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Abstract Periodic scheduling has many attractions for
wireless telecommunications. It offers energy saving where
equipment can be turned off between transmissions, and
high-quality reception through the elimination of jitter,
caused by irregularity of reception. However, perfect periodic
schedules, in which each (of n) client is serviced at regular,
prespecified intervals, are notoriously difficult to construct.
The problem is known to be NP-hard even when service times
are identical. This paper focuses on cases of up to three dis-
tinct periodicities, with unit service times. Our contribution
is to derive a O(n4) test for the existence of a feasible sched-
ule, and a method of constructing a feasible schedule if one
exists, for the given combination of client periodicities. We
also indicate why schedules with a higher number of period-
icities are unlikely to be useful in practice. This methodology
can be used to support perfect periodic scheduling in a wide
range in real world settings, including machine maintenance
service, wireless mesh networks and various other telecom-
munication networks transmitting packet size data.
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1 Introduction

In this paper, we explore the construction of schedules for
clients who are serviced on a periodic basis, where clients
receive identical service durations but at different intervals.
An immediate practical problem motivates our research,
namely local transmission of data in Wireless Mesh Networks
(WMN) which is of increasingly importance for commu-
nication worldwide (Akyildiz et al. 2005). In wireless net-
works, data are transmitted in packets, and this feature can
be exploited to extract considerable energy saving of a factor
of 5 to 10 through efficient algorithms for packet schedul-
ing (Quintas and Friderikos 2012). Wireless Mesh Networks
represent a technology that economically increases the geo-
graphical area within which mobile clients may access broad-
band communication.

Mesh routers facilitate multi-hop wireless transmission to
relay data over extended distances without the cost, delay
and disruption of installing cabled access points. The routers
also act as local access points for devices or clients (e.g.
for WiFi access). The routers typically have a fixed loca-
tion and can be mounted on buildings, street lamps, etc. It
is the provision of local access (i.e. devices connecting to
the access point) that is of relevance in this paper. Local
access is governed by a star topology with all devices con-
necting to the local access point. Bandwidth must be sched-
uled so that at any point in time, an access point is servicing
at most one client. In this scenario, perfect periodic schedul-
ing provides numerous benefits associated with predictabil-
ity of activity time. A schedule is perfect periodic when each
client is itself serviced regularly at a fixed interval, known
as its periodicity. The duration and periodicity of service for
each client is given. In classic machine scheduling context,
processing of a job is synonymous with servicing of a client,
and processing time with duration. We will use these two
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paradigms interchangeably throughout. The predictability
allows the total power consumption of the network to be
minimised and the interference from competing simultane-
ous transmissions to be reduced or even eliminated.

Several studies have been undertaken on perfect periodic
scheduling problems. The problem of finding a feasible per-
fect periodic schedule has been proved by Bar-Noy et al.
(2002a) to be NP-hard in general. However, there are some
special cases for which simple closed form expressions offer
a polynomial time solution method. For three products with
three distinct periodicities, Glass (1992) derives a simple test
for existence of a feasible schedule, and a method of con-
structing feasible schedules if one exists. In addition, Glass
(1994) and Glass et al. (1994) study the feasibility prob-
lem in the context of the Economic Lot Scheduling Prob-
lem where several products with different durations are pro-
duced periodically so as to minimise holding and set up costs.
For two (three) products with two (three) distinct periodic-
ities, they develop a simple necessary and sufficient con-
dition for the feasibility test and construction of a feasible
schedule.

Due to the difficulty of finding a feasible perfect peri-
odic schedule for any given periodicities, called as request
periodicity, heuristics are therefore used to allocated close
values, called as allocated periodicity, using specific crite-
ria. Brakerski et al. (2006) study perfect periodic scheduling
for multiple servers, with the objective is to minimise the
maximum ratio of the allocated periodicity and requested
periodicity. They develop some approximation algorithms
for the problem. Patil and Garg (2006) propose an adap-
tive algorithm, called Adapmin. They find a worst case per-
formance bound on the quality of schedules produced by
Adaptmin and compare Adapmin to the algorithm of Braker-
ski et al.. Chen and Huang (2008) propose an efficient algo-
rithm of requested periodicities with high density and large
variance.

For perfect periodic scheduling with identical processing
times, Bar-Noy et al. (2004) consider two objective mea-
sures of maximum and weighted average ratios between the
allocated periodicity and requested periodicity. They present
a few efficient heuristic algorithms using a methodology,
called tree scheduling, based on an hierarchical round-robin
approach, where the hierarchy is a form of tree. Bar-Noy
et al. (2002b) develop tree-based approximation algorithms
for perfect periodic scheduling with the objective of minimis-
ing weighted average ratios between the allocated periodic-
ity and requested periodicity. Brakerski et al. (2003) study
the question of dispatching in a perfect periodic schedule,
namely how to find the next item to schedule, assuming that
the schedule is already given somehow.

All of the above approaches to finding a perfect periodic
schedule are limited in the range of schedules which they
consider. For example, tree scheduling algorithms (Bar-Noy

et al. 2002b; Brakerski et al. 2003) restrict their solution space
to a set of periodicities with a non-trivial greatest common
divisor. Moreover, Brakerski et al. (2006), Patil and Garg
(2006), and Chen and Huang (2008) constrain solutions to
those for which the ratio between any pair of two allocated
periodicities is a power of 2. Thus, further improvements in
heuristics depend upon being able to establish perfect peri-
odic schedules with a wider range of periodicities. Addi-
tional motivation for developing our understanding of perfect
period scheduling, arises in the context of wireless mesh net-
works where the response time variability in transmissions,
known as jitter, is an important issue. Jitter relates to quality
of reception and is measured by total response time variation
as well as the ”bottleneck metric,” of maximum deviation
from an ideal interval, identified by Steiner and Yeomans
(1993). Corominas et al. (2007) provide effective heuristics
for measures which prove to be optimal for the case of two
tasks. However, they avoid attempts to find solutions with no
interval variation, which are perfectly periodic, because of
”the serious practical disadvantage . . . that there may not be
a feasible solution.”

The aim of this paper is to address the issue of feasi-
bility for perfect periodic scheduling problem on a single
resource. We restrict our attention to problems with identi-
cal task durations and at most three distinct periodicities in
total. Observe that the focus on tasks with identical durations
is generally no limitation in the packet scheduling environ-
ment of wireless networks. Current practice is to use a com-
mon cycle time to co-ordinate packet scheduling (Quintas
and Friderikos 2012). Thus, any methodology which facili-
tates variety in periodicities infers enhanced flexibility and
thus potential additional energy savings for network oper-
ators. In the context of a wireless network with homoge-
neous link bandwidth, transmission time for a data packet
is uniform throughout the network, and time may thus be
divided into unit slots accordingly for scheduling purposes.
Our dual contributions are to provide a test of feasibility
and a method for constructing a feasible schedule (when one
exists).

This article contributes to a broader programme of
research into energy efficient scheduling for WMNs using
time slot models. A complementary algorithm for coordinat-
ing given periodic schedules at mesh nodes with data trans-
mission through the routing tree of the access network is
provided by Allen et al. (2012a), and demonstrated on sim-
ple networks. Then, for routing trees with a binary structure,
Kim and Glass (2012) develop a perfect periodic schedul-
ing methodology for efficiently transmitting data through the
access network, while providing the local clients at a mesh
node with a common scheduling cycle. For a general rout-
ing tree, Allen et al. (2012b) introduce an integer program-
ming formulation to describe an optimised schedule with
time slots, and a fast heuristic approximation which produces
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Fig. 1 The only possible, infeasible, schedule for two clients with peri-
odicities 2 and 3, respectively

near-optimal solutions. They additionally explore the poten-
tial for increasing throughput in a wireless mesh network by
varying transmission rates at individual links, taking account
of signal interference.

The remainder of the paper is structured as follows. The
problem itself is formulated in purely mathematical terms in
the next section. Our results rely only upon classic properties
in modulo arithmetic, which are included for completeness.
We then analyse the case of two distinct periodicities in Sect.
3. We establish a closed form test for the existence of a perfect
periodic schedule, and in doing so indicate the structure of
a feasible solution. Section 4 provides similar results for the
case of three periodicities. Various cases are analysed, result-
ing in a test for feasibility which runs in O(n4) time, where
n is the total number of clients, in the last subsection. The
construction of a feasible solution itself, where one exists,
is presented explicitly in Sect. 6. A few concluding remarks
are then offered in Sect. 7. For convenience, the remainder
of the paper is framed in the telecommunications context
of “service” to “clients,” and not in the alternative machine
scheduling terminology of “processing” of “jobs.”

2 Problem formulation and background results

In order to understand the difficulty of devising perfectly
period schedules consider the following small examples with
only two clients. First suppose that each client requests a peri-
odicity of 2. In this case, their requests can be accommodated
by scheduling one client in the odd numbered time slots and
the other in even numbered time slots, although there would
be no residual capacity for any other client. If, however, one
of the clients reduces their demand by a half to periodicity 3,
then there would appear to be residual capacity, but in fact
the problem becomes impossible to solve rather than easier,
as illustrated in Fig. 1. By contract, there is no difficulty in
scheduling two clients with longer periodicities of 6 and 9
time slots without overlap, as illustrated in Fig. 2. It is thus
the relationship between the periodicities, and not simply
their total effective capacity requirement, which determines
whether a feasible schedule can be constructed.

The problem of finding a Perfect Periodic Schedule with
unit service (or processing) times is generally formulated as

follows. We use R(a, b) to denote the remainder function of
two positive integers, a and b, that is, R(a, b) = a−b �a/b�.

Given a set of clients with associated service periodicity
qi ∈ N for i = 1, . . . , n, find time slot τi for which the
following time slots are distinct:

τ
(k)
i = R(τi , qi )+ (k − 1)qi , k ∈ N

for 1 ≤ i ≤ n.

However, as we consider a restricted number of periodic-
ities, it is more efficient for us to employ High Multiplicity
encoding Brauner et al. (2005).

PPS1: Given a set of ni clients with associated ser-
vice periodicity qi for i = 1, . . . , m (with ni , qi ∈ N),
find time slot τi j for which the following time slots are
distinct:

τ
(k)
i j = R(τi j , qi )+ (k − 1)qi , k ∈ N

for 0 ≤ j ≤ ni − 1 and 1 ≤ i ≤ m.

The above high multiplicity formulation has input data:
m, q1, . . . , qm, n1, . . . , nm which may be encoded in
O(m log qmax) steps, where qmax = max1≤i≤m qi (since
instances are restricted to having ni < qi to avoid obvious
infeasibility). A drawback of this super-efficient encoding is
that it does not afford a polynomial time solution algorithm
since describing a solution, τi j , takes more than polynomial
time in the input variables. Thus, PPS cannot belong to P nor
NP under high multiplicity encoding. However, the prob-
lem in terms of the standard encoding, with input variables
n, q1, . . . , qn , is known to be NP-hard from Bar-Noy et al.
(2002a) as mentioned above. It is therefore sensible to evalu-
ate the computational complexity of a solution procedure in
terms of the standard encoding.

In the PPS1 scenario, any feasible schedule is periodic and
the length of the period, T , is the least common multiple of
qi for all i = 1, . . . , m, lcm(q1, . . . , qm). Service to a client
with periodicity qi is repeated lcm(q1, . . . , qm)/qi times
within the overall period T , for each i . It is sufficient, there-
fore, to find a feasible schedule over T = lcm(q1, . . . , qm)

time slots instead of over the infinite horizon. Many results
relating to PPS1 are based on classic properties of congru-
ences from Number Theory. Let gcd(a, b)denote the greatest
common divisor of integers a and b.

Chinese Remainder Theorem Let a1 and a2 be positive
integers, and b1 and b2 be any integers. Then, the simul-

Fig. 2 A feasible schedule for two clients with periodicities 6 and 9, respectively
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taneous congruences t ≡ b1 mod a1 and t ≡ b2 mod a2

have a solution if and only if gcd(a1, a2) divides b1 − b2.

The following result follows directly from the Chinese
Remainder Theorem as observed by Bar-Noy et al. (2002a,
Lemma 12).

Lemma 1 A solution is feasible if and only if τi j �≡
τi ′ j ′ mod gcd(qi , qi ′) for i �= i ′ or j �= j ′.

By Lemma 1, there is no feasible schedule for any set of
periodicities q1, . . . , qm which contains a pair of periodic-
ities, qi and qi ′ which are coprime, i.e. gcd(qi , qi ′) = 1.
Congruence results have a direct relationship to the theory
of linear Diophantine equations (eg. a1x + a2 y = b). In this
equation form, the following result was used as long ago as
1st century AD (eg. by Indian mathematician Brahmagupta,
around AD 628) Jones and Jones (1998).

Lemma 2

a1x ≡ b mod a2

has a solution if and only if gcd(a1, a2) divides b.

3 Two distinct periodicities

In this section, we study the case when there are two dis-
tinct periodicities. A test of existence of a feasible sched-
ule is provided in Theorem 1 and a schedule construc-
tion in its proof. Throughout this section, we use a par-
tition � of time slots {0, . . . , lcm(q1, q2) − 1} into sets
�l = {t | t ≡ l mod gcd(q1, q2), 0 ≤ t ≤ lcm(q1, q2)− 1}
for l = 0, . . . , gcd(q1, q2) − 1. We refer to the time slot
l + p · gcd(q1, q2) in �l as position p in �l .

Note that |�l | = lcm(q1, q2)/gcd(q1, q2) for l =
0, . . . , gcd(q1, q2) − 1, and a client with the periodicity of
qi is repeated lcm(q1, q2)/qi time in T = lcm(q1, q2), from
which the following observation follows.

Lemma 3 Up to qi/gcd(q1, q2) clients with the periodicity
of qi for i = 1, 2 may be serviced in a single �-set, and a
client is serviced in just one �-set.

Proof Observe that the difference between any two consecu-
tive time slots in each �-set is gcd(q1, q2). Since gcd(q1, q2)

divides both q1 and q2, each client has to be serviced in only
one of �-sets. Moreover, the services for a client with the
periodicity of qi occur in every qi/gcd(q1, q2) time slots in
a single �-set. Thus, up to qi/gcd(q1, q2) clients with the
periodicity of qi can be serviced in a single �-set. 	

Lemma 4 Any two clients whose periodicities differ cannot
be scheduled in the same �−set.

Proof Clients j and j ′ with periodicities q1 and q2, respec-
tively, can be scheduled only if τ1 j �≡ τ2 j ′ mod gcd(q1, q2)

by Lemma 1, and hence any two clients with different peri-
odicities cannot be scheduled in the same �-set. 	


Theorem 1 An instance with two distinct periodicities, q1

and q2 with n1 and n2 clients, respectively, is perfect period-
ically schedulable if and only if⌈

n1

q1/gcd(q1, q2)

⌉
+

⌈
n2

q2/gcd(q1, q2)

⌉
≤ gcd(q1, q2).

(1)

Proof (⇒) From Lemma 3, the number of �-sets required
for scheduling ni clients with the periodicity of qi is
�ni/(qi/gcd(q1, q2)) for i = 1, 2. Thus, by Lemma 4, the
instance is schedulable only if
⌈

n1

q1/gcd(q1, q2)

⌉
+

⌈
n2

q2/gcd(q1, q2)

⌉
≤ gcd(q1, q2).

(⇐) We now construct a feasible solution for an instance
satisfying the condition (1). We determine the first time slot
in which client j with the periodicity of qi is serviced, τi j ,
as follows. Let

τ1 j =
⌊

j

q1/gcd(q1, q2)

⌋

+R

(
j,

q1

gcd(q1, q2)

)
gcd(q1, q2) (2)

for j = 0, . . . , n1 − 1, and

τ2 j =
⌈

n1

q1/gcd(q1, q2)

⌉
+

⌊
j

q2/gcd(q1, q2)

⌋

+R

(
j,

q2

gcd(q1, q2)

)
gcd(q1, q2) (3)

for j = 0, . . . , n2 − 1.
We now show that the time slots allocated by (2) and (3)

provide a feasible solution. From Lemma 1, it is sufficient to
prove that τi j �≡ τi ′ j ′ mod gcd(qi , qi ′) for i �= i ′ or j �= j ′.
Take the case when i = 1, i ′ = 2, 0 ≤ j1 ≤ n1 − 1 and
0 ≤ j2 ≤ n2−1, and consider τ1 j1 , τ2 j2 modulo gcd(q1, q2).
From (2) and (3),

0 ≤
⌊

j1
q1/gcd(q1, q2)

⌋
<

⌈
n1

q1/gcd(q1, q2)

⌉

≤
⌈

n1

q1/gcd(q1, q2)

⌉
+

⌊
j2

q2/gcd(q1, q2)

⌋

and

0 <

⌊
j2

q2/gcd(q1, q2)

⌋
≤

⌊
n2 − 1

q2/gcd(q1, q2)

⌋

≤
⌈

n2

q2/gcd(q1, q2)

⌉
− 1.
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Fig. 3 A solution for Example
1 a schedule in [0, T − 1], b
partition of schedule into �-set

Thus,

0 ≤
⌊

j1
q1/gcd(q1, q2)

⌋

<

⌈
n1

q1/gcd(q1, q2)

⌉
+

⌊
j2

q2/gcd(q1, q2)

⌋

<

⌈
n1

q1/gcd(q1, q2)

⌉
+

⌈
n2

q2/gcd(q1, q2)

⌉
− 1

≤ gcd(q1, q2)− 1

since (1) holds. Thus, τ1 j1 �≡ τ2 j2 mod gcd(q1, q2) as
claimed.

It remains to show that τi j ≡ τi j ′ mod qi implies that j =
j ′ for i = 1, 2. Consider the case with i = 1. Observe that

0 ≤ R

(
j,

q1

gcd(q1, q2)

)
≤ q1

gcd(q1, q2)
− 1, and

0 ≤
⌊

j

q1/gcd(q1, q2)

⌋
< gcd(q1, q2)

from above. Thus,

0 ≤ τ1 j

=
⌊

j

q1/gcd(q1, q2)

⌋
+ R

(
j,

q1

gcd(q1, q2)

)
gcd(q1, q2)

< gcd(q1, q2)+
(

q1

gcd(q1, q2)
− 1

)
gcd(q1, q2)

≤ q1

for each j = 0, . . . , n1 − 1, showing that distinct τi j values
cannot be congruent modulo q1. A similar argument holds
for the case with i = 2, completing the proof. 	


In the feasible solution described above, the clients with
the periodicity of q1 are scheduled in �l for l = 0, . . . ,

�n1/(q1/gcd(q1, q2)) − 1, and the clients with period-
icity of q2 in �l for l = �n1/(q1/gcd(q1, q2)) , . . . ,
�n1/(q1/gcd(q1, q2)) + �n2/(q2/gcd(q1, q2)) − 1. The
following example illustrates the construction of a perfect
periodic schedule described in Theorem 1.

Example 1 Consider the case of two periodicities q1 = 6 and
q2 = 9 with n1 = 3 and n2 = 2, respectively. This instance
satisfies criterion (1) for the schedulability, since⌈

n1

q1/gcd(q1, q2)

⌉
+

⌈
n2

q2/gcd(q1, q2)

⌉

=
⌈

3

2

⌉
+

⌈
2

3

⌉
= 3 ≤ 3 = gcd(q1, q2).

Following the construction of the above proof, we calculate
the first time slots in which each client is serviced using (2)
and (3) as follows:

τ10 = �0/2� + R(0, 2)3 = 0

τ11 = �1/2� + R(1, 2)3 = 3

τ12 = �2/2� + R(2, 2)3 = 1

τ20 = �3/2 + �0/3� + R(0, 3)3 = 2

τ21 = �3/2 + �1/3� + R(1, 3)3 = 5.

Therefore, the first client with the periodicity of q1 is ser-
viced in the set of time slots {0, 6, 12}, and the second and
third in the set of time slots {3, 9, 15} and in the set of time
slots {1, 7, 13}, respectively. Similarly, the first client with the
periodicity of q2 is serviced in the set of time slots {2, 11},
and second client with the periodicity of q2 in the set of time
slots {5, 14}. A single complete period of length (T = 18) of
feasible schedule is depicted in Fig. 3a and its partition into
�-sets in Fig. 3b.

4 Theoretical results for three distinct periodicities

In this section, we study the existence of a feasible solu-
tion where there are three distinct periodicities, q1, q2 and
q3. It is convenient to identify the factors of the period-
icities, q1, q2 and q3. Let g = gcd(q1, q2, q3), g12 =
gcd(q1, q2)/g, g23= gcd(q2, q3)/g, g31= gcd(q3, q1)/g,
g10 = q1/(gg12g31), g20 = q2/(gg23g12), and g30 =
q3/(gg31g23). Thus, the periodicities are presented as q1 =
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gg10g12g31, q2 = gg20g12g23 and q3 = gg30g23g31.
Observe that integers in sets {g10, g20, g30}, {g12, g23, g31},
{g10, g23}, {g20, g31} and {g30, g12} are coprime within each
set but not necessarily coprime to g nor between sets. We
first show that any instance can be reduced to one in which
gi0 = 1 for i = 1, 2, 3 in Sect. 4.1. Then, we consider the
case when gi0 = 1 for i = 1, 2, 3 and gcd(q1, q2, q3) = 1
in Sect. 4.2, and we later extend the results to general peri-
odicities in Sects. 4.3 and 5.

4.1 Problem reduction

The following theorem shows how an instance can be reduced
to an instance with gi0 = 1 by letting n′i = �ni/gi0 and
q ′i = qi/gi0 for i = 1, 2, 3. The proof relies on a congruence
relationship given in Lemma 5 below.

Theorem 2 An instance with n1, n2, n3 clients with the peri-
odicity of q1, q2, q3, respectively, is feasible if and only if there
is a feasible perfect periodic schedule for �ni/gi0 clients
with a periodicity of qi/gi0 for i = 1, 2, 3.

Proof (⇒) Take a feasible schedule. If a client with the peri-
odicity of q2 or q3 is serviced in a time slot t , then it is also
serviced in time slots t + hT/g10, for h = 0, . . . , g10 − 1,
since both q2 and q3 divide T/g10. Hence, the subsched-
ule consisting of clients with the periodicity of q2 or q3 has
periodicity T/g10 and is repeated g10 times within the over-
all period T of the three periodicities. Now by Lemma 5, a
client, say j , with the periodicity of q1 occupies time slots
τ1 j + hq1/g10 for h = 0, . . . , (T/q1)− 1 within the period
T ′ = {0, . . . , T/g10 − 1}. Moreover, no client with the peri-
odicity of q2 or q3 can be serviced in these time slots. Thus,
up to g10 clients with the periodicity of q1 can be scheduled in
these time slots, i.e. {t | t ≡ τ1 j + hq1/g10 mod T/g10, 0 ≤
h ≤ T/q1 − 1}. From this perspective, feasibility depends
upon �n1/g10, but not on n1 itself. Therefore, repeating this
argument for i = 1, 2, 3, any instance can be reduced to
an instance with gi0 = 1 by letting n′i = �ni/gi0 and
q ′i = qi/gi0 for i = 1, . . . , 3.
(⇐) Given a feasible schedule for the reduced problem, i.e.
τ ′i j for i = 1, 2, 3, j = 0, . . . , �ni/gi0 − 1, set initial time
slots for clients in the original problem as follows:

τi j = τ ′i� j/gi0� + R( j, gi0)(qi/gi0) (4)

for i = 1, 2, 3, j = 0, . . . , ni − 1. We now show that the
schedule implied by (4) provides a feasible solution.

From Lemma 1, it is sufficient to prove that τi j �≡
τi ′ j ′ mod gcd(qi , qi ′) for i �= i ′ or j �= j ′. Suppose oth-
erwise. Then there are non-identical pairs i , j and i ′, j ′ for
which τi j ≡ τi ′ j ′ mod gcd(qi , qi ′). However, if i = i ′, then

τ ′i j − τ ′i j ′ ≡
(
R

(
j ′, gi0

)− R ( j, gi0)
)
(qi/gi0) mod qi

implying that τ ′i j ≡ τ ′i j ′ mod qi , and hence that j = j ′, by
Lemma 1 and feasible of schedule i . On the other hand, if
i �= i ′, i = 1 and i ′ = 2 say, then

τ ′1� j/q10� − τ ′2� j ′/q20� ≡ R
(

j ′, g20
)

g12g23

−R ( j, g10) g12g13 mod q12

implying that τ ′1� j/q10� ≡ τ ′2� j/q20� mod gcd(q ′1, g′2) since
gcd(q ′1, g′2) = gcd(q1, g2) = g12. This provides the
required contradiction, from Lemma 1 and feasibility of i .

	

Lemma 5 The following sets are congruent modulo T/gi0

{kqi | k=0,. . ., T/qi−1} and {k′qi/gi0 | k′ =0,. . ., T/qi−1}
for i = 1, 2, 3.

Proof Consider the expression kq1 ≡ k′q1/g10 mod T/g10.
Since g12g31 divides q1, q1/g10 and T/g10, this is equivalent
to kq1/(g12g31) ≡ k′q1/(g10g12g31) mod T/(g10g12g31),
that is, kg10 ≡ k′mod g20g30g23 for 0 ≤ k, k′ ≤
g20g30g23 − 1. Thus, it is sufficient to show that � =
{t | t ≡ kg10 mod g20g30g23, 0 ≤ k ≤ g20g30g23 −
1} = {0, 1, . . . , g20g30g23 − 1}. Suppose otherwise, then
|�| < g20g30g23, and there must exist k and k′, k �= k′,
such that g10k ≡ g10k′mod g20g30g23 where 0 ≤ k, k′ ≤
g20g30g23 − 1. Then, g10k − g10k′ = g10(k − k′) ≡
0 mod g20g30g23. Since g10 and g20g30g23 are coprime,
this implies that k − k′ ≡ 0 mod g20g30g23, which can-
not hold for the given choice of k and k′, giving the
required contradiction. A similar argument can be applied
for i = 2, 3. 	


4.2 Special case of gcd(q1, q2, q3) = 1, for the reduced
problem

While the analysis in this section focuses of q3, the choice
is purely arbitrary. We assume that g = 1 and gi0 = 1 for
i = 1, 2, 3, and thus T = lcm(q1, q2, q3) = g12g23g31. Take
a partition � of time slots {0, 1, . . . , T − 1} into sets �l =
{t | t ≡ l mod g12, 0 ≤ t ≤ T − 1} for l = 0, . . . , g12 − 1.
We refer to the time slot l + pg12 in �l as position p in �l .
Observe that |�l | = T/g12 = g23g31 for l = 0, . . . , g12−1.

Lemma 6 Each client with the periodicity of q1 or q2

receives all its service slots in the same �-set. Moreover,
no �-set accommodates both a client with the periodicity of
q1 and a client with the periodicity of q2.

Proof Observe that g12 is the difference between any two
consecutive time slots in each �-set. Since g12 divides both
q1 and q2, each client with the periodicity of q1 or q2 has to be
serviced in a single �-set. Moreover, clients j and j ′ with the
periodicities of q1 and q2, respectively, are simultaneously
scheduled if and only if τ1 j �≡ τ2 j ′modg12 by Lemma 1,
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Fig. 4 Rearranging time slots
in each �l with respect to q3

and hence any two clients with the periodicities of q1 and q2

cannot be scheduled in the same �-set. 	

The partition � of time slots thus enable us to view the

schedule of service to clients with the periodicities of q1

and q2 independently. We now consider the interplay with
clients with the periodicity of q3. Observe that there is an
integer q̄3, 1 ≤ q̄3 ≤ g12 − 1 for which q3q̄3 ≡ 1 mod g12,
from Lemma 2 since gcd(q3, g12) = 1. Let p[l]3 j denote the
first position in �l of service to client j with the periodicity
of q3 corresponding to time slot l + p[l]3 j g12.

Lemma 7 In a feasible schedule for any instance with three
distinct periodicities, q1, q2 and q3, with g = 1 and gi0 = 1
for i = 1, 2, 3, any client j with the periodicity of q3 is
serviced exactly once in each set �l for l = 0, . . . , g12 − 1.
Moreover, then its position in �l is given by

p[l]3 j = R(τ3 j/g12 + l(q3q̄3 − 1)/g12, q3)

where q̄3 is the integer, 1 ≤ q̄3 ≤ g12 − 1, for which q3q̄3 ≡
1 mod g12, and τ3 j ≡ 0 mod g12.

Proof We first show that any client with the periodicity of
q3 is serviced exactly once in each �-set. To that end, it
is sufficient to show that � = {τ3 j + q3k mod g12 | k =
0, 1, . . . , g12−1} = {0, 1, . . . , g12−1}. Suppose otherwise,
then |�| < g12, and there must exist k and k′, k �= k′, 0 ≤
k, k′ ≤ g12 − 1 such that τ3 j + q3k ≡ τ3 j + q3k′mod g12.
Thus, q3(k− k′) ≡ 0 mod g12. Since q3 and g12 are coprime,
this implies that k − k′ ≡ 0 mod g12, which contradicts the
given choice of k and k′ by |k − k′| < g12.

Since service is cyclic and {τ (k)
3 j | k = 0, . . . , g12 − 1}

covers all elements in set {�l | l = 0, . . . , g12 − 1}, we

may assume without loss of generality that τ3 j ≡ 0 mod g12,

and so τ3 j ∈ �0. Thus, τ
(k)
3 j = τ3 j + kq3 ≡ l mod g12 for

k ≡ lq̄3 mod g12. Then, the position of service to client j
with the periodicity of q3 in set �l is

p[l]3 j = R((τ
(k)
3 j − l)/g12, q3)

= R((τ3 j + lq3q̄3 − l)/g12, q3)

= R(τ3 j/g12 + l(q3q̄3 − 1)/g12, q3)

for j = 0, . . . , n3 and l = 0, . . . , g12 − 1. 	


By Lemma 7, we assume without loss of generality that
τ3 j ∈ �0, and hence the position of subsequent services to
a client j with the periodicity of q3 within a set �l depends
only on l and not on k. We therefore introduce the concept
of relative position within a �l set as

p̂ = p − l(q3q̄3 − 1)/g12

taken modulo q3, where the original position p within the set
corresponds to time slot l + pg12. Thus, we can rearrange
time slots in each set �l , so that any client with the periodicity
of q3 appears to be serviced in the same relative position in
all �l ’s by putting time slot R(lq3q̄3, T ) in the first position
of set �l . Figure 4 depicts the procedure when q1 = 12,
q2 = 20 and q3 = 15 i.e. g12 = 4, g23 = 5 and g31 = 3, and
n3 = 4.

Corollary 1 Each client with the periodicity of q3 occupies
the same single relative position in each of the �-sets, i.e.

p̂[l]3 j = R(τ3 j/g12, q3) for l = 0, . . . , g12 − 1.
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For any feasible schedule, a relative position p̂ is referred
to as free if no client with the periodicity of q1 or q2 is serviced
in the pth relative position of any of the �-sets. Hence, in
a feasible schedule, the number of free relative positions is
at least as great as n3 because a client with the periodicity
of q3 is serviced in a particular relative position of each of
the �-sets by Corollary 1. In order to establish the precise
condition for accommodating n3 clients with the periodicity
of q3 in Theorem 3, we now examine the interplay between
(relative) positions occupied by clients with the periodicities
of q1 or q2.

Lemma 8 In a feasible schedule for any instance with three
distinct periodicities, q1, q2 and q3, with g = 1 and gi0 =
1 for i = 1, 2, 3, for any pair of clients, one with the
periodicity of q1 and the other with the periodicity of q2,
there exist precisely one position in which both clients are
serviced.

Proof Take a client j1 with the periodicity of q1 and a client
j2 with the periodicity of q2. If there is no position which
serves both clients, then both clients can be serviced in same
set, which contradicts to the results of Lemma 1.

If there is more than one position within T which serves
the two given clients, then there exist integers k1, k′1, k2 and

k′2 such that τ
(k1)
1 j1
− l1 = τ

(k2)
2 j2
− l2 and τ

(k′1)
1 j1
− l1 = τ

(k′2)
2 j2
− l2

where 0 ≤ k1, k′1 ≤ g23, 0 ≤ k2, k′2 ≤ g31, k1 �= k′1, k2 �= k′2.

Thus, τ
(k1)
1 j1
− τ

(k2)
2 j2
= l1 − l2 = τ

(k′1)
1 j1
− τ

(k′2)

2 j2
, and hence

k1q1 − k2q2 = k′1q1 − k′2q2, and therefore (k1 − k′1)q1 =
(k2 − k′2)q2. Since g12 > 0 and g23 is coprime to g31, g23

divides |k1 − k′1| and g31 divides |k2 − k′2|, this implies, for
the given range of the k variables, that k1 = k′1 and k2 = k′2
completing the proof. 	

Corollary 2 Consider an instance of the PPS problem with
three distinct periodicities, q1, q2 and q3, with g = 1 and
gi0 = 1 for i = 1, 2, 3. Suppose that α clients with the
periodicity of q1 are serviced in a single �-set and β clients
with the periodicity of q2 in another �-set. Then, there exist
precisely αβ positions which serve both a client with the
periodicities q1 and a client with the periodicity of q2.

Proof From the result of Lemma 8, any pairs of clients with
the periodicities of q1 and q2 has precisely one position in
which both clients are serviced. There are αβ different pairs
of clients, one with the periodicity of q1 and the other with
the periodicity of q2. Thus, there are αβ positions in which
both clients with the periodicities q1 and q2 are serviced. 	

Theorem 3 Consider an instance with clients of each of
three distinct periodicities, q1, q2 and q3, with g = 1 and
gi0 = 1 for i = 1, 2, 3. The instance is schedulable if and
only if there exists an integer x, 1 ≤ x ≤ g12 − 1 such that

⌈n1

x

⌉
≤ g31 − 1, (5)⌈

n2

g12 − x

⌉
≤ g23 − 1, (6)

n3 ≤
(

g31 −
⌈n1

x

⌉) (
g23 −

⌈
n2

g12 − x

⌉)
. (7)

Proof (⇒) Take a feasible solution. Let xi denote the num-
ber of sets of � serving clients with the periodicity of qi ,
respectively, for i = 1, 2. Let α and β denote the maximum
number of clients with the periodicity of q1 and q2, respec-
tively, serviced in a single set in �. Thus, α ≥ �n1/x1 and
β ≥ �n2/x2. Note that |�l | = g23g31 and that a client with
the periodicity of q1 and q2 occurs exactly g23 and g31 times,
respectively, in a single set in �. Hence, from the result of
Corollary 2, the maximum number of free relative positions
in �l is

g23g31 − (g23α + g31β − αβ)

= (g31 − α) (g23 − β)

≤
(

g31 −
⌈

n1

x1

⌉)(
g23 −

⌈
n2

x2

⌉)
.

Now x2 ≤ g12−x1 ensures that �n2/x2 ≥ �n2/(g12−x1).
Since each �-set has at least n3 time slots to accommodate
the n3 clients with the periodicity of q3, inequality (7) is sat-
isfied by setting x = x1. Moreover, since a client with the
periodicity of q3 is serviced once in each �-set by Lemma
7, the maximum number of clients with the periodicity of q1

(or q2) in a �-set, α (or β), is at most g31 − 1 (or g23 − 1),
implying conditions (5) and (6).
(⇐) Now suppose that there exists an integer x , 1 ≤ x ≤
g12 − 1, satisfying the inequalities, (5), (6) and (7). Let α =
�n1/x and β = �n2/(g12 − x). We construct a feasible
solution as follows. We schedule the first time slots of the
clients with the periodicity of q1 at

τ1 j = R(q3q̄3 � j/α� + R( j, α)g12, q1) (8)

=
⌊

j

α

⌋
+

(
q3q̄3 − 1

g12

⌊
j

α

⌋
+ R( j, α)

)
g12 mod q1,

for j = 0, . . . , n1 − 1. Observe that client j with the peri-
odicity of q1 is in position l(q3q̄3 − 1)/g12 + R( j, α) of set
�l , for l = � j/α�. Thus, there are α clients with the peri-
odicity of q1 in each set �l for l = 0, . . . , x − 2, and the
remainder, i.e. n1−α(x − 1) clients, in �x−1. The first time
slots of the clients with the periodicity of q2 is placed in time
slots

τ2 j = R(q3q̄3 (x + � j/β�)+ R( j, β)g12, q2), (9)

for j = 0, . . . , n2 − 1. Client j with the periodicity of q2 is
therefore in position l(q3q̄3−1)/g12+ R( j, β) of set �l , for
l = x +� j/β�. Thus, there are β clients with the periodicity
of q2 in each set �l for l = x, . . . , g12−2, and the remainder,
i.e. n2 − β(g12 − x − 1), clients in �g12−1.
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Fig. 5 A solution for Example
2 a schedule in [0, T − 1], b
partition of schedule into �-set

Then each client with the periodicity of q1 in �0 occupies
g23 = T/q1 positions, and the each client with the periodicity
of q2 in �x occupies g31 = T/q2 positions. Moreover, the
above construction ensures that all clients with the periodicity
of q1 are scheduled in the same relative positions within a
set as those in set �0, and all clients with the periodicity of
q2 are in the relative positions used in set �x . It thus follows
from Corollary 2 that g23α+g31β−αβ relative positions are
occupied by clients with the periodicities of q1 and q2. The
remaining g23g31−(g23α+g31β−αβ) = (g31−α)(g23−β)

relative positions remain for clients with the periodicity of
q3. From (7), there are at least n3 such free relative positions
and the clients with the periodicity of q3 may therefore be
scheduled as follows. Schedule the first time slot of the client
j with the periodicity of q3 at

τ3 j = R( p̂ j g12, q3)

for j = 0, . . . , n3−1, where p̂ j denote ( j+1)th free relative
position in �0. 	


Observe that the conditions for feasibility given in The-
orem 3 are asymmetric in the three periodicities, which at
first sight seems odd. However, the conditions are in fact
symmetric in the periodicities as proved in Appendix 1. The
following Lemma studies the computational complexity of
finding an integer x referred to in Theorem 3.

Lemma 9 For an instance with three distinct periodicities
with g = 1 and gi0 = 1 for i = 1, 2, 3, there is a test for
feasibility whose computational complexity is O(n).

Proof From the result of Theorem 3, the feasibility test
can be done in O(g12) steps by examining each inte-
ger x , 1 ≤ x ≤ g12 − 1 and testing inequality (7). If
g12 ≤ 2 max{n1, n2}, then there are O(n) operations as
claimed since max{n1, n2} ≤ n. On the other hand, if
g12 > 2 max{n1, n2}, then set x = max{n1, n2}. Then,
the inequality (7) reduces to n3 ≤ (g31 − 1) (g23 − 1). As
a result, the complexity of feasibility test is O(n). 	


The following example illustrates the construction of a
perfect periodic schedule described in Theorem 3.

Example 2 Consider the case of three periodicities q1 = 12,
q2 = 20 and q3 = 15 (ie. g12 = 4, g23 = 5 and g31 = 3)
with n1 = 6, n2 = 1 and n3 = 4, respectively. This instance
is schedulable since taking x = 3 satisfies x ≤ 3 = g12 − 1
and conditions (5)–(7) of Theorem 3. The construction of the
above proof then results in the feasible schedule presented in
Fig. 5.

4.3 Case of gcd(q1, q2, q3) ≥ 2, for the reduced problem

In this section, we consider the more general case of three
distinct periodicities when g = gcd(q1, q2, q3) ≥ 1, while
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maintaining the restriction that gi0 = 1 for i = 1, 2, 3. Our
focus is that of describing the feasible solution space, which
forms the theoretical basis of the test for feasibility presented
in Sect. 5 and the algorithm for constructing a feasible solu-
tion in Sect. 6.

Throughout this section, we use a partition, �, of time
slots {0, 1, . . . , T − 1} into sets �l = {t | t ≡ l mod g, 0 ≤
t ≤ T − 1} for l = 0, . . . , g − 1. We denote the number of
sets serving clients with just one periodicity of qi by λi , the
number serving two separate periodicities, i and i ′, by λi i ′ ,
for i �= i ′ and i, i ′ ∈ {1, 2, 3} and the number serving all
three periodicities by λ123. The number of clients with the
periodicity of q1 in set λ1, λ12, λ31, λ123 are denoted by n10,
n12, n13, μ1, respectively, and similar notation is used for the
other periodicities. Observe that n1 = n10+n12+n13+μ1,
n2 = n20+ n21+ n23+μ2 and n3 = n30+ n31+ n32+μ3,
and denote the distribution of clients to sets in � by n =
(n10, n20, n30, n12, n21, n23, n32, n31, n13, μ1, μ2, μ3).

We now analyse the relationship between the number of
the sets of each type, the λs, and the number of clients of
each periodicity distributed to these sets, in Lemmas 10–12.
We will then return to the issue of testing for the existence
of a feasible solution in Theorem 4.

Lemma 10 A feasible PPS instance with three distinct peri-
odicities, q1, q2 and q3, and gi0 = 1 for i = 1, 2, 3
has a solution in which λ12, λ23 and λ31 are each at most
one.

Proof Take an instance for which any such feasible schedule
has at least one of λ12, λ23 and λ31 greater than 1. Take a
solution with smallest possible max(λ12, λ23, λ31) = λ12

say. Let � and �′ denote two of the sets serving clients with
the periodicities of q1 and q2.

Suppose that n1 and n2 clients with the periodicity of q1

and q2, respectively, are serviced together in �l , and that n′1
and n′2 clients with the periodicity of q1 and q2, respectively,
are serviced together in �l ′ . The schedule with the set �l (or
�l ′ ) may be viewed as a single schedule for the clients n1

and n2 (or n′1 and n′2) alone with the periodicity of q ′1 = q1/g
and q ′2 = q2/g, respectively. Thus, gcd(q ′1, q ′2) = g12, and
by Theorem 1,⌈

n1

q1/gg12

⌉
+

⌈
n2

q2/gg12

⌉
≤ g12 and

⌈
n′1

q1/gg12

⌉
+

⌈
n′2

q2/gg12

⌉
≤ g12.

If �n2/(q2/gg12) ≥
⌈

n′1/(q1/gg12)
⌉

, then let ñ2 =
min{q2/gg12

⌈
n′1/(q1/gg12)

⌉
, n2}, and thus⌈

n1 + n′1
q1/gg12

⌉
+

⌈
n2 − ñ2

q2/gg12

⌉
≤ g12 and

⌈
ñ2 + n′2
q2/gg12

⌉
≤

⌈
ñ2

q2/gg12

⌉
+

⌈
n′2

q2/gg12

⌉
≤ g12.

Hence, exchanging ñ2 clients of the n2 clients with the peri-
odicity of q2 in �l with all n′1 clients with the periodicity
of q1 in �l ′ results in time slots in a set �l ′ serving only
clients with the periodicity of q2 and �12 has been reduced
by 1. If �n2/(q2/gg12) <

⌈
n′1/(q1/gg12)

⌉
, then the same

argument applies with clients in �l exchanged with clients
in �l ′ , providing the required contradiction. 	


A similar result holds for λ123, as captured in Lemma 11
below, but its proof is more lengthy and therefore relegated
to Appendix 2.

Lemma 11 A feasible PPS instance with three distinct peri-
odicities, q1, q2 and q3, and gi0 = 1 for i = 1, 2, 3 has a
solution in which λ123 ≤ 1.

Lemma 12 A feasible PPS instance with three distinct peri-
odicities, q1, q2 and q3, and gi0 = 1 for i = 1, 2, 3 has a
solution in which λ12, λ23, λ31 and λ123 are each at most one.

Proof The result follows by taking a feasible solution which
satisfies Lemma 11, i.e. with λ123 ≤ 1, and applying the
exchange described in the proof of Lemma 10. Since no new
�-set with three periodicities is created by the exchange,
λ123 is not increased, and the resultant solution satisfies
Lemma 12. 	

Theorem 4 For an instance with three distinct periodicities,
q1, q2 and q3, and gi0 = 1 for i = 1, 2, 3 which has a
feasible solution, there exist an (non-negative) integer vector
n = (n10, n20, n30, n12, n21, n23, n32, n31, n13, μ1, μ2, μ3),
and non-negative integers, λ1, λ2, λ3, λ12, λ23, λ31 and λ123

for which

3∑
i ′=0,i ′ �=i

nii ′ + μi = ni for i = 1, 2, 3

(10)

λ1 + λ2 + λ3 + λ12 + λ23 + λ31 + λ123 ≤ g (11)⌈
ni0

qi/g

⌉
= λi for i = 1, 2, 3

(12)

λ12, λ23, λ31 ≤ 1 (13)⌈
n12

q1/(gg12)

⌉
+

⌈
n21

q2/(gg12)

⌉
≤ g12λ12 (14)

⌈
n23

q2/(gg23)

⌉
+

⌈
n32

q3/(gg23)

⌉
≤ g23λ23 (15)

⌈
n31

q3/(gg31)

⌉
+

⌈
n13

q1/(gg31)

⌉
≤ g31λ31 (16)

and

λ123 ≤ 1 (17)

(1− λ123)(μ1 + μ2 + μ3) = 0 (18)⌈μ1

x

⌉
≤ g31 − 1 (19)

123



J Sched (2014) 17:47–65 57

⌈
μ2

g12 − x

⌉
≤ g23 − 1 (20)

(
g31 −

⌈μ1

x

⌉)(
g23 −

⌈
μ2

g12 − x

⌉)
≥ μ3 (21)

for some integer x, 1 ≤ x ≤ g12 − 1.

Proof Consider a feasible schedule for an instance of PPS
problem with three distinct periodicities, with the notation
of �-sets and number of clients, nii ′ , as defined at the begin-
ning of this section. For the solution to be feasible, the total
number of �-sets required can be no more than g, as cap-
tured by (11). We consider each type of �-set in turn: those
with clients of one, two and then three different periodicities.
Without loss of generality, we may assume from Lemma 12
that there is no more than one �-set for clients with each
possible combination of two or three periodicities within the
set, implying (13) and (17).

The �-sets with just clients of a single periodicity, qi

say, can each service up to qi/g clients by Lemma 3. The
number of sets required to schedule the clients associated
with ni0, λi0, is therefore �ni0/(qi/g) as given by (12) for
i = 1, 2, 3.

Consider �-sets with clients of two different periodicities.
If λ12 = 0, then (14) holds for n12 = n21 = 0. Otherwise,
λ12 = 1, and n12 and n21 clients with the periodicity of q1

and q2, respectively, are serviced together in a single �-set.
From the result of Theorem 1 applied for periodicities of
q1/g and q2/g,⌈

n12

q1/(gg12)

⌉
+

⌈
n21

q2/(gg12)

⌉
≤ g12λ12

as given by (14). Similar expressions hold for the other two
pairs of periodicities, and are given by (15) and (16), respec-
tively.

Finally, consider a �-set with clients of three different
periodicities. If λ123 = 0, then there is no set with clients
of each of the three periodicities, μi = 0 for i = 1, 2, 3,
and inequalities (18), (19), (20) and (21) hold for x = 1.
Otherwise, λ123 = 1, (18) holds, and the μ1, μ2 and μ3

clients with the periodicity of q1, q2 and q3, respectively,
are serviced in a single �-set. From Theorem 3 applied for
periodicities of q ′i = qi/g for i = 1, 2, 3, the inequalities
(19), (20) and (21) hold for some integer x , 1 ≤ x ≤ g12−1,
completing the proof. 	


5 Feasibility test for three distinct periodicities

In this section, we develop a polynomial test for feasibility,
based upon the results of Theorems 3 and 4. The feasibility
test systematically searches for a vector n to satisfy con-
straints (10)–(21) of Theorem 4. In doing so, it reveals infor-
mation about a feasible solution, where one exists. However,

it is convenient to reserve the lengthy construction of the
feasible solution itself for a separate algorithm presented in
the next section. The feasibility test, FeasTest, is developed
in two parts. We first present a subprocedure, RedFeas, for
finding an integer vector n with μ1 = μ2 = μ3 = 0, for
reduced instances. Then, we extend this algorithm to cover
the general case, where gi0 and μi0 for i = 1, 2, 3 may take
non-zero values.

Algorithm RedFeas: Test for the existence of a feasible schedule with
μ1 = μ2 = μ3 = 0, for the reduced problem with three distinct
periodicities
Input: q1, q2, q3, n1, n2, n3
Output: (λA, n A) = (λA, n10, n20, n30, n12, n21, n23, n32, n31, n13)

Code:
1. Initialization

g ← gcd(q1, q2, q3), g12 ← gcd(q1, q2)/g, g23 ←
gcd(q2, q3)/g, g31 ← gcd(q3, q1)/g,
n A←(n1, n2, n3, 0, 0, 0, 0, 0, 0),
λA ←∑3

i=1 �ni /(qi /g).
2. Establish a solution with minimum number of sets with

clients of one or two periodicities only
For δ = 0, 1, . . . , min{�n1/(q1/gg12) , g12 − 1},

2.1 Set n12, λ12 and n21
n12 ← min{n1, δq1/(gg12)}.
If n12 = 0, then λ12 ← 0 and n21 ← 0.
Otherwise λ12 ← 1 and
n21 ← min{n2, q2/g −
q2/(gg12) �n12/(q1/gg12)}.

2.2 Set n23, λ23 and n32
n23 ← R(n2 − n21, q2/g).
If n23 = 0 or �n23/(q2/gg23) = g23 or
n3 = 0, then λ23 ← 0, and n23 ← 0 and
n32 ← 0.
Otherwise λ23 ← 1 and
n32 ← min{n3, q3/g −
q3/(gg23) �n23/(q2/gg23)}.

2.3 Set n31, λ31 and n13
n31 ← R(n3 − n32, q3/g).
If n31 = 0 or �n31/(q3/gg31) = g31 or
n1 = n12, then λ31 ← 0, and n31 ← 0 and
n13 ← 0.
Otherwise λ31 ← 1 and
n13 ← min{n1 − n12, q1/g −
q1/(gg31) �n31/(q3/gg31)}.

2.4 Set n10, n20 and n30
n10 ← n1 − n12 − n13.
n20 ← n2 − n21 − n23.
n30 ← n3 − n31 − n32.

2.5 Identify an improved solution
n←(n10,n20,n30,n12,n21, n23, n32, n31, n13).
λ←�n10/(q1/g)+�n20/(q2/g)+�n30/

(q3/g) + λ12 + λ23 + λ31.
If λ < λA, then λA ← λ and n A ← n.

3. Return (λA, n A) and stop.

Observe that the computational complexity of Algorithm
RedFeas is determined by the number of iterations of Step
2, which is itself bounded by n because n1 ≤ n and
q1/(gg12) = g31 ≥ 1. Therefore, the overall complexity
of Algorithm RedFeas is O(n). We now verify that RedFeas
is indeed a feasibility test.
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Lemma 13 Consider an instance with gi0 = 1 for i =
1, 2, 3, for which there exists a feasible solution with λ123 =
0. Then, Algorithm RedFeas returns an integer vector n
with μ1 = μ2 = μ3 = 0 corresponding to a feasible
solution.

Proof Observe that Algorithm RedFeas produces a solution
of a particular form. It considers all possible values for n12

which satisfies (22). Then, all other values are determined
iteratively as follows: nii ′ for i, i ′ = 1, 2, 3, i �= i ′ in Step
2.1–2.3 as in (23)–(27) below, followed by n10, n20, n30 in
Step 2.4 as in (28)–(30). Therefore, Algorithm RedFeas tests
for all solutions of this form.

n12 = n1 or δq1/gg12 for some δ ∈ {0, 1, . . . , g12 − 1} (22)

n21 =
{

0 if n12 = 0
min{n2, q2/g − q2/(gg12) �n12/(q1/gg12)} otherwise

(23)

n23 =
{

0 if R(n2 − n21, q2/gg23) > (g23 − 1)q2/(gg23)

R(n2 − n21, q2/gg23) otherwise
(24)

n32 =
{

0 if n23 = 0
min{n3, q3/g − q3/(gg23) �n23/(q2/gg23)} otherwise

(25)

n31 =
{

0 if R(n3 − n32, q3/gg31) > (g31 − 1)q3/(gg31) or
n1 = n12 R(n3 − n32, q3/gg31) otherwise

(26)

n13 =
⎧⎨
⎩

0 if n31 = 0
min{n1−n12, q1/g−q1/(gg31)

�n31/(q3/gg31)} otherwise
(27)

n10 = n1 − n12 − n13 (28)
n20 = n2 − n21 − n23 (29)
n30 = n3 − n31 − n32 (30)

Now take a feasible solution n′ = (n′10, n′20, n′30, n′12, n′21,

n′23, n′32, n′31, n′13, 0, 0, 0) with λ123 = 0, for which without
loss of generality, λ12 ≤ 1, λ23 ≤ 1 and λ31 ≤ 1 by Lemma
12, and λ23 is as small as possible and for this minimum
λ23 value, λ31 is as small as possible. We now show that this
feasible solution with λ123 = 0 can be modified to one which
satisfies (22)–(30).

We first modify n′12 and n′21, if required. If λ12 =
0, then n′12 and n′21 remain unchanged at 0 (i.e. we set
n12 = n21 = 0). Otherwise, λ12 = 1 (and n′12 ≥ 1 and
n′21 ≥ 1). By (14) of Theorem 4, we may increase n′12
up to n12 = min{n1, (q1/gg12)�n12/(q1/gg12)} and n′21
to n21 = min{n2, q2/g − q2/(gg12) �n12/(q1/(gg12))},
respectively, without increasing λ. Observe that n12 and n21

satisfies (22) and (23), respectively.
We now modify n′23 and n′20, having determined n21. Sup-

pose that λ23 = 0 (and n′23 = 0). If R(n2 − n21, q2/g) >

(g23−1)q2/(gg23) (and λ23 = 0), then n′23 is left unchanged
at 0 and n′20 modified to n20 = n2 − n21, satisfying
(29) without increasing λ2 (since n21 ≥ n′21). If on the
other hand R(n2 − n21, q2/g) ≤ (g23 − 1)q2/(gg23), then
we modify n′23 to n23 = R(n2 − n21, q2/g) and n′20 to

n20 = n2 − n21 − n23 preserving (29), which results in
λ23 = 1 and λ2 is decreased by one, leaving λ unchanged.
Thus, (24) is satisfied for the modified solution in the case
when λ23 = 0, for the original solution. Now suppose that
λ23 = 1 (and n′23 ≥ 1). Then, by hypothesis, there is
no feasible solution for given λ12 value, with λ23 = 0.
The λ2 value is unaffected by increasing n′20, if neces-
sary, to n20 = q2/g�n′20/(q2/g) from (12) of Theorem 4.
Thus, n′23 may be decreased to n23 = n2 − n21 − n20 =
R(n2 − n21, q2/g) > 0 satisfying (24) and reserving (29),
without increasing λ.

We now modify n′32. Recall that n23 = 0 only in the
case when n′23 = 0 (and n′32 = 0) and we then leave n′32
unmodified, i.e. we set n32 = 0, without increasing λ. Now
suppose that n23 ≥ 1. By (15) of Theorem 4, we modify
n′32 to n32 = min{n3, q3/g − q3/(gg23) �n23/(q2/gg23)}
without increasing λ. Thus, n32 satisfies (25).

We now modify n′31 and n′30 given n32 to satisfy (26) and
then (30), respectively. The validity of the modification fol-
lows by the same argument as used above for n′23 and n′20,
but for the permitted indices, since λ31 (as well as λ23) is
selected by as small as possible.

Finally, we modify n′13 and n′10. In the case that n31 =
0, n′31 = 0 and n′13 = 0 in the original feasible solution,
and we set n13 = 0 and n10 = n1 − n12 − n13 without
increasing λ. Now suppose that n31 ≥ 1. By (16) of Theorem
4, we may modify n′13 to n13 = min{n1 − n12, q1/g −
q1/(gg31) �n31/(q3/gg31)} and n′10 to n10 = n1−n12−n13

without increasing λ. Thus, n13 and n10 satisfies (27) and
(28), respectively. 	


We now develop an algorithm allowing a �-set with three
periodicities. By Lemma 11, it is sufficient to explore all com-
binations of constructing at most one �−set with three peri-
odicities. We now give a formal description of the algorithm.

Observe that μ1, μ2 and μ3 are each bounded by n. By
Lemma 9, finding an integer x in Step 4 can be done in O(n).
Therefore, the overall complexity of FeasTest is O(n4).

Lemma 14 Consider an instance for which there exists a
feasible solution. Then, Algorithm FeasTest returns an inte-
ger vector n, for which λ12, λ23, λ31 and λ123 are each at
most one for the corresponding reduced problem.

Proof Taking a feasible solution for any given instance. By
Theorem 2, there is a corresponding feasible solution to the
reduced problem instance, n say. We make another instance
by letting ñi = ni − μi for i = 1, 2, 3. Then, since there
exists a feasible solution for the original (reduced) instance,
there must be a feasible solution with λ123 = 0 for the new
(reduced) instance. By Lemma 13, a feasible solution with
λ12 ≤ 1, λ23 ≤ 1 and λ31 ≤ 1 for the new (reduced) instance
will be identified by Algorithm RedFeas. Since Algorithm
FeasTest explores all combination of μi for i = 1, 2, 3, it will
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Algorithm FeasTest: Test for the existence of a feasible schedule allow-
ing a �-set with three periodicities, for the reduced problem with three
distinct periodicities
Input: q1, q2, q3, n1, n2, n3
Output: nB = (n10, n20, n30, n12, n21, n23, n32, n31, n13, μ1, μ2, μ3)

or infeasible
Code:

1. Test for density
If

∑3
i=1 ni /qi > 1, then return infeasible and stop.

2. Initialisation and problem reduction
g← gcd(q1, q2, q3), g12 ← gcd(q1, q2)/g,
g23 ← gcd(q2, q3)/g, g31 ← gcd(q3, q1)/g,
g10 ← q1/(gg12g31), g20 ← q2/(gg12g23), g30 ←
q3/(gg23g31).
For i = 1, . . . , 3,

qi ← qi /gi0 and ni ← �ni /gi0.
3. Search for solution of sets with clients of one or two peri-

odicities only
Run Algorithm RedFeas(q1, q2, q3, n1, n2, n3 : λA, n A).
If λA ≤ g, then return nB = (n A, 0, 0, 0) and stop.

4. Search remaining solution domain
For μ1 = 1, . . . , min{n1, (q1/g)− 1},
μ2 = 1, . . . , min{n2, (q2/g)− 1} and μ3 =
1, . . . , min{n3, (q3/g)− 1}

For x = 1, . . . , g12 − 1
If �μ1/x ≤ g31 − 1, and
�μ2/(g12 − x) ≤ g23 − 1, and μ3 ≤
(g31 − �μ1/x) (g23 − �μ2/(g12 − x)), then

Run Algorithm RedFeas(q1, q2, q3, n1−
μ1, n2 − μ2, n3 − μ3 : λA, n A)

If λA ≤ g − 1, then return nB =
(n A, μ1, μ2, μ3) and stop.

5. Return infeasible.

find an integer vector n corresponding to a feasible solution
for the given (reduced) instance if one exists, and hence,
equivalently, to the original instance by Theorem 2. 	


6 Construction of a feasible schedule for three distinct
periodicities

In this section, we develop a construction for a feasible per-
fect periodic schedule with three distinct periodicities, when
one exists. We build upon the feasibility tests of the last sec-
tion, using the structure of the solution which it provides
in the form of the n vector. The construction of a feasible
schedule in algorithm 3PPS-Sched follows that indicated in
the proof of Theorem 2. It builds upon a feasible solution to
the reduced instance produced by subroutine RedSched. We
now outline the algorithmic construction, 3PPS-Sched and
RedSched, of a feasible solution. The validity and computa-
tional complexity of the algorithm(s) are then considered in
Theorems 5 and 6. An illustrative example is offered at the
end of this section.

We now develop an algorithm for constructing a feasi-
ble schedule from the composition of �-sets provided by
integer vector n from Algorithm FeasTest, for the reduced

Algorithm 3PPS-Sched: Construction of a schedule for a general prob-
lem with three distinct periodicities
Input: q1, q2, q3, n1, n2, n3
Output: τi j for i = 1, . . . , 3, j = 0, . . . , ni − 1, or infeasible
Code:

1. Initialisation
g← gcd(q1, q2, q3), g12 ← gcd(q1, q2)/g,
g23 ← gcd(q2, q3)/g, g31 ← gcd(q3, q1)/g,
g10 ← q1/(gg12g31), g20 ← q2/(gg12g23),
g30 ← q3/(gg23g31).

2. Construction of a feasible schedule for the reduced
instance, if one exists
For i = 1, . . . , 3,

q ′i ← qi /gi0 and n′i ← �ni /gi0.
Run Algorithm RedSched( f ′1, f ′2, f ′3, n′1, n′2, n′3 : τ ′i j ).

3. Extension of a feasible solution from the reduced problem,
to the original problem
If Algorithm RedSched returns infeasible, then return
infeasible and stop.
Otherwise,

For i = 1, . . . , 3, j = 0, . . . , ni − 1,
τi j ← τ ′i� j/gi0� + R( j, gi0) (qi /gi0).

Return τi j for i = 1, . . . , 3, j = 0, . . . , ni − 1.

problem. The construction, for �-sets with two and three dif-
ferent periodicities, is based upon the proofs of Theorems 1
and 3.

Theorem 5 An instance with three distinct periodicities, q1,
q2 and q3 with gi0 = 1 for i = 1, 2, 3 is schedulable if and
only if Algorithm RedSched returns a feasible schedule.

Proof Algorithm RedSched returns a set of first service time
slots τi j for i = 1, 2, 3, j = 0, . . . , ni − 1, based upon the
integer vector n returned by Algorithm FeasTest. Now by
Lemma 14, n associates clients with�-sets (ni0 of periodicity
qi with λi sets, nii ′ and ni ′i with λi i ′ sets and μ1, μ2, μ3

with λ123 sets, for i, i ′ = 1, 2, 3, i �= i ′), and λ12, λ23, λ31

and λ123 are each no greater than one. We shall show that
algorithm RedSched constructs a solution based upon this
prescribed division of �-sets. The index l keeps track of the
�-set(s) under consideration at each step of the algorithm.
To see this, observe that l is initialized to 0 and incremented
in the last statement of each step. The increment in step 3
is �ni0/(qi/g) which is indeed λi for i = 1, 2, 3. Each of
steps 4–7 is skipped if the corresponding �-set is empty,
since λ1 = 0 when n12 + n21 = 0, etc and λ123 = 0 when
μ1 + μ2 + μ3 = 0. Moreover, when any of steps 4–7 is
implemented, l is increased by 1, in accordance with Lemma
14. It remains only to show that the construction within each
�-set is feasible.

Observe that in Step 3 of Algorithm RedSched, the first
qi/g positions are used for the first service of clients with the
periodicity of qi in a �-set. Thus, no service to these clients
is overlapped by Lemma 3.

Now, the time slots within a �l -set are of the form l + gp
where p is the position within the set. Consider the �-set, �′
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Algorithm RedSched: Schedule for the reduced problem with three
distinct periodicities
Input: q1, q2, q3, n1, n2, n3
Output: τi j for i = 1, . . . , 3, j = 0, . . . , ni − 1, or infeasible
Code:

1. Test for feasibility
Run Algorithm FeasTest(q1, q2, q3, n1, n2, n3: nB ).
If Algorithm FeasTest returns infeasible, then return
infeasible and stop.

2. Initialisation
g ← gcd(q1, q2, q3), g12 ← gcd(q1, q2)/g, g23 ←
gcd(q2, q3)/g, g31 ← gcd(q3, q1)/g,
l ← 0, j1 ← 0, j2 ← 0, j3 ← 0.

3. Schedule the first time slot for each client associated with
ni0 for i = 1, . . . , 3

For i = 1, . . . , 3,
For j = 0, . . . , ni0 − 1,

τi ji ← l + � j/(qi /g)� + gR ( j, qi /g) and
ji ← ji + 1.

l ← l + �ni0/(qi /g).
4. Schedule the first time slot for each client associated with

n12 and n21
If n12 + n21 > 0, then

For j = 0, . . . , n12 − 1,
τ1 j1 ← l + g (� j/g31� + R ( j, g31) g12) and
j1 ← j1 + 1..

l̃ ← l + g �n12/g31.
For j = 0, . . . , n21 − 1,

τ2 j2 ← l̃ + g (� j/g23� + R ( j, g23) g12) and
j2 ← j2 + 1.

l ← l + 1.
5. Schedule the first time slot for each client associated with

n23 and n32
If n23 + n32 > 0, then

For j = 0, . . . , n23 − 1,
τ2 j2 ← l + g (� j/g12� + R ( j, g12) g23) and
j2 ← j2 + 1.

l̃ ← l + g �n23/g12.
For j = 0, . . . , n32 − 1,

τ3 j3 ← l̃ + g (� j/g31� + R ( j, g31) g23) and
j3 ← j3 + 1.

l ← l + 1.
6. Schedule the first time slot for each client associated with

n31 and n13
If n31 + n13 > 0, then

For j = 0, . . . , n31 − 1,
τ3 j3 ← l + g (� j/g23� + R ( j, g23) g31) and
j3 ← j3 + 1.

l̃ ← l + g �n31/g23.
For j = 0, . . . , n13 − 1,

τ1 j1 ← l̃ + g (� j/g12� + R ( j, g12) g31) and
j1 ← j1 + 1.

l ← l + 1.
7. Schedule the first time slot for each client associated with

μ1, μ2 and μ3
If μ1 + μ2 + μ3 > 0, then

say, which contains the clients with the periodicities of both
q1 and q2, when λ12 = 1. The interval between consecutive
positions in �′ of service to a client with the periodicity of
q1 (or q2) is q1/g = g12g31 (or q2/g = g12g23). Thus, the
positions given to τ1 j and τ2 j in Step 4 are precisely those
prescribed by (2) and (3) in the proof of Theorem 1. The

7.1 Find f̄ ′3 and a suitable values for α and β.
f ′3 ← q3/g.
For x = 1, . . . , g12 − 1,

If R(x f ′3, g12) = 1, then f̄ ′3 ← x .
If �μ1/x ≤ g31− 1, and �μ2/(g12 − x) ≤
g23 − 1,
and μ3
≤ (g31 − �μ1/x) (g23 − �μ2/(g12 − x)),
then

α← �μ1/x and β ←
�μ2/(g12 − x) .

7.2 Allocate time slots to clients with the periodicity of
q1 and q2.

For j = 0, . . . , μ1 − 1,

τ1 j1←R
(
l+g

(
f ′3 f̄ ′3� j/α�+R( j, α)g12

)
, q1

)
and j1 ← j1 + 1.

l̃ ← l + g f ′3 f̄ ′3 �μ1/α
For j = 0, . . . , μ2 − 1,

τ2 j2 ← R(̃l +
g

(
f ′3 f̄ ′3 � j/β� /g + R( j, β)g12

)
, q2) and

j2 ← j2 + 1.
7.3 Find free relative positions in �g−1.

P ← {0, . . . , T/(gg12)− 1}.
P1 ← { j + k(q1/gg12) | j = 0, . . . , α − 1, k =
0, . . . , T/q1 − 1}.
P2 ← { j + k(q2/gg12) | j = 0, . . . , β − 1, k =
0, . . . , T/q2 − 1}.
P3 ← P \ (P1 ∪ P2).

7.4 Allocate clients with the periodicity of q3 to free
relative positions.

For j = 0, . . . , μ3 − 1,
Select a free position p from P3.
τ3 j3 ← R(l + gg12 p, q3) and j3 ← j3 + 1.
P3 ← P3 \ {p}.

Return τi j for i = 1, . . . , 3, j = 0, . . . , ni − 1.

validity of Step 5 and 6 for λ23 and λ31, respectively, follows
by analogy.

Now consider the case whenλ123 = 1 (andμ1+μ2+μ3 >

0). The construction of x , α, β and f̄ in Step 7.1 accords with
that in Sect. 4.2 for the reduced problem with periodicities
qi/g for i = 1, 2, 3. Time slot t in the reduced problem
corresponds to time slot in �l in the original problem with
value of l + gt . Thus, the allocation of the first time slot to
clients with the periodicity of q1 and q2 described in Step 7.2
corresponds to (8) and (9) in the proof of Theorem 3. The
above allocation is designed to leave as many sets of relative
free positions available for clients with the periodicity of q3

as possible, as described in Theorem 3. The set of occupied
relative positions is given by P1 and P2 in Step 7.3 for the
periodicity of q1 and q2, and the allocation of the clients with
the periodicity of q3 to the free relative positions performed
in Step 7.4. 	

Theorem 6 Algorithm 3PPS-Sched constructs a feasible
perfect periodic schedule for an instance with three distinct
periodicities in O

(
max{n4, qmax}

)
time if one exists, where

n =∑3
i=1 ni and qmax = maxi qi/gi0.
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Fig. 6 A feasible schedule for Example 3

Proof Take an instance of PPS which has a feasible solution.
Then by Theorem 2, the corresponding reduced instance is
as constructed in Step 2 of Algorithm 3PPS-Sched, and is
itself feasible by Theorem 5. Moreover, the corresponding
schedule for the original instance given in Step 3, is as con-
structed in (4) of the proof of Theorem 2 and is therefore
feasible.

Observe that Step 1 of Algorithm RedSched can be done
in O(n4). Step 7 of Algorithm RedSched can be done
in O(qmax) because Steps 7.1 and 7.4 are bounded by
O(g12) and O(g23g31), respectively. All other steps of Algo-
rithm RedSched can be done in O(n). Therefore, the over-
all computational complexity of Algorithm 3PPS-Sched is
O

(
max{n4, qmax}

)
. 	


The following example illustrates the construction of
Algorithm 3PPS-Sched.

Example 3 Consider the case of three periodicities q1 = 48,
q2 = 80 and q3 = 60 (ie. g = 4, g12 = 4, g23 =
5, g31 = 3, and gi0 = 1 for i = 1, 2, 3) with n1 = 14,
n2 = 5 and n3 = 36, respectively. For this instance, Algo-
rithm FeasTest gives rise to values λ1 = λ2 = λ12 = 0 and

λ3 = λ23 = λ31 = λ123 = 1 and returns an integer vector
n = (n10, n20, n30, n12, n21, n23, n32, n31, n13, μ1, μ2, μ3)

= (0, 0, 15, 0, 0, 4, 12, 5, 8, 6, 1, 4). Algorithm 3PPS-Sched
then produces a feasible schedule as depicted in Fig. 6. The
underlying structure of the �-sets is given by Algorithm Red-
Sched in shown in Fig. 7.

7 Conclusions

This paper examines the perfect periodic scheduling prob-
lem with unit service time. We have extended the range of
perfect periodic scheduling problem which are amenable to
polynomial time algorithms from one periodicity to three dis-
tinct periodicities. The extent of such special cases is likely
to be limited since the existence of perfect periodic sched-
ule problem for the general case is NP-hard. The only models
commonly used in the literature are based upon a single com-
mon periodicity: either the single periodicity itself, its powers
(eg. power of 2), or based upon repeated divisibility (depicted
as a tree structure).

We have presented an algorithm for testing for the exis-
tence of a feasible schedule for any combination of clients
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Fig. 7 The structure of each �-set in the feasible schedule for Example 3, as a �-partition

with up to three distinct periodicities, which runs in O(n4).
In addition, we have provided the construction of a feasible
schedule where one exists. We have thus extended the range
of feasible perfect periodic schedules available for operat-
ing Wireless Mesh Networks beyond those with a common
factor.

The next obvious step is to embed these algorithms within
heuristics for meeting the requests of mobile telecommuni-
cation clients, according to different service level quality
measures, see Bar-Noy et al. (2004), Brakerski and Patt-
Shamir (2006). There is potential for accommodating a wide
range of combinations of periodicities, by incorporating mul-
tiples of the three basic periodicities in particular power
of 2. The addition of a fourth distinct periodicity might
be investigated. However, it is unlikely to be an attractive
option due to the large number of idle time slots imposed
in the schedule. Future research will evaluate the advantage
of the wider solution spaces made accessible through the
current article. In particular, efficient methodologies will be
sought for combining perfect periodic schedules for local
clients at mesh nodes, with approaches to data transmis-
sion through a routing tree, such as Allen et al. (2012a,b),
as is applicable for Internet access through Wireless Mesh
Networks.
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Appendix 1

The following three statements are equivalent to each other.
Statement 1: there exists an integer x, 1 ≤ x ≤ g23 − 1

satisfying

�n2/x ≤ g12 − 1 (31)

�n3/(g23 − x) ≤ g31 − 1 (32)

n1 ≤ (g12 − �n2/x) (g31 − �n3/(g23 − x))
(33)

Statement 2: there exists an integer y, 1 ≤ y ≤ g31 − 1
satisfying

�n3/y ≤ g23 − 1 (34)

�n1/(g31 − y) ≤ g12 − 1 (35)

n2 ≤ (g23 − �n3/y) (g12 − �n1/(g31 − y))
(36)
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Statement 3: there exists an integer z, 1 ≤ z ≤ g12 − 1
satisfying

�n1/z ≤ g31 − 1

�n2/(g12 − z) ≤ g23 − 1

n3 ≤ (g31 − �n1/z) (g23 − �n2/(g12 − z))
Proof By symmetry, it is sufficient to show that Statement 1
implies Statement 2. Take an integer x satisfying the
inequalities, (31), (32) and (33). Let y = �n3/(g23 − x).
Observe that 1 ≤ y ≤ g31 − 1 from (32). Then, n3/(g23 −
x) ≤ y, and hence 1 ≤ x ≤ g23 − n3/y which implies that
the inequality (34) holds. From (33),⌈

n1

g31 − y

⌉
≤

⌈
(g12 − �n2/x) (g31−y)

g31 − y

⌉
= g12−

⌈n2

x

⌉
,

and hence,

n2 ≤ x

(
g12 −

⌈
n1

g31 − y

⌉)

≤
(

g23 −
⌈

n3

y

⌉) (
g12 −

⌈
n1

g31 − y

⌉)
.

Thus, the inequality (36) holds. Moreover, since n2 > 0 and
the inequalities (34) and (36) hold, 0 < g12−�n1/(g31 − y),
which implies that the inequality (35) also holds completing
the proof. 	


Appendix 2

In order to prove Lemma 11, a simple arithmetic argument
is required as presented in Lemma 15.

Lemma 15 For any positive integers, a, a′, b and b′, if
�a/b ≥ a′/b′, then �a/b ≥ �(a + a′)/(b + b′).
Proof It holds because
⌈a

b

⌉
=

⌈�a/b (b + b′)
b + b′

⌉

≥
⌈�a/b b + (a′/b′)b′

b + b′

⌉
≥

⌈
a + a′

b + b′

⌉
.

	

Now we give a proof for Lemma 11 as follows.

Proof of Lemma 11 Suppose otherwise, then there is an
instance in which any feasible solution S has λ123 ≥ 2.
Select S to have the minimum value of λ123, λ∗123 say, which
affords a feasible solution. We prove the Lemma by reducing
S to a feasible solution with λ123 = λ∗123 − 1. Take two of
the �-sets in S serving all three periodicities, �l and �l ′ say.
Suppose that μi , and μ′i , clients with the periodicity of qi for
i = 1, 2, 3, are serviced together in �l and �l ′ , respectively.
The schedule with the set �l (or �l ′ ) may be viewed as a

single schedule for the clients μ1, μ2 and μ3 (or μ′1, μ′2 and
μ′3) alone with the periodicities of q ′1 = q1/g, q ′2 = q2/g
and q ′3 = q3/g, respectively. Thus, gcd(q ′1, q ′2, q ′3) = 1, and
from the result of Theorem 3, there exist x1 and x ′1 satisfying

μ1

x1
≤ g31 − 1, (37)

μ2

x2
≤ g23 − 1, (38)

μ′1
x ′1
≤ g31 − 1, (39)

μ′2
x ′2
≤ g23 − 1, (40)

1 ≤ μ3 ≤
(

g31 −
⌈

μ1

x1

⌉)(
g23 −

⌈
μ2

x2

⌉)
, (41)

1 ≤ μ′3 ≤
(

g31 −
⌈

μ′1
x ′1

⌉)(
g23 −

⌈
μ′2
x ′2

⌉)
, (42)

where x2 = g12 − x1 and x ′2 = g12 − x ′1. Without loss of
generality, we assume throughout the proof that

μ2

x2
≤ μ′2

x ′2
, (43)

that is, (g23 − �μ2/x2) ≥
(
g23 −

⌈
μ′2/x ′2

⌉)
. There are three

cases to consider.

Case 1: x1 ≤ x ′1
We construct a new schedule by exchanging μ̃1 clients with
the periodicity of q1 from �l with μ̃3 clients with the
periodicity of q3 from �l ′ , where μ̃1 = min{μ1, x1} and
μ̃3 = min{μ′3, g23 −

⌈
μ′2/x ′2

⌉}. Consider the set �l after
the interchange. Observe that 1 ≤ μ̃1 ≤ x1, and from (43),
μ̃3 ≤ g23 −

⌈
μ′2/x ′2

⌉ ≤ g23 − �μ2/x2. Thus, applying
inequality (41),

μ3 + μ̃3 ≤
(

g31 −
⌈

μ1

x1

⌉
+ 1

) (
g23 −

⌈
μ2

x2

⌉)

=
(

g31 −
⌈

μ1

x1

⌉
+

⌈
μ̃1

x1

⌉)(
g23 −

⌈
μ2

x2

⌉)

=
⎧⎨
⎩

g31

(
g23 −

⌈
μ2
x2

⌉)
if μ̃1=μ1(

g31 −
⌈

μ1−μ̃1
x1

⌉) (
g23 −

⌈
μ2
x2

⌉)
if μ̃1 �=μ1.

The former expression implies that⌈
μ2

g12

⌉
+

⌈
μ3 + μ̃3

g31

⌉
≤

⌈
μ2

x2

⌉
+

⌈
μ3 + μ̃3

g31

⌉
≤ g23,

and hence μ2 and μ3 + μ̃3 clients with the periodicity of q2

and q3, respectively, fit into a single �−set, by Theorem 1.
The latter expression implies that μ1 − μ̃1, μ2 and μ3 + μ̃3

satisfy condition (7) of Theorem 3. Moreover, μ1 − μ̃1 and
μ2 satisfy conditions (5) and (6) of Theorem 3 from (37)
and (38) above. Thus, μ1− μ̃1, μ2 and μ3+ μ̃3 clients with
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the periodicity of q1, q2 and q3, respectively, fit into a single
�-set, by Theorem 3.

Now consider the set �l ′ after the interchange. Suppose
first that μ̃3 �= μ′3. Then μ̃3 = g23−

⌈
μ′2/x ′2

⌉
, and from (42),

μ′3−̃μ3 ≤
(

g31−
⌈

μ′1
x ′1

⌉) (
g23−

⌈
μ′2
x ′2

⌉)
−

(
g23 −

⌈
μ′2
x ′2

⌉)

=
(

g31 −
⌈

μ′1
x ′1

⌉
− 1

) (
g23 −

⌈
μ′2
x ′2

⌉)
.

Hence, since 1 ≤ μ̃1 ≤ x1 ≤ x ′1,

μ′3 − μ̃3 ≤
(

g31 −
⌈

μ′1 + μ̃1

x ′1

⌉) (
g23 −

⌈
μ′2
x ′2

⌉)
.

Thus, μ′1 + μ̃1, μ′2 and μ′3 − μ̃3 satisfy condition (7) of
Theorem 3. Moreover, μ′1 + μ̃1 and μ′2 satisfy conditions
(5) and (6) of Theorem 3 from (39) and (40) above. Thus,
μ′1 + μ̃1, μ′2 and μ′3 − μ̃3 clients with the periodicity of q1,
q2 and q3, respectively, fit into a single �−set, by Theorem
3. On the other hand, suppose that μ̃3 = μ′3. Recall that
1 ≤ μ̃1 ≤ x1 ≤ x ′1 in this case, and hence by (39)

μ′1 + μ̃1

x ′1
≤

⌈
μ′1
x ′1

⌉
+ 1 ≤ g31,

which combines with (40) to give

⌈
μ′1 + μ̃1

g31

⌉
+

⌈
μ′2
g23

⌉
≤ x ′1 + x ′2 = g12.

Thus, μ′1 + μ̃1 and μ′2 clients with the periodicity of q1 and
q2, respectively, fit into a single �-set, by Theorem 1.

Therefore, the feasibility of the schedule is preserved.
Repeating this argument, we obtain a feasible schedule with
λ123 ≤ 1.

Case 2: x1 > x ′1 and �μ1/x1 ≤
⌈
μ′1/x ′1

⌉
From x1 > x ′1 and �μ1/x1 ≤

⌈
μ′1/x ′1

⌉
, we have that x2 <

x ′2 and (g31−�μ1/x1) ≥ (g31−
⌈
μ′1/x ′1

⌉
). These conditions

are covered by Case 1 when the periodicities 1 and 2 are
interchanged.

Case 3: x1 > x ′1 and �μ1/x1 >
⌈
μ′1/x ′1

⌉
First consider the case when x ′1 ≥ x2. We construct a new
schedule by exchanging μ2 clients with the periodicity of q2

from �l with μ̃1 clients with the periodicity of q1 from �l ′ ,
where μ̃1 = min{μ′1,

⌈
μ′1/x ′1

⌉
x2}. Consider the set �l after

the interchange. Since �μ1/x1 >
⌈
μ′1/x ′1

⌉ ≥ μ̃1/x2, from
Lemma 15, �μ1/x1 ≥ �(μ1 + μ̃1)/(x1 + x2), and hence,
from (41),

μ3≤
(

g31−
⌈

μ1

x1

⌉)(
g23−

⌈
μ2

x2

⌉)
≤

(
g31−

⌈
μ1+μ̃1

x1+x2

⌉)
g23.

Thus,

⌈
μ1 + μ̃1

g12

⌉
+

⌈
μ3

g23

⌉
≤

⌈
μ1 + μ̃1

x1 + x2

⌉

+
(

g31 −
⌈

μ1 + μ̃1

x1 + x2

⌉)
= g31.

This implies that μ1+ μ̃1 and μ3 clients with the periodicity
of q1 and q3, respectively, fit into a single �-set by Theorem
1. Now consider the set �l ′ after the interchange. Observe
that

⌈
μ′1
x ′1

⌉
=

⎡
⎢⎢⎢⎢

⌈
μ′1
x ′1

⌉
(x ′1 − x2)

x ′1 − x2

⎤
⎥⎥⎥⎥
≥

⎡
⎢⎢⎢⎢

μ′1 −
⌈

μ′1
x ′1

⌉
x2

x ′1 − x2

⎤
⎥⎥⎥⎥

and from (43) and Lemma 15,
⌈
μ′2/x ′2

⌉ ≥ ⌈
(μ′2 + μ2) /

(x ′2 + x2)
⌉

. Thus, substituting the above two constraints into
(42),

μ′3 ≤
(

g31 −
⌈

μ′1
x ′1

⌉)(
g23 −

⌈
μ′2
x ′2

⌉)

≤
⎧⎨
⎩

g31

(
g23 −

⌈
μ′2+μ2

x ′2+x2

⌉)
if μ̃1 = μ1(

g31 −
⌈

μ′1−μ̃1

x ′1−x2

⌉) (
g23 −

⌈
μ′2+μ2

x ′2+x2

⌉)
if μ̃1 �= μ1.

The latter expression implies that μ′1 − μ̃1, μ′2 +μ2 and μ′3
satisfy condition (7) of Theorem 3. Moreover,

⌈
μ′1/x ′1

⌉ ≥⌈
(μ′1 + μ̃1)/(x ′1−x2)

⌉
when μ̃1 �= μ1 and

⌈
μ′2/x ′2

⌉ ≥⌈
(μ′2+μ2)/(x ′2+x2)

⌉
, and hence by letting x = x ′1 − x2,

μ′1− μ̃1 and μ′2+μ2 satisfy conditions (5) and (6) of Theo-
rem 3 from (39) and (40) above. Thus, μ′1− μ̃1, μ′2+μ2 and
μ′3 clients with the periodicity of q1, q2 and q3, respectively,
fit into a single �-set by Theorem 3 when μ̃1 �= μ1. On the
other hand, when μ̃1 = μ1, the former expression implies
that

⌈
μ′2 + μ2

g12

⌉
+

⌈
μ′3
g31

⌉
≤

⌈
μ′2 + μ2

x ′2 + x2

⌉

+
(

g23 −
⌈

μ′2 + μ2

x ′2 + x2

⌉)
= g23,

since x ′2+x ′2 ≤ x ′2+x ′1 = g12. Hence, by Theorem 1, μ′2+μ2

and μ′3 clients with the periodicity of q2 and q3, respectively,
fit into a single �-set.

Now consider the alternative case, when x ′1 < x2. We con-
struct a new schedule by exchanging μ̃2 clients with the peri-
odicity of q2 from�l withμ′1 clients with the periodicity of q1

from�l ′ , where μ̃2 = min{μ2, �μ2/x2 x ′1}. Consider the set
�l ′ after the interchange. Since (43),

⌈
μ′2/x ′2

⌉ ≥ �μ2/x2 ≥
μ̃2/x ′1. From Lemma 15,

⌈
μ′2/x′2

⌉ ≥ ⌈
(μ′2+μ̃2)/(x ′2+x ′1)

⌉
,

and hence,
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μ′3 ≤
(

g31 −
⌈

μ′1
x ′1

⌉) (
g23 −

⌈
μ′2
x ′2

⌉)

≤ g31

(
g23 −

⌈
μ′2 + μ̃2

x ′2 + x ′1

⌉)
.

Thus,⌈
μ′2 + μ̃2

g12

⌉
+

⌈
μ′3
g31

⌉
≤

⌈
μ′2 + μ̃2

x ′2 + x ′1

⌉

+
(

g23 −
⌈

μ′2 + μ̃2

x ′2 + x ′1

⌉)
= g23,

which implies that μ′2 + μ̃2 and μ′3 clients with the peri-
odicity of q2 and q3, respectively, fit into a single �-set by
Theorem 1. Now consider the set �l after the interchange.
Since �μ1/x1 >

⌈
μ′1/x ′1

⌉ ≥ μ′1/x ′1, from Lemma 15,
�μ1/x1 ≥

⌈
(μ1 + μ′1)/(x1 + x ′1)

⌉
, and

⌈
μ2

x2

⌉
=

⎡
⎢⎢⎢

⌈
μ2
x2

⌉
(x2 − x ′1)

x2 − x ′1

⎤
⎥⎥⎥ ≥

⎡
⎢⎢⎢

μ2 −
⌈

μ2
x2

⌉
x ′1

x2 − x ′1

⎤
⎥⎥⎥ .

Thus, substituting the above two constraints into (41),

μ3 ≤
(

g31 −
⌈

μ1

x1

⌉) (
g23 −

⌈
μ2

x2

⌉)

≤
⎧⎨
⎩

(
g31 −

⌈
μ1+μ′1
x1+x ′1

⌉)
g23 if μ̃2 = μ2(

g31 −
⌈

μ1+μ′1
x1+x ′1

⌉) (
g23 −

⌈
μ2−μ̃2
x2−x ′1

⌉)
if μ̃2 �= μ2.

The latter expression implies that μ1 + μ′1, μ2 − μ̃2 and
μ3 satisfy condition (7) of Theorem 3. Moreover, �μ1/x1≥⌈
(μ1+μ′1)/(x1+x ′1)

⌉
and �μ2/x2≥

⌈
(μ2−μ̃2)/(x2−x ′1)

⌉
when μ̃2 �= μ2, and hence by letting x = x1 + x ′1, μ1+μ′1
and μ2−μ̃2 satisfy conditions (5) and (6) of Theorem 3 from
(37) and (38) above. Thus, μ1 +μ′1, μ2 − μ̃2 and μ3 clients
with the periodicity of q1, q2 and q3, respectively, fit into a
single �-set by Theorem 3 when μ̃2 �= μ2. On the other
hand, when μ̃2 = μ2, the former expression implies that⌈

μ1 + μ′1
g12

⌉
+

⌈
μ3

g23

⌉
≤

⌈
μ1 + μ′1
x1 + x ′1

⌉

+
(

g31 −
⌈

μ1 + μ′1
x1 + x ′1

⌉)
= g31,

since x1+x ′1 < x1+x2 = g12. Hence, by Theorem 1, μ1+μ′1
and μ3 clients with the periodicity of q1 and q3, respectively,
fit into a single �-set.

Therefore, the feasibility of the schedule is preserved.
Repeating this argument, we obtain a feasible schedule with
λ123 ≤ 1. 	
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