to another
is associated with a setup of the machine, and corresponding
costs occur. The company was interested in finding a cyclic
production schedule of minimum cycle length. A similar
setting can be encountered in the automotive manufactur-
ing, where the cars on the conveyor belt should be colored.
Due to cleansing requirements, changing from one color to
another does not only take afixed amount of setup time, but an
additional amount of time based on the color sequence, e.g.,
switching from black to yellow is more costly than switching
from yellow to green.

In the aforementioned industrial setting, the problem of
finding an optimal cycle in which every product is produced
exactly once has been addressed in Wetsels (2012). In the
present paper, we generalize this result to cyclic schedules
with no restrictions on the number of production periods per
product. We arrive at a lot-sizing problem with sequence-
dependent setup costs and aim to find a cyclic schedulewhich
minimizes total average costs.

The lot- sizing problem is a well-studied problem in
operations management, where one machine needs to pro-
duce a set of products to minimize average holding and
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setup costs. In this problem, the ongoing production can
be represented as the repeated scheduling of a single job
on the machine, enabling a highly compact encoding of the
input. These types of problems are commonly referred to
as high-multiplicity scheduling problems. Jobs in the high-
multiplicity setting are represented by a single job description
with a multiplicity, representing the number of individual
jobs to be processed. It is different from the conventional
scheduling setting where every single job, even though iden-
tical to many others, is given as a part of the problem input.
In this case, the input length of the traditional setting can be
exponentially larger than the length of the high-multiplicity
input, resulting in exponentially slower performance of algo-
rithms regularly applicable in traditional scheduling. Due to
the compact encoding of the input for the problem at hand,
the optimal schedule can have superpolynomial length, even
for very restricted cases with only one or two products (see
Gabay et al. 2014). Consequently, finding a polynomially
sized certificate for these types of problems alone can already
prove to be a hard task.

Not only from the computational complexity point of
view, it is questionable whether conventional encoding is
practical for high-multiplicity problems. For many com-
panies, the high-multiplicity encoding is a natural way to
provide input from real-world data, especially if thousands of
jobs are identical, and is found in numerous practical appli-
cations. In this age of big data, in which processing large
amounts of data is becoming more and more important, and
in many cases necessary in order to keep up with competi-
tors, companies are often able to compress large amounts
of data into smaller-sized input sets. Algorithms need to be
equipped to cope with these compressed data in such a way
that the original problem is tackled, without resorting to the
usage of excessive processing times in order to process the
underlying information of the reduced input.

In this paper, we address this issue by incorporating
high-multiplicity encoding into an extended version of the
aforementioned real-life problem, the lot- sizing prob-
lem with sequence-dependent setup costs. In this problem,
we have a single machine that is capable of producing a sin-
gle product at any given time and a set of products that need
to be produced. Each product is associated with a demand
rate, a maximum production rate and inventory holding costs
per unit. The objective is to find a cyclic schedule such that
the demand of every product is met, minimizing the average
costs per cycle. For any schedule, sequence-dependent setup
costs, referred to as sequencing costs, are incurred each time
themachine switches production between two different prod-
ucts. Moreover, input is provided under high-multiplicity
encoding.

We show NP-hardness of the problem, and we largely
characterize optimal solutions by proving a number of struc-

tural properties, which will be of great use for the algorithm
design. Further, we develop an approximation algorithm
which slightly perturbs the input instance to get a polyno-
mial running time and, most importantly, polynomial size of
the output schedule, where the number of products is fixed.
The latter is a reasonable assumption, since in most real-
world applications, the number of distinct product types is
relatively small, while the demand quantities are substantial.
The quality of the resulting schedule is relatively close to that
of an optimal schedule.

2 Related work

The earliest research on problems with high-multiplicity
encoding dates back to the 1960s; see e.g., Rothkopf (1966)
who considers the traveling salesman problem with
multiple visits to cities. Madigan (1968) studies a variant
of our problem where setup times are introduced, setup
costs do not depend on the sequence, and holding costs are
product-independent. He proposes an elegant heuristic for
the problem and compares it to the results previously pub-
lished in the literature. Goyal (1973) studies the variant of
the problem posed by Madigan where no setup times are
involved and solves the problem to optimality for a fixed
time horizon. Boctor (1982) extends the model to incorpo-
rate product-dependent holding costs and setup times and
considers an infinite time horizon. He presents an exact algo-
rithm for the case of two products. For a historic overview
of economic lot-sizing problems, we refer to Holmbom and
Segerstedt (2014).

Only in 1991, Hochbaum and Shamir (1991) coined the
term high multiplicity and underlined the added complex-
ity of such encodings. They study single-machine high-
multiplicity scheduling problems with different objective
functions and construct algorithms that are strongly poly-
nomial in the number of types of jobs. At the same time,
Narro Lopez and Kingsman (1991) discuss basic solution
approaches to high-multiplicity scheduling problems and
assess their quality and use in practice.

Most papers on high-multiplicity scheduling consider dis-
crete variants, in which time and/or quantities are discretized
into units. There has also been some work considering the
continuous setting, in which production can start and stop at
any time, e.g., with fluids. Bertsimas et al. (2003) consider the
high-multiplicity job shop problemwithout sequencing costs
and use this continuous setting as a relaxation for the original
discrete job shop problem. They round an optimal solution
for thefluid problem to an asymptotically optimal solution for
the discrete problem and provide some computational exper-
iments. In another work on the continuous setting, Haase
(1996) discusses a problem very closely related to ours,
where production rates are fixed. He proposes a local search
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heuristic and evaluates it by comparing it to optimal solu-
tions for small instances. Haase and Kimms (2000) consider
the same problem and, by making additional assumptions on
the input instances, solve the problem to optimality. They
present a mixed integer programming formulation for their
model and a fast enumeration scheme, which they evaluate
by a computational study.

Incorporating sequencing costs substantially adds com-
plexity akin to the traveling salesman problem. The
techniques we are using in this paper are closely related to
the techniques used in classical single multiplicity schedul-
ing. For instance, Clifford and Posner (2000) provide lower
bounds and use these to develop heuristics for minimizing
tardiness. They extend the problem to parallel, uniform and
unrelated machines in Clifford and Posner (2001), where
their objective is to minimize the makespan or the sum
of completion times in either the preemptive, or the non-
preemptive variant of the problem. They prove NP-hardness,
develop polynomial time and pseudopolynomial time algo-
rithms for special cases, and present heuristics. Filippi and
Romanin-Jacur (2009) continue theirwork and present a two-
stage approach, in which they first fix most jobs in partial
schedules and then solve the residual problem.

Brauner et al. (2005) provide a detailed framework for
the complexity analysis of high-multiplicity schedulingprob-
lems.We refer the reader to this paper for an excellent survey
of related work in this field. They extend their framework in
Brauner et al. (2007).

3 Themodel

We model the general problem for multiple products as fol-
lows. We have a single machine that can produce a single
type of product at any given time and we are given a set of
products J = {1, . . . , n}. For each product i ∈ J , let pi be
its maximum production rate, i.e., the maximum number of
units produced per time unit. Similarly, let di be its demand
rate and hi its holding costs per time unit. Furthermore, we
are given sequencing costs si, j that need to be paid when
the machine switches from producing product i to producing
product j . The problem we consider is to find an optimal
cyclic schedule S∗ that minimizes the average costs per unit
of time c̄(S∗). Note that for each product i , the rates di and
pi and costs hi are assumed to be constant over time and pos-
itive. Observe that the input is very compact. Let m be the
largest number in the input, then the input size isO(n logm),
where n is typically a small number, or even a constant.

We distinguish two variants of the problem: The continu-
ous case, in which the machine can switch production at any
time; and the discrete case, in which the machine can switch
production only at the end of a fixed unit of time (e.g., a day)
and produces some product i at a single rate ri ≤ pi during

each unit of time. Herewith, we assume that production is
done in the beginning of the period and demand is satisfied
at the end. Without loss of generality, in both variants we
assume di , pi , hi , si j ≥ 1 for all i, j ∈ J .

We denote by LSP(A,n) with A ∈ {C, D}, n ∈ N the lot-
sizing problem of scheduling n products in the continuous or
discrete setting, respectively. Let π [a,b)

i denote the produced
amount of product i during time interval [a, b). Let π t

i =
π

[t,t+1)
i . Let xti be an indicator function denoting whether

product i is produced during time interval [t, t + 1). Let qti
denote the stock level for product i at time t . We explicitly
refer to the stock of product i at time t in a schedule S as
qti (S).

Finally, let H(S) denote the total holding costs andW (S)

the total sequencing costs of a schedule S, and c(S) =
H(S) + W (S) denote the total costs of S. Denote the
average costs of a cyclic schedule S of cycle length � by
c̄(S) = H̄(S)+ W̄ (S), where H̄(S) = H(S)/� and W̄ (S) =
W (S)/�.

Formally, we arrive at the following problem.

Input Let A ∈ {C, D}. Let a set of products J = {1, . . . , n}
be given, and for each product i ∈ J , a demand rate
di ≥ 1, amaximum production rate pi ≥ 1, and inven-
tory holding costs hi ≥ 1. Sequencing costs si, j ≥ 1
are given for every pair of products.

Task Find a cyclic schedule S which minimizes the average
costs per unit of time, c̄(S) for A.

We represent a cyclic schedule of length � as a sequence:

[
t0, t1

)r0
i0

, [t1, t2)r1i1 , . . . , [ts, �)
rs
is

,

where rϕ ≤ piϕ is a production rate of phaseϕ = 0, . . . , s,
iϕ is the product produced in that phase, and [tϕ, tϕ+1) is a
maximal time interval where only iϕ is produced at a fixed
rate rϕ . A maximal sequence of consecutive phases of the
same product i ∈ J is called a production period, denoted
by [t, t ′)i for some t ′ > t . The complete sequence of phases
is called the (cyclic) schedule, and we call a schedule a sim-
ple cycle if there is exactly one production period for each
product.

4 Structural properties of optimal solutions

We now prove some structural properties of optimal sched-
ules of the problem. We show that all variants are NP-hard,
even whenwe restrict ourselves to unit demand rates and unit
holding costs. Next, we derive a simple necessary and suffi-
cient condition for the existence of a feasible cyclic schedule.
Furthermore, we characterize the form of production for the
continuous and discrete cases. Also, we show that there is no
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idle time in an optimal schedule and that every product has
at least one point during the schedule where its stock level is
zero. Finally, in the last subsection, we present a lower bound
on the objective value for the continuous case and an upper
bound on the objective value and themaximumstock level for
the discrete case. We use these bounds in the approximation.

4.1 Problem complexity

The following lemma follows directly from a reduction from
the traveling salesman problem (TSP).

Lemma 1 (Complexity)Both the discrete and the continuous
variants of the lot-sizing problem are strongly NP-hard.

Proof WeproveNP-hardness for the discrete case by a reduc-
tion from the traveling salesman problem (TSP). Let
us consider a TSP instance I = {G = (V , E), [ci, j ]V×V }.
From this given TSP instance, we construct an instance I ′ =
{J , (di , pi , hi )i∈J , [si, j ]J×J } of the lot- sizing problem
as follows.

Identify J with V and let si, j = ci, j for each i, j ∈ J .
Let di = 1, pi = |V | = n, and hi = h = ∑

j,k s j,k + 1 for
each i ∈ J . Additionally, let Wmax = ∑

i, j si, j and Wmin =
n × mini, j si, j .

Note that for every feasible schedule S, we have sequenc-
ing costs W (S) such that W (S) ≥ Wmin. Moreover, for all
simple cycles S we haveW (S) ≤ Wmax. We claim that there
exists a TSP tour of length at most B if and only if the corre-
sponding instance of the lot-sizing problem admits a solution
of total cost at most hn(n − 1)/2 + B/n.

Clearly, since the total demand and production ratesmatch
each other, the total stock level is constant over time. Every
simple cycle of length n, using the same order of products,
can be realized with average holding costs H̄ = hn(n−1)/2
and average sequencing costs Wmin/n ≤ W̄ ≤ Wmax/n. In
fact, this schedule is minimum regarding the holding costs.

Let S′ be a feasible non-simple cycle of length �′ > n
with total costs c(S′) = H(S′) + W (S′). Note that there is
a product of which two consecutive production periods are
separated by at least n + 1 time units. Hence, we need at
least one additional unit of that product in stock and thus
H(S′) ≥ h�′n(n − 1)/2 + h�′. Thus, for every minimal
simple cycle S, since W (S) ≤ Wmax < h, we have that the
average costs of S′ are c̄(S′) ≥ H(S′)/�′ > c̄(S). Observe
that the value of H̄(S) is the same for every minimal simple
cycle, and therefore the optimal solution to I is the minimal
simple cycle which minimizes W (S).

Let σ be a sequence of visits in the TSP instance with
costs B. Producing each product for 1 time unit with the same
sequence as σ is a feasible solution for the lot-sizing problem
with costs hn(n−1)/2+B/n. Conversely, let σ be a solution
for the lot-sizing problem with costs hn(n − 1)/2 + B/n.
This solution is a simple cycle, and therefore the production

sequence is a tour with costs B. This proves the NP-hardness
of the discrete case.

We prove the continuous case by a similar reduction from
the Metric TSP. For an instance I of the Metric TSP, we
let J = V and si, j = ci, j for all i, j ∈ J . Let di = 1, pi = n
and hi = 1 for all i ∈ J .

Let σ be an optimal solution to I with costs c(σ ). Let S
be any feasible schedule for the corresponding instance I ′ of
the lot-sizing problem, and let the length of the schedule be
�. Let S∗ be the simple cycle of length �∗ where the products
are produced in the same order as in σ , with production time
�∗/n per product.

Since every product needs to be produced at least once in
a feasible schedule and the triangle inequality holds for the
sequencing costs, S∗ is optimal with respect to the sequenc-
ing costs, i.e., W (S∗) ≤ W (S). Note that compared to the
discrete case, the continuous case has a complication: We
can choose �∗ arbitrarily small. By construction, every pro-
duction period in schedule S∗ consists of one phase of length
�∗/n where the product is produced at rate pi = n. Since
hi = 1, the total holding costs for every product i are given
as (cf. Fig. 1)

∫ �∗/n

0
qti dt +

∫ �∗

�∗/n
qti dt = n − 1

2n
(�∗)2. (1)

Thus, the total holding costs of S∗ are H(S∗) = (�∗)2(n−
1)/2 and the average holding costs are H̄(S∗) = �∗(n−1)/2.
In particular, since holding costs decrease with the cycle
length, we can choose �∗ such that H̄(S∗) ≤ H̄(S) and
c̄(S∗) ≤ c̄(S). Thus, we have that the optimal solution to
I ′ is a simple cycle S∗ using the sequence of σ .

The total average costs c(σ )/�∗ + �∗(n − 1)/2 are mini-
mized with �∗ = √

2c(σ )/(n − 1). Hence, we have

t

qti

n−1

0

−1

∗
n

∗

n−1
n

∗

Fig. 1 An illustration to clarify Eq. (1)
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c(σ ) = W (S∗) = n − 1

2
(�∗)2 = H(S∗).

Now, σ is an optimal solution for I with costs c(σ ), if and
only if there is an optimal solution for I ′ with average costs√
2(n − 1)c(σ ). �	
A closely related problem with setup times was addressed

in Gallego and Shaw (1997), where they show NP-hardness
for multiple special cases of their problem.

4.2 Feasibility condition

Observe that di/pi is the fraction of time product i needs
to be scheduled on the machine, and therefore

∑
i∈J di/pi

needs to be at most 1. The following lemma shows that this
is a sufficient condition for feasible schedules.

Lemma 2 [Feasibility, Gabay et al. (2014)]For both variants
of the problem, there exists a feasible schedule if and only if

∑

i∈J

di
pi

≤ 1.

Remark 1 Note that additionally for LSP(F,n), a schedule of
length � is feasible if and only if

�di
pi

=
�−1∑

t=0

xti ∈ N, and � mod (pi − di ) = 0, ∀i∈J .

4.3 Characterizing optimal production schedules

In this subsection, we prove several properties about the pro-
duction in continuous and discrete schedules. We start by
showing that if there is some idle time in a schedule, we
can already start producing the next product at demand rate
during the idle time to decrease the holding costs.

Lemma 3 [No idle time, Gabay et al. (2014)] Let S∗ be an
optimal schedule for LSP(C,n) or LSP(D,n), with n ∈ N. S∗
has no idle time.

We now provide a short proof for the claim that in an
optimal schedule for the continuous case, at any time the
production rate is always larger than or equal to the demand
rate of the produced product.

Lemma 4 (Produce at least the demand rate) Let S∗ be an
optimal schedule for LSP(C,n) with n ∈ N. For each phase
[t, t ′)ri in S∗, we have that r ≥ di .

Proof Weprove by contradiction. Let S be a counterexample,
i.e., there is at least one phase [t, t ′)ri with r < di . Since S
is feasible, we know that qti ≥ (di − r)(t ′ − t) > 0. Now,

let π [t ′,�)∪[0,t)
i ← π

[t ′,�)∪[0,t)
i − (di − r) (t − t ′) and replace

[t, t ′)ri by [t, t ′)dii . Clearly, the schedule is feasible and the
costs are decreased, and thus S was not optimal. �	

The next property ensures that themachine produces every
product i only at rates di and pi to minimize holding costs
in the continuous case.

Lemma 5 [Two-phase production, Gabay et al. (2014)]Con-
sider LSP(C,n) for any n ≥ 2. There is an optimal cycle S∗
such that for every product i ∈ J , every production period of
i in S∗ consists of at most two phases. For every production
period, in the first phase the machine produces i at a rate of
di . During the second (non-empty) phase i is produced at a
rate of pi .

Note that in a tight schedule, i.e.,
∑

i∈J di/pi = 1, in
order to meet demand for each product, the machine needs
to continuously produce at maximum speed. Therefore, in an
optimal schedule S for a tight instance of the problem, each
production period consists of a single phase where product
i is produced at rate pi . Furthermore, the proof of Lemma 5
also proves that in an optimal schedule for LSP(C,n), for each
phase [t, t ′)ri , we have that r = di or r = pi .

Following the same reasoning as in the previous two lem-
mata, we can achieve a similar result for the discrete case of
the problem and prove that in an optimal schedule, produc-
tion periods consist of at most four phases.

Lemma 6 (Four-phase production) Consider LSP(D,n) for
any n ≥ 2. There is an optimal cycle S∗ such that for every
product i ∈ J , every production period of i in S∗ consists
of at most four phases. For every production period, in the
first phase the machine produces i at a rate of r1 < di and
this phase has length at most 1. During the second phase i is
produced at a rate of di . During the third phase, i is produced
at rate di < r2 < pi and this phase again has length at most
1. Finally, during the fourth phase, i is produced at a rate of
pi . Phases can be empty, but the first and third phase cannot
occur sequentially.

Proof We prove by contradiction. We claim, following argu-
ments similar to those in the proofs of the previous two lem-
mata, that phaseswithin the production period can be ordered
such that for every pair of phases [t j , t j+1)

r1
i , [t j ′, t j ′+1)

r2
i

with j ′ > j we have that r1 < r2 in order to minimize costs
while retaining a feasible schedule. To see this, note that a
swap similar to the swap in the proof of Lemma4yields lower
holding costs, as it is always favorable to produce demand at
the latest possible time.

Suppose we have an optimal schedule S with two consec-
utive phases [t j , t j+1)

r j
i , [t j+1, t j+2)

r j+1
i . By definition of a

phase, r j 
= r j+1. Since S is optimal, 0 < r j < r j+1 ≤ pi
must hold. Clearly, if t j+2 = t j+1 + 1 = t j + 2, the lemma
holds. Otherwise, we construct a new schedule S∗ and we
start this construction by initializing S∗ := S.
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t

q

q
t j
i

q
t j+2
i

di

r1 r2

pi

t j t1 t2 t3 t4 t j+2

�

Fig. 2 A depiction of an optimal production period of schedule S∗ for
LSP(C,n) (where phases [t1, t2)r1i and [t3, t4)r2i must be empty) and for
LSP(D,n), with n ≥ 2

We split [t j , t j+1)
r j
i , [t j+1, t j+2)

r j+1
i in S∗ into five new

phases as follows.Wefirst deplete the stockbyq◦ and consec-
utively increase the stock by q∗, where these values depend
on the case distinction below. We introduce the indicator
function fN(x) = �x� − �x� which takes on the value 1 if
x /∈ N and 0 otherwise. The new phases are:

[t j , t1)0i , [t1, t2)r1i , [t2, t3)dii , [t3, t4)r2i , [t4, t j+2)
pi
i ,

where t1 = t j +
⌊
q◦

di

⌋
, and t2 = t1 + fN

(
q◦

di

)
,

t4 = t j+2 −
⌊

q∗

pi − di

⌋
, and t3 = t4 − fN

(
q∗

pi − di

)
,

r1 = di −
(
q
t j
i − (t1 − t j )di

)

and r2 = di +
(
q
t j+2
i − (t j+2 − t4)(pi − di )

)
.

We refer the reader to Fig. 2 for a depiction of the new set
of phases.

Firstly, suppose di ≤ r j < r j+1. Now, let q∗ = (q
t j+2
i −

q
t j
i ) andq◦ = 0, consequently producing stock,which results
in a production period of at most three phases.

Secondly, suppose r j < r j+1 ≤ di . Now, let q◦ =
(q

t j
i − q

t j+2
i ) and q∗ = 0, consequently depleting stock,

which results in a production period of at most three phases.
Lastly, suppose r j < di < r j+1. Now, let q◦ = q

t j
i and

q∗ = q
t j+2
i , consequently first depleting and consecutively

producing stock, which results in a production period of at
most four phases.

If completely depleting and consecutively producing the
stock takes longer than the production period, we get t2 > t3.
In this case, denote the total amount of stock which was
produced in this production period by q = (t j+2 − t j )di +
(q

t j+2
i − q

t j
i ) = r j (t j+1 − t j ) + r j+1(t j+2 − t j+1). Then,

let t4 = t j+2 −
⌊

q
pi

⌋
and t1 = t2 = t3 = t j+2 −

⌈
q
pi

⌉
and

r2 = di + q − pi
⌊

q
pi

⌋
, resulting in a production period of at

most three phases.
Clearly, in all cases S∗ is feasible. If S∗ is different from

S, then H(S∗) < H(S), and thus S is not optimal. Note that
the phase [t j , t1)0i is idle and can be removed as in the proof
of Lemma 3 by extending or introducing demand production
for someother product, thereby delaying its stock production,
leaving a production period of four phases and proving the
lemma. �	

Note that the proof of Lemma 6 also shows that in an
optimal schedule for LSP(D,n), for each phase [t, t ′)ri with
t ′ > t + 1, we have that r = di or r = pi .

We now show that in the continuous case, the machine
produces product i at rate di only if the stock for i is empty.

Lemma 7 (Level production for continuous case) In an opti-
mal schedule S∗ for an instance of LSP(C,n), for any product
i ∈ J there exists a non-empty phase [t j , t j+1)

di
i (i.e., with

t j+1 > t j ) only if q
t j
i = 0.

Proof We prove by contradiction. Suppose we have an opti-
mal schedule S with a phase [t j , t j+1)

di
i with t j+1 > t j and

q
t j
i > 0. Again, we construct a new schedule S∗ starting with
S∗ := S. We split [t j , t j+1)

di
i in S∗ into three new phases:

[t j , t1)0i , [t1, t2)dii , [t2, t j+1)
pi
i ,

where t1 = t j + q
t j
i

di
and t2 = t j+1 − q

t j+1
i

pi − di
.

If the length of the phase is too short to completely deplete
the stock and consecutively completely rebuild the stock, i.e.,
t1 > t2, then we reduce the stock as much as possible. In this
case, let t1 = t2 = t j+1 − t◦, where t◦ = (t j+1 − t j )

di
pi

denotes the time required to produce when producing at rate
pi in order to meet demand during the original phase.

Clearly, S∗ is feasible and now we have that H(S∗) <

H(S) and thus S is not optimal. �	
We now show a similar result for the discrete case, where

the machine produces product i at rate di only if the stock
for i is empty or if the production phase has length 1.

Lemma 8 (Level production for discrete case) In an optimal
schedule S∗ for an instance of LSP(D,n), for any product
i ∈ J there exists a non-empty phase [t j , t j+1)

di
i only if

q
t j
i = 0 or t j+1 = t j + 1.

Proof We prove by contradiction. Suppose we have an opti-
mal schedule S with a phase [t j , t j+1)

di
i with t j+1 = t j + 2

and q
t j
i > 0. Once again, we construct a new schedule S∗
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starting with S∗ := S. We can now split [t j , t j+1)
di
i in S∗

into two new phases:

[t j , t j + 1)r1i , [t j + 1, t j+1)
r2
i .

If q
t j
i < di , let r1 = di −q

t j
i and r2 = di +q

t j
i . Otherwise,

let r1 = max{2di − pi , 0} and r2 = min{pi , 2di }. Clearly,
S∗ is feasible and we have that H(S∗) < H(S) and thus S is
not optimal.

Next, suppose t j+1 > t j + 2. Now, split [t j , t j+1)
di
i into

the phases [t j , t j +1)r1i [t j +1, t j+1 −1)dii [t j+1 −1, t j+1)
r2
i ,

where r1 and r2 are defined as above. This process can be
iteratively repeated upon the schedule S∗ until either the stock
level reaches 0, or there is at most one phase left of length 1.

�	
We can now show that in an optimal schedule, for every

product there is a time where its stock level is zero.

Lemma 9 (Zero stock level) Let S∗ be an optimal schedule
for an instance of LSP(C,n) or LSP(D,n). Then, for each
i ∈ J there exists a time t such that qti = 0.

Proof The proof is by contradiction. Let S be an optimal
schedule of length � with at least one product i such that
qti > 0 for all t . Let t∗ be such that qt∗i = min0≤t≤� qti . Now,
let S∗ be a copy of S, where we decrease the stock level for
the entire schedule of this product, i.e., qti ← qti −qt

∗
i for all

0 ≤ t ≤ �. Since qt
∗
i ≤ qti for all t in S, we know that S∗ is

feasible. Clearly, H(S∗) < H(S), and thus S is not optimal.
Note that the stock level can be decreased by producing at
a rate lower than required by the schedule until the desired
level is attained. �	

4.4 Bounding the average costs

We conclude the basic properties with a lower bound on the
average costs of an optimal continuous schedule and an upper
bound on the average costs and maximum stock level of an
optimal discrete schedule. To obtain these, we first derive
optimality conditions for both cases.

Lemma 10 (Continuous cost balancing)An optimal schedule
S for an instance of LSP(C,n) has the property that H(S) =
W (S).

Proof We prove by contradiction. Let S be an optimal sched-
ule s.t. H(S) 
= W (S). Scale the length of each phase in S
by a positive factor δ 
= 1, such that for the resulting feasible
schedule S′ it holds that H(S′) = W (S′). Let i be a product,
where without loss of generality we assume that hi = 1. The
holding costs for i in S during a phase [t1, t2)ri are given as

H(i, [t1, t2)ri ) = (t2 − t1)qmin + (t2 − t1)2

2
(r − di ) ,

where qmin is the minimum stock level of i during the
phase.When rescaling, wemaintain two inequalities. First of
all, it is clear that (t ′2−t ′1) ≤ (t2−t1)δ.Moreover, considering
Fig. 1, we see that rescaling results in similar triangles of
the stock level, implying that q ′

min ≤ qminδ. Thus, for the
corresponding phase [t ′1, t ′2)ri of the scaled schedule S′ we
have

H(i, [t ′1, t ′2)ri ) = (t ′2 − t ′1)q ′
min + (t ′2 − t ′1)2

2
(r − di )

≤ (t2 − t1)δ
2qmin + (t2 − t1)2δ2

2
(r − di )

= H(i, [t1, t2)ri )δ2.

Summing over all phases and products, we get

H(S′) =
∑

[t ′1,t ′2)ri ∈S′

∑

i∈J

H(i, [t ′1, t ′2)ri ) ≤ H(S)δ2.

Observe that due to scaling the schedule, we have
W (S) = W (S′) = H(S′) ≤ H(S)δ2, or equivalently,
δ ≥ √

W (S)/H(S). We now choose δ such that

√
W (S)

H(S)
≤ δ <

1

2
+ W (S)

2H(S)
. (2)

Observe that for anyvalues of H(S) andW (S) s.t. H(S) 
=
W (S), there exists a δ satisfying Eq. (2). Because of this
particular choice of δ, we have that

c̄(S′) = 1

�′ H(S′) + 1

�′ W (S′) = 1

�δ
H(S′) + 1

�δ
W (S)

≤ δ

�
H(S) + δ

�
H(S) = 2δ

�
H(S)

<
1

�
H(S) + 1

�
W (S) = c̄(S),

and thus S was not optimal, proving the lemma. �	
We now prove a similar result for the discrete case, tak-

ing into account that low values of δ might create infeasible
schedules.

Lemma 11 (Discrete cost balancing) A schedule S for an
instance of LSP(D,n) is optimal only if W (S) ≤ 4 · H(S).

Proof The lemma follows almost entirely from the proof of
Lemma 10. The difference is that in the discrete case, we
might introduce infeasible schedules S′ by stretching with
any factor δ. Therefore, we restrict ourselves to factors δ ∈
N, δ ≥ 2. The first inequality in Eq. (2) now holds only if
W (S) ≤ 4 · H(S). �	

To obtain a lower bound on the average costs, we first fully
characterize the optimal continuous schedule for instances
where all products are identical.
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t

qti

pi −di

q

−di

a b

x

t1 t2 t3

single product block

Fig. 3 An example of a single minimum product block

Lemma 12 (Identical products) For LSP(C,n) with n identi-
cal products, i.e., di = d, pi = p, hi = h and si, j = s
for all i, j ∈ J , the optimal schedule S∗ is a simple cycle of
average costs c̄(S∗) and length �, where

c̄(S∗) = nα

√
2s(p − d)dh

p
and � = 1

α

√
2sp

(p − d)dh
,

where α =
(
1 − 1

n
+ d

p

)
.

Proof Since all products are identical, the optimal schedule is
defined by a simple cycle where all products are produced for
the same period of time and H(S) = W (S); see Lemma 10.

We first look at a single product block [t1, t2, t3)i , which
denotes the period for a single item i from themoment it starts
a production period, until it starts another production period.
Here, [t1, t2) denotes the production period for product i and
[t2, t3) denotes the period during which i is not produced.
Note that qt1i = qt3i = 0. See Fig. 3.

The holding costs for a single product i are given as xq
2 h,

where q is the maximum stock level and x is the time where
product i is produced at rate p plus the time it is not produced,
during the product block. Given a slope of p − d during
production and a slope of −d during non-production, since
q = a(p − d) = bd, we have a = dx

p , b = x − a, resulting
in total holding costs of

xq

2
h = x

a(p − d)

2
h = x2

(p − d)d

2p
h.

For each product, the length of the product block is given
as the total length �. Note that 1 − dn

p is the fraction of time
during which the machine produces any product at rate d.

Since all products are produced for an equal amount of time,
the fraction of time during which one product is produced at

rate d is 1
n − d

p . Define α :=
(
1 − 1

n + d
p

)
, yielding x = �α.

Note that in a tight schedule, α = 1.
The optimal schedule S has total sequencing costs

W (S) = ns and total holding costs H(S) = x2 (p−d)d
2p hn =

�2α2 (p−d)d
2p hn.

Thus, the average costs are given as

ns

�
+ �α2 (p − d)d

2p
hn.

We now find the optimal cycle length � using thatW (S) =
H(S). Given the optimal length, we can calculate the average
total costs c̄(S), yielding

� = 1

α

√
2sp

(p − d)dh
and c̄(S) = nα

√
2s(p − d)dh

p
.

�	
Using the characterization for identical products, we can

construct a lower bound on the average costs of a schedule.

Lemma 13 (Lower bound on average costs) Consider
LSP(C,n) for n > 1. Let S∗ be the optimal schedule. Let
i be the product minimizing (pi−di )di

2pi
hi , and let smin =

mini, j∈J si, j be the minimum sequencing costs. Then,

c̄(S∗) ≥ nα

√
2smin(pi − di )di hi

pi
, where α =

(
1 − 1

n
+ di

pi

)
.

Proof Intuitively, we construct a schedule for n identical
products with d, p and h equal to the corresponding value of
the least costly product.We use the notation fromLemma 12.

In order to lower-bound the holding costs, assume that we
produce n times a certain new dummy product k, such that
hk ≤ h j and

dk
pk

≤ d j
p j

for all j ∈ J . Furthermore, assume
that the stock level is zero at the beginning and end of the
product block, i.e., qt1k = qt3k = 0. From Lemma 12, we
know that the holding costs of a single product block for k
are equal to

xq

2
hk = x2

(pk − dk)dk
2pk

hk .

Now, let x2hmin denote the minimum holding costs for
each product during the block [t1, t2, t3)k , where

hmin = min
i∈J

(pi − di )di
2pi

hi .

Choosing i as the product minimizing hmin and smin =
mini, j 
=i∈J si j , we apply Lemma 12 to prove this lemma. �	
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The following lemma bounds the length of a specific class
of feasible instances, which we use to create an upper bound
on the average costs in Lemma 15.

Lemma 14 (Upper bound on schedule length for discrete
case) Consider LSP(D,n) for n ≥ 2. Let S be any mini-
mum length feasible simple cycle such that c(S) = W (S) +
H(S) ≤ 5 H(S). The length of S is bounded by

�max =
(

∏

i∈J

p−
i

) √√√√√

∑
(i, j)∈T SP si j

2
∑

i∈J
(p−

i −di )di
p−
i

hi
,

where p−
i = pi

∑
j∈J

d j
p j

and T SP is the shortest possible

simple cycle.1

Proof Since we are interested in a minimum length feasible
schedule, we can assume that the schedule is tight by limit-
ing the maximum production rates. To be precise, for each
product i ∈ J we limit production to

p−
i = pi

∑

j∈J

d j

p j
,

yielding
∑

i∈J di/p
−
i = 1, which constitutes a tight sched-

ule.
Now, since S is a simple cycle, we can calculate the total

holding costs H(S) as follows:

H(S) =
∑

i∈J

hi

∫ �

0
qti dt =

∑

i∈J

�2
(p−

i − di )di

2p−
i

hi ,

where � is the length of S. By definition of T SP , we have
that W (S) ≥ ∑

(i, j)∈T SP si j . Combining the above with
the requirement that c(S) = W (S) + H(S) ≤ 5H(S), we
get:

� ≥ �min =
√√√√√

∑
(i, j)∈T SP si j

2
∑

i∈J
(p−

i −di )di
p−
i

hi
.

Observe that in a feasible tight schedule for the discrete
case, it must be that �

di
p−
i

∈ N+ for each product i ∈ J .

Note that if � is a multiple of
∏

i∈J p−
i , this condition is

satisfied. Any feasible schedule of length at least �min now
constitutes an upper bound on the length of S. Combining this
conditionwith the above inequality yields an upper bound for
� of

1 Note that for practical purposes, the value of n is typically small;
hence, computing the TSP does not pose a problem.

� ≤ �max =
(

∏

i∈J

p−
i

) √√√√
√

∑
(i, j)∈T SP si j

2
∑

i∈J
(p−

i −di )di
p−
i

hi
,

proving the lemma. �	
We now present an upper bound on the average costs of

an optimal discrete schedule.

Lemma 15 (Upper bound on average costs) For n ≥ 2 con-
sider LSP(D,n). The average costs of an optimal schedule
c̄(S∗) are bounded by

c̄(S∗) ≤ 5

2

∑

i∈J

hi
(pi − di )di

pi
�max,

where �max is defined as in Lemma 14.

Proof Let S be any minimum length feasible simple cycle
such that c(S) = W (S) + H(S) ≤ 5 H(S). As in
Lemma 14, we know that H(S) ≤ ∑

i∈J �2
(pi−di )di

2pi
hi ≤

∑
i∈J �max (pi−di )di

2pi
hi�.

Recall that by assumption, c(S) = W (S) + H(S) ≤
5H(S) and S has length � ≥ n. Let S∗ denote an optimal
schedule. Now, observe that

c̄(S∗) ≤ c̄(S) = W (S) + H(S)

�
≤ 5H(S)

�
.

Substituting H(S) by its upper bound proves the lemma. �	
Using the previous lemma, we can now bound the maxi-

mum stock level.

Lemma 16 (Maximum Stock level) Consider LSP(D,n) for
n ≥ 2. The maximum stock level in an optimal schedule S∗

is bounded by Q = 5
(∑

i∈J hi
(pi−di )di

pi

)
�max.

Proof Observe that for this value of Q we have Q
2 ≥ c̄(S∗),

where c̄(S∗) is in Lemma 15. Also, c̄(S∗) = H(S∗)+W (S∗)
�

≥
H(S∗)

�
, which is trivially lower-bounded by 1

2 maxt∈S,i∈J qti .
The lemma follows. �	

We now have the necessary lemmata to bound the costs
of an optimal discrete schedule in terms of an optimal con-
tinuous schedule.

Lemma 17 (Pseudopolynomial ratio) Given an instance of
the lot-sizing problem, let SD and SC be the optimal sched-
ules for LSP(D,n) and LSP(C,n), respectively. Then, there
is a polynomial ξ([pi ]J , [di ]J , [hi ]J , [si j ]J×J ), such that
c̄(SD) ≤ ξ · c̄(SC ).

Proof From Lemmata 13 and 15, we know that c̄(SC ) ≥ ϕ1

and c̄(SD) ≤ ϕ2 for given polynomials ϕ1 and ϕ2. Hence,
c̄(SD)
c̄(SC )

≤ ϕ2
ϕ1
, which is bounded by a polynomial ξ in [pi ]J ,

[di ]J , [hi ]J , and [si j ]J×J . �	
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5 Approximation algorithms

Already for two products, the optimal schedule can have
pseudopolynomial length (Gabay et al. (2014)). This poses
an inherent problem in processing the problem in polynomial
time, particularly in outputting the schedule in polynomial
time.

In this section, we overcome these difficulties and present
two approximation algorithms: First, we augment the prob-
lem and solve this to optimality, yielding an augmented
polynomial time approximation algorithm for the discrete
case. Next, we convert the augmented discrete solution into
a feasible solution for the continuous case, yielding a poly-
nomial time approximation algorithm. In both cases, the
schedule produced has polynomial length. The algorithm
constructs solutions in polynomial time given a constant
number of products. Observe that the latter is a reasonable
assumption: In real-life instances, the number of products is
relatively small. Throughout this section, we assume S∗ is
an optimal cyclic schedule of length � and qti for i ∈ J and
t = 0, . . . , � − 1 denotes the optimal stock level in S∗.

The general idea is to augment the production and demand
rates, i.e., we allow for slightly higher production rates and
modestly adjusted demand rates. For a given δ > 0, we lift
the stock levels qti for all i and t to powers of (1+ δ) and use
augmentation to keep the schedule feasible. For every time
unit t , we generate states, which are defined by stock levels
qti for each product i ∈ J and the product being produced.
By Lemma 16, the maximum stock level is bounded by Q,
yielding a polynomial number of states.With these states, we
create a state graph and find a minimum mean cycle using
Karp’s algorithm in Karp (1978), in order to get an optimal
schedule for the augmented version of LSP(D,n). Finally, we
balance the resulting schedule such that it becomes a close
to optimal solution for LSP(D,n) and a feasible schedule for
LSP(C,n), yielding the aforementioned approximation algo-
rithms. See Algorithm 1 for the pseudocode of the algorithm.

Let a state Si = (q1, . . . , qn) be defined as an ordered set
of stock levels q j for each product j ∈ J , where subscript
i ∈ J denotes the last product which has been produced
before reaching the current state. Let dti denote the aug-
mented demand for a product i ∈ J in time unit t .

For each time unit t and a product i which is produced,
we allow for augmented production rates r ti such that the
total augmented production is no more than (1 + δ) times
the total production in a feasible schedule. Specifically, we
require that augmented production satisfies the following
conditions:

r ti < pi + δ(qti + pi − di ), (3)
�−1∑

t=0

(r ti − dti ) < �(pi − di )(1 + δ). (4)

Algorithm 1: Augmentation Algorithm AugAlg
Data: A set J of n products with demand rates di , maximum

production rate pi and holding costs hi for all i ∈ J .
Result: Augmented schedule SD and schedule SC .

1 Create the set S of all states Si = (q1, . . . , qn);
2 Let E = ∅ be the set of state edges;
3 foreach pair of states Si , S j ∈ S do
4 if Si (q j ) − d j < S j (q j ) ≤ (Si (q j ) + p j − d j )(1 + δ) then
5 if (Si (qk) − dk)/(1 + δ) ≤ S j (qk) ≤ (Si (qk) − dk)for

every k 
= j ∈ J then
6 Create directed edge e = (Si , S j ) with cost

ce = si j + 1
2

∑
k∈J

(
Si (qk) + S j (qk)

)
;

7 Find the minimum mean cycle C∗ in S using Karp’s algorithm,
cf. Karp (1978), discarding edge progressions which do not
admit Eqs. (3) to (6);

8 Extract augmented schedule SD from C∗;
9 Let SC ← SD be a continuous schedule with xt the length of
time slot t ;

10 Let all demands dti ← di and decrease production rates in SC ,

such that r ti ≤ pi and
∑�−1

t=0 r
t
i − di ≤ 0;

11 For each product i with
∑�−1

t=0 r
t
i < �di , uniformly increase

production rates r ti < pi until
∑�−1

t=0 r
t
i = �di or r ti ← pi for all

t ;

12 foreach i ∈ J such that
∑�−1

t=0 r
t
i < �di do

13 Simultaneously increase all xt in SC where r ti > 0 and

decrease all xt
′
where r tj > 0 for all j 
= j ∈ J such that

∑�−1
t=0 r

t
j ≥ �d j remains true, until

∑�−1
t=0 r

t
i = �di ;

14 return SD,SC

The first equation ensures for each time unit an upper
bound on the augmented production rate, such that the next
power of (1 + δ) can be reached for the stock level. Note
that this actually augments the stock level rather than the
production rates. In order to limit the total augmentation in
terms of the production rates, the latter equation ensures that
the total production in the augmented schedule is not more
than (1 + δ) times the maximum possible production in the
non-augmented schedule. In practice, we get an augmented
schedule which is reasonably achievable with respect to the
original input data.

Additionally, for each time unit t with product i that is not
produced during t , for augmented demand rates dti ≥ 0 the
following equation must hold:

qti − di
qti − dti

≤ 1 + δ. (5)

This equation ensures that demand rates are not increased
more than necessary in order to retain stock levels within a
factor of (1+ δ). Moreover, for all time units t and products
i , we require the following to ensure that the total demand in
the augmented schedule is not more than (1 + δ) times the
total demand in the non-augmented schedule:
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�di ≤
�−1∑

k=0

dki ≤ (1 + δ)�di . (6)

Note that transgressing from one state to the next is
equivalent to a single time unit in a schedule for the
discrete case. Let each edge (Si , S j ) have costs si j +
1
2

∑
k∈J hk

(
Si (qk) + S j (qk)

)
.

Note that here sii = 0.
We now describe the algorithm (cf. Algorithm 1). In the

first step of AugAlg, an augmented state graph is con-
structed, with a state for each combination of stock levels
qi for each product i , such that qi ≤ Q(1 + δ) and qi is a
power of (1 + δ), where Q is the maximum stock level as
in Lemma 16. Let Si be a state in the optimal schedule with
Si (q j ) the stock level for product j in Si .

An edge is added from state Si to S j if and only if Si (q j )−
d j < S j (q j ) ≤ (Si (q j ) + p j − d j )(1 + δ) and (Si (qk) −
dk)/(1 + δ) ≤ S j (qk) ≤ (Si (qk) − dk) for all k 
= j ∈ J .

Recall Karp’s algorithm for finding a minimum mean
cycle in a digraph. The algorithm uses a dynamic program to
compute values Fk(v) for each vertex v and each 0 ≤ k ≤ n,
where Fk(v) denotes the minimum weight of an edge pro-
gression of length k from some arbitrarily chosen vertex s
to v. Using these values, the algorithm computes the mini-
mum mean cycle. We slightly adjust the dynamic program
in Karp’s algorithm: Upon evaluating the computed values
Fk(v), discard any of these edge progressions which do not
admit Eqs. (3)–(6), ensuring that these conditions hold for
the minimummean cycle returned by the algorithm. Observe
that the minimum mean cycle returned by Karp’s algorithm
constitutes a feasible augmented schedule to the problem.

Lemma 18 Let S be a schedule for LSP(D,n) and let ε > 0.
There exists an augmented schedule S′ such that c̄(S′) ≤
(1 + ε)c̄(S).

Proof Let S be a schedule for LSP(D,n), and let qtj (δ) ≥
qtj (S) be the nearest power of (1 + δ) greater than or equal
to qtj (S). Note that by Lemma 9, each product i in the aug-
mented, as well as in the non-augmented solution must have
at least one point where its stock level is zero. Denote this
point as time unit 0i with q0ii (S′) = q0ii (S) = 0. For each

product i ∈ J , starting at zero stock level q0ii (S) successively
change rates r ti (S) and di to r ti (S

′) and dti (S
′) for each time

unit t as follows.

– If qti (δ) = qti (S), then let r ti (S
′) remain the same as in S.

– Otherwise, if product i is produced, let the production
rate be r ti (S

′) ← r ti (S) + qti (δ) − qti (S). However, since
we want to bound the increase in the costs of the aug-
mented schedule, we bound the stock level throughout
the augmented schedule. For every product, for each

of its production periods, we ensure that the cumula-
tive amount of stock up to that point is no more than
(1 + δ) times the corresponding original stock. Thus, if∑t−1

k=0

(
rki (S′) − di

)+(qti (δ)−qti (S)) ≥ t(pi−di )(1+δ),
then choose r ti (S

′) such that qti (S
′) becomes the largest

power of (1 + δ) such that qti (S
′) < qti (δ).

– If i is not produced, choose the smallest dti (S
′) ≥ di such

that qti (S
′) is a power of (1 + δ).

Observe that every stock level in S is a power of (1+δ) and
the schedule is feasible. Since every stock level increased by
at most (1+ δ), the total costs for the schedule are increased
by at most c(S)δ. Choosing ε = δ proves the lemma. �	

Applying the above lemma to an optimal schedule and
bounding the running time of AugAlg yields the follow-
ing result. Recall that n is typically a constant, and thus we
can assume the number of products to be fixed, yielding a
polynomial running time.

Theorem 1 Let S∗ be an optimal schedule for LSP(D,n) and
let ε > 0. AugAlg finds an augmented schedule SD for
LSP(D,n) such that c(SD) ≤ (1 + ε)c(S∗) in running time
O

((
log1+δ(Q)

)n
n2

)
.

Proof Consider AugAlg and observe that the algorithm
finds a schedule SD such that c̄(SD) ≤ (1 + ε)c̄(S∗), where
S∗ is the optimal schedule, as in Lemma 18.

Note that there are O((log1+δ(Q))nn) states inS, and thus
at most O((log1+δ(Q))nn2) edges. Karp’s algorithm works
in O(m + n) time, where m is the number of edges in the
graph, proving the theorem. �	

We can now prove that AugAlg is a polynomial time
approximation algorithm for the continuous problem.

Theorem 2 Let S∗ be an optimal schedule for LSP(C,n) and
let ε > 0.AugAlg finds a feasible schedule SC forLSP(C,n)
of polynomial length such that c(SC ) ≤ (1+ε)ξc(S∗) in time
O

((
log1+δ(Q)

)n
n2

)
.

Proof Ensure that
∑

i∈J
di
pi

≤ 1, otherwise there exists
no feasible schedule. Run AugAlg to get an augmented
schedule SD for the corresponding instance of LSP(D,n).
Observe that the schedule is a feasible augmented schedule
for LSP(C,n).

First, lower the demand and production rates to feasible
values, i.e., let all demands dti ← di and decrease produc-
tion rates such that r ti ≤ pi . Next, for each product i for
which total production does not cover total demand, i.e., for
which

∑�−1
t=0 r

t
i < �di , uniformly increase production rates

r ti < pi until demand is satisfied, i.e.,
∑�−1

t=0 r
t
i = �di , or

until r ti = pi for all t . If the former is not the case, we cannot
satisfy total demand for product i and the lengths of produc-
tion periods will need to be adjusted. Denote the schedule
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obtained after this transformation by S′
D . Since demand and

production rates are decreased by at most a factor of (1+ δ),
overproduction in S′

D is no more than (1 + δ)�(pi − di );
therefore, the costs are bounded as c(S′

D) ≤ (1 + δ)c(SD).
Let xt denote the length of time slot t . Clearly, there are �

time slots. For each product i ∈ J such that
∑�−1

t=0 r
t
i < �di ,

we will increase all production lengths xt where r ti > 0
to meet the demand of product i . To retain feasibility for
all products j 
= i ∈ J , we increase production rates and
shorten production periodswhere possible, while keeping the
schedule length constant. For each product j ∈ J such that∑�−1

t=0 r
t
j ≥ �d j , we consider the following three numbered

categories:

1. For all t where 0 < r tj < p j , we will increase r tj and
decrease xt such that total production in xt remains
unchanged, at most up to the point where r tj = p j .

2. If
∑�−1

t=0 r
t
j > �d j and r tj ∈ {0, p j } for all t , we will

decrease lengths of production periods xt with r tj > 0,

at most up to the point where
∑�−1

t=0 r
t
j = �d j .

3. If
∑�−1

t=0 r
t
j = �d j and r tj ∈ {0, p j } for all t , the sched-

ule is tight for this product.

For each i ∈ J such that
∑�−1

t=0 r
t
i < �di , simultaneously

increase all xt where r ti > 0, increase r tj and decrease x
t for

all products j as in Category 14, and decrease xt for all prod-
ucts j as in Category 14, while keeping the schedule length
� constant. Note that the category number of a production
period can only be increased by applying the transformation.
Hence, since

∑
i∈J

di
pi

≤ 1, and each production period can
be categorized as above, this transformation terminates suc-
cessfully. Finally, for any product which is produced more
than the total demand throughout the cycle, we uniformly
decrease production rates for this product—without altering
the length of the production period—until demand is met
exactly. We denote the resulting schedule by SC . For the
remainder of this proof, we assess the quality of SC .

First look at a single increment of length α ≤ δ for a
time unit t where i is produced and

∑�−1
t=0 r

t
i (S

′
D) < �di . Let

ctj (S) denote the costs for a product j ∈ J during time slot
t in a schedule S. Since the production rate is increased in
the transformation by a factor (1 + α), the costs for product
i at time slot t are bounded by (1+ α)cti (S

′
D). Similarly, the

cost for each product j 
= i ∈ J is increased to at most
(1+ α)ctj (S

′
D). At the end of every production period, stock

levels in SC are not increased compared to stock levels in SD .
Secondly, look at a single decrement of α for a time unit t

where i is produced. Clearly, the costs cti (SC ) do not increase.
Furthermore, the costs ctj (S) for each product j 
= i ∈ J are
neither increased. Since the production period is shortened,
the stock level for each product j 
= i at the end of the
production period is increased. In a worst-case scenario, this

extra stock needs to be carried throughout the entire schedule.
Hence, for each decrement of α, for each product j 
= i , total
costs for the product in the entire schedule can be increased
by at most αd j h j�. Observe that αd j h j� ≤ δc j (S).

Recall that the maximum increment for a single time unit
is at most δ. Each product, for which time units are increased,
increases the total costs for all products by at most δc(S′

D).
Furthermore, for each product for which time units are

decreased, costs increase by at most δc(S′
D) in total. Thus,

AugAlg produces a feasible schedule S for LSP(C,n) of
costs at most (1+nδ)c(S′

D). From Lemma 17, we know that
c̄(SD) ≤ ξ c̄(S∗).

Hence, c(SC ) ≤ (1+nδ)c(S′
D) ≤ (1+nδ)(1+δ)c(SD) ≤

(1 + nδ)(1 + δ)2ξc(S∗). Choosing ε such that (1 + ε) =
(1 + nδ)(1 + δ)2 proves the theorem. �	

6 Discussion and future work

This article combines the hardness of high-multiplicity
encoding with sequence-dependent setup costs, both of
which are natural properties of real-life problems. Not only
does this introduce hardness akin to the traveling sales-
man problem, but due to the compact encoding it is not
clear whether or not a polynomially sized certificate can be
constructed, even for very restricted cases. We discussed the
complexity of the problem and presented structural proper-
ties largely characterizing optimal schedules, which can be
used for future algorithms and computational experiments.
We presented a polynomial time augmented approxima-
tion algorithm, which finds (1+ ε)-approximate augmented
solutions for the discrete variant of the problem and (1+ε)ξ -
approximate solutions for the continuous case. In contrast to
the known complexity of the problem, the algorithm runs in
polynomial time and yields schedules of polynomial length.

It is unclear whether it can be guaranteed that an optimal
schedule exists at all. Consider the case of LSP(C,2) inGabay
et al. (2014), where the optimal schedule is already irrational
even under rational input values. Now consider LSP(C,3). Is
it possible that due to the irrationality of the cost balance, the
optimal schedule has infinite length? Can it nevertheless be
approximated with a finite schedule? Considering instances
with two products, can we characterize the optimal solutions
for the discrete case?We conjecture this is possible to achieve
using techniques similar to the ones used in this paper.

Alternatively, consider the settings where we explic-
itly make assumptions concerning the input instances. For
instance, if the sequence is given, e.g., using aTSPoracle, is it
possible to find an (approximately) optimal solution for both
cases in polynomial time? Or if the sequencing costs have a
lexicographical ordering (e.g., when the products only differ
in color and setting up the machine when switching between
two similar colors costs less), can we obtain stronger results?
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Regarding the complexity of the problem, we conjecture
that this problem is contained in a higher complexity class
than NP: Already for LSP(F,1) and LSP(C,2), the optimal
schedule can be of non-polynomial length. Although the
schedule for these cases can still be represented in polyno-
mial time, it is uncertain if this can be done for arbitrary
numbers of products. Furthermore, consider the following
decision problem: Does there exist an optimal cyclic sched-
ule of average costs k? It is unclear whether this decision
problem is contained in NP and how an adequate polynomial
certificate for a NO instance can be constructed.
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