
J Sched (2012) 15:323–332
DOI 10.1007/s10951-011-0225-1

Scheduling of pipelined operator graphs

Hans L. Bodlaender · Petra Schuurman ·
Gerhard J. Woeginger

Published online: 18 February 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We investigate a class of scheduling problems
that arise in the optimization of SQL queries for parallel
machines (Chekuri et al. in PODS’95, pp. 255–265, 1995).
In these problems, an undirected graph is used to represent
communication and inter-operator parallelism. The goal is
to minimize the global response time of the system.

We provide a polynomial time approximation scheme for
the special cases where the operator graph is a tree, thereby
improving on a polynomial time 2.87-approximation algo-
rithm by Chekuri et al. The approximation scheme is gen-
eralized to the case where the operator graph has treewidth
bounded by a constant. We analyze instances with small re-
sponse times for general operator graphs: Deciding whether
a response time of four time units can be reached is easy,
but deciding whether a response time of six time units can
be reached is NP-hard. Finally, we prove that for general
operator graphs the existence of a polynomial time approx-

This research has been supported by the Netherlands Organization for
Scientific Research (NWO), grant 639.033.403; by DIAMANT (an
NWO mathematics cluster); and by BSIK grant 03018 (BRICKS:
Basic Research in Informatics for Creating the Knowledge Society).
A preliminary version of this paper has appeared as an extended
abstract in the proceedings of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms, San Francisco, California:
P. Schuurman and G.J. Woeginger, Scheduling a pipelined operator
graph, pp. 207–212.

H.L. Bodlaender
Department of Computer Science, Utrecht University, P.O. Box
80.089, 3508 TB Utrecht, The Netherlands

P. Schuurman · G.J. Woeginger (�)
Department of Mathematics and Computing Science, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands
e-mail: gwoegi@win.tue.nl

imation algorithm with worst case performance guarantee
better than 4/3 would imply P = NP.

Keywords Query optimization · SQL · Operator graph ·
Pipelined parallelism · Scheduling · Worst case analysis

1 Introduction

Chekuri et al. (1995) study scheduling problems that arises
in the optimization of SQL queries for parallel machines.
Their work is motivated by Gray (1988) who demonstrates
that communication is a significant component of the cost
of processing an query in parallel. An operator graph G =
(V ,E) is an undirected graph with (positive integer) weights
on the vertices and edges. The vertices in V = {1,2, . . . , n}
are called operators and represent atomic units of execution.
The (positive integer) weight ti of operator i represents the
cost of executing this operator. The (positive integer) weight
cij of an edge [i, j] ∈ E represents the remote communi-
cation between the two incident operators. Moreover, there
are p processors available on which the operators are to be
processed.

A schedule assigns operators to processors. More pre-
cisely, a schedule partitions V into p sets V1, . . . , Vp where
set Vk is allocated to the kth processor. Since edge weights
represent the cost of communication, this cost is saved
whenever two adjacent operators share a processor. With
this, the load Lk on the kth processor is the cost for execut-
ing all operators in Vk plus the overhead for communicating
with other processors, that is,

Lk =
∑

i∈Vk

ti +
∑

i∈Vk

∑

j �∈Vk

cij . (1)

mailto:gwoegi@win.tue.nl

324 J Sched (2012) 15:323–332

The response time (or makespan) of a schedule is the max-
imum processor load L = max1≤k≤p Lk . The goal is to find
a schedule that minimizes the response time. The smallest
possible response time is denoted by L∗.

Known and related results Scheduling of operator graphs
is an NP-hard problem, even in case there is no commu-
nication between operators and the graph is just a collec-
tion of independent vertices: This special case is the clas-
sical NP-hard makespan minimization on parallel identi-
cal processors; cf. Garey and Johnson (1979). Hasan and
Motwani (1994) developed a polynomial time approxima-
tion algorithm with constant worst case guarantees for the
special case where the operator graph is a path or a star.
Chekuri et al. (1995) then studied the special case were the
operator graph is a tree, and derive a polynomial time 2.87-
approximation algorithm.

A closely related scheduling model is scheduling under
communication delays; see for instance the survey article
by Veltman et al. (1990). In this model, the operators/tasks
are precedence constrained by some partial order, and every
precedence constraint i → j comes with a communication
delay cd(i, j). If a schedule assigns tasks i and j to the same
processor, then the earliest possible start time of j is simply
the completion time of i. If the schedule assigns i and j to
different processors, then the earliest possible start time of j

is the completion time of i plus the corresponding commu-
nication delay cd(i, j). A common objective in scheduling
under communication delays is to minimize the maximum
task completion time.

The main differences between the operator graph model
and the communication delay model are as follows. First, a
schedule in the communication delay model specifies both,
the assignment of tasks to processors and the time slots dur-
ing which the individual tasks are processed. In the operator
graph model, a schedule only specifies the assignment of
tasks to processors. Secondly, in the communication delay
model every processor can communicate with other proces-
sors and simultaneously process its tasks. In the operator
graph model, processors are idle during communications
and hence the communication times contribute to the work
loads of the processors.

Results of this paper In the current paper we extend and
improve the results of Chekuri et al. (1995) for various nat-
ural classes of operator graphs. Our main results are the fol-
lowing.

• First, we illustrate the existence of a polynomial time ap-
proximation scheme (PTAS) for the case where the oper-
ator graph is a tree, that is, for the special case that has
been considered by Chekuri et al. (1995).

• This scheme is then generalized to graphs of bounded
treewidth, that is, we show that there is a PTAS for the

case that the operator graph has treewidth bounded by a
constant k.

• We prove that for general operator graphs deciding
whether a response time of 6 time units can be reached
is NP-hard, whereas deciding whether a response time of
4 time units can be reached is easy. (The case of 5 time
units remains open.)

• Finally, we deduce from the NP-hardness result that the
existence of a polynomial time approximation algorithm
with worst case performance guarantee better than 4/3
implies P = NP.

The paper is organized into sections as follows. In
Sects. 2 and 3 we derive the PTAS for trees: Sect. 2 gives
an approximate dynamic programming formulation for this
problem that has pseudo-polynomial running time while
only introducing a reasonably small (and controllable) er-
ror. Section 3 brings the running time down to polynomial
and pays for this with another (small and controllable) error
factor. Section 4 gives the polynomial time approximation
scheme for graphs of bounded treewidth. Then we turn to
the case of schedules with small response times: Sect. 5
proves the polynomial time result for response time four,
and Sect. 6 proves the NP-hardness result for response time
six. Section 7 deduces the in-approximability result of 4/3,
and Sect. 8 gives the conclusions.

2 Approximate dynamic programming for operator
trees

In this section we present an approximate dynamic pro-
gramming formulation for minimizing response time on p

processors for operator trees. The formulation is approxi-
mate in so far that it does not yield the exact optimal re-
sponse time, but only a (1 + ε)-approximation of it.

Throughout this section, the operator graph G = (V ,E)

is a tree with n vertices that are to be processed on p proces-
sors. Let D be the makespan of the schedule constructed
according to the approximation algorithm of Chekuri et al.
(1995). Hence,

L∗ ≤ D ≤ 3L∗. (2)

Let ε > 0 be an arbitrarily small positive real, and fix an
integer d that satisfies 1/d ≤ ε.

We root the tree G = (V ,E) at an arbitrary vertex r ∈ V .
For each operator v ∈ V we fix an arbitrary left-to-right or-
dering of its sons. For a vertex i, the maximal subtree rooted
at i is the subtree that consists of vertex i together with all
its descendants. With every edge [i, j] ∈ E where j is the
father of i, we associate a subtree T (i, j) in the following
way: The tree T (i, j) consists of vertex j , of the maximal
subtree rooted at vertex i, and of all the maximal subtrees
rooted at left brothers of vertex i.

J Sched (2012) 15:323–332 325

Fig. 1 An illustration for the
handling of T (i, j) in Case 1

Now consider a tree T (i, j) for some fixed edge [i, j].
In any schedule, some of the edges in T (i, j) will be bro-
ken since their endpoints go on different processors; the re-
maining (unbroken) edges will glue some of the vertices
together. Hence, the schedule decomposes the tree T (i, j)

into connected components. The cost of a connected com-
ponent W ⊆ V in T (i, j) is the sum of all weights th with
h ∈ W plus the sum of all communication costs chk with
h ∈ W and k ∈ T (i, j) − W . We stress that this cost is de-
fined with respect to the subtree T (i, j), and that it does not
cover the cost of the communication for the edge leaving
the root of T (i, j). The connected component that contains
the root j of T (i, j) is called an open component, since it
may be extended to also contain the father of j together with
other vertices. All other components are called closed com-
ponents. With every such partition of T (i, j) into connected
components, we associate a non-negative integer vector with
d2 − d + 2 components:

(A,B,nd+1, nd+2, . . . , nd2). (3)

The meaning of this vector is the following: (i) The cost of
the open component equals A. (ii) The total sum of the costs
of all closed components with cost ≤ D/d equals B . (iii) For
� = d + 1, . . . , d2, there are precisely n� closed components
in the partition whose cost is greater than (� − 1)D/d2 and
less or equal to �D/d2.

In the dynamic programming formulation, we will com-
pute for every edge [i, j] a set S(i, j) that contains all pos-
sible (d2 − d + 2)-dimensional vectors that can be associ-
ated with a partition of T (i, j) into connected components
as described above. These computations are done bottom-
up and from left-to-right. Hence, when we treat edge [i, j],
all edges below [i, j] in G have already been treated and all
edges from the father j to a left brother of i have already
been treated. For trees T (i, j) that consist of the single edge
[i, j], these computations are straightforward to do. Other-
wise, T (i, j) consists of at least two edges and we distin-
guish several cases; see Figs. 1 and 2 for an illustration.

• (Case 1). i is a leaf. Since T (i, j) consists of at least two
edges, i has a left brother vertex k. For every vector in
S(k, j) we may either add vertex i to the open compo-
nent (add ti to the entry A) or we make i to form its own
component (add cij to the entry A and update the infor-
mation on the closed components appropriately).

Fig. 2 An illustration for the handling of T (i, j) in Case 2 and Case 3

• (Case 2). i is the leftmost son of j . Since T (i, j) con-
sists of at least two edges, i is not a leaf. Let k denote
the rightmost son of i, such that T (k, i) is the maximal
subtree rooted at i. For every vector in S(k, i) we may
either add vertex j to the open component (add tj to the
entry A) or we make j to form the new open component
(there is a new closed component of cost A + cij ; update
the information on the closed components appropriately;
set the new value of A to tj + cij).

• (Case 3). i is neither a leaf nor the leftmost son of j . De-
note by k the left brother of i, and denote by m the right-
most son of i. We have to combine all vectors in S(k, j)

with all vectors in S(m, i). Either the open component
in T (m, i) is closed and the open component in T (k, j)

survives and becomes the new open component, or the
two open components are glued together into a single new
open component. In both cases, the information in both
vectors is easily updated and merged into a single new
vector.

The last edge treated will be the edge [i, r] that connects the
root r to its rightmost son i. In the very end, we close in
every vector in S(i, r) the open component and translate it
into a vector (B,nd+1, . . . , nd2) with only d2 − d + 1 com-
ponents. Denote by S ∗ the resulting set of vectors.

Now the vectors in S ∗ essentially encode instances of
the classical makespan minimization problem on parallel
identical processors: Every connected component must go
together onto a common processor. Communication along
edges has become irrelevant, since the communication costs
have been merged into the costs of the connected compo-
nents. In every such instance, we have p processors, we have
many small jobs whose total processing time is B , and for
� = d + 1, . . . , d2 we have n� jobs of size �D/d2. Note that
we do not distinguish between the different values in the in-
terval from (� − 1)D/d2 to �D/d2; the resulting error is at
most a multiplicative factor of (d + 1)/d = 1 + ε in the re-
sponse time. In fact, we end up in a situation as described by
Hochbaum and Shmoys (1987) or Alon et al. (1998). By di-
rectly applying their machinery, the described instances can
be formulated as integer linear programs whose dimension
is a fixed constant (whose value only depends on ε and d).
Then Lenstra’s algorithm (Lenstra 1983) yields a polyno-
mial time solution for the makespan problem. We solve all

326 J Sched (2012) 15:323–332

these makespan problems in polynomial time (per problem)
and find the vector that leads to the best makespan. This vec-
tor is then translated back into a schedule for the operators.
The resulting response time is at most a factor of 1+ε above
the best possible response time.

What about the running time of this approach? The run-
ning time mainly depends on the cardinalities of the vec-
tor sets S(i, j) and S ∗. The last d2 − d entries of these
vectors can only take O(nd2−d) different values; this num-
ber is polynomial in the input size, since d is a fixed con-
stant. However, the first two entries of the vectors may take
any value between 0 and

∑
ti + ∑

cij ; this number is only
pseudo-polynomial in the input-size. Hence, the cardinali-
ties of these vector sets are pseudo-polynomial in the input-
size and so is the running time of the whole approach.

Theorem 2.1 For every ε > 0, there exists a pseudo-
polynomial time approximation algorithm that computes a
(1+ε)-approximation of the best response time for operator
trees.

3 A PTAS for operator trees

In this section, we round the dynamic programming formu-
lation of the preceding section such that its running time be-
comes polynomial. In doing this, we lose another factor of
1 + ε in the response time. All in all, this gives the PTAS.

The main idea is the following: As soon as we have com-
puted the vector set S(i, j), we look for a pair of vectors that
are ‘close’ to each other. Two vectors (A,B,nd+1, . . . , nd2)

and (A′,B ′, n′
d+1, . . . , n

′
d2) are called close to each other, if

they agree in their last d2 − d components and if

1

�
A ≤ A′ ≤ �A and

1

�
B ≤ B ′ ≤ �B (4)

holds, where � = 1 + ε/(2n). As long as S(i, j) contains
such a pair of close vectors, we remove one of these vectors
from S(i, j). We denote the resulting cleaned-up version of
S(i, j) by S ′(i, j). All further computations are then done
with S ′(i, j). This technique is of trimming the state space,
is due to Ibarra and Kim (1975); see also Woeginger (2000).

Lemma 3.1 The cardinality of every cleaned-up set S ′(i, j)

is polynomial in the input-size.

Proof In any vector in S(i, j), the entries A and B are inte-
gers in the range from 0 to X := ∑

ti + ∑
cij . The remain-

ing d2 − d entries are integers in the range 0 to n. By (4),
the cleaned-up version contains at most

log2
�(X) · nd2−d = ln2(X)/ ln2(�) · nd2−d

≤ (1 + 2n/ε)2 ln2(X) · nd2−d

vectors; here we have used that lnx ≥ (x − 1)/x for x ≥ 1.
Clearly, this bound is polynomial in n and in the input-size
ln(X). �

We conclude that the cleaning-up indeed brings the run-
ning time down to polynomial. What about the error that is
introduced by the cleaning-up? Every time we clean up a
vector set S(i, j), we introduce a new multiplicative error
of �. All together, there are at most n cleaning steps, and
thus the total error introduced by cleaning is at most

�n =
(

1 + ε

2n

)n

≤ 1 + ε.

Theorem 3.2 The problem of minimizing response time for
operator trees on identical processors possesses a PTAS.

4 Operator graphs that have bounded treewidth

Many combinatorially hard NP-complete problems are
known to be polynomial time solvable on graphs of bounded
treewidth. Such results usually generalize similar polyno-
mial time solvability results for trees; see for instance Bod-
laender (1997). In this section, we show how to extend the
results of the previous two sections to graphs of bounded
treewidth.

Graphs of treewidth at most k, also known as partial k-
trees, can be defined in several equivalent ways. We use here
a definition, based on the work of Borie et al. (1991) and
Wimer (1987), which is most useful for our purposes; see
also Bodlaender (1998). Throughout this section, we will
assume that k is a constant.

Definition 4.1 A terminal graph is a triple (V ,E,X), where
V is a set of vertices, E is a set of edges (unordered pairs of
vertices from V), and X is an ordered subset of V , called
the set of terminals. If |X| = k, then (V ,E,X) is called a k-
terminal graph.

Now, a graph G = (V ,E) has treewidth at most k, if and
only if terminal graph (V ,E,∅) can be constructed with
help of the following four operations (Bodlaender 1998;
Wimer 1987):

1. Leaf. Take a terminal graph with one vertex, which is a
terminal, and no edges.

2. Join. Take two terminal graphs G1 = (V1,E1,X1), G2 =
(V2,E2,X2) with the same number of terminals. Take
the disjoint union of G1 and G2, and then identify the
ith terminal of G1 with the ith terminal of G2, for all i,
1 ≤ i ≤ |X1| = |X2|.

3. Introduce. Take a terminal graph G = (V ,E,X) with
|X| ≤ k. Add a new vertex v, which is also a terminal,

J Sched (2012) 15:323–332 327

and zero or more edges from v to terminals in X, that
is, take a new terminal graph (V ∪ {v},E ∪ {{v, y}|y ∈
Y },X ∪ {v}), with Y ⊆ X.

4. Forget. Take a terminal graph G = (V ,E,X), and turn
one terminal vertex into a non-terminal vertex, that is,
take (V ,E,X − {v}) for v ∈ X.

If one has a graph G = (V ,E) of treewidth at most k,
then one can find a tree decomposition of G of width at
most k in linear time (Bodlaender 1996). This tree decom-
position can then be transformed, again in linear time, to
a tree (the construction tree) with nodes labeled by Leaf,
Join, Introduce, or Forget operations, such that the tree rep-
resents the construction of G = (V ,E,∅) as terminal graph.
We now suppose we have this construction tree.

Note that to each node of the construction tree, we have
an associated terminal graph. We will often not distinguish
between a node in the construction tree and this associated
terminal graph. As we do only Introduce operations to ter-
minal graphs with at most k terminals, we never deal with a
terminal graph with more than k + 1 terminals.

Let ε > 0 be a positive real number, let d be an integer
such that 1/d < ε, and let D = ∑

v∈V tv + ∑
{v,w}∈E cvw .

Consider a terminal graph (V ′,E′,X). A proper parti-
tion of V ′ is a partition (V1, . . . , Vr) of V ′ in one or more
disjoint sets, such that

• Each set Vi that does not contain a terminal vertex (Vi ∩
X = ∅) induces a connected sub-graph.

• If set Vi contains a terminal vertex, then every connected
component of the sub-graph induced by Vi contains a ter-
minal vertex.

• ⋃
1≤i≤r Vi = V ′.

If a set Vi does not contain a terminal vertex, we call Vi

a closed set; otherwise we call Vi an open set. The cost of
a set Vi is defined as before, ignoring edges to vertices not
in V ′; that is, the cost of Vi with respect to (V ′,E′,X) is
∑

v∈Vi

ti +
∑

v∈Vi,w �∈Vi,{v,w}∈E′
cvw.

To a terminal graph G′ = (V ′,E′,X) and a proper partition
(V1, . . . , Vr) of V ′, we associate the tuple of the partition
and G′:

(,0, f,B,nd+1, . . . , nd2).

Here, is an equivalence relation on the set of terminals X,
with for all v,w ∈ X, v x, if and only if v and w belong
to the same set Vi , 1 ≤ i ≤ r , and 0 is an equivalence rela-
tion on the set of terminals X, with for all v,w ∈ X, v 0 x,
if and only if v w and v and w belong to the same con-
nected component of the sub-graph induced by the set Vi

with v,w ∈ Vi . Furthermore, f : X → N maps each termi-
nal vertex v to the cost of the open set to which v belongs,

B is the total cost of all closed sets that have cost at most
D/d , and for � = d + 1, . . . , d2, there are exactly n� closed
components whose cost is greater than (�−1)D/d2 and less
or equal to �D/d2.

A set of tuples of all possible proper partitions for a
given terminal graph G′ = (V ′,E′,X) is called the active
set. The idea is to compute an active set for every (graph
represented by a) node in the construction tree of G. This
is done bottom-up in the construction tree: an active set of
tuples for a node in the construction tree can be computed
from the active sets of the children of the node. We now
discuss for each of the four types of nodes how this compu-
tation can be done.

Leaf nodes The terminal graph associated with a leaf node
is of the form ({v},∅, {v}), and the one possible proper parti-
tion gives the following tuple: (,, f,0,0, . . . ,0), where
f (v) = tv , and is the trivial equivalence relation on the
one-element set {v}. The active set for this leaf node con-
sists of this tuple.

Join nodes Suppose G0 = (V 0,E0,X) is formed by a join
of G1 = (V 1,E1,X) and G2 = (V 2,E2,X). (To ease pre-
sentation, we use the same name for a vertex that is identi-
fied with another vertex as for this other vertex and for the
resulting vertex. So, each of these three graphs has the same
set of terminals.)

Suppose active sets for G1 and G2, A1, A2 are known.
To compute an active set of tuples for G0, we take a set A
that is initially empty.

We now consider each pair of tuples (,0, f,B,nd+1,

. . . , nd2) from the active set of G1 and (,′
0, f

′,B ′, n′
d+1,

. . . , n′
d2) from the active set of G2. Note that we only con-

sider pairs with the first equivalence relation identical. The
idea is that we build a new proper partition from the proper
partition, represented by these tuples, in the following way:
every closed set in one of these proper partitions is again a
closed set in the new proper partition of G0. Every open set
in the new proper partition is the union of an open set in G1

and an open set G2 with the same terminals. The tuple

(,′′
0, f

′′,B ′′, n′′
d+1, . . . , n

′′
d2

)

for this new proper partition can be computed from the two
given tuples, in the following way.

Compute the equivalence relation ′′
0, which is the transi-

tive closure of the relation R with vRw ⇔ v 0 w∨v ′
0 w.

This new equivalence relation precisely captures when v and
w belong to the same connected component of G0[Vi] for
some Vi , as v and w belong to the same component in G0

when they do so in G1 or in G2 or via intermediate vertices
in X that belong to the same component: this is precisely
captured by taking the transitive closure.

328 J Sched (2012) 15:323–332

For v ∈ X, the value f ′′(v) can be computed as follows.
The cost of the set to which v belongs basically is the cost of
the part of the set that belongs to G1 plus the cost of the part
of the set that belongs to G2, but we have to subtract those
costs we counted twice. Thus, we obtain

f ′′(v) = f (v) + f ′(v) −
∑

w∈S(v)

tw −
∑

w∈S(v),{v,w}∈E0

cvw.

Here, S(v) = {w ∈ X|v w} is the set of terminals that
belong to the same open set as v in the proper partition.

Furthermore, as the new collection of closed components
is just the disjoint union of the collections of closed compo-
nents for G1 and for G2, one can directly see that the proper
values for B ′′, and n′′

� are obtained by taking B ′′ = B + B ′
and n′′

� = n� + n′
�, d + 1 ≤ � ≤ d2. Add the tuple thus com-

puted to the set A. After all pairs are dealt with, A forms an
active set of tuples for G0.

Introduce nodes Suppose G0 = (V 0,E0,X ∪ {v}) is ob-
tained from G1 = (V 1,E1,X) by an introduce opera-
tion; v the newly introduced vertex. Suppose Y = {w ∈
X|{v,w} ∈ E0}.

Again, we build an active set A for G0 from an active set
A′ for G1. A is initially empty.

For each tuple (,0, f,B,nd+1, . . . , nd2) from A′, we
add two or more tuples to A, representing the different cases
where v can be added in the partition. The idea is that we use
a proper partition, represented by this tuple, and either add
one additional set {v}, or add v to one of the (necessarily
open) sets in the partition.

First, we look to the case that v forms a set on its own.
Let ′ be the equivalence relation on X ∪ {v}, with x ′ y

iff x, y ∈ X and x y, or x = y = v. Similarly, let ′
0

be the equivalence relation on X ∪ {v}, with x ′
0 y iff

x, y ∈ X and x 0 y, or x = y = v. Take f ′(w) = f (w) +∑
wx,{v,x}∈E0 cvw for w ∈ X, and f ′(v) = tv + ∑

w∈Y cvw .
Note that f ′ gives for each w the cost of the set containing
w in the new proper partition of G0. Thus, this case corre-
sponds to tuple (′,′

0, f
′,B,nd+1, . . . , nd2); this tuple is

added to A.
Then, for every w ∈ X, we consider the case that v is

added to the set that contains w. Here, ′ is the equivalence
relation on X ∪ {v}, with x ′ y iff x, y ∈ X or if v = x

and w y. ′
0 is the transitive closure of the relation R on

X ∪ {v}, with xRy, iff x, y ∈ X and x 0 y or x = v and
y ∈ Y , or y = v and x ∈ Y . One can see that now for all
x, y ∈ X ∪ {v}, x ′

0 y, if and only if x and y belong to the
same connected component in the newly formed proper par-
tition (i.e., adding v to the set of w.) The costs are as follows.
For x ∈ X with not x w, f ′(x) = f (x) + ∑

yx,y∈Y cvy .
For x = v or x ∈ X,x w, f ′(x) = f (w)+∑

y �w,y∈Y cyv .
Now, the tuple (′,′

0, f
′,B,nd+1, . . . , nd2) corresponds

to the proper partition where v is added to the same set as
w; this tuple is added to A.

The resulting set A is an active set of G0.

Forget nodes Suppose G0 = (V 0,E0,X) is obtained by a
forget operation from G1 = (V 0,E0,X ∪{v}). An active set
of G0 can be obtained by an active set by a kind of ‘projec-
tion’.

Again, take an empty set A. For every tuple t = (,0,

f,B,nd+1, . . . , nd2) from the active set of G1, do the fol-
lowing. One of the following cases must hold.

1. There is a w ∈ X with v w, but there is no y ∈ X

with v 0 y. In this case, the corresponding partition is
no longer proper: the connected component containing v

belongs to a larger set, but no longer contains a terminal
vertex. Here, we just ignore the tuple.

2. There is a w ∈ X with v 0 w. The proper partition re-
mains proper, and has the same closed and open sets. Let
′, ′

0, f ′ be the restrictions to X of , 0, f , respec-
tively. Then, (′,′

0, f
′,B,nd+1, . . . , nd2) is the tuple

representing the same proper partition as the tuple t , but
now for G0 instead of for G1. Add this tuple to A.

3. There is no w ∈ X with v 0 w. In this case, the proper
partition remains proper, but the open set that contained
v now becomes closed. Let again be ′, ′

0, f ′ the re-
strictions to X of , 0, f , respectively. There are two
subcases.
(a) If f (v) ≤ D/d , then the cost of the newly formed

closed components must be added to B , and hence
we insert the tuple (′,′

0, f
′,B + f (v), nd+1,

. . . , nd2) in A.
(b) If (� − 1)D/d2 < f (v) ≤ �D/d2 (d + 1 ≤ � ≤ d2),

then insert the tuple (′,′
0, f

′,B,nd+1, . . . , n�−1,

nell + 1, n�+1, . . . , nd2) in A.

Again, the set A that results after all tuples in the active
set of G1 are considered is an active set of G1.

Note that each active set has a number of elements that is
pseudo polynomial, assuming that the number of terminals
of the terminal graphs we deal with is bounded by a con-
stant k. It follows that we can compute in polynomial time
the active set of the root node of the construction tree.

Note that the terminal graph corresponding to this root
node is (V ,E,∅). As we have no terminals, we can ignore
the first three elements of the tuples, and arrive at a set of
vectors of the form (B,nd+1, . . . , nd2). These vectors have
the same form, and the same meaning as those used in the al-
gorithm for trees. Thus, the same technique as used for trees
can then be applied, and we arrive at the following general-
ization of Theorem 2.1.

Theorem 4.2 For every ε > 0, and every k ∈ N, there ex-
ists a pseudo-polynomial time approximation algorithm that

J Sched (2012) 15:323–332 329

computes a (1 + ε)-approximation of the best response time
for operator graphs of treewidth at most k.

To obtain a PTAS for graphs of bounded treewidth, we
generalize the clean-up method. Every time an active set is
computed, a clean-up of the active set is done, as follows.

Two tuples (,0, f,B,nd+1, . . . , nd2) and (′,′
0,

f ′,B ′, n′
d+1, . . . , n

′
d2) are called to be close to each other,

when =′, 0=′
0, n� = n′

�, d + 1 ≤ � ≤ n2, for all ter-
minals v, f (v)/� ≤ f ′(v) ≤ �f (v), and B/� ≤ B ′ ≤ �B ,
where � = 1 + ε/(2n), where n is the number of nodes in
the construction tree. As long as there are two tuples that are
close to each other in the active set, one of them is removed
in the clean-up operation.

The remaining analysis is identical to the case of trees,
and we obtain the following result:

Theorem 4.3 For every fixed k, the problem of minimizing
response time for operator graphs of treewidth at most k on
identical processors possesses a PTAS.

5 A polynomial time result for response time four

In this section, we prove that for arbitrary operator graphs,
we can decide in polynomial time whether there exists
a schedule with response time ≤ 4 on p processors. Let
us start with several simple observations that every YES-
instance with response time ≤ 4 must satisfy. Clearly, every
node i in such an instance has execution cost 1 ≤ ti ≤ 4.

Lemma 5.1 If there is a node i of degree at least 4, then the
instance is a NO-instance.

Proof Consider an arbitrary schedule, and consider the
workload Lk of the processor that is processing i. Then the
execution cost of i contributes at least 1 to Lk , and each of
the 4 neighbors contributes a communication cost or execu-
tion cost of at least 1 to Lk . Hence Lk ≥ 5, and the instance
is a NO-instance. �

Lemma 5.2 If there is a node i of degree 3, then the con-
sidered instance can be reduced (in polynomial time) to an
equivalent smaller instance with fewer processors.

Proof Let x1, x2, x3 be the three neighbors of node i. Con-
sider an arbitrary schedule, and consider the workload Lk of
the processor that is processing i. By arguing as in the pre-
ceding lemma, we see that the only possibility for a YES-
instance is that node i has execution cost 1, and that every
neighbor xj (1 ≤ j ≤ 3) contributes 1 to the workload Lk ei-
ther through its execution cost or through its communication
cost.

We initialize the set S := {i, x1, x2, x3} of operators
scheduled together with node i, and then perform the fol-
lowing two removal steps until the situation stabilizes:

• If xj has execution cost at least 2, then remove xj from S.
• If xj has a neighbor outside of S, then remove xj from S.

If the resulting set S contains node xj , then xj has execution
cost 1 and incurrs no communication costs to nodes outside
of S. Hence we may assign the nodes in S to a common
processor.

We remove the nodes in S from the instance, we decrease
the number of processors by one, and we increase the exe-
cution times of the surviving neighbor xj so that they cover
the communication costs with the nodes in S. This clearly
yields an equivalent instance with fewer processors. �

Lemmas 5.1 and 5.2 leave us with an operator graph in
which all nodes are of degree at most 2. The connected com-
ponents of such a graph are isolated nodes, paths, and cycles.

We now work through these connected components
one by one. Hence consider some fixed component C,
and consider some fixed four-tuple (n1, n2, n3, n4) with
n1 + n2 + n3 + n4 ≤ p. We define a Boolean variable
X[C;n1, n2, n3, n4] with the following meaning: “Compo-
nent C can be cut into n1 + n2 + n3 + n4 connected pieces
such that for r = 1,2,3,4 there are exactly nr pieces with
load r .” Since C is a path or a cycle, X[C;n1, n2, n3, n4]
can easily be computed in polynomial time by straightfor-
ward dynamic programming (moving along the path or mov-
ing along the cycle). Since there are only O(p4) four-tuples
(n1, n2, n3, n4) with n1 + n2 + n3 + n4 ≤ p, the value of all
Boolean variables can be determined in polynomial time.

In the final phase, we consider an enumeration C1,C2,

. . . ,Cs of all connected components. For every four-tuple
(n1, n2, n3, n4) with n1 + n2 + n3 + n4 ≤ p and for every
integer t with 1 ≤ t ≤ s, we define a Boolean variable
Y [t;n1, n2, n3, n4] with the following meaning: “There ex-
ists a feasible schedule for the operators in the first t

components C1,C2, . . . ,Ct that for r = 1,2,3,4 uses ex-
actly nr processors with load r .” Again, this is a stan-
dard optimization problem that can be solved by a stan-
dard dynamic programming approach based on the values
X[C;n1, n2, n3, n4].

In the end, we only have to check whether at least one
of the Boolean variables Y [s;n1, n2, n3, n4] has been set to
true. This then yields a schedule of all nodes in all s com-
ponents on at most n1 + n2 + n3 + n4 ≤ p processors each
with load at most 4.

Theorem 5.3 For arbitrary operator graphs, it can be de-
cided in polynomial time whether there exists a schedule
with response time at most four.

330 J Sched (2012) 15:323–332

Fig. 3 Triple-vertices,
middle-vertices, and
element-vertices

6 A hardness result for response time six

In this section we investigate the general operator schedul-
ing problem where the communication constraints are not
restricted to be trees but may form an arbitrary graph G =
(V ,E) on the operator set V . We show that it is NP-hard to
decide whether there exists a schedule with response time 6.

We start with an NP-hardness proof for operator schedul-
ing in arbitrary graphs. The reduction is from the following
NP-hard version of the 3-Dimensional Matching problem
with bounded occurrence of elements (3DM-B); cf. Garey
and Johnson (1979).

3-DIMENSIONAL MATCHING (3DM-B)

Input: Three sets A = {a1, a2, . . . , aq}, B = {b1, b2, . . . , bq}
and C = {c1, c2, . . . , cq}. A subset T of A × B × C of car-
dinality s, such that any element of A, B and C occurs in
exactly two or three triples in T . Note that s ≥ q .
Question: Does there exist a subset T ′ of T with |T ′| = q

that covers every element in A ∪ B ∪ C?

From an instance of 3DM-B, we construct an operator
graph G = (V ,E) in the following way: For every triple
t ∈ T , there is a corresponding triangle in G whose vertices
are called triple-vertices and correspond to the occurrences
of the three elements in t . For every element in A ∪ B ∪ C,
there is a corresponding element-vertex in G. If an element
occurs in some triple, then there is a path of two edges
that connects the corresponding element-vertex to the triple-
vertex that corresponds to the occurrence of this element in
this triple; the central vertex in this path is called a middle-
vertex; see Fig. 3 for an illustration. This completes the de-
scription of the underlying graph G.

Next, let us specify the execution times and communica-
tion times of the vertices in G: The execution time of every
triple-vertex is 1. The execution time of every middle-vertex
is 2. The execution time of every element-vertex is 1 if the
element occurs in three triples of T , and it is 2 is the element
occurs in exactly two triples. The communication costs of all
edges in E are 1. Finally, the number p of processors is set
to 3s + q .

Lemma 6.1 If the 3DM-B instance has answer YES, then
there exists a schedule with response time 6.

Proof Let T ′ be a set of q triples that cover all elements in
A∪B ∪C. The following steps (a)–(c) show how to allocate
all vertices on 3s + q processors with response time 6 and
thus prove the claim.

(a) For every triple t ∈ T ′, we process its three triple-
vertices together on one processor. This gives a processor
load of 6 (1 + 1 + 1 for executing the three vertices plus
1 + 1 + 1 for communicating to the three adjacent middle-
vertices). This consumes q processors.

(b) For every triple t /∈ T ′, we process its three triple-
vertices plus the three adjacent middle-vertices on three
processors. Every such processor processes one triple-vertex
plus the adjacent middle-vertex; again this gives a processor
load of 6 (1 + 2 for executing the vertices plus 1 + 1 + 1
for communicating to the adjacent vertices). This consumes
3(s − q) processors.

(c) Since every element is contained in exactly one triple
in T ′, for every element-vertex all but one of the adjacent
middle-vertices have been scheduled in step (b). The re-
maining adjacent middle-vertex is processed together with
the element-vertex on one processor. If the corresponding
element is contained in three triples in T , then the total exe-
cution time assigned to this processor is 1 + 2, and the total
communication time is 1 + 1 + 1. If the corresponding ele-
ment is contained in two triples in T , then the total execution
time assigned to this processor is 2 + 2, and the total com-
munication time is 1 + 1. Again, this gives a processor load
of 6. This consumes 3q processors. �

Lemma 6.2 If there exists a schedule with response time at
most 6, then the 3DM-B instance has answer YES.

Proof Consider a schedule with response time 6. It is easy
to see that an element-vertex cannot be processed on the
same processor with a triple-vertex, or together with another
element-vertex, or together with two middle-vertices. More-
over, a triple-vertex can only be processed alone, or together
with one or two adjacent triple-vertices from the same tri-
angle, or together with an adjacent middle-vertex. We now
restructure the schedule in two phases.

In the first phase, we consider a processor P that only
processes a single element-vertex. We choose an arbitrary
middle-vertex that is adjacent to the element-vertex in G,
and move it to processor P . This does not increase the load
on the processor that loses the middle-vertex, and it cannot

J Sched (2012) 15:323–332 331

make the load on P larger than 6. This step is repeated over
and over again, until every element-vertex is processed to-
gether with some middle-vertex.

In the second phase, we consider a processor P that
processes a triple-vertex, but no middle-vertex. We move
the adjacent triple-vertices from the same triangle to proces-
sor P ; this does not increase the loads of the processors who
lose vertices and makes the load of processor P exactly 6.
This step is repeated until every triple-vertex is processed
together with an adjacent middle-vertex or together with the
other two triple-vertices in the same triangle.

At the end of the second phase, there only remain four
types of processors: The 3q processors of type I process
an element-vertex together with a middle-vertex. There are
x processors of type II that process three triple-vertices to-
gether. There are y processors of type III that process a sin-
gle triple-vertex, a single middle-vertex, or a triple-vertex
together with a middle-vertex. Now since there are 3(s − x)

triple-vertices on processors of type III, y ≥ 3(s − x) holds,
and since there must be 3s − 3q middle-vertices on proces-
sors of type III, y ≥ 3s − 3q holds. Since the total number
of used processors 3q + x + y is at most 3s + q , we de-
rive the two inequalities q ≤ x and x ≤ q from this. Hence,
x = q and y = 3s − 3q must hold true, and every processor
of type III processes a triple-vertex together with an adjacent
middle-vertex.

Consider those 3q triple-vertices that are scheduled on
processors type II. The 3q middle-vertices that are adja-
cent to these triple-vertices are all processed together with
an adjacent element-vertex on a processor of type I. Con-
sequently, the q triples that correspond to these q triangles
cover all 3q elements in A ∪ B ∪ C. �

Lemmas 6.1 and 6.2 together imply the following theo-
rem.

Theorem 6.3 For arbitrary operator graphs, it is NP-hard
to decide whether there exists a schedule with response time
at most six.

7 The in-approximability result

This section deduces another negative result from the con-
struction in the preceding section. We stress that the classical
gap technique would only yield a lower bound of 7/6. Hence
another small trick is needed, and this trick is provided in the
following technical lemma.

Lemma 7.1 In any feasible schedule for the operator graph
constructed in Sect. 6, the load of any processor is an even
integer.

Proof For a vertex i in G, define the pseudo-weight w(i) to
be its execution time plus the number of its incident edges.
Note that for every vertex i in G the pseudo-weight w(i) is
an even integer.

Now consider a processor k that processes a set Vk of
vertices. We claim that the parity of the load Lk equals the
parity of

∑
i∈Vk

w(i): If an edge contributes a value 1 to
the load, then exactly one of its endpoints is in Vk , and the
edge contributes 1 to

∑
i∈Vk

w(i). If an edge does not con-
tribute to the load, then either both or none of its endpoints
are in Vk . Then the edge either contributes 0 or 2 to the sum∑

i∈Vk
w(i). This proves the claim. Since all pseudo-weights

are even, it also proves the lemma. �

Now assume for the sake of contradiction that for some
ε > 0 there exists a polynomial time approximation algo-
rithm for minimizing the response time on arbitrary oper-
ator graphs with worst case guarantee 4/3 − ε. We apply
this approximation algorithm to the instance G constructed
in the preceding section. In case the approximation algo-
rithm returns a schedule of length 6 or less, we know from
Lemma 6.2 that the instance of 3DM-B has answer YES.
By Lemma 7.1, the approximation algorithm cannot return
a schedule of length 7. Finally, if the approximation algo-
rithm returns a schedule of length 8 or more, then we know
that the optimal response time is at least 8/(4/3 − ε) > 6.
Lemma 6.1 yields that in this case the answer to the instance
of 3DM-B is NO. Summarizing, we find in polynomial time
the answer to any instance of the NP-hard problem 3DM-B,
and this implies P = NP .

Theorem 7.2 Unless P = NP, every polynomial time ap-
proximation algorithm for minimizing the response time on
arbitrary operator graphs has a worst case performance
guarantee of at least 4/3.

8 Conclusions

We performed a complexity and approximability analysis
for minimizing response time in scheduling a pipelined op-
erator graphs. We derived approximation schemes for graphs
of bounded treewidth, and we established in-approximability
of the general problem. We showed that deciding the exis-
tence of a schedule with response time four is easy, whereas
deciding response time six is hard. The case with response
time five remains open.

The approximability of the problem in general graphs re-
mains open. We are not aware of any non-trivial results for
it.

Acknowledgements We thank the referees for a careful reading of
the paper and for helpful comments that improved the presentation of
the paper.

332 J Sched (2012) 15:323–332

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Alon, N., Azar, Y., Woeginger, G. J., & Yadid, T. (1998). Approxi-
mation schemes for scheduling on parallel machines. Journal of
Scheduling, 1, 55–66.

Bodlaender, H. L. (1996). A linear time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing,
25, 1305–1317.

Bodlaender, H. L. (1997). Treewidth: Algorithmic techniques and re-
sults. In I. Privara & P. Ruzicka (Eds.), LNCS: Vol. 1295. Proceed-
ings of the 22nd international symposium on mathematical foun-
dations of computer science (MFCS’1997) (pp. 19–36). Berlin:
Springer.

Bodlaender, H. L. (1998). A partial k-arboretum of graphs with
bounded treewidth. Theoretical Computer Science, 209, 1–45.

Borie, R. B., Parker, R. G., & Tovey, C. A. (1991). Deterministic de-
composition of recursive graph classes. SIAM Journal on Discrete
Mathematics, 4, 481–501.

Chekuri, C., Hasan, W., & Motwani, R. (1995). Scheduling problems in
parallel query optimization. In Proceedings of the 14th ACM sym-
posium on principles of database systems (PODS’95) (pp. 255–
265).

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability:
a guide to the theory of NP-completeness. San Francisco: Free-
man.

Gray, J. (1988). The cost of messages. In Proceedings of the 7th ACM
symposium on principles of distributed computing (PODC’88)
(pp. 1–7).

Hasan, W., & Motwani, R. (1994). Optimization algorithms for ex-
ploiting the parallelism-communication tradeoff in pipelined par-
allelism. In Proceedings of the 20th international conference on
very large databases (pp. 36–47).

Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approxima-
tion algorithms for scheduling problems: theoretical and practical
results. Journal of the Association of Computing Machinery, 34,
144–162.

Ibarra, O., & Kim, C. E. (1975). Fast approximation algorithms for the
knapsack and sum of subset problems. Journal of the Association
of Computing Machinery, 22, 463–468.

Lenstra, H. W. (1983). Integer programming with a fixed number of
variables. Mathematics of Operations Research, 8, 538–548.

Veltman, B., Lageweg, B. J., & Lenstra, J. K. (1990). Multiprocessor
scheduling with communication delays. Parallel Computing, 16,
173–182.

Wimer, T. V. (1987). Linear algorithms on k-terminal graphs. PhD
thesis, Dept. of Computer Science, Clemson University.

Woeginger, G. J. (2000). When does a dynamic programming formu-
lation guarantee the existence of an FPTAS? INFORMS Journal
on Computing, 12, 57–75.

	Scheduling of pipelined operator graphs
	Abstract
	Introduction
	Known and related results
	Results of this paper

	Approximate dynamic programming for operator trees
	A PTAS for operator trees
	Operator graphs that have bounded treewidth
	Leaf nodes
	Join nodes
	Introduce nodes
	Forget nodes

	A polynomial time result for response time four
	A hardness result for response time six
	The in-approximability result
	Conclusions
	Acknowledgements
	References

