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Abstract Modern computers allow software to adjust
power management settings like speed and sleep modes to
decrease the power consumption, possibly at the price of
a decreased performance. The impact of these techniques
mainly depends on the schedule of the tasks. In this article,
a survey on underlying theoretical results on power man-
agement, as well as offline scheduling algorithms that aim
at minimizing the energy consumption under real-time con-
straints, is given.

Keywords Scheduling · Algorithmic power management ·
Speed scaling · Sleep modes · Energy minimization

1 Introduction

Energy consumption is nowadays an important design con-
straint for computing systems (Zhuravlev et al. 2013). On the
one hand, computing power of embedded systems increases
rapidly, whereas the battery capacity does not grow with the
same pace. On the other hand, like for datacenters, the energy
consumption is an important cost factor.

To decrease the energy consumption of computing devices
while still meeting performance constraints power manage-
ment techniques are often deployed (e.g., Irani and Pruhs
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2005; Albers 2010). Herein, software is used to influence the
energy consumption of computers. This software allows con-
trol of hardware parameters like the speed (speed scaling),
or decides to transition devices to a low-power sleep mode
when they are not used. Combined with such power manage-
ment techniques, scheduling algorithms play a crucial role,
since the underlying schedules have a critical impact on the
efficiency of power management techniques. The collection
of all of these techniques is often referred to with the generic
termAlgorithmic power management (see, e.g., Pruhs 2011).

In this article, we discuss many algorithmic power man-
agement results.More precisely,we survey theoretical results
on powermanagement aswell asoffline algorithms for energy
minimization under deadline constraints (called the “server
problem”; Bunde 2006). Furthermore, we discuss both speed
scaling and low-power sleep modes. Speed scaling is used to
adapt the speed of a system, so that its power consumption
is reduced. It can be hard to determine the optimal speeds,
because these have to be chosen globally—all tasks have to
be taken into account—instead of chosen locally on a task-
by-task basis.

An idle device can be put in a low-power sleep mode to
reduce the energy consumption; however, energy is required
to wake it up again. This poses a trade-off between sleeping
or remaining idle. Sleep modes can significantly reduce the
energy consumption when the system has long idle periods.
Because of this, scheduling algorithms are deployed to cre-
ate schedules with many and sufficiently long idle periods.
Note, that speed scaling and sleep modes are not mutually
exclusive: sometimes it is better to use both in combination.

Note, that in the last years, also peak power minimization
became an important topic of research (e.g., Lee et al. 2014;
Manoj et al. 2013). We argue that many of the speed scaling
algorithms that we survey also minimize the peak power of
a system.
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This article is organized as follows. In the next section, we
briefly discuss some related surveys. After that, in Sect. 3,
we provide introductions into modeling of speed scaling and
sleep modes, and we introduce the notations that are used
throughout this survey. The latter is important, as different
authors use different notations when describing their power
management problems. Many are loosely based on the nota-
tion by Graham et al. (1977).

In Sect. 4, we present several (orthogonal) theoretical
power management results, which form the foundation of
many power management algorithms, and show how these
results interact.

Section 5 surveys algorithms that minimize the energy
consumption of single-processor systems with deadline con-
straints. The relation between similar problems is discussed
and it is shownhow the theoretical powermanagement results
from Sect. 4 are applied. This discussion is followed by a
survey of multiprocessor power management problems, and
algorithms for these problems in Sect. 6. In Sect. 7 several
open problems are discussed, and Sect. 8 concludes this arti-
cle with a discussion.

2 Related surveys

The recent article by Zhuravlev et al. (2013) surveys many
energy-aware scheduling techniques. Many of the papers
they survey are on thermal-aware scheduling and scheduling
for asymmetric systems. In their survey, there is no emphasis
on algorithms and their properties, which is the focus of this
article.

Benini et al. (2000) give an important survey on sleep
modes (DPM) that is mainly application oriented. They
present a lot of background, and discuss implementation
details, including a discussion on the Advanced Configura-
tion andPower Interface (ACPI). The algorithms they discuss
are intended for general operating systems, and depend on
predictive schemes and stochastics. In contrast, this arti-
cle focuses on (clairvoyant) offline algorithms for real-time
systems. Moreover, this article discusses speed scaling and
scheduling.

There are several articles that survey results from algorith-
mic power management. The very broad overview by Chen
and Kuo (2007) discusses power-related scheduling tech-
niques, but does not focus on algorithms. Irani and Pruhs
(2005) and Albers (2010) present surveys that do focus on
algorithms. The first survey (Irani and Pruhs 2005) contains
a relatively small set of algorithms, while the second and
more recent survey article (Albers 2010) discusses more
algorithms. Although both surveys treat results from the
entire spectrum of algorithmic power management, only a
few offline algorithms for energy minimization under dead-
line constraints are discussed.

None of these surveys discussed in this section focuses on
offline energy minimization under deadline constraints, nor
treated many papers on this subject. Furthermore, to the best
of our knowledge, the survey in this article is the first that
links the many different theoretical concepts of algorithmic
power management.

3 Modeling and notation

Many algorithmic power management papers have differ-
ent modeling assumptions and there is no unique notation to
describe both speed scaling and sleep mode problems. In this
section, we structure the modeling assumptions and present
a unifying notation for power management problems. Sec-
tion 3.1 discusses the notation and models for tasks. Some
practical aspects for speed scaling on a computer processor
and a notation for these aspects are discussed in Sect. 3.2,
while modeling of sleep modes is discussed in Sect. 3.3.
Finally, a notation for algorithmic power management prob-
lems is presented in Sect. 3.4.

3.1 Task models

In general, a finite number (N ) of tasks is considered, which
we denote by T1, . . . , TN . These tasks are scheduled on M
processors, where in many cases M = 1. Each task Tn has a
workload wn . For speed scaling, a speed sn at which task Tn
is executed must be determined, which leads to an execution
time en = wn

sn
. In some cases, the speed may be changed

during a task, which leads to an adaption of the used notation.
Then the speed function s : R

+
0 → R

+
0 , which gives the

speed as a function of the time, is used.
The available speeds are given by a set S, which is either

an interval (S = [smin, smax]) or a finite discrete set with
K speeds (S = {s̄1, . . . , s̄K }, where we assume w.l.o.g. that
s̄1 ≤ · · · ≤ s̄K ).When a speedmust be chosen from a contin-
uous (discrete) set, we call this speed a continuous (discrete)
speed, and refer to a problem with such restriction as a con-
tinuous (discrete) speed scaling problem.

Besides its workload, each task has an arrival time an and
a deadline dn . The tasks have to be scheduled to meet these
constraints, implying that the begin time bn and completion
time cn have to be chosen so that an ≤ bn ≤ cn ≤ dn . If
the tasks are scheduled without interruption, we furthermore
have cn = bn + en .

3.2 Processor models for speed scaling

An important objective used in the majority of papers
that we survey is energy minimization of microprocessors.
Hence, in the following we concentrate on speed scaling of
microprocessors. Furthermore, we discuss some modeling
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assumptions that are not studied in the current algorithmic
power management literature.

Microprocessors have a clock frequency,which represents
the speed of the processor. For many systems the speed of the
computermemory (and other peripherals) does not scalewith
the clock frequency of the processor because it is a separate
device that does not necessarily use the same clock frequency.
In other words, in most practical settings the speed of the
overall system (and of tasks) does not scale linearly with the
clock frequency of the microprocessor (Devadas and Aydin
2012). However, all algorithms that we survey assume that
the speed does scale linearly with the clock frequency, and
hence we also assume this throughout this article. Note, that
this assumption leads to an underestimation of the execution
times of the tasks in case the clock frequency is decreased
with respect to some reference clock frequency, whichmeans
that tasks finish earlier than is predicted using the models.
Note, that for amulticore processorwith only localmemories
(e.g., scratchpad memory) the speed does scale linearly with
the processor clock frequency.

As a consequence of the above assumption, clock fre-
quency and speed are synonyms, and therefore sn and s(t)
are used to denote the clock frequency. In this article, we
mostly use the terms speed and speed scaling, instead of
clock frequency and Dynamic Voltage and Frequency Scal-
ing (DVFS), in linewith themajority of papers on algorithmic
power management.

For multicore processors, there are two main flavors of
speed scaling, namely local speed scaling and global speed
scaling . While local speed scaling changes the speed per
individual core, global speed scaling makes these changes
for the entire chip. For this reason, the optimal solutions to
the local and global speed scaling problems are not inter-
changeable. Global speed scaling is the most commonly
applied of these techniques, since it is cheaper to implement
(March et al. 2011; Chaparro et al. 2007). Examples of mod-
ern processors and systems that use global speed scaling are
the Intel Itanium, the PandaBoard (dual-core ARM Cortex
A9), IBM Power7, and the NVIDIA Tegra 2 (Kalla et al.
2010; March et al. 2011; Kandhalu et al. 2011; Zhang et al.
2012).

Nowadays, most modern microprocessors are built using
CMOS transistors. When the clock frequency of a CMOS
processor is decreased, the voltage may be decreased as well.
Dynamic voltage and frequency scaling (DVFS) (Weiser
et al. 1996) is a power management technique that allows
the clock frequency and voltage to be changed at run-time.
Both the clock frequency and the voltage influence the power
consumption of a processor and the energy consumption is
obtained by integrating this power consumption over time.

In general, there are twomajor sources of power consump-
tion, namely dynamic power consumption and static power
consumption. Dynamic power is consumed due to activities

of the processor, i.e., due to transitions of logic gates. A
CMOS transistor charges and discharges (parasitic) capaci-
tances when it switches between logical zero and logical one.
The dynamic power can be calculated by ACV 2

dds,where Vdd
is the supply voltage, s is the clock frequency (i.e., speed),
C is the switched capacitance, and A is the activity factor,
the average number of transitions per second (Ishihara and
Yasuura 1998). For a given clock frequency, theminimal sup-
ply voltage is bounded and many papers (implicitly) assume
that this minimal voltage is used, i.e., they used the simpli-
fied relation Vdd = βs for some constant β > 0 (e.g., Yao
et al. 1995; Huang and Wang 2009). This gives the dynamic
power model

pdyn(s) = γ1s
α, (1)

where α is a system-dependent constant (usually, α ≈ 3)
and γ1 = ACβα−1 contains both the average activity factor
and switched capacitance. Most papers assume that γ1 is
constant for the entire application. Somepapers use a separate
constant γ1(n) for each task (referred to as nonuniform loads
by Kwon and Kim (2005), or as nonuniform power), because
the activity may deviate for different types of tasks. This
makes the power function (to some extent) nonuniform, but
throughout this article we assume γ1 is constant. On the one
hand this is done to keep the notation simple, and on the other
handwe assume that when the power function is nonuniform,
the theory that we present in Sect. 4.7 can be applied.

Static power is the power that is consumed independently
of the activity of the transistors, and, thereby, it is indepen-
dent of the clock frequency. However, there are two different
definitions of static power that are used in the literature. The
first definition of static power, popular in algorithmic papers
(e.g., Cho and Melhem 2010), takes static power as a con-
stant function (i.e., independent of the clock frequency), and
is given by

pstatic(s) = γ2,

where γ2 is a system dependent constant. The second
definition—often used in computer architecture papers—
uses the voltage to express the static power. Although it
is physically modeled using an exponential equation, the
following linear approximation with system dependent con-
stants γ2 and γ3 is popular (Park et al. 2013):

pstatic(Vdd) = γ2 + γ3

β
Vdd,

and the relation between the voltage and the clock frequency
(Vdd = βs) gives

pstatic(s) = γ2 + γ3s.
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Note, that this relation makes the static power—which is
independent of the clock frequency—indirectly dependent
on the clock frequency. The resulting static energy for w

work executed at speed s is γ2
w
s + γ3w, when it is assumed

that static power is consumed until all work is completed (see
the discussion in Sect. 4.3).As a consequence, the constant γ3
does not influence the choice of the optimal clock frequency
in the case of energy minimization, which is the focus of this
article. Thus, we can assume without loss of generality that
γ3 = 0 and use pstatic(s) = γ2 to model the static power.
Since both static power models lead to the same optimal
solution, it is not relevant for optimization, which of the two
static power models is used.

Generally, we define the total power consumption (both
static and dynamic) as a power function p : R

+
0 → R

+
0 ,

which maps speed to power.
For microprocessors, the power function does not fully

describe all energy that is used, since changing the clock
frequency also has an energy and time overhead. The recent
article by Park et al. (2013) shows that the time and energy
overheads of DVFS are in the same order of magnitude as the
overhead of context switching. For example, the transition
delay overhead is at most 62.68µs on an Intel Core2 Duo
E6850 (Park et al. 2013). Furthermore,most algorithms avoid
changing the clock frequency often because of the convexity
of the power function (see Sect. 4.1), hence the number of
speed changes is relatively low.Because of these two reasons,
we assume that the energy overhead of changing the clock
frequency is negligible in case of DVFS.

Note, that speed scaling is not restricted to microproces-
sors, but can also be used for flash memory (Lee and Kim
2010), hard disks (Liu et al. 2004), and may even be relevant
to applications outside of computer science.

3.3 Sleep modes

As already mentioned in the previous subsection, devices
also consume power when they are idle. Several devices like
microprocessors, hard disks, communication devices (e.g.,
network interfaces) can switch to a sleep mode by power-
ing (parts of) the device down to decrease the power when
idle. For example, when a processor is transitioned to a sleep
mode, the current state is stored, and the state is recovered
when the processor is awakened. Another example is a hard-
disk drive, which spins down when put to sleep mode, while
it spins up when it is awakened. These devices have in com-
mon that a cost in both latency and energy is associated
with switching to a sleep mode and waking up. The energy
consumption determines the break-even time, which is the
minimum length of an idle period whichmakes it worthwhile
to transition to a sleepmode. It is commonly assumed that the
break-even time for a sleep mode is longer than the latency

associated of switching to and from this sleep mode. It was
shown empirically that algorithms that use this assumption
still work well when the latency is taken into account (Irani
et al. 2007).

Devices can even have multiple sleep modes, with differ-
ent break-even times, or there can be multiple devices within
a system with different break-even times. The energy con-
sumption during an idle period is generally modeled as a
piecewise concave function ESL : R+

0 → R
+
0 of the length

of the idle period (Augustine et al. 2008; Gerards and Kuper
2013).

3.4 Problem notation and qualification

To classify a wide variety of algorithmic power management
problems, in this section a compact notation (based on the
three-field notation for scheduling problems that was intro-
duced by Graham et al. 1977) to describe a wide variety of
algorithmic power management problems is introduced. The
notation is similar to what is used in the algorithmic power
management literature (e.g., Bampis et al. 2015), but avoids
several ambiguities, by making explicit what kind of power
management techniques are used.

We specify a general power management problem by
three fields a|b|c, where a denotes the system properties, b
describes the tasks and their constraints, and c is the objec-
tive for optimization. The fields with their possible entries
and their meaning are given in Table 1. A brief discussion of
this notation follows below.

– a: The system field describes the architecture of the sys-
tem. This includes the number of processors (or devices),
whether speed scaling (ss) and/or sleep modes (sl) are
used, and properties of the system with respect to speed
scaling and/or sleep modes (see Table 1). The entries
nonunif, disc, and global all imply speed scaling (ss) to
keep the notation concise.

– b: The second field contains the task characteristics
like arrival time, deadline, restrictions on the ordering
of timing constraints of tasks (agree, prec, lami), and
scheduling properties (migr, pmtn, prio, sched). E.g.,
when an occurs in this field, it means that tasks have
arrival times, otherwise an=0 (for all n) is implied.
As we focus on energyminimization under deadline con-
straints, dn always occurs in b and implies that deadlines
must be met.

– c: The third field contains the scheduling objective. In
the context of this article, the field c only contains “E”
to denote that the energy should be minimized, but we
maintain this field to preserve compliance with Graham’s
notation.
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Table 1 Notation for algorithmic power management problems

Field Entry Meaning

a 1 Single processor

PM M parallel processors

ss Speed scaling is supported

nonunif A nonuniform power function is used (ss
implied)

disc Discrete speed scaling is used (ss implied)

global Global speed scaling is used (ss implied)

sl Sleep modes supported

b an Arrival time

an=a Same arrival time a for all tasks

dn Deadline constraint

dn=d Same deadline constraint d for all tasks

wn=w All tasks have workload w

agree Agreeable deadlines
(an ≤ am ⇔ dn ≤ dm )

lami Laminar instances

([ai , di ] ⊂ [a j , d j ] ∨ [a j , d j ] ⊂
[ai , di ] ∨ [ai , di ] ∩ [a j , d j ] = ∅)

prec Tasks have precedence constraints

pmtn Preemptions are allowed

prio Tasks have a fixed priority

migr Task migration is allowed

sched A schedule is given

c E Minimize the energy consumption

4 Fundamental results

Over the years, many fundamental results on algorithmic
powermanagement have been obtained,which form the basis
of many algorithms, or relate problems to each other, so that
the solution to one problem can be used to find a solution to
another problem. This section introduces these fundamental
results and concepts in the area of algorithmic power man-
agement. One of the most important results is that for the
single-processor case it is optimal to use a constant speed
between begin and completion time of tasks due to the con-
vexity of the power function (Sect. 4.1). Although this result
only holds for convex power functions, using the idea pre-
sented in Sect. 4.2, it can also be used for the nonconvex
situation as all power functions can be “made” convex. Con-
vexity is not the only requirement for optimization, one has
to be careful that the chosen speed for a task is not too low
because then static power may dominate (Sect. 4.3).

Whereas the above results are often presented in a con-
tinuous speed scaling context, in practice, discrete speed
scaling is more often used. Many speed scaling problems
(with a given schedule) can be formulated as a linear pro-
gram (Sect. 4.4). Moreover, in the single-processor case it

is furthermore straightforward to derive the solution to this
discrete problem from the solution to the continuous case
(Sect. 4.5).

For multiprocessor problems, it can be shown that in the
optimal solution of several problems the power consumption
remains constant over time. This fact is referred to as the
power equality (Sect. 4.6). The problem wherein every task
has a different power function (Sect. 4.7) is related to this
multiprocessor problem.We present a simple transformation
that transforms this problemwithmultiple power functions to
the problem wherein all tasks have the same power function.

Finally, we briefly discuss that speed scaling problems
wherein preemptions are not allowed can sometimes be writ-
ten as a flow problem (Sect. 4.8), and that when scheduling
for sleep modes, it is often best to unbalance the length of
idle periods (Sect. 4.9).

4.1 Constant speed

Whenever a single processor executes a single task using
varying speeds, the energy consumption can be decreased
by running it at the average speed. This even holds when
the task is executed with interruptions (i.e., on times given
by any set T ). This result holds for all convex power func-
tions, where this property does not form a restriction as is
discussed in Sect. 4.2. We formalize this result, which is a
direct consequence of Jensen’s inequality (Irani et al. 2007),
in the following theorem.

Theorem 1 Given a task with w work, which is executed at
the times given by the set T (i.e., w = ∫

T s(τ )dτ ) and is
executed on a processor with a convex power function. Then
the following inequality holds:

p
(w

e

)
e ≤

∫

T
p(s(τ ))dτ.

Proof The infinite version of Jensen’s inequality states:

p

(
1

∫
T 1dτ

∫

T
s(τ )dτ

)

≤ 1
∫
T 1dτ

∫

T
p(s(τ ))dτ.

Multiplying this equation by
∫
T 1dτ directly leads to the

result of the theorem. 
�
Theorem 1 shows that for continuous speed scaling, there

always exists a constant speed that is optimal for a single task
on a single processor. Many papers (e.g., Huang and Wang
2009; Yao et al. 1995; Li et al. 2006) use the idea behind
Theorem 1, and show that minimizing unnecessary speed
fluctuations on a single processor is optimal also for situa-
tions with more than one task, i.e., N > 1. However, when
there are arrival times, deadlines, etc., the optimal constant
speed may change on these specific times, meaning that the
optimal speed function is piecewise constant.
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4.2 Nonconvex power function

The previous section (andwith it, a large part of the literature)
assumes that the power function is convex, but for technical
reasons this is not always the case. However, it is possible
to circumvent this by not using the speeds of the regions
where the function is not convex, since we can show that
these speeds are not efficient. This process is first explained
for discrete speed scaling.

Assume three given speeds s̄i < s̄ j < s̄k (let s̄ j = λs̄i +
(1 − λ)s̄k for some λ ∈ (0, 1)) and w work, where

p(s̄ j )w ≤ p(s̄i )λw + p(s̄k)(1 − λ)w, (2)

does not hold. This implies that executing the work at speed
s̄ j would cost more energy than executing a part of the work
at s̄i and the remaining work at s̄k . In this case, we call s̄ j an
inefficient speed as it is never beneficial to use this speed.

Based on the above, we may assume that all speeds in S
are efficient speeds, thus Eq. (2) holds for all speeds (i.e.,
inefficient speeds are “discarded”), as is discussed by Hsu
and Feng (2005). This illustrates that we can always assume
without loss of generality that the power function is convex.

Bansal et al. (2013) state that a similar procedure can be
followed for continuous speed scaling. Note, that the static
and dynamic power models from Sect. 3.2 are already con-
vex.

4.3 Critical speed

With the presence of static power, convexity of the power
function is not the only aspect which has to be taken into
account when finding an optimal solution for some speed
scaling problems.

In practice, processors consume static power (γ2 > 0), i.e.,
the power consumption at speed 0 is nonnegative (p(0) > 0).
Unfortunately, most papers do not clearly define for which
time period they take the static power into account. In this sur-
vey, we assume that the application begins at some given time
t B , and the power consumption of the processor is accounted
for until some time tC . Furthermore, we either assume that
tC = cN (completion time of the last task) or tC = dN (dead-
line of the last task). For example, Yao et al. (1995) only
assume that the power function is convex and do not men-
tion static power. However, their result only holds when the
static power cannot be influenced, i.e., when it is accounted
for until the deadline of the last task and not only to the com-
pletion time of the last task. As in this case, static power
cannot be influenced, the situation where p(0) = 0 gives the
same solution as the case where p(0) > 0. This scenario is
mentioned by Irani et al. (2007).

For the other scenario, where the static power is active
until the last task has finished, not only the power func-

tion should be studied, but also the energy-per-work func-
tion:

p̄(s) = p(s)

s
.

This function gives the energy consumption of a unit work
(instead of a unit time), has a global minimizer scrit (called
the critical speed by Jejurikar et al. 2004), and is increasing
on s ≥ scrit (Irani et al. 2007). All speeds below scrit require
more energy per unit work, while it takes longer to execute.
Hence, the schedule length can be decreased by increasing
speeds to scrit, and the energy consumption is reduced.

4.4 Discrete speed scaling as a linear program

Besides static power, many processors have the restriction
that only a small set of speeds is allowed (discrete speed
scaling). Many discrete speed scaling problems with a given
schedule can be formulated as a linear program, as we show
in the following.

When discrete speed scaling is consideredwith K discrete
speeds, the decision to be made is the amount of work of task
Tn that is executed at speed s̄k . If we denote this amount by
wn,k (i.e.,

∑K
k=1 wn,k = wn), the total energy consumption

of all tasks together is given by

N∑

n=1

K∑

k=1

p(s̄k)wn,k,

which is a linear function of the decision variables wn,k .
These variables, together with the begin time of tasks, form
the decision variables of the linear program.

Constraints like arrival time, deadline, and precedence
constraints can all be formulated as linear constraints. There-
fore,many discrete speed scaling problems (with orwithout a
given schedule) can be formulated as a linear program (Kwon
and Kim 2005; Rountree et al. 2007) and, thus, can be solved
in polynomial time.

4.5 Relation between continuous and discrete speed
scaling

Formulating discrete speed scaling problems as a linear
program and solving it with linear programming software
provides few insights. Instead, a tailored algorithm for find-
ing the optimal speeds is desirable. Such algorithms are
described in many papers (e.g., Yao et al. 1995; Pruhs et al.
2008; Huang and Wang 2009) for continuous speed scaling,
while in practicemost processors support only discrete speed
scaling. Therefore, in the following, we investigate the rela-
tion between continuous speed scaling and discrete speed
scaling.
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When a single task is considered, the optimal speed s
resulting from the continuous case can be used to determine
the optimal speeds for the discrete case. When the speed s
is not one of the available discrete speeds, using only the
neighboring speeds s̄i ≤ s ≤ s̄i+1 leads to an optimal solu-
tion. More precisely, the first part of the work is executed at
speed s̄i+1 and the remaining work is executed at speed s̄i .
These fractions of work are calculated so that the overall time
remains the same. We refer to this as simulating continuous
speed scaling.

The above-described simulating process has been proven
to be optimal for the execution of a single task, and can be
extended to multiple tasks. For multiple tasks, many contin-
uous speed scaling algorithms only require that the power
function is convex. Given a set of discrete speeds, we can fill
the intervals between these speeds by taking the weighted
average speed of a task using two neighboring speeds. This
leads to a power function that gives as power for a given speed
theweighted average power of the two used speeds (this func-
tion is called the average power function). Kwon and Kim
(2005) andHsu andFeng (2005) have proven that this average
power function is a convex piecewise linear function. Hence,
any continuous speed scaling algorithm that assumes only
convexity can be used to find the optimal average speeds,
after which the discrete assignment can be determined using
simulation.

4.6 Power equality

Theprevious sectionsmainly focused on the single-processor
case. In the multiprocessor case with precedence constraints,
new issues arise that are best illustrated with an example.

Example 1 Consider the three tasks from Fig. 1, each withw

work, which are to be executed on a local speed scalingmul-
tiprocessor system. Task T1 has to be finished before tasks
T2 and T3 can be executed, and the application as a whole has
a global arrival time 0 and a global deadline d. An example
of a naive speed assignment is s1 = s2 = s3 = 2w

d . Note that
Theorem 1 cannot be used to argue that this assignment is
optimal, because now multiple processors are active. In fact,
this assignment is not optimal, since it can be improved by
slightly increasing s1 so that task T1 consumes slightly more

T1

T2

T3

Fig. 1 Task graph

energy, while the two tasks T2 and T3 can decrease their
energy consumption. The speed of task T1 should not be too
high (discussed below), because then its energy consumption
is no longer compensated by tasks T2 and T3.

This example illustrates that the optimal speeds depend
on the amount of parallelism of the scheduled tasks. Pruhs
et al. (2008) introduce the power equality for tasks with a
common arrival time and deadline: in the optimal solution,
the power consumption remains constant. Thus, the power is
constant, and the speeds can be calculated using this power
and the number of parallel executed tasks. For the concrete
situation of Fig. 1, this means that p(s1) = p(s2) + p(s3).
This power equality generalizes Theorem 1.

Example 2 Consider again the task graph from Fig. 1 with
the power function p(s) = s3, and assume that all the tasks
have 10 work, and the global deadline is 40. A naive speed
assignment uses the constant speed s1 = s2 = s3 = 1

2 .
As in an optimal solution, tasks T2 and T3 complete simul-

taneously, and we get s2 = s3. Due to the power equality, for
the optimal solution it holds that

p(s1) = p(s2) + p(s3) = 2p(s2).

Using p(s) = s3 and some elementary algebra gives s1 =
3
√
2s2. Furthermore, the energy consumption is minimized

when w1
s1

+ w2
s2

= 40. Thus s1 = 1+ 3√2
4 .

4.7 Nonuniform power

Most papers assume that uniform power is used (see
Sect. 3.2), while in practice the parameter γ1 of the power
function is not constant (i.e., nonuniform) for all tasks (Kwon
and Kim 2005), and a task specific factor γ1(n) for the
dynamic power of task Tn is more appropriate. A similar sit-
uation occurs in the multicore situation with m active cores,
where the dynamic power must be multiplied bym. This fact
is used by several papers on multicore speed scaling (e.g.,
Gerards et al. 2015).

The dynamic energy consumption for N tasks with
nonuniform power functions is given by (see Eq. (1) and
Sect. 3.2)

E =
N∑

n=1

γ1(n)sα
n

wn

sn
. (3)

Fortunately, there is an elegant transformation due to
Kwon and Kim (2005) that can reduce this expression to
one with a constant power parameter γ1. Using the substitu-
tion of variables ẘn = α

√
γ1(n)wn and s̊n = α

√
γ1(n)sn , (3)

becomes

E =
N∑

n=1

s̊α
n

ẘn

s̊n
. (4)
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Table 2 Uniprocessor
algorithmic power management
problems

Section Problem Papers

General tasks
(Sect. 5.1)

1; ss|an; dn; pmtn|E Yao et al. (1995), Bansal et al. (2007), Li
et al. (2006)

1; disc|an; dn; pmtn|E Li et al. (2006), Hsu and Feng (2005)

1; ss|an; dn; pmtn; prio|E Quan and Hu (2003)

1; ss|an; dn |E Antoniadis and Huang (2013), Bampis et al.
(2015), Huang and Ott (2014)

Bampis et al. (2014a), Cohen-Addad et al.
(2015), Bampis et al. (2014b)

1; ss|an; dn; wn = 1|E Huang and Ott (2014)

1; ss; nonunif|an; dn; pmtn|E Kwon and Kim (2005)

1; ss; nonunif; disc|an; dn |E Kwon and Kim (2005)

1; sl|an; dn; pmtn|E Baptiste et al. (2012)

1; ss; sl|an; dn; pmtn|E Irani et al. (2007), Albers and Antoniadis
(2014), Antoniadis et al. (2015)

Agreeable deadlines
(Sect. 5.2)

1; ss|an; dn; agree|E Huang and Wang (2009), Wu et al. (2011)

1; sl|an; dn; agree|E Angel et al. (2014)

1; sl; ss|an; dn; agree|E Bampis et al. (2012a)

Laminar instances
(Sect. 5.3)

1; ss|an; dn; pmtn; lami|E Li et al. (2006)

1; ss|an; dn = d; pmtn|E Li et al. (2006)

1; ss|an = a; dn; pmtn|E Li et al. (2006)

1; ss|an; dn; lami|E Huang and Ott (2014)

This corresponds to an instance where the execution time
of task Tn becomes ẘn

s̊n
, and γ1 = 1 for all tasks, i.e., γ1

disappears from the costs.
The newly obtained problem has uniform power, can be

solved using classic algorithms, and the resulting solution
can be transformed back to a solution to the problem with
nonuniform power.

4.8 Flow problems

Several powermanagement problems can be reduced to (con-
vex) flow problems. However, as these formulations as flow
problems depend on the concrete algorithmic power man-
agement problem, we do not discuss this technique in more
detail. We refer the interested readers to three papers, namely
Bampis et al. (2012b), Albers et al. (2011), and Angel et al.
(2012b), which use such techniques to solve the problem
PM ; ss|an; dn; pmtn;migr|E . In Sect. 6.1 these papers are
briefly discussed.

4.9 Sleep modes

A device can have multiple sleep modes that can be used
to decrease the power consumption when the device is idle.
A deeper sleep mode requires less power, but the transition
costs are higher. As already mentioned, only when the idle
period is longer than the break-even time of a sleep mode, it

becomesworthwhile to use this sleepmode. Furthermore, for
the case that in any idle period the best possible sleepmode is
used (i.e., that with the lowest total energy consumption), we
can derive an important property of the sleep mode problem.
This property is based on the following two properties of the
energy consumption function ESL(τ ): the function ESL(τ ) is
an increasing and concave function and ESL(0) = 0.Because
of these properties, it holds that for 0 ≤ δ ≤ x ≤ y (Gerards
and Kuper 2013) we have

ESL(x − δ) + ESL(y + δ) ≤ ESL(x) + ESL(y). (5)

This means that, for any two idle periods of length x and
y (x ≤ y), the energy consumption does not increase when a
certain amount δ of the smallest period gets shifted to a bigger
idle period. This implies that a schedule that “unbalances”
the length of idle periods reduces the energy consumption.

5 Uniprocessor problems

The previous section introduced many general concepts that
can be applied to a variety of power management problems.
This section surveys concrete algorithms for uniprocessor
power management problems (see Table 2 for an overview),
and relates these algorithms (when applicable) to the results
that were presented in the previous section.
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Recall that for each task Tn we have a workload wn , an
arrival time an , and a deadline dn before which the task has to
finish. In the case of speed scaling, a speed sn is to be deter-
mined, leading to an execution time en . We use bn and cn to
denote the begin and completion time of task Tn , respectively.

The problems in this section are grouped depending on
restrictions on the ordering of the timing constraints of tasks.
For all problems discussed in this section, the problem con-
sists of finding a schedule together with speeds and/or sleep
decisions. First, the problems without any restrictions on the
timing constraints are discussed in Sect. 5.1. Several variants
of this problem are solved by algorithms with a relatively
high-polynomial time complexity, or are NP-hard. Second,
in Sect. 5.2, the simpler case of problems with agreeable
deadlines is discussed. For many variants of this problem,
algorithms with a quadratic time complexity are known.
Third, laminar problems are discussed in Sect. 5.3.

5.1 General tasks

In this section, we discuss general tasks, i.e., tasks that have
arbitrary arrival times and deadlines. The first variant that we
consider allows preemptions of tasks (1; ss|an; dn; pmtn|E).
According to Albers et al. (2011), this is the most extensively
studied speed scaling problem in the algorithm-oriented lit-
erature. Yao et al. (1995) present the well-known YDS
algorithm (named after the authors) to solve this problem.
This algorithm is often used as a subroutine by other algo-
rithms, and in complexity proofs.

The considered problem involves both scheduling and
speed scaling. However, if we have specified the speed to
use over the complete time horizon, or if we have specified
the speed of each task, we can find a corresponding feasible
schedule—if it exists for this speed assignment—by plan-
ning successively always the available task with the smallest
deadline (Yao et al. 1995). The basic idea of the YDS algo-
rithm is to avoid unnecessary speed changes (see Sect. 4.1),
and has the property that the speeds in the optimal solution
cannot be lowered to decrease the energy consumption with-
out violating deadlines.

More precisely, the YDS algorithmworks with time inter-
vals of the form Ii, j = [ai , d j ], where ai < d j . The density
of such an interval is defined as

g(Ii, j ) =
∑

n∈Ti, j wn

d j − ai
,

where Ti, j := {Tn | [an, dn] ⊆ Ii, j } is the set of all tasks that
have to be scheduled completely within the interval Ii, j . The
density determines the minimal average speed that has to be
used to execute the tasks from Ti, j completely within this
interval. The YDS algorithm takes a so-called critical inter-
val—an interval Ii, j with the highest density—and assigns

to all tasks from Ti, j , and to the interval Ii, j this density as
speed. The algorithm creates a new subproblem by removing
these tasks from the task set, and by removing the interval
Ii, j from the time axis leading to an adjustment of the arrival
times and deadlines of the other tasks to take unavailability
of the processor during this time interval into account. Next
to leading to an optimal solution, by construction, YDS also
avoids unnecessary speed fluctuations and obviously YDS
also minimizes the peak power.

Example 3 (YDSalgorithm) Consider the tasks fromTable 3
of which the arrival times and deadlines are depicted in
Fig. 2a. TheYDS algorithm first determines the critical inter-
val, which is I2,2 in the first iteration of the algorithm (see
Table 4). Since the density of this interval is g(I2,2) = 2,
task T2 is assigned the speed s2 = 2. Next, the interval I2,2

Table 3 Tasks for Example 3

Task Arrival time Deadline Workload

T1 0 30 30

T2 5 10 10

T3 15 55 10

T4 25 35 10

a
1
=
0

a
2
=
5

d
2
=
10

a
3
=
15

a
4
=
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d
1
=
30
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4
=
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=
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=
0

a
3
=
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a
4
=
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d
1
=
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4
=
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3
=
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a
3
=
0

d
3
=
20

a
1
=
0

a
2
=
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d
2
=
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a
3
=
15

a
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=
25

d
1
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d
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=
35

d
3
=
55

T2
T1 T1 T4

T3

(a) Iteration 1

(b) Iteration 2

(c) Iteration 3

(d) Optimal solution

Fig. 2 Arrival times, deadlines, and optimal solution for Example 3.
(a) Iteration 1. (b) Iteration 2. (c)Iteration 3. (d) Optimal solution
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Table 4 Interval densities for Example 3

Interval Iteration 1 Iteration 2 Iteration 3
g(Ii, j ) g(Ii, j ) g(Ii, j )

I1,1
40
30 ≈ 1.333 30

25 = 1.2

I1,2
10
10 = 1

I1,3
50
55 ≈ 0.909 50

50 = 1

I1,4
50
35 ≈ 1.429 40

30 ≈ 1.333

I2,1
10
25 = 0.4

I2,2
10
5 = 2

I2,3
30
50 = 0.6

I2,4
20
30 ≈ 0.667

I3,1 0 0

I3,2 0

I3,3
20
40 = 0.5 20

40 = 0.5 10
20 = 0.5

I3,4
10
20 = 0.5 10

20 = 0.5

I4,1 0 0

I4,2 0

I4,3
10
30 ≈ 0.333 10

30 ≈ 0.333

I4,4
10
10 = 1 10

10 = 1

is removed, and the arrival times and deadlines of the other
tasks are adapted accordingly (see Fig. 2b).

In the second iteration, interval I1,4 yields the critical den-
sity g(I1,4) = 4

3 (see Table 4), which is assigned as speed
to task T1 and T4 (i.e., s1 = s4 = 4

3 ). After removing these
tasks, only task T3 remains in the last iteration (see Fig. 2c),
which is assigned the speed s3 = 1

2 . A preemptive Earli-
est Deadline First (EDF) schedule with the aforementioned
speeds ensures that the deadlines are met and the energy con-
sumption is minimized.

In a schedule created by this YDS algorithm, the proces-
sor is active from the arrival of the first task to the deadline
of the last task (unless there are no tasks in some interval).
Hence, because of static power, this algorithm is only opti-
malwhen it is assumed that the processor remains active until
the last deadline (Irani et al. 2007). To the best of our knowl-
edge, there is no optimal algorithm known for the situation
where no static energy is consumed after the last executed
task.

The original implementation of the YDS algorithm has a
time complexity of O(N 3) (Li et al. 2006). As the original
paper (Yao et al. 1995) does not contain a proof of opti-
mality, several proofs of optimality have appeared in the
literature afterwards. Bansal et al. (2007) use the Karush
Kuhn Tucker (KKT) conditions (Boyd and Vandenberghe
2004) to prove optimality of YDS for the power function
p(s) = sα . Li et al. (2006) give a different proof, and
present an efficient implementation of YDS with time com-
plexity O(N 2 log N ). They also provide an O(K N log N )

algorithm for the variant with discrete speed scaling with
K speeds (1; disc|an; dn; pmtn|E). A recent technical report
by Li et al. (2014) states that the continuous problem can be
solved in O(N 2) and the discrete problem can be solved in
O(N logmax{N , K }). An alternative method for obtaining
the optimal speeds in the discrete case is by applying the
YDS algorithm, and then simulating the obtained speeds as
discussed in Sect. 4.5 (Kwon and Kim 2005; Hsu and Feng
2005).

The YDS algorithm schedules tasks in EDF order. This
implies that when tasks must be scheduled in a pre-
defined order (e.g., based on priorities), the YDS algo-
rithm cannot be used (Quan and Hu 2003). Yun and Kim
(2003) show that the fixed priority variant of this problem
(1; ss|an; dn; pmtn; prio|E) is NP-hard, and give an FPTAS
for the problem.

There exist several other variations of the problem intro-
duced by Yao et al. (1995). The variant that does not allow
preemptions of tasks (1; ss|an; dn|E) is NP-hard (Anto-
niadis and Huang 2013). Bampis et al. (2015) designed
an algorithm for this problem with the approximation ratio
(1 + wmax/wmin)α , where wmax and wmin are, respectively,
the upper and lower bounds on the work of tasks. Bampis
et al. (2014b) use results from several papers (Huang and
Ott 2014; Bampis et al. 2014a; Cohen-Addad et al. 2015) for
this problem to design an algorithmwith approximation ratio
(1 + ε)α B̃α , where B̃α = ∑∞

k=0
kαe−1

k! is a generalization of
the Bell numbers that works for fractional values of α. When
all tasks have the same workload (1; ss|an; dn;wn = 1|E),
the problem can be solved in polynomial time (Huang and
Ott 2014).

Kwon and Kim (2005) study another variation, where
the dynamic power consumption may differ per task (1; ss;
nonunif|an; dn; pmtn|E). This is, for example, due to
switched capacitances. They solve this problem using a sub-
stitution of variables (see Sect. 4.7). They formulate the
discrete speed scaling variant of this problem (1; ss; nonunif;
disc|an; dn; pmtn|E) as a linear program (see Sect. 4.4).

The sleep mode counterpart of the YDS problem is
1; sl|an; dn; pmtn|E . Baptiste et al. (2012) present an algo-
rithm that is commonly referred to as BCD (named after the
authors), that uses dynamic programming to solve the prob-
lem in O(N 4) time. Their algorithm is restricted to instances
where processors have only a single sleep mode.

Other authors (Albers and Antoniadis 2014; Irani et al.
2007) study the combination of speed scaling and sleep
modes, namely 1; ss; sl|an; dn; pmtn|E , which is an NP-
hard problem. The heuristic by Irani et al. (2007) is a
2-approximation and is relatively easy to implement. This
heuristic uses YDS to determine the speeds, and whenever
YDS determines a speed sn<scrit, this speed is replaced by
the speed scrit (this is called an scrit-schedule). These changes
create idle time, that can be used to put the processor into a

123



J Sched (2016) 19:3–19 13

sleepmode. As long as there are tasks available, they are con-
secutively executed, followed by an idle period of maximal
length. This scheduling method is used to create relatively
large idle periods. Albers and Antoniadis (2014) use a sim-
ilar method, but with the cut-off speed s∗ instead of scrit,
where s∗ is determined by solving p̄(s∗) = 4

3 p̄(s
crit). Fur-

thermore, they use BCD instead of the scheduling algorithm
by Irani et al. (2007). This results in a 4/3-approximation,
but has a higher time complexity (O(N 4)) because of the
use of BCD. When the power function p(s) = γ1sα + γ2 is
used (realistic for DVFS), the approximation ratio becomes
137/117 (<1.171). Recently, Antoniadis et al. (2015) pre-
sented an FPTAS for this problem that is based on dynamic
programming. In this dynamic programming approach, the
time horizon is discretized by a polynomial number of inter-
vals, where the number of intervals depends on the required
approximation ratio.

5.2 Agreeable deadlines

In applications like multimedia and telecommunication, the
arrival times and deadlines are usually in the same order
(i.e., an < am ⇔ dn ≤ dm). Such applications are said to
have agreeable deadlines. This special structure of the timing
constraints makes the development of efficient speed scaling
and sleepmode algorithms possible. Onemain reason for this
is that we can assume w.l.o.g. that the tasks are scheduled
in order of their timing constraints (i.e., deadlines) and that
no preemption is used (for the latter, see e.g., Bampis et al.
2015)

Speed scaling for systems with agreeable deadlines
(1; ss|an; dn; agree|E) is studied by many authors (e.g.,
Huang and Wang 2009; Wu et al. 2011). Huang and Wang
(2009) present an algorithm that calculates the optimal speeds
in quadratic time. Their algorithm first schedules the task
using the same speed for all tasks. This speed is calculated,
so that all tasks are scheduled exactly within the time interval
between the first arrival time and the last deadline without
any idle time. Then, a task Tn with the largest violation of an
arrival or a deadline in this schedule is used to divide the set
of tasks into two subsets: the tasks before and the tasks after
the violation. For a deadline violation, the completion time
of task Tn is fixed to dn , while for an arrival time violation
the begin time of task Tn is fixed to an . Then the procedure
is recursively repeated for both subsets.

In a variant of this problem, the maximal rate of change of
the speed is bounded from above by R (i.e., maxt |s′(t)| ≤ R,
for some R > 0). For this problem Wu et al. (2011) present
an algorithm, which finds the optimal solution in quadratic
time.

Next to agreeable deadlines with speed scaling, also the
problem with sleep modes and the combination of speed
scaling and sleep modes is studied in the literature. For

the problem where the processor has a single sleep mode
(1; sl|an; dn; agree|E), the algorithm by Angel et al. (2012a)
(see also Angel et al. 2014) can be applied to find an energy
optimal schedule. The authors observe that there always
exists an optimal solution in which every task Tn starts at
either (i) an , (ii) cn−1, or (iii) dn − en . Note, that the options
for the completion time cn−1 depends on the begin times of
tasks T1, . . . , Tn−1. By this, for each task Tk (tasks ordered in
EDF order), there are O(k) possible begin times, leading to a
quadratic time complexity. This result byAngel et al. (2012a)
is extended by Bampis et al. (2012a) leading to a cubic time
algorithm to find the optimal combination of speed scaling
and sleep modes (1; sl; ss|an; dn; agree|E).

5.3 Laminar instances

In this section, we study tasks with a nested structure, called
laminar instances. A real-time system is a laminar instance
whenever, for each pair of tasks, the permissible intervals
([an, dn] for task Tn) do not overlap, or one is completely
contained within the other. In a graphical representation, a
task Ti is drawn on top of task Tj when [ai , di ] ⊂ [a j , d j ],
which creates layers of tasks and explains the term “lami-
nar instances.” According to Li et al. (2006) these structures
occur in recursive programs. Since the tasks can be arranged
in a tree structure that expresses this recursion, laminar
instances are also referred to as tree-structured tasks (Li et al.
2006). Li et al. (2006) give an efficient polynomial time
algorithm to find the optimal speeds for laminar instances
(1; ss|an; dn; pmtn; lami|E). The variant of this problem that
does not allow preemptions (1; ss|an; dn; lami|E) is NP-
hard.Huang andOtt (2014) present aQuasi-PolynomialTime
Approximation Scheme (QPTAS) for this problem.

Just as for the problem with agreeable deadlines, the
restriction to laminar instances makes the problem easier to
solve. In fact, the case where all deadlines or all arrival times
are the same has both agreeable deadlines and is a laminar
instance. For both problems, a linear time solution is avail-
able (Li et al. 2006).

6 Multiprocessor problems

This section discusses multiprocessor algorithmic power
management problems (see Table 5 for an overview). The
problems in this section consist of finding a multiprocessor
schedule together with speeds and/or sleep decisions. Gen-
eral tasks (i.e., tasks without special restrictions on arrival
times and deadlines) are discussed in Sect. 6.1. Algorithms
for tasks with agreeable deadlines are discussed in Sect. 6.2,
followed by a discussion of taskswith precedence constraints
in Sect. 6.3.

123



14 J Sched (2016) 19:3–19

Table 5 Multiprocessor
algorithmic power management
problems

Section Problem Papers

General tasks
(Sect. 6.1)

PM ; ss|an = a; dn = d|E Albers et al. (2014), Pruhs et al. (2008),
Chen et al. (2004)

PM ; ss|an; dn; pmtn;migr|E Bingham and Greenstreet (2008), Albers
et al. (2011), Angel et al. (2012b), Bampis
et al. (2012b)

PM ; ss|an; dn; pmtn|E Albers et al. (2014), Greiner et al. (2014)

PM ; ss|an; dn |E Cohen-Addad et al. (2015), Bampis et al.
(2015), Bampis et al. (2014a)

Agreeable deadlines
(Sect. 6.2)

PM ; ss|an; dn; wn = 1; agree|E Bampis et al. (2015)

Tasks with
precedence
constraints
(Sect. 6.3)

PM ; ss|an = a; dn = d; prec|E Li (2012)

PM ; global|dn = d; prec|E Gerards et al. (2015)

PM ; global|an; dn; sched; prec|E Gerards et al. (2014)

6.1 General tasks

We first consider the variant of the problem, where all tasks
arrive at time 0, have a shared global deadline, and local
speed scaling is used to minimize the total energy consump-
tion (PM ; ss|an = a; dn = d|E). This problem is strongly
NP-hard (Albers et al. 2014), since the 3-partition problem
can be reduced to it. Pruhs et al. (2008) show that the problem
of minimizing the makespan under an energy constraint can
be formulated as the problem of minimizing the 	α norm of
the processor loads (where α is the exponent in the dynamic
power function, see Sect. 3.2). For the latter problem, a PTAS
exists (Alon et al. 1997). In a similar fashion, also a PTAS
can be derived for energy minimization under a global dead-
line constraint. Such a PTAS cannot exist (unless P �= NP)
if there is a maximum speed smax, i.e., sn ≤ smax for all n
(Chen et al. 2004). Chen et al. (2004) study both the general
tasks problem (PM ; ss|an = 0; dn = d|E) and the variant
with restricted speeds. For the first problem they provide
an algorithm with a 1.13 approximation ratio, which also
attains this ratio for the second problem under some addi-
tional restrictions. Furthermore, they presented an algorithm
that can solve both problems optimally when migrations are
allowed.

There are several variations of the problem with arbi-
trary arrival times and deadlines considered in the literature.
They differ depending on whether preemptions and migra-
tions of tasks are allowed or not. The widely studied problem
PM ; ss|an; dn; pmtn;migr|E uses the combination of local
speed scaling and scheduling, where preemptions andmigra-
tions of tasks are allowed. This problem was first studied by
Bingham and Greenstreet (2008), wherein the authors show
that the problem is convex. They present an algorithm that
is polynomial in the number of tasks, but according to the
authors, the complexity is too high for practical applications.
However, as they also discuss properties of the optimal solu-

tion, their paper is important when studying multiprocessor
speed scaling with preemptions and migrations. Albers et al.
(2011) present amore efficient polynomial time algorithm for
the same problem. Their algorithm uses repeated maximum
flow computations to minimize the energy consumption. A
closely related approach by Angel et al. (2012b) also uses
maximum flow computations to find the optimal solution in
polynomial time. The resulting algorithm is more efficient
than that of Albers et al. (2011) for the case that a reduced
accuracy is allowed.Another approach to the sameproblem is
discussed in the paper by Bampis et al. (2012b), wherein the
optimal speeds are determined by solving a convexflowprob-
lem. In this approach, execution times correspond to amounts
of flow, which have to be sent through the network. The algo-
rithm that solves this problem has a time complexity that
depends on the latest deadline. Although this dependency on
the deadline is a drawback, the presented approach is straight-
forward and its concepts are interesting for future research
in this direction.

Albers et al. (2014) study the variant of the problemwhere
migrations are not allowed (PM ; ss|an; dn; pmtn|E). They
show that the problem is NP-hard, even for tasks with unit
workload (for which a PTAS is given). The difficult part of
this problem is the assignments of tasks to processors. If such
an assignment is given, determining the optimal speeds and
scheduling order is straightforward, since YDS can be used
for the tasks on each individual processor. The heuristic by
Albers et al. (2014) sorts the tasks in order of nondecreasing
deadlines, and assigns the tasks in this order to the processor
with the lowest amount of work assigned to it. This heuristic
has an approximation ratio of 2(2 − 1

N )α . A more general
version of this problem that considers a weighted sum of the
energy consumption and flow time as objective is studied by
Greiner et al. (2014).

In recent years, the problem that allows neither migration
nor preemption (PM ; ss|an; dn|E) has caught some attention

123



J Sched (2016) 19:3–19 15

(Cohen-Addad et al. 2015; Bampis et al. 2015). Bampis et al.
(2014a) use results from this previous research to develop
an algorithm with the approximation ratio B̃α

(
(1 + ε)(1 +

wmax/wmin)
)α .

6.2 Agreeable deadlines

Just as for the uniprocessor problem with agreeable dead-
lines, in the multiprocessor case a solution to the preemptive
problem with no migration can be transformed to a non-
preemptive solution with no migration with the same costs
(Bampis et al. 2015).

Albers et al. (2014) present an optimal algorithm for the
multiprocessor agreeable deadline problemwhere tasks have
unit workload (PM ; ss|an; dn;wn=1; agree|E). This algo-
rithm sorts the tasks in order of nondecreasing deadlines,
assigns them to the processors using round robin schedul-
ing and applies an algorithm that solves 1; ss|an; dn;wn =
1; agree|E (e.g., YDS) to the task sets for each individual
processor. For tasks with an arbitrary workload they give an
αα24α-approximation algorithm.

6.3 Tasks with precedence constraints

According to the survey by Chen and Kuo (2007) ... energy-
efficient scheduling for jobs with precedence constraints with
theoretical analysis is still missed in multiprocessor systems.
Only a few papers have studied speed scaling of tasks with
precedence constraints, and to the best of our knowledge no
papers studied the sleep mode variant of this problem. Since
the local speed scaling problem (PM ; ss|an = a; dn = d|E)
from Sect. 6.1 is already NP-hard, the variant with prece-
dence constraints (PM ; ss|an = a; dn = d; prec|E) is also
NP-hard.

Li (2012) studies the latter problem, and shows that under
specific conditions the optimal solution to this problem
becomes straightforward to approximate, namely for graphs
with precedence constraints that have more parallelism than
processors (called wide task graphs). Due to the amount
of parallelism, the tasks are easy to schedule and using a
single speed for the entire application gives near-optimal
results.

The global speed scaling variant of this problem
(PM ; global|an = a; dn = d; prec|E) is also NP-hard, and
was studied by Gerards et al. (2015). This problem consists
of both scheduling and speed scaling. However, the second
step is easy to solve, since the concept of power equality (see
Sect. 4.6) can be applied to find the optimal speeds. Ger-
ards et al. (2015) give a scheduling criterion that—together
with optimal speeds—leads to a minimal energy consump-
tion. Furthermore, they show how well existing scheduling

algorithms perform at approximating the energy consump-
tion.

A closely related problem that also assumes global speed
scaling is PM ; global|an; dn; sched; prec|E , where tasks
have individual arrival times and deadlines, and a sched-
ule of the tasks is already given. Gerards et al. (2014)
give a method that finds the optimal speeds by combining
the results on nonuniform power (Sect. 4.7) and the power
equality (Sect. 4.6). The given schedule is subdivided into
pieces, whereby a piece is a chunk of workload with a con-
stant number of active cores, during which no tasks start
or complete. Using the results on nonuniform power and
the power equality, these pieces are transformed in such a
way that a uniprocessor problem with agreeable deadlines
1; ss|an; dn; agree|E is achieved, which can be solved in
quadratic time (see Sect. 5.2). This solution can be trans-
formed back to obtain the optimal solution of the original
problem.

7 Open problems

This section discusses some open problems related to speed
scaling. The first problem (Sect. 7.1) is about the relation
between continuous and discrete speed scaling for a mul-
tiprocessor system. This problem was already solved for
single-processor systems. The second problem is about speed
scaling of tasks with precedence constraints on a local speed
scaling system. Even for a given schedule, this problem may
be hard.

7.1 Multiprocessor discrete speed scaling

Discrete speed scaling for a single processor is often
considered a simpler problem than continuous speed scal-
ing. There is an O(N 2 log N )-time algorithm for the fre-
quently studied problem 1; ss|an; dn; pmtn|E , while there is
a O(K N log N )-algorithm to the discrete speed scaling vari-
ant of this problem with K speeds (in practice, K � N ).
Furthermore, a solution to a continuous speed scaling prob-
lem can be converted to the discrete speed scaling variant
in O(N log K ) time by simulating the continuous speeds
(Sect. 4.5). To the best of our knowledge, there are no papers
that relate optimal continuous and discrete speed scaling for
multiprocessor systems, or that solve discrete multiprocessor
speed scaling problems algorithmically. Only in the simple
case where tasks have no precedence constraints and local
speed scaling is used, the techniques from single-processor
speed scaling can be applied to individual processors. More
research on discrete speed scaling for multiprocessor sys-
tems, and the relation between continuous and discrete speed
scaling on such systems is desirable.
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7.2 Local speed scaling for tasks with precedence
constraints

Local speed scaling for tasks with precedence constraints is
an unsolved and important problem. Even the case where the
tasks have been scheduled (i.e., task have been assigned to
processors, andper processor a sequenceof the assigned tasks
is given) and only speeds need to be determined (PM |an =
a; dn = d; prec; sched|E) is currently unsolved. The power
equality (discussed in Sect. 4.6) can be used as a first step
toward solving the problem.

The following example illustrates why this problem may
be difficult.

Example 4 Consider the power function p(s) = s3 for a
three-processor system with local speed scaling. The tasks
have precedence constraints as given in Fig. 3a. All tasks
share the common deadline d = 1.

We keep the work of the tasks variable in this example, to
demonstrate the influence of the work on the solution. The
schedule (with some arbitrarily chosen workload) is given in
Fig. 3b. Note, that the position of the gaps in the schedule
will change when the workload changes. The optimisation
problem is: for a given schedule, determine the optimal speed
assignment that minimizes the energy consumption, respects
precedence constraints, and meets the deadline.

Due to convexity of the power function, in the optimal
solution it must hold that s1 = s6. To ease the discussion, we
consider two situations:

(a) Task T2 finishes before task T3, or at the same time.
In the discussion below, we may assume that the edge
“a” between task T2 and T4 does not exist, as (with the
given assumption) it does not influence the optimal solu-
tion. In the optimal solution,we have e2+e7 = e3+e4 =
e3 + e5 (same execution time for tasks, avoiding gaps in
the schedule), otherwise the energy consumption can be
decreased by decreasing the speed of a task that is next
to a gap in the schedule. These relations can be used
to determine the speeds of these tasks. Using the power
equality, the relation between the speeds s3, s4, and s5
can be determined. It can also be used to relate speeds
s1, s2, and s3. Now enough information is available to
find the optimal speeds.

(b) Task T2 finishes after task T3.
In the discussionbelow,wemayassume that the edge “b”
between tasks T3 and T4 does not exist, as (with the given
assumption) it does not influence the optimal solution.
In the optimal solution we have that e2+e7 = e2+e4 =
e3+e5. Again, using the convexity of the power function
and using the power equality, the optimal speeds can be
determined.

T1

T2

T3

T4

T5

T6

T7

b

a

P1 T1 T2 T4

P2 T3 T5 T6

P7 T7

time

(a) Tasks with precedence constraints

(b) Schedule

Fig. 3 Precedence constraints and schedule for Example 4. a Tasks
with precedence constraints. b Schedule

A possible method for finding the optimal speeds now is by
calculating the energy consumption for both situations and
selecting the one with the lowest costs.

This example indicates that solving the overall continu-
ous problem depends on a number of discrete cases. These
cases are specified by whether some task finishes before or
after some other task. As it is unclear how many of these
decision points may occur, and if there is an efficient (poly-
nomial time) algorithm to make these decisions, the above
example suggests that the local speed scaling problem with a
given schedule of tasks with precedence constraints may be
difficult.

8 Discussion

Algorithmic power management can be used to significantly
reduce the energy consumption of computing devices. Com-
bined with such power management techniques, scheduling
algorithms play a crucial role, since the underlying schedules
have a critical impact on the efficiency of powermanagement
techniques. This survey discusses a great variety of such
scheduling algorithms that reduce the energy consumption
of real-time systems by either decreasing the speed (speed
scaling), or by turning devices off (sleep modes). We also
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argued that many of these speed scaling algorithmsminimize
the peak power consumption, although they are designed to
minimize the energy consumption. Furthermore, we pointed
out that many power management algorithms rely on the
same theoretical concepts. Therefore, we did not only sur-
vey algorithms, but also the fundamental ideas behind these
algorithms.

As many papers on algorithmic power management do
not consider several important architectural details, there is
a gap between theory and practice. Therefore, in this sur-
vey we gave a short overview of some of these aspects, and
how they can be modeled or treated. An example of such an
aspect is nonuniform power, which is rarely mentioned in the
theoretical literature.

Another important aspect missing in the theoretic litera-
ture is the interaction between global and local speed scaling
(“voltage and frequency islands”). These hybrids of local and
global speed scaling, and multiprocessor discrete speed scal-
ing are—in our view—the major theoretical challenges that
need to be addressed in the near future.
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